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Abstract

We present some open problems and obtain some partial results for spectral optimization prob-
lems involving measure, torsional rigidity and first Dirichlet eigenvalue.
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1 Introduction

A shape optimization problem can be written in the very general form
min {F(Q) : Qe A},

where A is a class of admissible domains and F' is a cost functional defined on A. We consider in the
present paper the case where the cost functional F' is related to the solution of an elliptic equation and
involves the spectrum of the related elliptic operator. We speak in this case of spectral optimization
problems. Shape optimization problems of spectral type have been widely considered in the literature;
we mention for instance the papers [14], [?], [I7], [19], [20], [21], [22], [29], and we refer to the books
[16], [26], [27], and to the survey papers [2], [18], [25], where the reader can find a complete list of
references and details.

In the present paper we restrict ourselves for simplicity to the Laplace operator —A with Dirich-
let boundary conditions. Furthermore we shall assume that the admissible domains ) are a priori
contained in a given bounded domain D C R?. This assumption greatly simplifies several existence
results that otherwise would require additional considerations in terms of concentration-compactness
arguments [14], [31].

The most natural constraint to consider on the class of admissible domains is an inequality on
their Lebesgue measure. Our admissible class A is then

A={QcD : |9 <1}

Other kinds of constraints are also possible, but we concentrate here to the one above, referring the
reader interested in possible variants to the books and papers quoted above.
The following two classes of cost functionals are the main ones considered in the literature.

Integral functionals. Given a right-hand side f € L?(D), for every Q € A let ug be the unique
solution of the elliptic PDE
~Au=finQ, uec H}Q).

The integral cost functionals are of the form

F(Q) = /Qj(:c, uq(z), Vuo(z)) d,

where j is a suitable integrand that we assume convex in the gradient variable. We also assume that
j is bounded from below by
j(xa S, Z) > _a(‘r) - C|S|27



with @ € L'(D) and ¢ smaller than the first Dirichlet eigenvalue of the Laplace operator —A in D.
For instance, the energy £¢(2) defined by

£4(Q) = inf{/D (%|Vu|2 ) dr : ue H&(Q)},

belongs to this class since, integrating by parts its Euler-Lagrange equation, we have that

£4(Q) = —;/Df(:r)uQ dz,

which corresponds to the integral functional above with

(r,5,2) = 5 F@)s.

The case f = 1 is particularly interesting for our purposes. We denote by wq the torsion function,
that is the solution of the PDE

—Au=1inQ, u € Hg(Q),

and by the torsional rigidity T(Q2) the L; norm of wgq,
T(Q) = / wo dr = —2£1(Q).
Q

Spectral functionals. For every admissible domain 2 € A we consider the spectrum A(f2) of the
Laplace operator —A on H}(Q). Since Q has a finite measure, the operator —A has a compact
resolvent and so its spectrum A(€) is discrete:

A©) = (M(Q), 22(9),...),

where \;(Q) are the eigenvalues counted with their multiplicity. The spectral cost functionals we may
consider are of the form
F(Q) = ®(A(2)),

for a suitable function ® : RY — R. For instance, taking ®(A) = \x(Q2) we obtain
F(Q) = ().

We take the torsional rigidity 7'(2) and the first eigenvalue A\ (£2) as prototypes of the two classes
above and we concentrate our attention on cost functionals that depend on both of them. We note
that, by the maximum principle, when ) increases T'(£2) increases, while A\ (£2) decreases.

2 Statement of the problem
The optimization problems we want to consider are of the form
min {®(A(Q),T(Q)) : QC D, |Q <1}, (2.1)

where we have normalized the constraint on the Lebesgue measure of €2, and where ® is a given
continuous (or lower semi-continuous) and non-negative function. In the rest of this paper we often
take for simplicity D = R%, even if most of the results are valid in the general case. For instance,
taking ®(a,b) = ka + b with k a fixed positive constant, the quantity we aim to minimize becomes

EX(Q2) +T(Q) with  C D, and || < 1.



Remark 2.1. If the function ®(a,b) is increasing with respect to a and decreasing with respect to b,
then the cost functional
F(Q) = B(\ (), T(@))

turns out to be decreasing with respect to the set inclusion. Since both the torsional rigidity and the
first eigenvalue are y-continuous functionals and the function ® is assumed lower semi-continuous, we
can apply the existence result of [20], which provides the existence of an optimal domain.

