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Stefan Bäuml,1, 2, ∗ Matthias Christandl,3, † Karol Horodecki,4, 5, ‡ and Andreas Winter6, 2, 1, §

1Department of Mathematics, University of Bristol, Bristol BS8 1TW, UK
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A main application of quantum communication is the distribution of entangled particles

for use in quantum key distribution (QKD). Due to unavoidable noise in the communication

line, QKD is in practice limited to a distance of a few hundred kilometers and can only be

extended to longer distances by use of a future quantum repeater, a small-scale quantum

computer which performs iterated entanglement distillation and quantum teleportation. The

existence of entangled particles that are undistillable but nevertheless useful for QKD raises

the question for a quantum key repeater which works beyond the limits of entanglement dis-

tillation. In this work we show that any such apparatus is severely limited in its performance;

in particular, we exhibit entanglement suitable for QKD but unsuitable for the most general

quantum key repeater protocol. The mathematical techniques we develop can be viewed as

a step towards opening the theory of entanglement measures to networks of communicating

parties.

I. SUMMARY

When a signal is passed from a sender to a receiver, it inevitably degrades due to the noise

present in any realistic communication channel (e.g. a cable or free space). The degradation of the

signal is typically exponential in the length of the communication line. When the signal is classical,

degradation can be counteracted by use of an amplifier that measures the degraded signal and,
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depending on a threshold, replaces it by a stronger signal. When the signal is quantum mechanical

(e.g. encoded in non-orthogonal polarisations of a single photon), such an amplifier cannot work

anymore, since the measurement inevitably disturbs the signal [1]. Sending a quantum mechanical

signal, however, is the basis of quantum key distribution (QKD), a method to distribute a key

which can later be used for perfectly secure communication between sender and receiver [2]. The

degradation of sent quantum signals therefore seems to place a fundamental limit on the distance

at which secure communication is possible thereby severely limiting its applicability in the internet

[3, 4].

A way around this limitation is the use of an entanglement-based quantum key distribution

scheme [5, 6] in conjunction with a so-called quantum repeater [7]. Here, many entangled pairs of

particles are being distributed between the sender (Alice) and an intermediate station (Charlie),

and between Charlie and the receiver (Bob) (see Fig. 1). Charlie, who plays the role of an un-

trusted telecom provider, for instance, prepares n Einstein-Podolsky-Rosen (EPR) entangled pairs

of photons and sends one photon of each pair to Alice. In the same fashion he distributes n pairs

between himself and Bob. Noise, of course, will degrade the quality of the EPR pairs during the

transmission process. If the distances between Charlie and Alice/Bob are small enough, however,

the noisy pairs remain distillable, this means that they can be transformed into ≈ ED × n perfect

EPR pairs, where ED is known as the distillable entanglement of the quantum state of the noisy

pair. The EPR pairs between Charlie and Bob are then used to quantum teleport the state of

Charlie’s other particles to Bob. This process, known as entanglement swapping, results in EPR

pairs between Alice and Bob [8]. When Alice and Bob make appropriate measurements on the

EPR pairs they obtain a sequence of secret key bits, that is, an identical but random sequence

of bits that is uncorrelated with the rest of the universe (including Charlie’s systems). This se-

cure key can later be used for perfectly secure communication. The described scheme with one

intermediate station effectively doubles the distance over which QKD can be carried out and more

repeater stations can be inserted to efficiently extend the distance arbitrarily. The implementation

of quantum repeaters is therefore one of the focal points of the experimental quantum information

science community [9, 10].

As this explanation illustrates, and as it was realised early on in quantum cryptography, entan-

glement distillation and QKD are tightly connected [11, 12]; and indeed it is clear that entanglement

is a necessary prerequisite for privacy [13]. It therefore came as a surprise to many researchers

in 2005 that there are undistillable entangled states (so-called bound entangled states that have

ED = 0) from which secret key can be obtained [14]. With the help of a quantum repeater as
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FIG. 1: a) Quantum repeater distributing maximally entangled states ψAB . b) Quantum key repeater

distributing general private states (not necessarily maximally entangled ones). c) States containing privacy

(e.g. p-bit) which cannot be successfully used in a quantum key repeater.

described above, however, the secret key contained in such states cannot be extended to larger

distances, as the states do not allow for the distillation of EPR pairs.

The present paper raises the question of whether there may be other ways to extend the se-

cret key to arbitrary distances than by distillation and swapping of entanglement, other quantum

key repeaters. More formally, we analyse the quantum key repeater rate KA↔C↔B at which a

protocol is able to extract private bits between Alice and Bob from entangled states which they

shared with Charlie by local operations and classical communication (LOCC) among the three of

them. Note that just as the definition of the distillable key [14, 15], the definition of this rate is

information-theoretic in nature. By using quantum tomography, the post-selection technique [16],

error correction and privacy amplification [17], this rate can be made robust in a cryptographic

sense, therefore leading to unconditional security of the obtained secret key. For unconditional secu-

rity in relation to pbits see also [18, 19]. By a private bit we mean an entangled state representing

a unit of privacy paralleling the EPR pair as a unit of entanglement [14, 20]. Mathematically,



4

private bits are entangled states of the form

ρAA′BB′ =
1

2



√
XX† 0 0 X

0 0 0 0

0 0 0 0

X† 0 0
√
X†X

 , (1)

where A and B are qubits that contain the key bits, corresponding to the rows and columns

in the matrix. A′ and B′ are each a d-dimensional systems, called the shield. X is a d2-by-d2

matrix with ‖X‖1 = 1. In the following we will describe our main results which demonstrate that

the performance of quantum key repeaters beyond the use of entanglement distillation is severely

limited.

Our first result takes its starting point in the observation that there are private bits that are

almost indistinguishable from separable states by local operations and classical communication. An

example is the choice X = 1
d
√
d

∑
ij uij |i〉〈j| ⊗ |j〉〈i|, where the uij are the entries in the quantum

Fourier transform in dimension d. This can be easily seen as the LOCC distinguishability of two

states is upper bounded by the distinguishability under operations that preserve the positivity of

the partial transpose, and the latter is bounded by ‖XΓ‖1 = 1√
d
, where Γ indicates the transpose of

one of the systems [21]. Imagine that such private bits are the entangled states that are distributed

between Alice and Charlie, and between Bob and Charlie, and that a quantum repeater protocol

using local operations and classical communication between Alice, Bob and Charlie, transforms

them successfully into a private bit between Alice and Bob. Then, by Alice and Bob joining their

labs, they can distinguish this resulting state from a separable state using a measurement (this is

done by untwisting the shield A’B’ to obtain an EPR pair which can be distinguished, for instance

by a Bell measurement, from separable states [14]). This would imply an LOCC procedure for

Alice-Bob (when they join their labs) and Charlie to distinguish the initial private bits ρ⊗ ρ from

separable states: first run the quantum key repeater protocol and then perform the measurement.

This, however, is in contradiction to the assumption that the private state ρ (and hence ρ ⊗ ρ)

is almost indistinguishable from separable states under LOCC. In conclusion this shows that such

private bits cannot be successfully extended to a private bit between Alice and Bob by any quantum

key repeater protocol. A direct mathematical formulation of this explanation is given in Section

III B, but applies only to protocols acting on single copies of the states ρ ⊗ ρ and therefore does

not give a bound on KA↔C↔B, which allows joint operations on an arbitrary number of copies.

The language of entanglement measures allows us to formulate this argument asymptotically as
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a rigorous distinguishability bound on KA↔C↔B (see Section III C):

KA↔C↔B(ρACA ⊗ ρ̃CBB) ≤ D∞C↔AB(ρACA ⊗ ρ̃CBB), (2)

where the RHS is the regularised LOCC-restricted relative entropy distance to the closest sep-

arable state [22]. Arguably, it is difficult if not impossible to compute this expression (there

is a regularisation, a maximisation over LOCC measurements and a minimisation over separa-

ble states). But noting that this bound is invariant under partial transposition of the C sys-

tem, we can easily upper bound the quantity for all known bound entangled states (these are

the ones with positive partial transpose) in terms of the relative entropy of entanglement of the

partially transposed state ρΓ: ER(ρΓ) + ER(ρ̃Γ); if we restrict to forward communication from

Charlie and ρACA = ρ̃BCB , some more effort shows that squashed entanglement provides a bound:

KA←C→B(ρACA ⊗ ρ̃CBB) ≤ 4Esq(ρ
Γ). As we show, D∞ is a robust quantity in that it does not

decrease by too much when a qubit is lost (it is not lockable). This fact can be used to extend our

results to states that are not exactly but only close to states having a positive partial transpose.

We also use this fact to improve the squashed entanglement bound to the reduced squashed entan-

glement [23]. Both the relative entropy bound and the reduced squashed entanglement bound can

be regularised.

Extracting the algebraic content of the idea of the partial transposition of the C system we are

bound to loose the intuition behind our results, but are able to circumvent the quantity D and

directly obtain for PPT states ρ and ρ̃ (see Section III A):

KA↔C↔B(ρACA ⊗ ρ̃CBB) ≤ KD(ρΓ), (3)

where KD is the key rate, the rate at which two parties can extract key from ρ. This bound

(and its similar version where we swap the roles of A and B) leads to improved relative entropy

and squashed entanglement bounds, as these entanglement measures are the well-known upper

bounds on the key rate KD [14, 24]. We leave open the question of whether the reduced squashed

entanglement bound can be obtained and improved in the same way.

We will now give an example of a state ρACA = ρ̃BCB for which the key rate is large, but the

bounds, and hence the quantum key repeater rate are arbitrarily small. Guided by our intuition, we

would like to consider the private bit from above whose partial transpose is close to a separable state.

The only caveat here is that the state is not PPT (no private bit can be PPT [14]). Fortunately,

our state turns into a PPT state ρ under adding a little bit of noise. Since its partial transpose ρΓ is

almost separable, the key rate, the relative entropy of entanglement and the squashed entanglement
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are close to zero and we find KA↔C↔B(ρ ⊗ ρ) ≈ 0. Since a small amount of noise can easily be

removed [15], the state continues to have almost one bit of key: KD(ρ) ≈ 1. This leads us to the

main conclusion of our paper: there exist entangled quantum states that are useful for quantum

key distribution at small distances but that are virtually useless for long-distance quantum key

distribution.

There is another type of bound, based on the direct analysis of the entanglement of a concrete

output state of a quantum repeater protocol (see Section III D). More precisely, by considering the

state that Alice and Bob have conditioned on Charlie’s measurement, we find

KA←C↔B(ρ⊗ ρ̃) ≤ 1

2
EC(ρ) +

1

2
ED(ρ̃). (4)

In contrast to the bounds presented above, which mainly apply to PPT states and are able to

deliver maximal limitations, this bound appears weaker but applies to all quantum states ρ and ρ̃.

The bound is maximally strong for ρ an EPR pair, since then KA←C↔B is bounded by 1
2 regardless

of how much key the bound entangled state ρ̃ contains. The multiplicative constants in (4) are

tight which can be seen by inserting for both ρ and ρ̃ an EPR pair. We also apply this bound to

states ρ and ρ̃ that are locally equivalent to their partial transposition, thereby giving non-trivial

limitations in the regime where the bounds based on the partial transposition fail to deliver non-

trivial results. Note that in the case of PPT states, one may also partially transpose the states

appearing on the right hand side since KA←C↔B is invariant under partial transposition.

The proof of this result is obtained by upper bounding the squashed entanglement of the output

state of the protocol using a manipulation of entropies resulting in the RHS of (4). The squashed

entanglement in turn upper bounds the distillable key of the output state (which upper bounds the

LHS) [24]. This raises the question, of whether there are other inequalities relating the output state

of such protocols by entanglement measures of the input states. In the context of algebro-geometric

measures of entanglement, this question has been raised and relations among the concurrence of

input and output states have been found [25–28]. In our context, we have focused on operational

entanglement measures and we may ask in particular, whether our result can be made stronger by

replacing the LHS by the entanglement cost of the output state. Based on a random construction we

show that this is not true, therefore giving a further indication of the tightness of our result. When

restricting the attention to PPT states, one may ask whether Alice and Bob’s post-measurement

state conditioned on any measurement by Charlie is always separable [29–31]. If this was true,

the quantum key repeater rate would vanish for all PPT states. The upper bounds presented

in this work may therefore be seen as information-theoretic evidence for the truth of this PPT 2
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conjecture. Reaching even further, and consistent with our findings, we may speculate that perhaps

the only “transitive” entanglement in quantum states, i.e. entanglement suitable for repeaters, is

their distillable entanglement.

With this paper we initiate a study of long-distance quantum communication and cryptography

beyond the use of entanglement distillation. Even though the reported results provide limitations

rather than new possibilities, we hope that this work will lead to a rethinking of the currently used

protocols resulting in procedures for long-distance quantum communication that are both more

efficient and that can operate in noisier environments. More abstractly, our results can be viewed

as a step towards an entanglement theory for networks of communicating parties with inequalities

relating initial and final entanglements.
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II. PRELIMINARIES

In this section we first formally recall the definition of a private bit, of the secret key rate

and of the distillable entanglement. We will then introduce the distillation of secure key with an
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intermediate station and formally introduce the corresponding information theoretic rate of secure

key.

A private state can be constructed from a maximally entangled state |ΨAB〉 by tensoring some

state σA′B′ and performing a so-called “twisting“ operation. A twisting operation is a controlled

unitary of the form U twist =
∑

ij |ij〉〈ij|AB ⊗ U
(ij)
A′B′ that spreads the entanglement over the enlarged

Hilbert space. Formally

γm = U twist
(
|Ψ(2m)〉〈Ψ(2m)|AB ⊗ σA′B′

)
U twist† (5)

=
1

2m

2m−1∑
ij=0

|ii〉〈jj|AB ⊗ U (ii)σA′B′U
(jj)†. (6)

It has been shown that even if Eve is in possession of the entire purification of γm, Alice and Bob will

still be able to obtain m bits of perfect key by measuring the AB subsystem in the computational

basis, while keeping the A′B′ part away from Eve. As all the correlation the key has with the

outside world is contained in A′B′, it is called the “shield part“, whereas AB is called the “key

part“. For m = 1, γ1 is also called a “private bit“ or “p-bit“ which can alternatively be represented

in the form of (1). As the twisting operations can be non-local, not every private state can be

obtained from a single rank 2m maximally entangled state via LOCC. This shows that privacy

is a truly different property of a quantum state than its distillable entanglement, motivating the

introduction of a quantity known as “distillable key“ [14]

KD(ρ) = inf
ε>0

lim sup
n→∞

sup
Λn LOCC,γm

{m
n

: Λn(ρ⊗n) ≈ε γm ≤ ε
}
, (7)

in analogy to the distillable entanglement

ED(ρ) = inf
ε>0

lim sup
n→∞

sup
Λn LOCC

{
log d

n
: Λn(ρ⊗n) ≈ε |Ψ(d)〉〈Ψ(d)| ≤ ε

}
. (8)

With α ≈ε β we mean ‖α − β‖1 ≤ ε. Clearly KD(γm) ≥ m. As every rank 2m-dimensional

maximally entangled state is a private state, KD ≥ ED.

Surprisingly there exist bound entangled states that are arbitrarily close to private states in trace

distance [14]. A natural question arising now is how such nearly bound entangled private states

can be distributed between distant parties. Of course it would be possible to distribute maximal

entanglement using a conventional repeater and then distill the state needed. This would, however,

have no advantage over using the maximal entanglement directly for QKD. Here, we deal with the

question whether there are other, not maximally entangled, possibly even bound entangled states

that could be initially distributed between the nodes and then swapped yielding a state useful
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for cryptography. In order to study this question, we introduce the following quantity. For input

states ρACA and ρ̃CBB we call

KA↔C↔B(ρACA ⊗ ρ̃CBB) = inf
ε>0

lim sup
n→∞

sup
ΛnLOCC,γm

{m
n

: TrCΛn
(
(ρACA ⊗ ρ̃CBB)⊗n

)
≈ε γbmc

}
(9)

the quantum key repeater rate of ρ and ρ̃ with respect to arbitrary LOCC operations among Alice,

Bob and Charlie. If we restrict the protocols to one-way communication from Charlie to Alice we

write KA←C↔B and if all communication is one-way from Charlie we write KA←C→B. It is the

goal of this paper to find significant upper bounds on this quantity.

III. BOUNDS ON THE QUANTUM KEY REPEATER RATE

This section is structured into four parts. First, we will explain the partial transpose idea which

is mathematically straightforward and delivers strong bounds on the key rate for PPT states. Then,

we will explain the distinguishability idea (for single copy and multiple copy repeaters), which is

more intuitive but also technically more involved. Finally, we present the entanglement measures

idea, which analyses the output state of a protocol without reference to partial transposition. All

sections contain examples illustrating and comparing the different bounds.

A. Partial Transpose Idea

Let us assume that Alice shares a PPT state ρ with Charlie and that Bob shares a PPT state

ρ̃ with Charlie and that they apply an LOCC operation Λ among the three of them at the end

of which Charlie traces out his part of the system. It is the observation of this section that they

obtain the identical output state had they applied the LOCC operation ΛΓ (the operation where

Charlie’s Kraus operators are complex conjugated) to the partially transposed states ρΓ and ρ̃Γ

instead. As a consequence, the quantum key repeater rate is invariant under partial transposition:

KA↔C↔B(ρ⊗ ρ̃) = KA↔C↔B(ρΓ ⊗ ρ̃Γ). The invariance remains true when restricting partially or

fully to one-way communication. In the following, we make this statement precise and use it to

find upper bounds. We then give examples illustrating the power of the idea and comparing the

obtained bounds.

1. Bounds by Key, Relative Entropy of Entanglement and Squashed Entanglement

We start with the above mentioned invariance property.



11

Lemma 1 Let ρ and ρ̃ be PPT. Then

KA↔C↔B(ρ⊗ ρ̃) = KA↔C↔B(ρΓ ⊗ ρ̃Γ), (10)

where the transpose is taken w.r.t. Charlie’s subsystems.

Proof Note that every LOCC protocol can be implemented by many rounds of local POVMs and

classical communication. If Charlie uses the complex conjugate of all of his Kraus operators S
(k)
C ,

we have another valid LOCC protocol. Since

TrC

[(
. . .⊗ (S

(1)∗
C · · ·S(r)∗

C )⊗ . . .
)
ρΓ
ACA
⊗ ρ̃Γ

CBB

(
. . .⊗ (S

(r)∗
C

†
· · ·S(1)∗

C

†
)⊗ . . .

)]
(11)

= TrC

[(
. . .⊗ (S

(1)
C · · ·S

(r)
C )⊗ . . .

)
ρACA ⊗ ρ̃CBB

(
. . .⊗ (S

(r)
C

†
· · ·S(1)

C

†
)⊗ . . .

)]
, (12)

every protocol applied to copies of ρ⊗ ρ̃ has the same output as when the protocol with complex

conjugated Kraus operators is applied to ρΓ ⊗ ρ̃Γ. Consequently, we find

KA↔C↔B(ρ⊗ ρ̃) = KA↔C↔B(ρΓ ⊗ ρ̃Γ). (13)

Recall that this statement only makes sense for PPT states ρ and ρ̃. ut

By the monotonicity of distillable key, we have KA↔C↔B(ρ⊗ ρ̃) ≤ KD(ρACA). Since the relative

entropy of entanglement and squashed entanglement are upper bounds on the key rate [14, 24], i.e.

the RHS, we obtain the following bounds

Theorem 2 Let ρ and ρ̃ be PPT. Then

KA↔C↔B(ρ⊗ ρ̃) ≤ min
{
KD(ρΓ),KD(ρ̃Γ)

}
≤ min

{
E∞R (ρΓ), E∞R (ρ̃Γ), Esq(ρ

Γ), Esq(ρ̃
Γ)
}
, (14)

where the transpose is taken w.r.t. Charlie’s subsystems.

The relative entropy of entanglement [32] is given by

ER(ρ) = inf
σ∈SEP

D(ρ‖σ), (15)

where SEP denotes the set of separable states. Since it is subadditive, it upper bounds its regu-

larised version

E∞R (ρ) = lim
n→∞

1

n
ER(ρ⊗n). (16)

The squashed entanglement [33, 34] is given by

Esq(ρAB) = inf
ρABE

1

2
I(A : B|E)ρABE , (17)

where ρABE is an arbitrary extension of ρAB.
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2. Example: PPT state close to p-bit

In the following we exhibit an example, where the RHSs of our bounds are very small, but where

the state itself has a high key rate. The idea here is simple, we find PPT states that have high key

but whose partial transpose is close to a separable state [35]. More precisely, we present a family

of states {ρds}s of increasing dimension which asymptotically reach the gap of 1 between KD(ρds)

and KA↔C↔B(ρ⊗2
ds

). Their construction is based on [21]; there, two private bits were mixed to give

a PPT key distillable state. Here we take only one of the p-bits and admix the block-diagonal part

of the second one. Alternatively, one may use the family of PPT key distillable states introduced

in [14, 20], but we omit this argument, since it is more involved.

Proposition 3 There are PPT states ρds ∈ B(C2 ⊗ C2 ⊗ Cds ⊗ Cds), obtained by admixing a ps-

fraction of a separable state to a p-bit, such that ρΓ
ds

is ps-close to a separable state in trace norm.

Furthermore, ps = 1√
ds+1

and ds →∞ for large s.

Proof Our construction of ρds is based on [21]. Consider

ρds =
1

2


(1− p)

√
XX† 0 0 (1− p)X

0 p
√
Y Y † 0 0

0 0 p
√
Y †Y 0

(1− p)X† 0 0 (1− p)
√
X†X

 , (18)

with

X =
1

ds
√
ds

ds∑
i,j=1

uij |ij〉〈ji| (19)

and

Y =
√
dsX

Γ =
1

ds

ds∑
i,j=1

uij |ii〉〈jj|. (20)

Here, ps = 1√
ds+1

and uij are the matrix elements of some (arbitrary) unitary matrix U acting on

Cds that satisfies |uij | = 1/
√
ds for all i, j. For example, we may set U to be quantum Fourier

transform

U |k〉 =

ds∑
j=1

√
1

ds
e2πijk/ds |j〉. (21)

Note that ρds is a mixture of private state (defined by X) with probability 1 − p and a with

separable state 1
2 [|0〉〈0| ⊗ |1〉〈1| ⊗

√
Y Y †+ |1〉〈1| ⊗ |0〉〈0| ⊗

√
Y †Y ] with probability p. It is easy to
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see that the state is PPT, as (1− p)XΓ = pY . So after partial transposition of BB′:

ρΓ
ds =

1

2


(1− p)

√
XX† 0 0 0

0 p
√
Y Y † pY 0

0 pY † p
√
Y †Y 0

0 0 0 (1− p)
√
X†X

 , (22)

which is evidently non-negative, as
√
XX† and

√
X†X are non-negative by definition, and the

middle block is (up to normalisation factor p) a private bit defined by operator Y [20].

Consider now the state ρds dephased on the first qubit of Alice’s system (this state is also known

as “key attacked state”). It reads:

σds =
1

2


(1− p)

√
XX† 0 0 0

0 p
√
Y Y † 0 0

0 0 p
√
Y †Y 0

0 0 0 (1− p)
√
X†X

 , (23)

and is clearly separable. It is easy to see that

‖ρΓ
ds − σ

Γ
ds‖1 = ‖(1− p)XΓ‖1 = ‖pY ‖1 = p =

1√
ds + 1

. (24)

This concludes the proof. ut

Since the states ρs are obtained by admixing a small fraction of a separable state to a p-bit,

the key rate of the state is high: Alice and Bob’s mutual information in fact equals 1 − h(ps)

and the quantum mutual information of Alice and Eve is bounded by h(ps). Hence, by [15],

K(ρ) ≥ 1− 2h(ps). On the other hand, ρΓ is almost separable which implies that K(ρΓ), ER(ρΓ)

and Esq(ρ
Γ) are small. A particularly good bound is obtained with help of the following lemma.

Lemma 4 Let ρABA′B′ ∈ B(C2⊗C2⊗Cd⊗Cd) be a PPT(AA′ : BB′) state and assume that its key

attacked version σABA′B′ =
∑

i(|i〉〈i|A⊗ 11)ρ(|i〉〈i|A⊗ 11) is separable. Then if ε = ‖ρΓ− σΓ‖1 < 1
3 ,

we have

E∞R (ρΓ) ≤ 2ε log 2d+ η(ε), (25)

where η(ε) = −ε log ε.

Proof We start by noting that σ and hence σΓ are separable, therefore we have

E∞R (ρΓ) ≤ ER(ρΓ) ≤ D(ρΓ‖σΓ) (26)
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We write out the RHS

D(ρΓ‖σΓ) = tr ρΓ log ρΓ − tr ρΓ log σΓ. (27)

and find, since tr ρΓ log σΓ = trσΓ log σΓ (due to the fact that σ is block diagonal) that

D(ρΓ‖σΓ) = H(σΓ)−H(ρΓ). (28)

An application of Fannes’ inequality [36] gives the result. ut

Theorem 5 There are PPT states ρds ∈ B(C2⊗C2⊗Cds ⊗Cds), satisfying KD(ρds) = 1− 2h(ps)

with p = 1√
ds+1

and h the binary Shannon entropy, such that KA↔C↔B(ρds ⊗ ρds) ≤ 2p log(2ds) +

η(p) where η(p) = −p log p. In summary, there exist states with

1 ≈ KD(ρ) > KA↔C↔B(ρ⊗ ρ) ≈ 0. (29)

3. Comparison of the Bounds: Werner States

In the following we show that the bound by the squashed entanglement can be smaller than the

one by the relative entropy of entanglement. Recall that it was previously known that squashed

entanglement of the antisymmetric Werner state is smaller than its relative entropy of entanglement

[24, 37]. Since the antisymmetric Werner state is not PPT, however, this example does not apply

directly to our situation. Using a related PPT state from [38], we are able to obtain our goal.

We leave open the question of whether the relative entropy of entanglement can be smaller than

squashed entanglement. This, however, seems very plausible, as squashed entanglement is lockable

[39], and the relative entropy is not [23]. The challenge therefore remains to show locking of

squashed entanglement for a PPT state.

Let τ± be the symmetric and antisymmetric Werner state. In [38] it is shown that

ρn := wτ⊗n− + (1− w)τ⊗n (30)

is PPT for w = 1/(1 + zn) for z = (d+ 2)/d, p = (d+ 1)/(d+ 2) and τ := (1− p)τ− + pτ+. Note

that

Esq(ρ
n) ≤ nEsq(τ−), (31)

since τ is separable. By a result of [24], Esq(τ−) ≤ O(1/d) hence we find

Esq(ρ
n) ≤ O(n/d). (32)
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Let us now derive a lower bound on the regularised relative entropy of this state. Since the relative

entropy is not lockable we find

ER((ρn)⊗k) ≥
∑
j

(
k

j

)
wj(1− w)k−jER(τ⊗jn− ⊗ τ⊗(k−j)n)− kh(w) (33)

=
∑
j

(
k

j

)
wj(1− w)k−jER(τ⊗jn− )− kh(w) (34)

≈ ER(τ⊗wkn− )− kh(w), (35)

where we used the separability of τ in the first equality and the law of large numbers in the second.