In general, if the function ® does not verify the monotonicity property of Remark then the
existence of an optimal domain is an open problem, and the aim of this paper is to discuss this
issue. For simplicity of the presentation we limit ourselves to the two-dimensional case d = 2. The
case of general d does not present particular difficulties but requires the use of several d— dependent
exponents.

Remark 2.2. The following facts are well known.

i) If B is a disk in R? we have
1
T(B) = 8—|B|2.
T

ii) If jo1 ~ 2.405 is the first positive zero of the Bessel functions Jo(z) and B is a disk of R? we

have -
M(B) = —781.
1( ) ‘B|170,1

iii) The torsional rigidity T'(2) scales as

T(tQ) =t'T(Q), vVt >0.

iv) The first eigenvalue A;(Q2) scales as

M(EQ) =720 (Q),  Vt>0.

v) For every domain € of R? and any disk B we have

9127(@) < |BIT(B) = .

vi) For every domain Q2 of R? and any disk B we have (Faber-Krahn inequality)

2AL(Q) > |BIM(B) = 7.

vii) A more delicate inequality is the so-called Kohler-Jobin inequality (see [28], [11]): for any domain
Q) of R? and any disk B we have

X (@T(Q) 2 X(B)T(B) = Lid -

We recall the following inequality, well known for planar regions (Section 5.4 in [30]), between
torsional rigidity and first eigenvalue.

Proposition 2.3. For every domain Q C R? we have
A(Q)T(Q) < Q.

Proof. By definition, A;(Q2) is the infimum of the Rayleigh quotient

/Q |Vu)? dx//qu dx over all u € H (), u # 0.



Taking as u the torsion function wq, we have

Al(Q)S/‘va|2dl‘//wS2)dCC.
Q Q

Since —Awgq = 1, an integration by parts gives

/\ng|2dx:/w9d:r:T(Q),
Q Q

while the Holder inequality gives

/Qw%d:c > |S1]| (/ngdl‘>2 = |(12|(T(Q))2.

Summarizing, we have

as required. 0

Remark 2.4. The infimum of A\;(Q)7T(£2) over open sets 2 of prescribed measure is zero. To see this,
let Q,, be the disjoint union of one ball of volume 1/n and n(n — 1) balls of volume 1/n?. Then the
radius R,, of the ball of volume 1/n is (nwy)~'/¢ while the radius 7, of the balls of volume 1/n? is
(nwq)~ Y%, so that Q| = 1,

1

M) = M(Br,) = pai(B1) = (nwa)*/ A1 (By),
and
T(Q,) = T(Bg,) +n(n — 1)T(B,,) = T(B1) (R + n(n — 1)ri+?)
_ T(Bl)w;1_2/d(n_1_2/d +(n— 1)n_1_4/d).
Therefore

M\ (B)T(By)n??4+n—1
Al(Qn)T(Qn): 1( t,)Jd( 1) n1+2/d 5

which vanishes as n — oo.

In the next section we investigate the inequality of Proposition

3 A sharp inequality between torsion and first eigenvalue

We define the constant
A (Q)T(Q)
K4 = sup {
€2
We have seen in Proposition that 4 < 1. The question is if the constant 1 can be improved.

Consider a ball B; performing the shape derivative as in [27], keeping the volume of the perturbed
shapes constant, we obtain that for every field V (z)

: Qopenin RY, |Q] < oo} )

M (B)T(B)(V) = T(B)OM(B)|(V) + M (B)I[T(B)|(V) = Cp - VndH!

for a suitable constant Cg. Since the volume of the perturbed shapes is constant, we have

/ V-ndH"l =0,
0B

where H9~! denotes (d — 1)-dimensional Hausdorff measure. This shows that balls are stationary for

the functional
M()T(Q)

€2
Below we will show, by considering rectangles, that balls are not optimal. To do so we shall obtain a
lower bound for the torsional rigidity of a rectangle.