Taking the large k limit we find

E∞R (ρn) ≥ wnE∞R (τ−)− h(w). (36)

By [24], E∞R (τ−) is lower bounded by a constant independent of d. Setting n = O(d) we find

w = O(1) (which can be made arbitrarily small) and hence E∞R (ρn) ≥ O(n). From the bound

above Esq(ρ
n) ≤ O(1). Hence there are PPT states ρ̂ for which

Esq(ρ̂)� E∞R (ρ̂). (37)

Since ρ := ρ̂Γ is again a PPT state we also find that there are PPT states ρ for which

Esq(ρ
Γ)� E∞R (ρΓ). (38)

This shows that the squashed entanglement bound may be stronger than the regularised relative

entropy bound.

B. Distinguishability Idea: Single Copy

1. Trace Norm Bound

The distinguishability bound that we present below is based on the notion of distinguishing

entangled states from separable states by means of restricted measurements (e.g. LOCC measure-

ments). Let us briefly describe the derivation of the bound. Consider a state, ρin = ρACA ⊗ ρ̃BCB ,

and suppose ρin is highly indistinguishable by LOCC operations between C and AB from some

triseparable state σin. Examples of states ρin with this property were given in [35]: the states are in

fact identical private bits ρACA = ρ̃BCB = ρ (KD(ρ) = 1) and σin is of the form σACA ⊗ σ̃BCB with

σACA = σBCB identical and separable. One may think of them as states that hide entanglement.
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Consider now any quantum key repeater protocol Λ. Since Λ is an LOCC operation (between C

and A and B), its output when acting on ρin has to be highly indistinguishable by arbitrary CPTP

quantum operations from its output when acting on σin. But this means that ρout and σout are

close in trace norm. Since σout is separable this means that ρout is close to separable and therefore

contains almost no key (and is certainly no p-bit).

To show the above reasoning formally, we first recall the notion of maximal probability of

discrimination between two states ρ and σ, using some set S of two-outcome POVMs {E0, E1 =

11− E0} [35, 40]. By definition we have:

pS(ρ, σ) = sup
{E0,E1}∈S

1

2
trE0ρ+

1

2
trE1σ. (39)

In what follows we will consider several sets of operations: LOCC, SEP, PPT and ALL. The set

ALL is the set of all two-outcome POVMs. PPT consists only of elements that have a positive

partial transpose and SEP contains only separable elements, whereas LOCC are those POVMs

that can be implemented by an LOCC protocol. Note that LOCC ⊂ SEP ⊂ PPT ⊂ ALL.

Lemma 6 For any two states ρ, ρ̃, two separable states σ, σ̃ and any Λ ∈ LOCC(A : C : B),

‖ρ̂− σ̂‖1 ≤ ‖(ρACA ⊗ ρ̃BCB )Γ − (σACA ⊗ σ̃BCB )Γ‖1, (40)

where ρ̂ = TrCΛ(ρACA ⊗ ρ̃BCB ) and σ̂ = TrCΛ(σACA ⊗ σ̃BCB ) are the AB outputs of the protocol.

Proof Since Λ is LOCC, it is a tri-separable map, i.e. has its Kraus representation Λ(ρ) =∑
iM

i
A ⊗M i

B ⊗M i
C(ρ)M i†

A ⊗M
i†
B ⊗M

i†
C . In particular it is separable in the cut AB : C, which

will be crucial in what follows. Moreover, upon input of any two separable states σACA ⊗ σBCB,

the map outputs a state ρABC with TrCρABC separable. We now prove the following chain of
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(in)equalities and comment on them below:

1 +
1

2
‖ρ̂− σ̂‖1 = 2pALL(ρ̂, σ̂) (41)

= sup
{Ej}∈ALL

[trE0ρ̂+ trE1σ̂] (42)

= sup
{EjAB}∈ALL

[trE0
AB trC Λ(ρACA ⊗ ρ̃BCB ) + trE1

AB trC Λ(σACA ⊗ σ̃BCB )] (43)

= sup
{EjAB}∈ALL

[tr(E0
AB ⊗ IC)Λ(ρACA ⊗ ρ̃BCB ) + tr(E1

AB ⊗ IC)Λ(σACA ⊗ σ̃BCB )]

(44)

= sup
{EjAB}∈ALL

∑
j

tr(M j†
A ⊗M

j†
B ⊗M

j†
C (E0

AB ⊗ IC)M j
A ⊗M

j
B ⊗M

j
C(ρACA ⊗ ρ̃BCB ))

+
∑
j

tr(M j†
A ⊗M

j†
B ⊗M

j†
C (E1

AB ⊗ I)M j
A ⊗M

j
B ⊗M

j
C(σACA ⊗ σ̃BCB ))

 (45)

≤ pSEP(AB:C)(ρACA ⊗ ρ̃BCB , σACA ⊗ σ̃BCB ) (46)

≤ pPPT(AB:C)(ρACA ⊗ ρ̃BCB , σACA ⊗ σ̃BCB ) (47)

= sup
{F j≥0,

∑
j F

j=11,(F j)Γ≥0}
[trF 0(ρACA ⊗ ρ̃BCB ) + trF 1(σACA ⊗ σ̃BCB )] (48)

= sup
{F j≥0,

∑
j F

j=11,(F j)Γ≥0}
[trF 0Γ

(ρACA ⊗ ρ̃BCB )Γ + trF 1Γ
(σACA ⊗ σ̃BCB )Γ] (49)

≤ sup
{
∑
j F

j=11,(F j)Γ≥0}
[trF 0Γ

(ρACA ⊗ ρ̃BCB )Γ + trF 1Γ
(σACA ⊗ σ̃BCB )Γ] (50)

= 2pALL((ρACA ⊗ ρ̃BCB )Γ, (σACA ⊗ σ̃BCB )Γ) (51)

= 1 +
1

2
‖(ρACA ⊗ ρ̃BCB )Γ − (σACA ⊗ σ̃BCB )Γ‖1. (52)

The first equality is the well known Helstrom formula for optimally distinguishing two quantum

states. Subsequently, we simply insert the definitions step by step. Inequality (45) follows from the

fact that Λ is a tri-separable map. In the next inequality we use SEP ⊂ PPT. Then we write this

explicitly out and partially transpose all the C systems. Then we drop the positivity constraint

on the POVM elements and see that the remaining maximisation extends over all POVMs. Using

Helstrom once again concludes the calculation. ut

The above lemma shows that the trace norm distance between the output states of any quantum

key repeater protocol is upper bounded by the trace norm distance of the partially transposed input

states of it. Combining this result with asymptotic continuity of relative entropy of entanglement

gives the following theorem:
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Theorem 7 Consider any two states ρ, ρ̃, and separable states σ, σ̃ in B(Cd⊗Cd) such that ‖ρΓ−

σΓ‖1 ≤ ε and ‖ρ̃Γ− σ̃Γ‖1 ≤ ε, Then, if µ := min{‖ρΓ‖1, ‖ρ̃Γ‖1} satisfies ε′ := ε(µ+1) ≤ 1
3 , we have

Ksingle copy
A↔C↔B (ρ⊗ ρ̃) ≤ 4(1 + log d)ε′ + 2η(ε′), (53)

with η(x) = −x log x. Here, Ksingle copy
A↔C↔B is the quantum key repeater rate, i.e. the repeater is

restricted to act on single copies ρ⊗ ρ̃ only.

Proof Let us consider ‖(ρ⊗ ρ̃)Γ−(σ⊗σ̃)Γ‖1. By adding and subtracting either (ρ⊗σ̃)Γ or (σ⊗ ρ̃)Γ,

and by triangle inequality, we obtain

‖(ρ⊗ ρ̃)Γ − (σ ⊗ σ̃)Γ‖1 ≤ (min{‖ρΓ‖1, ‖ρ̃Γ‖1}+ 1)ε. (54)

By Lemma 6 and the asymptotic continuity of the relative entropy of entanglement [41] we find

|ER(ρ̂)− ER(σ̂)| ≤ 4(1 + log d)‖ρ̂− σ̂‖1 + 2η(‖ρ̂− σ̂‖1), (55)

which, by separability of σ̂ implies

ER(ρ̂) ≤ 4(1 + log d)ε′ + 2η(ε′). (56)

Since KD ≤ ER [14, 20] we have proven the claim. ut

2. Example: p-bit with X = SWAP

Since the single copy quantum key repeater rate is upper bounded by the general quantum key

repeater rate, the example from Section III A 2 can also be used to illustrate the above theorem.

We therefore choose to provide an example in this section, which, we believe, is not amenable to

the bounds from Section III A nor the techniques we present later on in this paper [42].

We consider ρ = ρ̃ = γV , where γV is the private state from [14], shown to be entanglement

hiding in [35]. It is defined by (1) for X = V
d2
s

with V =
∑ds−1

i,j=0 |ij〉〈ji| the swap operator. Note,

that for any private bit described by operator X as in (1), we have ‖γΓ‖1 = 1+‖XΓ‖1 (see proof of

Theorem 6.5 of [35]). Now, following [35], as a state which is separable and highly indistinguishable

from γV , we take γV dephased on the key part of Alice: σ := σ̃ := 1
2 [|0〉〈0| ⊗ |1〉〈1| ⊗

√
XX† +

|1〉〈1| ⊗ |0〉〈0| ⊗
√
X†X]. Then ‖γΓ

V − σΓ‖1 = ‖XΓ‖1 and ‖XΓ‖1 = ‖V Γ

d2
s
‖1 = ‖dsP+

d2
s
‖1 = 1

ds
where

P+ = 1
ds

∑ds−1
i,j=0 |ii〉〈jj|. Thus, ‖γΓ

V − σΓ‖1 = 1
ds

, which for ds ≥ 7 by Theorem 7 (with ε′ = 2ds+1
d2
s

)

implies that

Ksingle copy
A↔C↔B (γV ⊗ γV ) ≤ 4(2ds + 1)(log ds + 1)

d2
s

+ 2η

(
2ds + 1

d2
s

)
. (57)
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Note that the RHS of the above inequality vanishes with large ds. It cannot be exactly zero, though,

because perfect p-bits always have some non-zero, albeit sometimes small, distillable entanglement

[43]. This means that γV , although being a private bit (KD(γV ) ≥ 1 by definition), in fact with

KD(γV ) = 1 [20], cannot be extended by a single copy quantum key repeater for large enough ds.

C. Distinguishability Idea: Many Copies

1. Restricted Relative Entropy Bound

In this section we derive an asymptotic version of the distinguishability bound, that is, one

that upper bounds KA↔C↔B. The quantity which upper bounds the quantum key repeater rate

measures the distinguishability of the state to the next separable state in terms of the relative

entropy distance of the probability distributions that can be obtained by LOCC. The bound almost

allows to recover the relative entropy and squashed entanglement bounds. Important is the fact

that it does not decrease too much when tracing over a qubit at Alice’s or Bob’s side, which allows

us to extend the results to states that are not exactly PPT but only close to it. It also allows us

to derive a reduced squashed entanglement bound.

Let LOCC(A : B) be the set of POVMs which can be implemented with local operations and

classical communication. We think of an element of this class as the corresponding CPTP map, i.e.

instead of a POVM given by {Mi} we consider the CPTP map M : X 7→
∑

i(trMiX)|i〉〈i|. Note

that M(ρ) is a probability distribution for ρ a density operator. Our first bound on the quantum

key repeater rate is given in terms of the following quantities:

DC↔AB(ρACA ⊗ ρ̃CBB) := inf
σ∈SEP(A:CA:CB :B)

sup
M∈LOCC(C:AB)

D(M(ρ⊗ ρ̃)‖M(σ)), (58)

DC→AB(ρACA ⊗ ρ̃CBB) := inf
σ∈SEP(A:CA:CB :B)

sup
M∈LOCC(C→AB)

D(M(ρ⊗ ρ̃)‖M(σ)). (59)

We denote by D∞ the regularised versions of the above quantities. Note that for trivial ρ̃, the

measures reduce to the measures defined in [22]. Sometimes, we omit the minimisation over

separable states in which case we write DC↔AB(ρACA ⊗ ρ̃CBB‖σACB).

Before we prove the bound we need an easy lemma that shows that DALL (as defined by Piani

[22]) is normalised to (at least) m on private states γm [14, 20] containing at least m bits of pure

privacy.

Lemma 8 For γ̃m ≈ε γm and σ separable we have

DALL(γ̃m‖σ) ≥ (1− ε)m− h(ε). (60)
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Proof Recall that γm is of the form UPm ⊗ ρA′B′U † for Pm the projector onto the maximally

entangled state in dimension 2m on systems AB and U a controlled unitary with control A and

target A′B′. ρA′B′ is arbitrary. We calculate:

DALL(γ̃m‖σ) ≥ DALL(trA′B′ Uγ̃mU
†‖ trA′B′ UσU

†) (61)

= DALL(P̃m‖σ̃) (62)

≥ D({trPmP̃m, tr(11− Pm)P̃m}‖{trPmσ̃, tr(11− Pm)σ̃}) (63)

≥ (1− ε)m− h(ε). (64)

The first inequality holds due to monotonicity of DALL. Note that P̃m := trA′B′ Uγ̃mU
† is a

state ε close to Pm. We also defined σ̃ = trA′B′ UσU
†. The second inequality is again an application

of monotonicity, this time with the measurement map given by the POVM {Pm, 11−Pm}. The last

inequality follows from proof of [20, Lemma 7] which says that trPmσ̃ ≤ 1/2m and trPmP̃m ≥ 1−ε,

which follows from γ̃m ≈ε γm. ut

We now come to the main result of this section.

Theorem 9 The following inequalities hold for all states ρ and ρ̃:

KA↔C↔B(ρACA ⊗ ρ̃CBB) ≤ D∞C↔AB(ρACA ⊗ ρ̃CBB), (65)

KA←C→B(ρACA ⊗ ρ̃CBB) ≤ D∞C→AB(ρACA ⊗ ρ̃CBB). (66)

Proof We will start with proving the first bound. Fix ε > 0. Then, there is an n and a Λ ∈

LOCC(An : Cn : Bn) (in the following we will suppress n if obvious from the context), such that

r ≥ KA↔C↔B(ρ⊗ ρ̃)−ε and γ̃ := trC Λ((ρACA⊗ ρ̃CBB)⊗n) ≈ε γbnrc. For σ ∈ SEP(A : CA : CB : B)

we have

max
M∈LOCC(C:AB)

D(M(ρ⊗nACA ⊗ ρ̃
⊗n
CBB

)‖M(σACB)) (67)

≥ max
M∈LOCC(C:AB)

D(M(trC Λ(ρ⊗nACA ⊗ ρ̃
⊗n
CBB

))‖M(trC Λ(σACB))) (68)

= max
M∈ALL(AB)

D(M(trC Λ(ρ⊗nACA ⊗ ρ̃
⊗n
CBB

))‖M(trC Λ(σACB))) (69)

= max
M∈ALL(AB)

D(M(γ̃AB)‖M(σ̃AB)). (70)

The first inequality is true as M ◦ trC ◦Λ ∈ LOCC(C : AB). The first equality follows as the

arguments have no system C anymore (or equivalently a one-dimensional system C) and since in
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this case LOCC(C : AB) = ALL(AB). In the last equality we have used the definition of γ̃ and

introduced σ̃ := trC Λ(σ). Noting that σ̃ ∈ SEP(A : B) is separable (since Λ ∈ LOCC(A : C : B)

and σ ∈ SEP(A : CA : CB : B) ⊂ SEP(A : C : B)) and that γ̃ ≈ε γbnrc we have from Lemma 8:

max
M∈ALL(AB)

D(M(γ̃AB)‖M(σ̃AB)) ≥ (1− ε)bnrc − h(ε). (71)

Combining the bounds, minimizing over σ and taking the limit n→∞ gives

D∞C↔AB(ρACA ⊗ ρ̃CBB) ≥ (1− ε)r (72)

Since r ≥ KA↔C↔B(ρACA ⊗ ρ̃CBB)− ε and ε was arbitrary we have proven the first claim.

The second claim follows by slight modification: restrict Λ to be in LOCC(A ← C → B) and

note that M ◦trC ◦Λ ∈ LOCC(C → AB) and that LOCC(C → AB) = ALL(AB) for trivial system

C. Then KA↔C↔B will turn into KA←C→B and DC↔AB into DC→AB. ut

2. Properties of the Restricted Relative Entropy Measure

In this section we present three properties of the distinguishability measure, its invariance under

partial transposition of the C system, its non-lockability (i.e. the fact that the measure does not

decrease too much when a qubit on Alice’s or Bob’s side is lost) and its LOCC monotonicity.

Lemma 10 For all states ρ and ρ̃,

DC↔AB(ρACA ⊗ ρ̃CBB) = DC↔AB(ρΓ
ACA
⊗ ρ̃Γ

CBB
), (73)

DC→AB(ρACA ⊗ ρ̃CBB) = DC→AB(ρΓ
ACA
⊗ ρ̃Γ

CBB
). (74)

Proof It is sufficient to observe that the sets of measurements which we denote by LOCC as a

placeholder for either LOCC(C : AB) or LOCC(C → AB) and the set of separable states are

invariant under taking partial transpose of systems C (or AB):

min
σ∈SEP(A:CA:CB :B)

max
M∈LOCC

D(M(ρ⊗ ρ̃)‖M(σ)) (75)

= min
σ∈SEP(A:CA:CB :B)

max
M∈LOCC

D(MΓ(ρΓ ⊗ ρ̃Γ)‖MΓ(σΓ)) (76)

= min
σ∈SEP(A:CA:CB :B)

max
M∈LOCC

D(M(ρΓ ⊗ ρ̃Γ)‖M(σ)). (77)

ut

By the monotonicity of the relative entropy, we can upper bound D∞C↔AB by the relative entropy

of entanglement and, using the invariance of D∞C↔AB under partial transpose of the C system
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(Lemma 10), obtain E∞R (ρ) + E∞R (ρ̃) and thereby almost recover the relative entropy bound from

Theorem 2.

This lets us also conclude that D∞A↔B(ρ), which can similarly be upper bounded by ER(ρΓ), can

be made strictly smaller than KD(ρ): simply take the states from Proposition 3. This observation

was first made in [44] in order to answer a question posed in [45].

Following [23] we will now prove that D∞ is not lockable.

Lemma 11 Let M = LOCC(C : AB) or LOCC(C → AB). Then

D∞M(ρA1A2CA ⊗ ρ̃CBB) ≤ D∞M(ρA1CA ⊗ ρ̃CBB) + I(A2 : A1CA)ρ. (78)

A similar bound holds when part of CA is lost. In summary, D∞M is non-lockable.

Proof Let us fix ε > 0, a state σ ∈ SEP(A : CA : CB : B) and a POVM given by CPTP map E.

By [46, Proposition II.2], there exist 2nδ unitaries U (i), where δ = I(A2 : A1B) + ε, such that when

applied to ρ⊗nACA they decorrelate A2 from A1CA, i.e.

‖ρ̂ACA − ωA2 ⊗ ωA1CA‖1 ≤ ε (79)

for some states ωA2 and ωA1CA , where we introduced ρ̂
(i)
ACA

= U
(i)
A2
⊗ IA2CAρ

⊗n
ACA

U
(i)†
A2
⊗ IA1CA and∑

i piρ̂
(i)
ACA

= ρ̂ACA . Since the decorrelation map acts as identity on systems A1B we find, using

the triangle inequality,

‖ρ̂ACA − ωA2 ⊗ ρA1CA‖1 ≤ 2ε. (80)

By a theorem from [47] the following holds

∑
i piD(E(ρ̂

(i)
ACA
⊗ ρ̃⊗nCBB)‖E(σACB))−D(E(

∑
i piρ̂

(i)
ACA
⊗ ρ̃⊗nCBB)‖E(σACB)) (81)

≤ H(E(
∑

i piρ̂
(i)
ACA
⊗ ρ̃⊗nCBB))−

∑
i piH(E(ρ̂

(i)
ACA
⊗ ρ̃⊗nCBB)) ≤ H(X), (82)

where X is a random variable with distribution {pi}. Since we have a bound on the number of

unitaries, we can bound H(X) and find

∑
i

piD(E(ρ̂
(i)
ACA
⊗ ρ̃⊗nCBB)‖E(σACB)) ≤ D(E(ρ̂ACA ⊗ ρ̃

⊗n
CBB

)‖E(σACB)) + nδ. (83)

Observe that LHS is an average. Hence, there exists an event i0 such that

D(E(ρ̂
(i0)
ACA
⊗ ρ̃⊗nCBB)‖E(σACB)) ≤ D(E(ρ̂ACA ⊗ ρ̃

⊗n
CBB

)‖E(σACB)) + nδ. (84)
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Taking the supremum over E,

sup
E∈C

D(E(ρ̂
(i0)
ACA
⊗ ρ̃⊗nCBB)‖E(σACB)) ≤ sup

E∈C
D(E(ρ̂ACA ⊗ ρ̃

⊗n
CBB

)‖E(σACB)) + nδ. (85)

allows us to shift the unitary U (i0) from ρ̂
(i0)
ACA

= U
(i0)
A2
⊗ IA1CAρ

⊗n
ACA

U (i0)† ⊗ IA1CA to σ̂
(i0)
ACA

=

U
(i0)†
A2
⊗ IA1CAσU

(i0)
A1
⊗ IA2CA as it is only applied locally on the A2 systems

sup
E∈C

D(E(ρ⊗nACA ⊗ ρ̃
⊗n
CBB

)‖E(σ̂i0ACB)) ≤ sup
E∈C

D(E(ρ̂ACA ⊗ ρ̃
⊗n
CBB

)‖E(σACB)) + nδ. (86)

Taking the infimum over σ ∈ SEP(A : CA : CB : B) on both sides, noting in particular that

σ̂i0 ∈ SEP(A : CA : CB : B) we find

DM(ρ⊗nACA ⊗ ρ̃
⊗n
CBB

) ≤ DM(ρ̂ACA ⊗ ρ̃
⊗n
CBB

) + nδ. (87)

Now, by asymptotic continuity of DM [45, Proposition 3], and inequality (80) this gives

DM(ρ⊗nACA ⊗ ρ̃
⊗n
CBB

) ≤ DM(ωA2 ⊗ ρ⊗nA1CA
⊗ ρ̃⊗nCBB) + 2ε log(

6dn

ε
) + nδ (88)

= DM(ρ⊗nA1CA
⊗ ρ̃⊗nCBB) + 2ε log(

6dn

ε
) + nδ, (89)

where in the last equation we used the fact that DM stays unchanged when we add or remove a

local tensor product state. Taking the limit n → ∞ and subsequently ε → 0 we have proved the

claim. ut

We conclude with proving the monotonicity of the bound.

Lemma 12 Let Λ ∈ M where M is one of LOCC(CA ↔ A), LOCC(CA → A), LOCC(CB ↔ B)

or LOCC(CB → B). Then,

DLOCC(ρ⊗ ρ̃) ≥
∑
i

piDLOCC(ρi ⊗ ρ̃), (90)

where Λ(ρ) =
∑

i pi|i〉〈i| ⊗ ρi.

Proof We prove the statements for the → case.

DM(ρ⊗ ρ̃) = inf
σ∈SEP(A:CA:CB :B)

max
M∈LOCC(C→AB)

D(M(ρ⊗ ρ̃)‖M(σ)) (91)

≥ inf
σ∈SEP(A:CA:CB :B)

max
M∈LOCC(C→AB)

D(M(Λ(ρ⊗ ρ̃))‖M(Λ(σ))) (92)

= inf
σ∈SEP(A:CA:CB :B)

max
Mi∈LOCC(C→AB)

∑
i

piD(Mi(ρi ⊗ ρ̃)‖Mi(σi)) +D(p‖q), (93)

where we used Λ(σ) =
∑

i qi|i〉〈i| ⊗ σi and without loss of generality M =
∑

i |i〉〈i| ⊗Mi. This is

lower bounded by

inf
σi∈SEP(A:CA:CB :B)

max
Mi∈LOCC(C→AB)

∑
i

piD(Mi(ρi ⊗ ρ̃)‖Mi(σi)) =
∑
i

piDM(ρi ⊗ ρ̃). (94)

The other cases are similar. ut
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3. Reduced Squashed Entanglement Bound

It is the goal of this section to derive a bound on the one-way quantum key repeater rate by

the reduced squashed entanglement. This will be done in two steps. First, we will prove that

the one-way LOCC restricted relative entropy measure is upper bounded by squashed entangle-

ment. Second, we will employ the non-lockability of this measure in order to unlock the squashed

entanglement.

For the first step, we need two lemmas in order to prepare for the key lemma, Lemma 15.

Lemma 13 For any two states ρABE and σABE and for every M ∈ LOCC(A2 → B2) with output

denoted by X there is a sequence Tn ∈ LOCC(An → Bn) with cq output XnBn such that

lim
n→∞

1

n
D(T cn(ρ⊗nAB)⊗2‖T cn(σ⊗nAB)⊗2) = D(M(ρ⊗2

AB)‖M(σ⊗2
AB)), (95)

lim
n→∞

‖T qn ⊗ idE(ρ⊗nABE)− ρ⊗nBE‖1 = 0, (96)

where we defined T qn = trXn ◦Tn and T cn = trBn ◦Tn.

Proof Apply [45, Lemma 5] to the states ρ 7→ ρ⊗2 and σ 7→ σ⊗2. Then manipulate the LHS of

their first equation: First, we use the additivity of the relative entropy

D(T cn(ρ⊗2n
AB )⊗ T cn(ρ⊗2n

AB )‖T cn(σ⊗2n
AB )⊗ T cn(σ⊗2n

AB )) = 2D(T cn(ρ⊗2n
AB )‖T cn(σ⊗2n

AB )) (97)

in order to conclude

lim
n→∞

1

n
D(T cn(ρ⊗2n

AB )‖T cn(σ⊗2n
AB )) = lim

n→∞

1

2n
D(T cn(ρ⊗2n

AB )⊗ T cn(ρ⊗2n
AB )‖T cn(σ⊗2n

AB )⊗ T cn(σ⊗2n
AB )). (98)

In a next step we restrict the limit to even n (thereby not changing the limiting value) and make

the replacement n 7→ n/2 to obtain

lim
n→∞

1

n
D(T cn/2(ρ⊗nAB)⊗2‖T cn/2(σ⊗nAB)⊗2). (99)

Finally, we redefine Tn/2 7→ Tn and obtain the claim. ut

Lemma 14 For any tri-partite state ρ,

2E∞R (ρB:AE) ≥ D∞A2→B2(ρ⊗2
AB) + 2E∞R (ρB:E). (100)
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Proof For a state σ ∈ SEP(B : AE),

nD(ρ⊗2
ABE‖σ

⊗2
ABE) = D(ρ⊗2n‖σ⊗2n) (101)

≥ D(Tn ⊗ idE(ρ⊗n)⊗2‖Tn ⊗ idE(σ⊗n)⊗2) (102)

= D(T cn(ρ⊗n)⊗2‖T cn(σ⊗n)⊗2) +
∑
ij

pipjD(ρi ⊗ ρj‖σi ⊗ σj) (103)

≥ D(T cn(ρ⊗n)⊗2‖T cn(σ⊗n)⊗2) +D(T qn ⊗ idE(ρ⊗n)⊗ T qn ⊗ idE(ρ⊗n)‖σ̃ ⊗ σ̃)

(104)

≥ D(T cn(ρ⊗n)⊗2‖T cn(σ⊗n)⊗2) (105)

+ min
σ̃∈SEP(B:E)

D(T qn ⊗ idE(ρ⊗n)⊗ T qn ⊗ idE(ρ⊗n)‖σ̃ ⊗ σ̃). (106)