F(Q) =



Proposition 3.1. In a rectangle R, = (—b/2,b/2) x (—a/2,a/2) with a < b we have

a’b  1la?
T(Ryp) > — — .
(Rap) = 12 180

Proof. Let us estimate the energy

1
E1(Rqp) = inf {/ <2Vu|2 - u) dedy : u€ H&(Ra7b)}
Ra,b

by taking the function

a2 —4 2
u(e,y) = —-0(x),
where 6(x) is defined by
1 if < (b-— 2
9(:1:) — 71 |x| —( a’)/
(b—2|z|)/a ,otherwise.
We have )
a? — 4y
Vi = (S5 ) @R + e,
so that
a/2 02 _ g2\ 2 b/2 a/2 b/2
s <2 [ (S ay [P [Ty [ ok
0 8 0 0 0
a/2 (2 _ g2 b/2
- 4/ i dy/ 0(z) dx
0 8 0
_a @ (b-a a\_d (b-a a
60 12\ 2 6 6 \ 2 4
_a’ N 11a*
24 360
The desired inequality follows since T'(Rqp) = —2&1(Rap)- O

In d dimensions we have the following.
Proposition 3.2. If Q. = w x (—¢/2,¢,2), where w is a convex set in RY™1 with |w| < 0o, then
3 4
T(Qe)zﬁ|w|—|—0(€ ) €l 0.

We defer the proof to Section [5
For a ball of radius R we have

.9
Jaj2-1,1 wq R d
M(B) = ’ T(B) = —— B| = 1
1( ) R2 ) ( ) d(d+2)7 ‘ ’ WdR s (3 )
so that »2
M(B)T(B)  Jaj2-1.1
F(B) = - LA
(B) B dd+2) M

For instance, we have
g =~ 0723, as ~ 0658, ay =~ 0.612.

Moreover, since j,,1 = v + O(V1/3), v — oo, we have that limg_,o g = %. A plot of a4 is given in
Figure

We now consider a slab Q. = w x (0,¢) of thickness ¢ — 0. We have by separation of variables and
Proposition [3.2] that

w2 w2 &3

A1) = o) + A (w) = =L T(Q.) ~

Q] = elwl,



0.8~
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so that

This shows that in any dimension the slab is better than the ball. Using domains in R¢ with k small
dimensions and d — k large dimensions does not improve the value of the cost functional F'. In fact, if
w is a convex domain in R4~* and By(¢) a ball in R¥, then by Theorem [5.1| with Q. = w x By(g) we
have that

1
M)~ M (Br(1),  T(Q) ~ W T(By(1), || = e¥lwl[Br(1)],
so that o
Jeja—11 _ m?
F(Q)~ A — < —.
() k(k+2) ~ 12

This supports the following.

Conjecture 3.3. For every dimension d we have Kq = 72/12, and no domain in R? mazimizes the
functional F for d > 1. The maximal value kg is asymptotically reached by a thin slab Q. = w x (0, €),
with w C R¥1 as e — 0.

4 The attainable set

In this section we bound the measure by || < 1. Our goal is to plot the subset of R? whose coordinates
are the eigenvalue A\;(€2) and the torsion T'(§2). It is convenient to change coordinates and to set for
a given admissible domain €2,

r=n(Q),  y=M@OT@) "
In addition, define
E = {(:U,y) ER? : z=M(Q), y= ()q(Q)T(Q))_l for some  with |Q] < 1}.
Therefore, the optimization problem can be rewritten as
min {®(z,1/(zy)) : (z,y) € E}.
Conjecture 4.1. The set E is closed.

We remark that the conjecture above, if true, would imply the existence of a solution of the
optimization problem (2.1)) for many functions ®. Below we will analyze the variational problem in
case ®(z,y) = kx + ;le’ where k > 0.



Theorem 4.2. Letd=2,3,---, and let

N 1
i 2dw§/djc21/2—1,1.
Consider the optimization problem
min {k\ () + T(2) : | <1}. (4.1)
If 0 < k < k) then the ball with radius
o <2kdj§/21,1>1/(d+4) (4.2)
W

is the unique minimizer (modulo translations and sets of capacity 0).
If k > k) then the ball B with measure 1 is the unique minimizer.