The first inequality follows from the monotonicity of the relative entropy under CPTP maps, the

following equality is a direct calculation, where the ensemble {pi, ρi} ({qi, σi}) is the output of the

instrument Tn ⊗ idE when applied to ρ⊗nABE and σ⊗nABE , respectively. The subsequent inequality is

due to convexity of the relative entropy, where we defined the state σ̃ := T qn ⊗ idE(σ⊗n). Since

T q ⊗ idE ∈ LOCC(B : AE) and σ ∈ SEP(B : AE), we find σ̃ ∈ SEP(B : E). This explains the last

inequality. Using Lemma 13, the asymptotic continuity of the relative entropy of entanglement

[41] and taking the limit n→∞ proves

D(ρ⊗2
ABE‖σ

⊗2
ABE) ≥ D(M(ρ⊗2

AB)‖M(σ⊗2
AB)) + lim

n→∞

1

n
min

σ̃∈SEP(B:E)
D(ρ⊗nBE ⊗ ρ

⊗n
BE‖σ̃BE ⊗ σ̃BE). (107)

We now maximise this statement over measurements, then minimise over σ. This proves

2ER(ρB:AE) ≥ inf
σ

max
M

D(M(ρ⊗2
AB)‖M(σ⊗2)) + 2E∞R (ρB:E). (108)

The RHS is lower bounded by DA2→B2(ρAB ⊗ ρAB) + 2E∞R (ρB:E). Regularizing this result we

obtain the claimed bound. ut

Lemma 15

D∞A2→B2(ρAB ⊗ ρAB) ≤ 4Esq(ρAB). (109)

Proof From Lemma 14 we have

2E∞R (ρB:AE)− 2E∞R (ρB:E) ≥ D∞A2→B2(ρ⊗2
AB). (110)

By [48, Lemma 1] the LHS is upper bounded by 2I(A : B|E)ρ. Minimizing over all extensions of

ρABE for a fixed ρAB proves the claim. ut
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Since squashed entanglement is lockable [39] but D∞M is not, we can improve the squashed

entanglement bound. For this we define the reduced squashed entanglement [23, 49]:

Esq↓(ρAB) := inf
A=A1A2,B=B1B2

Esq(ρA1:B1) +H(A2) +H(B2), (111)

where the infimum goes over all splits of A into two subsystems A1A2 (likewise for B). Note that,

trivially, reduced squashed entanglement is smaller than squashed entanglement. By construction

this measure is not lockable and subadditive. Since for every split of the A system (and similarly

for the B system)

D∞A2→B2(ρAB ⊗ ρAB) ≤ D∞A2
1→B2(ρA1B ⊗ ρA1B) + 2I(A1 : A2B) ≤ 4Esq(ρA1B) + 4H(A1), (112)

we obtain the following improved bound.

Lemma 16 For ρCAA = ρCBB,

D∞C→AB(ρACA ⊗ ρCBB) ≤ 4E∞sq↓(ρACA) ≤ 4Esq↓(ρACA). (113)

Combining Lemma 16 with Theorem 9 and Lemma 10 we get the following bound.

Corollary 17 The following inequality holds for all PPT states ρCAA = ρCBB:

KA←C→B(ρ⊗ ρ) ≤ 4E∞sq↓(ρ
Γ) ≤ 4Esq↓(ρ

Γ). (114)

We leave it as an open question whether the relative entropy of entanglement can be much

smaller than reduced squashed entanglement, or, in other words, whether the E∞R -bound in Theo-

rem 2 gives a bound stronger than the first bound in Corollary 17.

Interestingly, reduced squashed entanglement can also be used as an upper bound for the tra-

ditional distillable entanglement. For this we choose ρ̃ to be the trivial state and apply Lemma 11

and [45, Theorem 2] in order to obtain:

D∞A→B(ρAB) ≤ D∞A1→B(ρA1B) + I(A1 : A2B) ≤ 2Esq(ρA1B) + 2H(A1). (115)

When combined with the bound D∞A→B ≥ ED (from [45]) and regularisation we find:

Corollary 18

ED(ρAB) ≤ 2E∞sq↓(ρAB). (116)
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We conjecture that the constant 2 can be replaced by a 1. Note that we could have used 1
2I(A1 :

A2B) in place of H(A1) in the definition of reduced squashed entanglement. Then, however, the

constant could not have been smaller as a simple examples shows. Whereas it is known that

KD ≤ Esq, we leave explicitly open the question whether KD ≤ Esq↓ (even up to a multiplicative

constant), a bound that would have paralleled the bound of the classical secret key rate by the

reduced intrinsic information: S(X : Y ‖Z) ≤ I(X : Y ↓↓ Z) [49].

4. Extensions For Almost PPT States

It is the purpose of this section to extend the squashed entanglement and relative entropy

bounds to NPT states that are close to being PPT. We start with some technical lemmas.

The following bounds follow easily from the monotonicity of the relative entropy.

Lemma 19 For positive p, p̃ we have

D∞LOCC(ρ⊗p ⊗ ρ̃⊗p̃) ≤ pE∞R (ρ) + p̃E∞R (ρ̃), (117)

where we defined

D∞LOCC(ρ⊗p ⊗ ρ̃⊗p̃) := lim
n→∞

1

n
DLOCC(ρbnpc ⊗ ρ̃bnp̃c). (118)

Lemma 20 Let M = LOCC(AB : C) or LOCC(C → AB). Consider a state ρ such that ρ+ =

pρ+ (1− p)ρ′ is PPT for some state ρ′ (and likewise for ρ̃ and ρ̃+). Then,

D∞M(ρ⊗ ρ̃) ≤ D∞M(ρ
1/p
+ ⊗ ρ̃1/p̃

+ ) + h(p)/p+ h(p̃)/p̃. (119)

Proof We start by applying Lemma 11 to the state ρ⊗nf with ρf = pρA1CA ⊗ |1〉〈1|A2 + (1 −

p)ρ′A1CA
⊗ |0〉〈0|A2 and similarly for ρ̃. We have for all ε > 0 and sufficiently large n

DM(ρ⊗nf ⊗ ρ̃
⊗ñ
f ) ≤ DM(ρ⊗n+ ⊗ ρ̃⊗ñ+ ) + nh(p) + ñh(p̃) + ε(n+ ñ), (120)

where we used the fact that I(A2 : A1CA) ≤ h(p). We now bound the LHS from below. Note that

by Lemma 12 a measurement of the flags results in

DM(ρ⊗nf ⊗ ρ̃
⊗ñ
f ) ≥

∑
k

(
n

k

)
pk(1− p)n−k

∑
k̃

(
ñ

k̃

)
p̃k̃(1− p̃)ñ−k̃DM(ρ⊗k ⊗ ρ̃⊗k̃). (121)

By Lemma 12 we can locally apply partial traces resulting in∑
k>n(p−ε)

(
n

k

)
pk(1− p)n−k

∑
k̃

(
ñ

k̃

)
p̃k̃(1− p̃)ñ−k̃DM(ρ⊗bn(p−ε)c ⊗ ρ̃⊗bñ(p̃−ε)c). (122)
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By the Chernoff bound k > bn(p− ε)c with probability 1− e−2nε2 . Hence we find

DM(ρ⊗nf ⊗ ρ̃
⊗ñ
f ) ≥ (1− e−2nε2)(1− e−2ñε2)DM(ρ⊗bn(p−ε)c ⊗ ρ̃⊗bñ(p̃−ε)c). (123)

Combining this bound with (120) and taking the limit bn(p− ε)c = bñ(p̃− ε)c = m→∞ results in

D∞M(ρ⊗ ρ̃) ≤ D∞M(ρ
1/(p−ε)
+ ⊗ ρ̃1/(p̃−ε)

+ ) + h(p) + h(p̃) + ε, (124)

which proves the statement, since ε was arbitrary. ut

Combining this statement with Theorem 9 and Lemma 19 we find the following result.

Corollary 21 Let ρ ∈ NPT be such that ρ+ = pρ + (1 − p)ρ′ ∈ PPT for some state ρ′ (and

likewise for ρ̃). Then

KA↔C↔B(ρ⊗ ρ̃) ≤ 1

p
(E∞R (ρΓ

+) + h(p)) +
1

p̃
(E∞R (ρ̃Γ

+) + h(p̃)). (125)

Similarly we can derive a squashed entanglement bound for NPT states.

Corollary 22 Let ρ ∈ NPT be such that ρ+ = pρ+ (1− p)ρ′ ∈ PPT for some state ρ′. Then

KA←C→B(ρ⊗ ρ) ≤ 2

p
(2E∞sq↓(ρ

Γ
+) + h(p)) (126)

≤ 2

p
(2Esq↓(ρ

Γ
+) + h(p)) (127)

≤ 2

p
(2Esq(ρ

Γ
+) + h(p)). (128)

5. Example: Exact p-bit close to being PPT

In previous examples, we had to admix some noise to the p-bits in order to make them PPT

and thereby amenable to the bounds. We can now use our bounds for NPT states that are close

to being PPT in order directly obtain bounds for exact p-bits.

Theorem 23 There is a family of private bits γds ∈ C2 ⊗C2 ⊗Cds ⊗Cds with KD(γds) = 1, such

that KS(γds⊗γds) ≤
4q

1−q log 2ds+ 2
1−q (η(q)+h(q)) with h binary Shannon entropy, η(q) = −q log q

and q = 1√
ds+1

.
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Proof Take γds to be equal to a private bit defined by X from eq. (19). Its matrix reads

γds =
1

2



√
XX† 0 0 X

0 0 0 0

0 0 0 0

X† 0 0
√
X†X

 . (129)

By [20, Theorem 4], KD(γds) ≤ 1. Since γds is a private bit we find KD(γds) = 1. Theorem 5

shows that γds becomes PPT if mixed with probability p with the separable state σ′ = 1
2 [|0〉〈0| ⊗

|1〉〈1|⊗
√
Y †Y + |1〉〈1|⊗ |0〉〈0|⊗

√
Y Y †]. Moreover, resulting PPT state after partial transposition

is highly indistinguishable from the separable state σds presented in (23), as it satisfies (24). Since

probability with which σ′ is admixed q = 1√
ds+1

is small, we can apply Corollary 21 (with p = 1−q),

and Lemma 4 in order to obtain the desired bound. ut

D. Entanglement Measures Idea

1. Entanglement Distillation and Cost Bound

We will now present an upper bound on the quantum key repeater rate that depends on the

distillable entanglement of the input state.

Theorem 24 For input states ρACA and ρ̃CBB it holds

KA←C↔B(ρACA ⊗ ρ̃CBB) ≤ 1

2
ED(ρ̃CBB) +

1

2
EC(ρACA), (130)

KA←C→B(ρACA ⊗ ρ̃CBB) ≤ 1

2
ECA→AD (ρACA) +

1

2
EC(ρ̃CBB) (131)

≤ 1

2
ED(ρACA) +

1

2
EC(ρ̃CBB). (132)

In case of PPT states, we may also transpose the states on the C system.

Our result implies that if one of the input states is bound entangled or has small distillable en-

tanglement, the other state has to ’compensate’ this lack of distillability by its entanglement cost.

Before proving Theorem 24, we consider the classical squashed entanglement [34], denoted by Esq,c,

a variant of the squashed entanglement where the extensions are restricted to being classical, i.e.

ρABE =
∑

i piρ
(i)
AB ⊗ |i〉〈i|E . If we further restrict ourselves to ρABE =

∑
i pi|Ψ(i)〉〈Ψ(i)|AB ⊗ |i〉〈i|E ,

i.e. pure states ρi = |Ψ(i)〉〈Ψ(i)|, we get the entanglement of formation as shown in [34]. Clearly,

Esq ≤ Esq,c ≤ EF , and all inequalities can be strict, for example for the antisymmetric state [24, 37].

Furthermore, in [24, 37, 50] it was shown that KD ≤ Esq. The proof of Theorem 24 is based on

the following Lemmas. First, a small technical observation:
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Lemma 25 For any bipartite state ρAB, EB→AD (ρAB) ≥ 2Esq,c(ρAB)−H(B)ρ.

Proof Using the definition of the classical squashed entanglement and the hashing inequality [15],

we have 2Esq,c(ρAB) ≤ I(A : B)ρ = H(B)ρ −H(B|A)ρ ≤ H(B)ρ + EB→AD (ρAB). ut

Lemma 25 gives us the following upper bound on the classical squashed entanglement of τ :

Lemma 26 For (A← C ↔ B)-LOCC protocols resulting in τA′B′ there holds

Esq,c(τA′B′) ≤
1

2
ED(ρ̃CBB) +

1

2
EF (ρACA). (133)

Proof Any (A ← C ↔ B)-LOCC protocol can be divided into two steps. First Charlie and Bob

perform an LOCC operation on their subsystems, which yields an ensemble {pi, σ(i)
AC′B′}, classi-

cally communicate i to Alice and discard C ′. After the first step Alice and Bob have the ensemble

{pi, σ(i)
AB′ ⊗ |i〉〈i|a}. In a second step, Alice performs a local operation that can depend on i, result-

ing in state τA′B′ .

Let {qj , |Ψj〉〈Ψj |ACA} be an ensemble such that ρACA =
∑

j qj |Ψj〉〈Ψj |ACA and EF (ρACA) =∑
j qjH(A)|Ψj〉〈Ψj |. Applying the first step of the protocol to |Ψj〉〈Ψj |ACA ⊗ ρ̃CBB alone result

in the ensemble {p(j)
i , σ

(i,j)
AB′ ⊗ |i〉〈i|a}. By linearity we have σ

(i)
AB′ =

∑
j qjσ

(i,j)
AB′ . By Lemma 25, for

every i, j, we have

ED(σ
(i,j)
AB′ ) ≥ 2Esq,c(σ

(i,j)
AB′ )−H(A)σ(i,j) . (134)

By the concavity of the von Neumann entropy and the fact that the A subsystem remains untouched

in the first step, we find

∑
ij

p
(j)
i qjED(σ

(i,j)
AB′ ) (135)

≥ 2
∑
ij

p
(j)
i qjEsq,c(σ

(i,j)
AB′ )−

∑
ij

p
(j)
i qjH(A)σ(i,j) (136)

≥ 2
∑
ij

p
(j)
i qjEsq,c(σ

(i,j)
AB′ )−

∑
j

qjH(A)|Ψj〉〈Ψj | (137)

= 2
∑
ij

p
(j)
i qjEsq,c(σ

(i,j)
AB′ )− EF (ρACA). (138)

As the second step of the protocol is local, using the convexity and LOCC monotonicity of the

classical squashed entanglement [51], we obtain
∑

ij p
(j)
i qjEsq,c(σ

(i,j)
AB′ ) ≥ Esq,c(τA′B′). Note that if

Alice and Charlie share a lab they will be able to locally create the ensemble {qj , |Ψj〉〈Ψj |}. This

combined with the first part of the protocol provides an (AC : B)-LOCC protocol, transferring
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ρ̃CBB into the ensemble {p(j)
i qj , σ

(i,j)
AB′}. By the LOCC monotonicity of the distillable entanglement

we have ED(ρ̃CBB) ≥
∑

ij p
(j)
i qjED(σ

(i,j)
AB′ ), finishing the proof. ut

Similarly, we can show the following

Lemma 27 For (A← C → B)-LOCC protocols resulting in τA′B′ there holds

Esq,c(τA′B′) ≤
1

2
ECA→AD (ρACA) +

1

2
EF (ρ̃CBB), (139)

where ECA→AD describes the one way distillable entanglement.

Proof Any (A ← C → B)-LOCC protocol can be divided into two steps. First Charlie performs

an operation on his subsystem, which yields an ensemble {pi, σ(i)
AC′B}, classically communicates i

to Alice and Bob and discards C ′. After the first step Alice and Bob have the ensemble {pi, σ(i)
AB ⊗

|i〉〈i|a ⊗ |i〉〈i|b}. In a second step, Alice and Bob perform local operations that can depend on i,

resulting in state τA′B′ .

Let {qj , |Ψj〉〈Ψj |CBB} be an ensemble such that ρ̃CBB =
∑

j qj |Ψj〉〈Ψj |CBB and EF (ρ̃CBB) =∑
j qjH(B)|Ψj〉〈Ψj |. Let applying the first step of the protocol to ρACA ⊗ |Ψj〉〈Ψj |CBB alone result

in the ensemble {p(j)
i , σ

(i,j)
AB ⊗ |i〉〈i|a ⊗ |i〉〈i|b}. By linearity we have σ

(i)
AB =

∑
j qjσ

(i,j)
AB . By Lemma

25, for every i, j, we have

EB→AD (σ
(i,j)
AB ) ≥ 2Esq,c(σ

(i,j)
AB )−H(B)σ(i,j) . (140)

By the concavity of the von Neumann entropy and the fact that the B subsystem remains untouched

in the first step,

∑
ij

p
(j)
i qjE

B→A
D (σ

(i,j)
AB ) (141)

≥ 2
∑
ij

p
(j)
i qjEsq,c(σ

(i,j)
AB )−

∑
ij

p
(j)
i qjH(B)σ(i,j) (142)

≥ 2
∑
ij

p
(j)
i qjEsq,c(σ

(i,j)
AB )−

∑
j

qjH(B)|Ψj〉〈Ψj | (143)

= 2
∑
ij

p
(j)
i qjEsq,c(σ

(i,j)
AB )− EF (ρ̃CBB). (144)

As the second step of the protocol is local, using the convexity and LOCC monotonicity of the

classical squashed entanglement, we obtain
∑

ij p
(j)
i qjEsq,c(σ

(i,j)
AB ) ≥ Esq,c(τA′B′). Note that if

Charlie and Bob share a lab they will be able to locally create the ensemble {qj , |Ψj〉〈Ψj |}. This

combined with the first part of the protocol provides an (A ← CB)-LOCC protocol, transferring



32

ρACA into the ensemble {p(j)
i qj , σ

(i,j)
AB }. By the LOCC monotonicity of the one-way distillable

entanglement we have ECA→AD (ρACA) ≥
∑

ij p
(j)
i qjE

B→A
D (σ

(i,j)
AB ), finishing the proof. ut

Proof of Theorem 24 LetM be the class of allowed LOCC protocols and let ε > 0. Then there

exists n and an M-protocol ΛM such that TrCΛM
(
(ρ⊗ ρ̃)⊗n

)
≈ε γbnrc and r ≥ KM(ρ ⊗ ρ̃) − ε.

Hence, using the fact that Esq(γm) ≥ m for any γm [37], as well as the LOCC monotonicity and

asymptotic continuity of Esq, it holds

nKM(ρ⊗ρ̃) ≤ nr+nε ≤ Esq(γbnrc)+nε ≤ Esq
(
TrCΛM

(
(ρ⊗ ρ̃)⊗n

))
+constε log(dimn

A′B′)+f(ε)+nε,

(145)

where f(ε) → 0 as ε → 0. By Lemma 26 and 27 for respective classes M and the fact that

Esq ≤ Esq,c, it holds

Esq
(
TrCΛA←C↔B

(
(ρ⊗ ρ̃)⊗n

))
≤ 1

2
ED(ρ̃⊗n) +

1

2
EF (ρ⊗n) (146)

and

Esq
(
TrCΛA←C→B

(
(ρ⊗ ρ̃)⊗n

))
≤ 1

2
ECA→AD (ρ⊗n) +

1

2
EF (ρ̃⊗n). (147)

Let us now divide by n and let ε→ 0 and n→∞. Our bounds then follow from the extensitivity of

ED and the fact that the regularised entanglement of formation equals the entanglement cost. If ρ

and ρ̃ are PPT, it can be shown analogously to Lemma 1 that KA←C↔B(ρ⊗ρ̃) = KA←C↔B(ρΓ⊗ρ̃Γ)

and KA←C→B(ρ⊗ ρ̃) = KA←C→B(ρΓ ⊗ ρ̃Γ), hence we can also partially transpose ρ and ρ̃. ut

2. Example: PPT invariant approximate p-bit (based on data hiding states)

Note that, even though the results in Section III C may be computed for states without the use

of the partial transpose, all examples were in fact computed using that idea. Therefore, until now,

we have not been able to demonstrate a nontrivial bound for states that are invariant under the

partial transpose operation. It is the goal of this section to demonstrate such an example by help

of Theorem 24.

In order to do so, we choose a family of states ρm and based on this, consider states of the form

ρ̃m := ρm ⊗ ρΓ
m. Note that ρ̃m is locally equivalent (by bilocal swap) to its partial transposition

and therefore our previous bounds based on the partial transpose idea give no nontrivial results.

As we show below, however, for our choice of ρ̃m we find ED(ρ̃m) = 0 and EC(ρ̃m) . 1. Inserting

this into Theorem 24, we find

KA←C↔B(ρ̃m ⊗ ρ̃m) .
1

2
, (148)
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which is significantly smaller than KD(ρ̃m) & 1 (see below).

In order to construct ρm, we consider a family of states on B
(
C2 ⊗ C2 ⊗ (Cdk ⊗ Cdk)⊗m

)
given

in [14]:

ρ̂p,d,k,m =
1

Nm


[p( τ1+τ2

2 )]⊗m 0 0 [p( τ1−τ22 )]⊗m

0 [(1
2 − p)τ2]⊗m 0 0

0 0 [(1
2 − p)τ2]⊗m 0

[p( τ1−τ22 )]
⊗m

0 0 [p( τ1+τ2
2 )]

⊗m

 , (149)

where Nm = 2(pm) + 2(1
2 − p)m, τ1 = (ρa+ρs

2 )⊗k and τ2 = (ρs)
⊗k, while ρs and ρa are the d-

dimensional symmetric and antisymmetric Werner state, respectively.

The state ρ̂p,d,k,m is PPT iff p ≤ 1
3 and 1−p

p ≥ ( d
d−1)k [14]. We satisfy this condition by setting

p = 1
3 , d = m2 and k = m, as then ( d

d−1)k < 2 for m ≥ 2. Then we define

ρm := ρ̂1/3,m2,m,m, (150)

with m ≥ 2. Since also ρ̃m is PPT, it is bound entangled and we find ED(ρ̃m) = 0. The following

lemma assures us of the fact that entanglement of formation of ρ̃m is bounded by approximately

one.

Lemma 28 ρ̃m = ρm⊗ρΓ
m for ρm defined in eq. (150) satisfies EC(ρ̃m) ≤ EF (ρ̃m) ≤ 1+ 2m2 log(2m)

2m+1 .

Note that this bound is approximately equal to one for large m.

Proof Observe first that EF (ρ̃m) ≤ EF (ρm) + EF (ρΓ
m) due to the subadditivity of EF . We show

now, that EF (ρm) ≤ 1. Indeed, observe that (for x = (1/2−p)m
Nm

)

ρm = (1− 2x)

[
1

2
|ψ+〉〈ψ+| ⊗ Seven +

1

2
|ψ−〉〈ψ−| ⊗ Sodd

]
+

2x

[
1

2
|01〉〈01| ⊗ τ⊗m2 +

1

2
|10〉〈10| ⊗ τ⊗m2

]
, (151)

where Seven is a uniform mixture (with probability 2−(m−1)) of all states τi1 ⊗ · · · ⊗ τim such that

2 occurs even number of times in string (i1, . . . , im), and Sodd is defined analogously, but with

number of 2 being odd, |ψ±〉 = 1√
2
(|00〉 ± |11〉). It is clear from the above formula, that the

state ρm can be created from 2-qubit maximally entangled state appropriately correlated to the

sequences of length m of separable hiding states τi, and mixed with probability 2x with a separable

state 1
2(|01〉〈01| ⊗ τ⊗m2 + |10〉〈10| ⊗ τ⊗m2 ).
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We now bound EF (ρΓ
m) from above. Note that

ρΓ
m =

1

Nm


[p( τ1+τ2

2 )Γ]⊗m 0 0 0

0 [(1
2 − p)τ

Γ
2 ]⊗m [p( τ1−τ22 )Γ]⊗m 0

0 [p( τ1−τ22 )Γ]⊗m [(1
2 − p)τ

Γ
2 ]⊗m 0

0 0 0 [p( τ1+τ2
2 )Γ]

⊗m

 , (152)

Observe, that [( τ1+τ2
2 )Γ] is a separable state, and, therefore, by the convexity of entanglement of

formation, EF (ρΓ
m) ≤ 2xEF (ρ′m) where the state ρ′m is formed by middle block of the above matrix:

ρ′m =
1

2(1
2 − p)m


0 0 0 0

0 [(1
2 − p)τ

Γ
2 ]⊗m [p( τ1−τ22 )Γ]⊗m 0

0 [p( τ1−τ22 )Γ]⊗m [(1
2 − p)τ

Γ
2 ]⊗m 0

0 0 0 0

 . (153)

Since x ≤ 1
2m , we can safely bound EF (ρ′m) by the logarithm of the local dimension of ρ′m, which

equals 2m2m2
:

EF (ρΓ
m) ≤ 2x× 2m2 log(2m). (154)

The assertion follows by inserting p = 1/3 and observing that the entanglement cost is upper

bounded by the entanglement of formation. ut

In the following we show that KD(ρ̃m) & 1 in the limit of large m. We start by noting that

KD(ρ̃m) ≥ KD(ρm) and it therefore suffices to lower bound KD(ρm). We first apply a privacy

squeezing operation to ρm, which gives ρpsm [20]. Note, that this operation on ρm amounts to the

replacement of the blocks of the matrix given in eq. (149) by their respective trace norms. In turn,

the ρpsm is a 2-qubit state described by the matrix:
a 0 0 b

0 x 0 0

0 0 x 0

b 0 0 a

 , (155)

where a = pm

Nm
, x = (1/2−p)m

Nm
and (by eq. 141 of [20]) b = (p(1−2−m))m

Nm
. Now, using the fact that

the distillable key of ρm is lower bounded by the Devetak-Winter quantity of a ccq state of the ρpsm

(see Corollary 4.26 of [35]), we observe that:

KD(ρm) ≥ 1−H(a+ b, a− b, x, x), (156)

where H is the Shannon entropy. This is what we aimed to prove, as in the limit of large m the

above considered distribution approaches (1, 0, 0, 0) for our choice of p. ut
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3. On Tightness: A Counterexample for Entanglement Cost

Lemmas 26 and 27 are new inequalities for entanglement measures. It might be worth asking,

both from a practical and an abstract point of view, whether there are more inequalities of that

kind for other entanglement measures. First, let us note that E(τ) ≤ pE(ρ)+(1−p)E(ρ̃) is trivially

fulfilled for all LOCC-monotonic measures E and all 0 ≤ p ≤ 1. What would be interesting instead,

is a relation of the form

E(τ) ≤ pED(ρ̃) + (1− p)E(ρ) or E(τ) ≤ pED(ρ) + (1− p)E(ρ̃), (157)

for some measure E and some weight p. If we had a quantum repeater that iterates the swapping

operation many times, and bound entangled input states, E would be reduced by a factor 1 − p

with every step. For measures that upper bound the distillable key, such as EC , EF , Esq, Esq,c,

ER or E∞R , this would be a significant limitation to quantum key repeaters with bound entangled

input states. The same would hold, if we replaced ED by EN or ER,PPT.

We will now show that for E = EF , the entanglement of formation, and E = EC , the en-

tanglement cost, (157) cannot hold for all input states. Assume that Bob and Charlie apply the

following LOCC protocol. Charlie performs a generalised Bell state measurement |Ψνµ〉〈Ψνµ|C ,

where |Ψνµ〉 = 1√
d

∑
j ω

jν |j〉⊗ |j+µ〉 and ω = e
2πi
d . (Here and in the following the addition is per-

formed modulo d.) Charlie then communicates thr result ν, µ classically to Alice and Bob. Upon

receiving message, Bob performs Uνµ =
∑

j ω
jν |j〉〈j + µ|. Alice and Bob then store µ classically.