Proof. Consider the problem (4.1)) without the measure constraint
min {k/\l(Q) +TQ) : QcC Rd} . (4.3)
Taking ¢€2 instead of ) gives that
kXL (tQ) + T(tQ) = kt 20 (Q) + t42T(Q).
The optimal ¢ which minimizes this expression is given by
2 (Q) ) V@D
= — 0 .
((d + 2)T(Q)>
Hence (4.3)) equals

fd+2 1/(d+4)
min {(d +4) (WTQ(Q))\‘fJF?(Q)) - QCcRY } ) (4.4)

By the Kohler-Jobin inequality in R?, the minimum in (4.4) is attained by any ball. Therefore the
minimum in (4.3) is given by a ball By such that

A (Br) \ V@D
<(d + 2)T(BR)>

This gives (4.2)). We conclude that the measure constrained problem (4.1]) admits the ball Bg, as a
solution whenever wdR,‘i <1. Thatis k < kj.
Next consider the case k > k. Let B be the open ball with measure 1. It is clear that

=1

min{kA1(Q) +T(2) : [ <1} <kN(B)+T(B).
To prove the converse we note that for k > £},
min{kA () +T(Q) : |Q < 1}
> min{(k — k))A1(Q) : [Q < 1} + min{kj\ (Q) + T(Q) : |2 < 1}. (4.5)

The minimum in the first term in the right hand side of (4.5) is attained for B by Faber-Krahn,
whereas the minimum in second term is attained for Bg,, by our previous unconstrained calculation.
d

Since |Bpg,.| = |B| = 1 we have by (4.5) that
k
d
min{kA () +T(Q) : |2 < 1}
> (k= k)M (B) + kg (B) + T(B)
= k\(B) + T(B).

Uniqueness of the above minimizers follows by uniqueness of Faber-Krahn and Kohler-Jobin. O



It is interesting to replace the first eigenvalue in (4.1)) be a higher eigenvalue. We have the following
for the second eigenvalue.

Theorem 4.3. Letd=2,3,---, and let

1
i = 2d(2a) 132, ||
Consider the optimization problem
min {{I\2(Q) +T(Q) : |9 <1}. (4.6)
If 0 <1 <17 then the union of two disjoint balls with radii
. (ldj§/2—1,1>1/(d+4) (4.7)
wd

is the unique minimizer (modulo translations and sets of capacity 0).
If 1 > I then union of two disjoint balls with measure 1/2 each is the unique minimizer.

Proof. First consider the unconstrained problem
min {l)\l(Q) YT : QC ]Rd} . (4.8)
Taking t€) instead of 2 gives that
I () + T(1Q) = It 2 X (Q) + t727(Q).
The optimal ¢ which minimizes this expression is given by

L 2Du() V@
t‘((dwmm) '

Hence (4.8)) equals

42 1/(d+4)
min {(d +4) <4(d+2)d+2T2(Q))\g+2(Q)> - QcR? } ) (4.9)

It follows by the Kohler-Jobin inequality, see for example Lemma 6 in [9], that the minimizer of
is attained by the union of two disjoint balls Br and B}, with the same radius. Since \o(Br U Bp) =
M(Bg) and T(Bg U By) = 2T(Bpg) we have, using (3.1), that the radii of these balls are given by
(4.7). We conclude that the measure constrained problem admits the union of two disjoint balls
with equal radius R; as a solution whenever 2wdR§i <1. Thatis [ <1}.

Next consider the case I > I%. Let Q be the union of two disjoint balls B and B’ with measure 1/2
each. Then

min{lA2(Q) + T(Q) : Q| <1} <IN (B)+ 2T (B).

To prove the converse we note that for [ > [7,
min{lA2(Q) +T(Q) : |Q] <1}
> min{(l — 7)) 2(2) : [Q <1} +min{ljA2(Q) +T(2) : [ < 1}. (4.10)
The minimum in the first term in the right hand side of is attained for B U B’ by the Krahn-

Szeg6 inequality, whereas the minimum in second term is attained for the union of two disjoint balls
with radius Rs by our previous unconstrained calculation. Since |Bp,.| = 1/2 = |B| = |B’| we have
d

by that
min{lXy(Q) + T(Q) : |Q <1} > (I — E)A(B) + A (B) + 2T(B)
=1\ (B) +2T(B).

Uniqueness of the above minimizers follows by uniqueness of Krahn-Szeg6é and Kohler-Jobin for the
second eigenvalue. O



To replace the first eigenvalue in be the j’'th eigenvalue (j > 2) is a very difficult problem
since we do not know the minimizers of the j’th Dirichlet eigenvalue with a measure constraint nor
the minimizer of the j’th Dirichlet eigenvalue a torsional rigidity constraint. However, if these two
problems have a common minimizer then information similar to the above can be obtained.