Charlie’s subsystem is then discarded, i.e. given to Eve.

Proposition 29 For the protocol described above, and any 0 < p ≤ 1, there exist states ρ, ρ̃ such

that for E = EF and E = EC

E(τAB) > pED(ρ̃CBB) + (1− p)E(ρACA) and E(τAB) > pED(ρACA) + (1− p)E(ρ̃CBB), (158)

where τ is the state resulting from the protocol.

Our counterexamples are of the form ρAB =
∑d−1

i,k=0 aik|ii〉〈kk|, which admits a purification

|Φ〉ABE = 1√
d

∑
i |ii〉 ⊗ |ui〉, where aik = 1

d〈uk|ui〉 and the |ui〉 are normalised. Such states are

called maximally correlated. It is easy to see that ρA = ρB = 11
d . For maximally correlated states

the entanglement measures involved simplify and τ can be easily calculated. In particular (see [52]

and references therein),

ED(ρAB) = ER(ρAB) = log d−H(ρ) (159)
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and

EC(ρAB) = EF (ρAB) = log d− Iacc

({
1

d
, |ui〉

})
, (160)

where Iacc

({
1
d , |ui〉

})
= sup{Aj}POVM I(i : j) is the accessible information. Before proceeding

with our counterexample for EF and EC let us note that (157) with ER is trivially fulfilled for

all maximally correlated states. This can be seen by using the fact that for maximally correlated

states ER = ED and a simple application of the LOCC monotonicity of ED.

Lemma 30 Let ρACA and ρ̃CBB be maximally correlated, with purifications |Φ1〉ACAEA =

1√
d

∑
i |ii〉ACA ⊗ |ui〉EA and |Φ2〉CBBEB = 1√

d

∑
i |ii〉CBB ⊗ |vi〉EB , respectively. Then for every

0 < p ≤ 1, (157) with E = EF or E = EC implies

1

d

∑
µ

Iacc

({
1

d
, |ui〉 ⊗ |vi+µ〉

})
≥ pH(ρ̃) and (161)

1

d

∑
µ

Iacc

({
1

d
, |ui〉 ⊗ |vi+µ〉

})
≥ pH(ρ). (162)

Proof Let 0 < p ≤ 1. Let us first show that maximally correlated states preserve their structure

under the protocol assumed in Proposition 29. The protocol results in a state τAA′BB′ purified by

|Φ̃〉 =
∑
νµ

(11AEAEB ⊗ |Ψ
νµ〉〈Ψνµ|C ⊗ UνµB )|Φ1〉ACAEA ⊗ |Φ

2〉CBBEB ⊗ |µµ〉ab|νµ〉Ẽ (163)

=
1√
d

∑
µ

1√
d

∑
i

|ii〉AB ⊗ |ui〉EA ⊗ |vi+µ〉EB︸ ︷︷ ︸
=:|Φ̃µ〉

⊗|µµ〉ab ⊗
1√
d

∑
ν

|Ψνµ〉C ⊗ |νµ〉Ẽ︸ ︷︷ ︸
=:|wµ〉

. (164)

Clearly, τµAB := TrEAEB |Φ̃µ〉〈Φ̃µ| is maximally correlated and {|wµ〉} are orthogonal. Therefore

Alice and Bobs final state is given by τAaBb = 1
d

∑
µ τ

µ
AB⊗|µµ〉〈µµ|ab. By the convexity and LOCC

monotonicity of EF , it holds that EF (τ) = 1
d

∑
µEF (τµ). Since we are dealing with maximally

correlated states, the same holds true for EC . Now, assume that we have (157) with E = EF or

E = EC . Inserting (159) and (160) into (157) gives us

1

d

∑
µ

Iacc

({
1

d
, |ui〉 ⊗ |vi+µ〉

})
≥ pH(ρ̃) + (1− p)Iacc

({
1

d
, |ui〉

})
(165)

and the same for ρ and |vi〉. Since the accessible information is always non-negative, this implies

the Lemma. ut

Hence, if we can find an example such that Iacc({1
d , |ui〉 ⊗ |vi+µ〉}) < pS(ρ) and Iacc({1

d , |ui〉 ⊗

|vi+µ〉}) < pS(ρ̃) for all µ we will have Proposition 29. For this, we make the following ansatz:
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|Φ1〉AA′CAC′AEA =
1√
dn

d∑
i=1

n∑
j=1

|ii〉ACA ⊗ |jj〉A′C′A ⊗ U
j |i〉EA , (166)

|Φ2〉CBC′BBB′EB =
1√
dn

d∑
i=1

n∑
j=1

|ii〉CBB ⊗ |jj〉C′BB′ ⊗ V
j |i〉EB , (167)

where U j , V j are unitaries. This is a generalisation of the flower states introduced in [23] (see [39]).

Replacing the index i with (i, j), hence also d with dn, it is easy to see that those are maximally

correlated states. Since TrAA′CAC′A |Φ
1〉〈Φ1| = TrCBC′BBB′ |Φ

2〉〈Φ2| = 11
d , we also have H(ρ) =

H(ρ̃) = log d. Consequently, Proposition 29 follows from Lemma 30 and the next proposition.

Proposition 31 There exists d0 ∈ N such that for all d ≥ d0 and n = d8 there are 2n unitaries

U1, . . . , Un, V 1, . . . , V n such that for all α = 1, . . . , n, β = 1, . . . , d,

Iacc

({
1

dn
, U j |i〉EA ⊗ V

j+α|i+ β〉EB
})
≤ O(1). (168)

Before we can prove Proposition 31 we need several technical lemmas. Let n, d ∈ N.

Lemma 32 For random unitaries U j , V j , j = 1, . . . , n, α ∈ {1, . . . , n}, β ∈ {1, . . . , d}, and

0 < δ < 1
2 , it holds

Pr

 1

dn

d∑
i=1

n∑
j=1

U j |i〉〈i|U j† ⊗ V j+α|i+ β〉〈i+ β|V j+α† /∈
[

1− δ
d2

11,
1 + δ

d2
11

] ≤ 2d2 exp

(
− nδ2

d2 ln 2

)
.

(169)

Proof Let α ∈ {1, . . . , n}, β ∈ {1, . . . , d} and 0 < δ < 1
2 . Then,

EUV
1

dn

d∑
i=1

n∑
j=1

U j |i〉〈i|U j† ⊗ V j+α|i+ β〉〈i+ β|V j+α† (170)

= EUU |0〉〈0|U † ⊗ EUU |0〉〈0|U † =
11

d2
, (171)

so [53, Thm. 19] can be applied, yielding the desired property. ut

Lemma 33 For all α ∈ {1, . . . , n}, β ∈ {1, . . . , d} and 0 < δ < 1
2 , if n ≥ 6d and

1

dn

d∑
i=1

n∑
j=1

U j |i〉〈i|U j† ⊗ V j+α|i+ β〉〈i+ β|V j+α† ∈
[

1− δ
d2

11,
1 + δ

d2
11

]
, (172)

then

Iacc

({
1

dn
, U j |i〉EA ⊗ V

j+α|i+ β〉EB
})
≤ log dn− inf

|ϕ〉
H̃αβ
ϕ,δ(U,V), (173)



38

where U = (U1, . . . , Un), V = (V 1, . . . , V n) and

H̃αβ
ϕ,δ(U,V) =

d∑
i=1

n∑
j=1

η

(
d

n(1 + δ)

∣∣〈ϕ|EAEBU j |i〉EA ⊗ V j+α|i+ β〉EB
∣∣2) , (174)

with η(x) = −x log x.

Proof Let α ∈ {1, . . . , n}, β ∈ {1, . . . , d} and 0 < δ < 1
2 . Without loss of generality, the

optimisation in Iacc can be restricted to rank 1 POVMs, hence

Iacc

({
1

dn
, U j |i〉EA ⊗ V

j+α|i+ β〉EB
})

= sup
{µk|ϕk〉〈ϕk|} rank-1 POVM

I(ij : k) (175)

= log dn− inf
{µk|ϕk〉〈ϕk|}

∑
k

p(k)H
(
p(ij|k) : i = 1 . . . d, j = 1 . . . n

)
(176)

≤ log dn− inf
|ϕk〉∈HEAEB

H
(
p(ij|k) : i = 1 . . . d, j = 1 . . . n

)
, (177)

where

p(ijk) =
µk
dn

∣∣〈ϕk|U j |i〉 ⊗ V j+α|i+ β〉
∣∣2 , (178)

p(k) =

d∑
i=1

n∑
j=1

p(ijk) and p(ij|k) =
p(ijk)

p(k)
. (179)

By assumption p(k) ∈
[

(1−δ)µk
d2 , (1+δ)µk

d2

]
, hence

p(ij|k) ≥ d

n(1 + δ)

∣∣〈ϕk|U j |i〉 ⊗ V j+α|i+ β〉
∣∣2 (180)

and

p(ij|k) ≤ d

n(1− δ)
∣∣〈ϕk|U j |i〉 ⊗ V j+α|i+ β〉

∣∣2 ≤ 1

e
, (181)

for n ≥ 6d. As η(x) is increasing for x ≤ 1
e ,

H
(
p(ij|k) : i = 1, . . . , d, j = 1, . . . , n

)
≥

d∑
i=1

n∑
j=1

η

(
d

n(1 + δ)

∣∣〈ϕ|U j |i〉 ⊗ V j+α|i+ β〉
∣∣2) , (182)

finishing the proof. ut

Next, we lower bound inf |ϕ〉 H̃
αβ
ϕ,δ(U,V) using the following concentration of measure result:

Theorem 34 (Theorem 2.4 in [54]) Let (X , g) be a compact connected smooth Riemannian man-

ifold with Ricci curvature ≥ Ricmin(X ) > 0 equipped with the normalised Riemannian volume

element dµ = dv
V . Then for any λ-Lipschitz function F on X and any r ≥ 0,

µ ({F ≤ EF − r}) ≤ exp

(
−Ricmin(X )r2

2λ2

)
. (183)
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In order to apply Theorem 34 we need to lower bound the expectation value of H̃.

Lemma 35 There exists d1, such that for d ≥ d1, n = d8, |ϕ〉 ∈ HEAEB , α ∈ {1, . . . , n}, β ∈

{1, . . . , d} and δ = 1
log dn we have

EUVH̃
αβ
ϕ,δ(U,V) ≥ log dn−O(1), (184)

where we are using the Haar measure on SU(d)2n.

For the proof see Section III D 4. We also need the fact that SU(d)2n is a compact connected

smooth Riemannian manifold with positive Ricci curvature (for details see Section III D 4). Next,

we need to upper bound the Lipschitz constant of H̃ with respect to the Riemannian metric of

SU(d)2n.

Lemma 36 For every n > d ≥ 8, α ∈ {1, . . . , n}, β ∈ {1, . . . , d}, 0 < δ < 1
2 and |ϕ〉 ∈ HEAEB ,

the Lipschitz constant λ̃ of H̃αβ
ϕ,δ is upper bounded

λ̃ ≤ 8d√
n

log n. (185)

The proof can be found in Section III D 4. Apart from applying Theorem 34 to H̃, we will need

the following net result:

Lemma 37 (Lemma II.4 in [55]) For 0 < x < 1 there exists a set M of unit vectors in H with

|M| ≤
(

5
x

)2 dimH
such that for every unit vector |ϕ〉 ∈ H there exists |ϕ̃〉 ∈ M with ‖|ϕ〉 − |ϕ̃〉‖2 ≤

x
2 . Such an M is called an “x-net“.

Finally, we will need the Lipschitz constant of ĤUV : HEAEB → R, ĤUV(|ϕ〉) = H̃αβ
ϕ,δ(U,V).

Lemma 38 For every U,V, n > d ≥ 8, α ∈ {1, . . . , n}, β ∈ {1, . . . , d} and 0 < δ < 1
2 the

Lipschitz constant λ̂ of ĤUV is upper bounded

λ̂ ≤ 4
√

2d log n. (186)

For the proof see Section III D 4.

Proof of Proposition 31 Let 0 < r < 1, 0 < δ < 1
4 , d ≥ 8 and n = d8. By Lemma 37 there

exists an r
8
√

2d logn
-net M of pure states in HEAEB with |M| ≤

(
40
√

2d logn
r

)2d2

. We will first show

that there exists a d0 such that for d ≥ d0 there exist 2n unitaries U1, . . . , Un, V 1, . . . , V n fulfilling

(i) H̃αβ
ϕ̃,δ(UV) ≥ EUVH̃

αβ
ϕ̃,δ −

r
4 ∀α ∈ {1, . . . , n}, β ∈ {1, . . . , d}, |ϕ̃〉 ∈ M,
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(ii) 1
dn

∑d
i=1

∑n
j=1 U

j |i〉〈i|U j† ⊗ V j+α|i + β〉〈i + β|V j+α† ∈
[

1−δ
d2 11, 1+δ

d2 11
]
∀α ∈ {1, . . . , n}, β ∈

{1, . . . , d}.