Putting together the facts listed in Remark we obtain the following inequalities.

(i) By Faber-Krahn inequality we have x > ng,l ~ 18.168.

(ii) By Conjecture (if true) we have y > 12/72 ~ 1.216.

)
)
(iii) By the bound on the torsion of Remark [2.2| v) we have xy > 87 ~ 25.133.
(iv) By the Kohler-Jobin inequality we have y/z < 8/(77]'6171) ~ 0.076.

)

(v) The set E is conical, that is if a point (zg,yo) belongs to E, then all the half-line {(txo,tyo) :
t> 1} in contained in E. This follows by taking 2, = Q/t and by the scaling properties iii) and

iv) of Remark

(vi) The set E is vertically convex, that is if a point (xg,yo) belongs to E, then all points (xg, tyo)
with 1 < ¢ < 8/(7rj§71) belong to E. To see this fact, let 2 be a domain corresponding to
the point (xg,y0) € E. The continuous Steiner symmetrization path Q; (with ¢ € [0,1]) then
continuously deforms the domain 2 = Qg into a ball B = 2y, preserving the Lebesgue measure
and decreasing A1(€2;) (see [13] where this tool has been developed, and Section 6.3 of [16] for a
short survey). The curve

z(t) = A (), y(t) = (Al(Qt)T(Qt))_l

then connects the point (zg,yo) to the Kohler-Jobin line {y = 8z/ (7'('(]'3’1)}, having z(t) decreas-
ing. Since (x(t),y(t)) € E, the conicity of E then implies vertical convexity.

A plot of the constraints above is presented in Figure Some particular cases can be computed
22-
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Figure 2: The admissible region E is contained in the dark area.
explicitly. Consider d = 2, and let
Q = BrUB,,with BgN B, =0, r < R, and 7(R*> + r?) = 1.
An easy computation gives that

B 2m2RY — 27 R2 + 1
N 8T ’
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Figure 3: The dashed line corresponds to two disks of variable radii.

so that the curve
8rx

.9 )
y = ; o1 < @ < 2mjgq

a2 — 2753 @ + 21255

is contained in E (see Figure [3)).
If we consider the rectangle

Q=1(0,b) x (0,a), with a < b, and ab =1,
we have by Proposition

11 a*b  1la*  a®> 1la?
MO =75+ ) =75 +d? T(Q) > — — = — :
() =m <a2+b2> " <a2+a ’ W= -1 " 12 180

Therefore

90
w2t (11 15t — 2262 — (15 + 20V — 1)

y < h(z/(27?)), where h(t) = , t>21

By FE being conical the curve
y:h(x/(27r2)) ™ <x < +oo

is contained in E (see Figure [4]).

Besides the existence of optimal domains for the problem , the regularity of optimal shapes
is another very delicate and important issue. Very little is known about the regularity of optimal
domains for spectral optimization problems (see for instance [12], [15], [24], [31]); the cases where only
the first eigenvalue A1(€2) and the torsion T'(€2) are involved could be simpler and perhaps allow to
use the free boundary methods developed in [I].

5 Torsional rigidity and the heat equation

It is well known that the rich interplay between elliptic and parabolic partial differential equations
provide tools for obtaining results in one field using tools from the other. See for example the mono-
graph by E. B. Davies [23], and [3, [5, [6l [7, 8 [10] for some more recent results. In this section we use
some heat equation tools to obtain new estimates for the torsional rigidity. Before we do so we recall
some basic facts relating the torsional rigidity to the heat equation. For an open set Q in R? with
boundary 02 we denote the Dirichlet heat kernel by pq(z,y;t), x € Q, y € Q, t > 0. So

uq(x;t) :—/Qpn(x,y;t)dy,

10



Figure 4: The dashed line is an upper bound to the line corresponding to rectangles.

is the unique weak solution of

% = Au reQ, t>0,
ot

limgou(x;t) =1 in L2(1),
u(z;t) =0 xed, t>0.

The latter boundary condition holds at all regular points of 9€2. We denote the heat content of 2 at
time ¢ by

QQ(t):/QUQ(LU;t) dx.