Using Theorem 34, Lemma 32 and the union bound, we get

Pr {not (i) or not (ii)} ≤ nd |M| exp

(
− cdr

2

32λ̃2

)
+ 2nd3 exp

(
− nδ2

2d ln 2

)
(187)

≤ 1

2
exp

((
ln 4d+

80
√

2d3

r

)
8 log d− cr2d7

131072(log d)2

)
+

1

2
exp

(
ln 4 + 11 ln d− d7δ2

2 ln 2

)
,

(188)

where it has been used that Ricmin(d) = cd (see Section III D 4). Both exponents can be made

negative for large enough d0 and d ≥ d0, implying that Pr {not (i) or not (ii)} < 1; hence the

desired unitaries exist. Now we will show that this implies Proposition 31. By (ii) and Lemma 33,

Iacc

({
1

dn
, U j |i〉EA ⊗ V

j+α|i+ β〉EB
})
≤ log dn− inf

|ϕ〉
H̃αβ
ϕ,δ(U,V). (189)

By the definition of the infimum, there exists |ϕ0〉 ∈ HEAEB such that H̃αβ
ϕ0,δ

(U,V) <

inf |ϕ〉 H̃
αβ
ϕ,δ(U,V) + r

4 . By Lemma 37, |M| contains a state |ϕ̃0〉 such that ‖|ϕ0〉 − |ϕ̃0〉‖2 ≤
r

16
√

2d logn
. By Lemma 38 then, ∣∣∣H̃αβ

ϕ0,δ
(U,V)− H̃αβ

ϕ̃0,δ
(U,V)

∣∣∣ ≤ r

4
. (190)

Consequently H̃αβ
ϕ̃0,δ

(U,V) ≤ H̃αβ
ϕ0,δ

(U,V) + r
4 < inf |ϕ〉 H̃

αβ
ϕ,δ(U,V) + r

2 . Setting d ≥ max {d0, d1}

and δ = 1
log dn , we obtain

Iacc

({
1

dn
, U j |i〉EA ⊗ V

j+α|i+ β〉EB
})

< log dn− H̃αβ
ϕ̃0,δ

(U,V) +
r

2
(191)

≤ log dn− EU,VH̃
αβ
ϕ̃0,δ

+
3r

4
(192)

≤ O(1), (193)

where the second and third inequalities are due to (i) and Lemma 35, respectively. ut

4. Technical Lemmas

We will now briefly review some facts about the Riemannian geometry of the special unitary

group.

Lemma 39 SU(d), thought of as a sub-manifold in Cd×d, and equipped with the Hilbert-Schmidt

inner product on its tangent spaces, is a compact connected Riemannian manifold.
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Proof It is known that SU(d) is a real semi-simple compact connected Lie group [56]. Every

real Lie group is a real smooth manifold. Clearly, the Hilbert-Schmidt inner product is a positive

definite bilinear form. It is also easy to see that it is smooth. Let U ∈ SU(d) and X,Y be some

smooth vector fields on SU(d), i.e. smooth mappings of SU(d) into its tangent bundle. As it is

a composition of smooth maps, the map U 7→ Tr
(
X(U)†, Y (U)

)
is smooth. Hence the Hilbert-

Schmidt inner product on the tangent spaces is what is referred to as a “Riemannian metric”. A

smooth manifold endowed with a Riemannian metric is a Riemannian manifold [57]. ut

From [58], we know that there exists c > 0 such that

Ricmin(d) := inf Ric(x, x) = cd. (194)

The infimum is taken over all tangent unit vectors and Ric denotes the Ricci curvature.

Now we can define a Riemannian distance, which is a metric, for SU(d)

dSU(d)(U,U
′) = inf

γ:[0,1]→SU(d) s.t. γ(0)=U,γ(1)=U ′

∫ 1

0

∥∥γ′(t)∥∥
HS

dt. (195)

The Cartesian product SU(d)2n is a Riemannian manifold as well [54]. As for its metric, we have

Lemma 40 The Riemannian distance of a Cartesian product M×N of Riemannian manifolds

is given by the Pythagorean theorem

dM×N ((U, V ), (Ũ , Ṽ )) =

√
dM(U, Ũ)2 + dN (V, Ṽ )2, (196)

for U, Ũ ∈M, V, Ṽ ∈ N .

Proof We know that for tangent vectors x, y, ‖(x, y)‖2 = ‖x‖2 + ‖y‖2. We also need the fact that

the the length of a curve L(γ) =
∫ 1

0 ‖γ
′(t)‖ dt is independent of the parametrisation, i.e. for an

increasing function τ : [0, 1]→ [0, 1], it holds L(γ ◦ τ) = L(γ). Hence it is always possible to find a

parametrisation such that ‖γ′(t)‖ is constant, so L(γ) = ‖γ′(t)‖. Consequently,

dM×N ((U, V ), (Ũ , Ṽ )) = inf
γγ̃

∫ 1

0

√
‖γ′(t)‖2 + ‖γ̃′(t)‖2dt (197)

= inf
γγ̃

√
L(γ)2 + L(γ̃)2 (198)

=

√
dM(U, Ũ)2 + dN (V, Ṽ )2, (199)

which is what we wanted. ut

The minimum Ricci curvature for a Cartesian product of manifolds is just the smallest curvature

of the factors. Hence Theorem 34 can be applied to H̃.



42

Let us now present the proofs that were omitted in the previous section.

Proof of Lemma 35 Let d ≥ 2, n = d8, |ϕ〉 ∈ HEAEB , α ∈ {1, . . . , n} and β ∈ {1, . . . , d}. We

need to lower bound EH̃. For a probability distribution {pi} it holds that H2(p) = − log
(∑

i p
2
i

)
≤∑

i η(pi) = H(p). Here, however, we have p̃ij = d
n(1+δ)

∣∣〈ϕ|U j |i〉 ⊗ V j+α|1 + β〉
∣∣2. Note that

0 ≤ p̃ij ≤ d
n ≤

1
e . The {p̃ij} are, in general, no probability distribution. However, Lemma 32 tells

us that they are most likely close to one. Namely, for 0 < δ < 1
4 ,

P

 d∑
i=1

n∑
j=1

p̃ij /∈
[

1− δ
1 + δ

, 1

] ≤ 2d2 exp

(
− nδ2

d 2 ln 2

)
. (200)

In order to stop H2 from diverging, let us add a little perturbation that keeps p̃ij away from 0.

Namely, we define

p̂ij = (1− ε)p̃ij + ε
1

dn
. (201)

By concavity and monotonicity of η on [0, 1
e ],

η(p̂ij) ≤ η((1− ε)p̃ij) + η
( ε

nd

)
≤ η(p̃ij) + η

( ε

nd

)
. (202)

Hence, choosing ε = 1
log dn , we obtain H(p̃) ≥ H(p̂) − O(1). Next, let us note that if

∑
ij p̃ij ∈[

1−δ
1+δ , 1

]
, it also holds

∑
ij p̂ij ∈

[
1−δ
1+δ , 1

]
. Let us call this event G. If G is true, by Jensen’s

inequality,

H(p̂) ≥
∑
ij

p̂ijH2(p̂)− η

∑
ij

p̂ij

 ≥ 1− δ
1 + δ

H2(p̂)− η
(

1− δ
1 + δ

)
. (203)

Hence,

EUVH(p̃) ≥ EUVH(p̂)−O(1) (204)

≥
∫
G
dUV H(p̂)−O(1) (205)

≥ 1− δ
1 + δ

∫
G
dUV H2(p̂)−O(1) (206)

=
1− δ
1 + δ

(
EUVH2(p̂)−

∫
UV/∈G

dUV H2(p̂)

)
−O(1) (207)

≥ 1− δ
1 + δ

(
EUVH2(p̂)− 2d2 exp

(
− nδ2

d 2 ln 2

)
log

dn

ε2

)
−O(1), (208)
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so it is sufficient to lower bound the expectation value of H2(p̂).

EUVH2(p̂) ≥ − log

EUV

∑
ij

p̂2
ij

 (209)

= − log
(
nd EUV p̂2

00

)
(210)

= − log

(
nd

(
(1− ε)2EUV p̃2

00 +
2ε(1− ε)

nd
EUV p̃00 +

ε2

n2d2

))
, (211)

where

EUV p̃00 ≤
d

n
EUV Tr

(
|ϕ〉〈ϕ|U |0〉〈0|U † ⊗ V |0〉〈0|V †

)
(212)

=
d

n
Tr
(
|ϕ〉〈ϕ|(EUU |0〉〈0|U †)⊗2

)
(213)

=
1

nd
(214)

and, using a 2-design,

EUV p̃2
00 ≤

d2

n2
EUV Tr

(
|ϕ〉〈ϕ|U |0〉〈0|U † ⊗ V |0〉〈0|V †

)2
(215)

=
d2

n2
Tr

(
|ϕ〉〈ϕ|⊗2

(
(EUU |0〉〈0|U †)⊗2

)⊗2
)

(216)

=
4

n2(d+ 1)2
Tr
(
|ϕ〉〈ϕ|⊗2

EAEB
Π+
EAEA

⊗Π+
EBEB

)
(217)

≤ 4

n2d2
, (218)

where Π+ denotes the projector onto the symmmetric subspace. Hence,

EUVH2(p̂) ≥ log nd− log
(
4(1− ε)2 + 2(1− ε)ε+ ε2

)
≥ log nd− log 7. (219)

Choosing δ = 1
log dn , for large enough d1 and d ≥ d1 we obtain

EUVH̃
αβ
ϕ,δ(U,V) = EUVH(p̃) ≥ log dn−O(1), (220)

and we are done. ut

Before proving Lemma 36, we need to upper bound the Lipschitz constant of the function

H ′βδ :
⊕n

j=1HEAEB → R,

H ′βδ(|φ1〉, . . . , |φn〉) =
d∑
i=1

n∑
j=1

η

(
d

n(1 + δ)
Tr (|i〉〈i| ⊗ |i+ β〉〈i+ β||φj〉〈φj |)

)
. (221)

Note that for |φj〉 = U j† ⊗ V j+α†|ϕ〉,

H̃αβ
ϕδ (UV) = H ′βδ(U

1† ⊗ V 1+α†|ϕ〉, . . . , Un† ⊗ V n+α†|ϕ〉). (222)
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Lemma 41 For all n > d ≥ 8, 0 < δ < 1
2 , β ∈ {1, . . . , d} the Lipschitz constant λ′ of H ′βδ is upper

bounded

λ′ ≤ 4
√

2d√
n

log n. (223)

Proof Let n > d ≥ 8, 0 < δ < 1
2 and β ∈ {1, . . . , d}. We will make use of the fact that

λ′2 = sup〈φj |φj〉≤1∀j ∇H ′βδ · ∇H ′βδ. Writing |φj〉 =
∑d

lm=1 φ
(j)
l,m|lm〉, we get

H ′βδ(|φ1〉, . . . , |φn〉) =

d∑
i=1

n∑
j=1

η

(
d

n(1 + δ)

∣∣∣φ(j)
i,i+β

∣∣∣2) =

d∑
i=1

n∑
j=1

η
(
cr2
ij

)
, (224)

where we have defined b = d
n(1+δ) and rij =

∣∣∣φ(j)
i,i+β

∣∣∣. By assumption b < 1. Computing the gradient

we obtain

sup
〈φj |φj〉≤1∀j

∇H ′βδ · ∇H ′βδ = sup
〈φj |φj〉≤1∀j

4b

(ln 2)2

d∑
i=1

n∑
j=1

br2
ij

(
ln (br2

ij) + 1
)2

(225)

≤ sup∑d
i=1 r

2
ij≤1∀j

4b

(ln 2)2

 d∑
i=1

n∑
j=1

br2
ij

(
ln br2

ij

)2
+ bn

 (226)

=
4bn

(ln 2)2

(
sup∑d

i=1 yi≤b, yi≥0∀i

d∑
i=1

yi(ln yi)
2 + b

)
(227)

Using Lagrange multipliers, it can be shown that for d ≥ 8 the maximum is attained at yi = b
d ,

hence

λ′2 ≤ 4b2n

(ln 2)2

((
ln
b

d

)2

+ 1

)
≤ 32d2

n
(log n)2 , (228)

finishing the proof. ut

Proof of Lemma 36 Let U1, . . . , Un, V1, . . . , Vn, U
′
1, . . . , U

′
n, V

′
1 , . . . , V

′
n ∈ SU(d). Then

∣∣∣H̃αβ
ϕδ (U,V)− H̃αβ

ϕδ (U′,V′)
∣∣∣ ≤ λ′

∥∥∥∥∥∥
n⊕
j=1

(
U †j ⊗ V

†
j+α − U

′†
j ⊗ V

′†
j+α

)
|ϕ〉

∥∥∥∥∥∥
2

(229)

= λ′

√√√√ n∑
j=1

∥∥∥(U †j ⊗ V †j+α − U ′†j ⊗ V ′†j+α) |ϕ〉∥∥∥2

2
(230)

≤ λ′
√√√√ n∑

j=1

∥∥∥(U †j ⊗ V †j+α − U ′†j ⊗ V ′†j+α)∥∥∥2

∞
(231)

≤
√

2λ′

√√√√ n∑
j=1

∥∥∥Uj − U ′j∥∥∥2

∞
+

n∑
j=1

∥∥∥Vj − V ′j∥∥∥2

∞
. (232)
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Since

dRiem(U,U ′) = inf
γ

∫ b

a

∥∥γ′(t)∥∥
HS

dt ≥ inf
γ

∥∥∥∥∫ b

a
γ′(t)dt

∥∥∥∥
HS

(233)

= inf
γ
‖γ(a)− γ(b)‖HS =

∥∥U − U ′∥∥
HS
≥
∥∥U − U ′∥∥∞ , (234)

we get λ̃ =
√

2λ′. Applying Lemma 41 finishes the proof. ut

Proof of Lemma 38 Let U,V ∈ SU(d)d, α ∈ {1, . . . , n}, β ∈ {1, . . . , d}. Then for all |ϕ〉, |ϕ′〉 ∈

H,

∣∣∣ĤUV(|ϕ〉)− ĤUV(|ϕ′〉)
∣∣∣ ≤ λ′

∥∥∥∥∥∥
n⊕
j=1

U j ⊗ V j+α
(
|ϕ〉 − |ϕ′〉

)∥∥∥∥∥∥
2

(235)

= λ′

√√√√ n∑
j=1

‖U j ⊗ V j+α (|ϕ〉 − |ϕ′〉)‖22 (236)

= λ′
√
n
∥∥|ϕ〉 − |ϕ′〉∥∥

2
, (237)

where we have used that the Hilbert space norm is unitarily invariant. ut
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