Physically the heat content represents the amount of heat in €2 at time ¢ if €2 has initial temperature
1, while 0f) is kept at temperature 0 for all ¢ > 0. Since the Dirichlet heat kernel is non-negative, and
monotone in ) we have that

0 < pow, ;1) < ppa(w, yit) = (4mt)~HZelP7v/00), (5.1)
It follows by either (5.1)) or by the maximum principle that

and that if || < co then
0 < Qalt) < 9. (5.2)

In the latter situation we also have an eigenfunction expansion for the Dirichlet heat kernel in terms of
the Dirichlet eigenvalues A\ (€2) < A\2(€2) < ---, and a corresponding orthonormal set of eigenfunctions

{90178025"'}7 o
po(x,yit) = > e P Dp;(x)p;(y).
j=1

We note that the eigenfunctions are in LP(2) for all 1 < p < co. It follows by Parseval’s formula that

o) 2 oo 2
Qalt) = 3 e N ( /| wdeC) SetM(”’Z( /| wjdx> Sl (53)

Jj=1 J=1

Since the torsion function is given by

wo(z) = /0 gl dt,

11



we have that - )
T(Q) => M)~ (/Q ©; dx) .
j=1

We recover Proposition 2.3. by integrating (5.3) with respect to ¢ over [0, 00):
[e'¢) 2
1@ < @S ([ erdr) = n@ ol
, Q
7j=1

Let M, and Ms be two open sets in Euclidean space with finite Lebesgue measures |M;| and | Ms|
respectively. Let M = M; x Ms. We have that

DMy x Mo (xv Y; t) = PM (xla Y1; t)pMQ (an Y2; t)v
where x = (z1,22),y = (y1,y2). It follows that

Qu(t) = Qur, (1) Quar, (1), (5.4)

and

oo
7(10) = [ Qu Q0 at. (55)
0
Integrating ([5.4) with respect to ¢, and using (5.2)) for Ms we obtain that
T(M) < T(M)|Ms]. (5.6)

This upper bound should be “sharp” if the decay of Qay, (t) with respect to ¢ is much slower than
the decay of Qar, (). The result below makes this assertion precise in the case where M is a convex
set with H%~1(0Ms) < co. Here H%~! denotes the (dy — 1)- dimensional Hausdorff measure.

Theorem 5.1. Let M = M; x Ma, where My is an arbitrary open set with |M1| < oo, di = dim M,
and My is a convex open set with ’Hd2_1(8M2) < 00 and dy = dim My. There exists a constant Cg,
depending on ds only such that

T(M) > T(My)|Ma| — Cay i (M) =32 My | H=2 = (9 My). (5.7)
Proof of Proposition[3.2. Let My = (0,¢) C R, My = w C R%"!. Since the torsion function for M; is

given by z(e — z)/2, 0 < x < € we have that T(M;) = €/12. Then (5.6 proves the upper bound.
The lower bound follows from (5.7)) since A1 (M) = 72/€2, |My| = e. O

Proof. With the notation above we have that
T(M) = T0)IMal = [ Qu(D(Mal = Qs (1)
:T(M1)‘M2| —/ QMl(t)/ (1—UM2(.”L‘2;t)) dxgdt.
0 My

We recall the following (Lemma 6.3 in [4]).

Lemma 5.2. For any open set 0 in R,

ug(z;t) > 1 — 2/ pra(z,y;t) dy, (5.8)
{yeR®:|y—z|>d(x)}

where
d(z) = min{|z — z| : z € 00Q}.

12



Define for r > 0,
OMs(r) ={x € My : d(z) =r}.

It is well known that (Proposition 2.4.3 in [16]) if M5 is convex then
HEH(OMy(r)) < HE T (OM). (5.9)

By (5.3), (5.8) and (5.9) we obtain that
/ QMl(t)/ (1 —upg, (x25t)) dxo dit
0 M,

<2\M1]’Hd2_1(6M2)/ dte_t’\l(Ml)/ dr/ Priz (x, 23 ) dz
0 0 {z€R%2:|z—z|>r}

:2d2w512\M1]7'ld2_1(8M2)/ dte_t)‘l(Ml)(47rt)_d2/2/ dr rdze=r?/(40)
0 0
= Ca, M (M) 32| My [H® 1 (OMy), (5.10)
where
w2451 ((ds + 1)/2)
T T((dr +2)/2)

O]

It is of course possible, using the Faber-Krahn inequality for A\;(Mj), to obtain a bound for the
right-hand side of in terms of | M |(@1+3)/diyd2=1(HMy).

Our next result is an improvement of Proposition [3.1] The torsional rigidity for a rectangle follows
by substituting the formulae for Qg 4)(t) and Q) (t) given in below into . We recover
the expression given on p.108 in [30]:

-1
T(R, 64abz Zk2l2<2 Z) .

k=13, =13,

Nevertheless the following result is not immediately obvious.

Theorem 5.3.

a®b  31¢(5)a’ a’
T(R,,) — 22 4 2504 | o @ 5.11
(Rap) =5+ 55 | <15 (5.11)
where
=1
C(5):Zﬁ~
k=1

Proof. A straightforward computation using the eigenvalues and eigenfunctions of the Dirichlet Lapla-
cian on the interval together with the first identity in (5.3) shows that

8a _ _ 71.2 2 CL2
Qua(t)=—5 D k2™, (5.12)
k=1,3,...
We write
4t1/2 4t1/2
Qop(t) =b— 2 + [ Quop(t) + py-i b|. (5.13)
The constant term b in the right-hand side of (5.13)) gives, using (5.12)), a contribution
8ab 92 —t7r2k2/a2 8a3b —4
7 k=1,3,... k=1,3,...
> 15a3b
—4 4
DL EEED DI e 40
k=1 k=24,...
_
127
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which jibes with the corresponding term in (5.11). In a very similar calculation we have that the
—3:11//22 term in the right-hand side of ([5.13]) contributes

[0,00)

5/2 270
& k=13,..

which jibes with the corresponding term in (5.11). It remains to bound the contribution from the
expression in the large round brackets in (5.11)). Applying formula (5.12)) to the interval (0,b) instead
and using the fact that > ,_, 5 . k=2 = 7%/8 gives that

4¢1/2 8b 9 in2k2 /b2 4¢41/2
_ = _ == - —tm?k? /6% _
Qo (t) — b+ o kZIZg k (e 1) t 5

441/2
_ 8 / dre TRV t1/2
bels. o ”

4t1/2

_ 8 —rm2k2/b? —4rm2k2? /b2
— /[0 ) dr (Z e Z e + (5.14)
In order to bound the right-hand side of (5.14]) we use the following instance of the Poisson summation

formula. , ,
Z otk? _ —1/2 Ze—wk 40,
keZ kezZ

2 1 2
—trk I 1 k2 /t
g e " 1/2 2+t g e ™t > 0.
k=1 k=1

We obtain that

Applying this identity twice (with t = 77/b? and t = 477/b? respectively) gives that the right-hand

side of ([5.14]) equals
_ ?/2 / dr (7‘1/2 Ze_k%?/T _ (4712 Z e—k2b2/(4-r)> ‘
™ [0,t] 1

k=1

. _L.2p2 . . .
Since k — e ¥"*°/7 is non-negative and decreasing,

27—1/26—1#172/7 < 7—1/2/ dke—k%?/T _ 7r1/2(2b)_1
[0,00)

. It follows that
At 1/2

8t
Qo) (t) — b+ pyo)

—, t>0.
<50 t>0

So the contribution of the third term in (5.13)) to T'(R,) is bounded in absolute value by

64a 2522 64a°
= mm)dttk:;. kRt = kz% k6
5
= 2 0)
o’
=5
This completes the proof of Theorem O

The Kohler-Jobin theorem mentioned in Section [2| generalizes to d- dimensions. For any open set

Q with finite measure the ball minimizes T(Q))\(ld+2)/ 2

proof of the following.

. We refer to [9] for an elementary heat equation

14



Theorem 5.4. If T(Q) < oo then the spectrum of the Dirichlet Laplacian acting in L?(Q) is discrete,

and 42
2 dmd | (d42),2
TQ) > —— .
@=(773) (7)) 2o

We obtain, using the Ashbaugh-Benguria theorem (p.86 in [26]) for A1(€2)/A2(£2), that

TN > () <d4idz)d/2p (1+3) (1 ! @lg)(wz) - B

The constant in the right-hand side of (5.15) is for d = 2 off by a factor —2e2Ll_ ~ 3,62 if compared
8(J071+11,1)

with the sharp Kohler-Jobin constant. We also note the missing factor m™/(™*2) in the right-hand

side of (57) in [9].
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