FAST AND ACCURATE FINITE ELEMENT APPROXIMATION OF WAVE
MAPS INTO SPHERES

SOREN BARTELS

ABSTRACT. A constraint preserving numerical method for the approximation of wave maps into
spheres is presented. The scheme has a second order consistency property and is energy preserving
and reversible. Its unconditional convergence to an exact solution is proved. A fixed point iteration
allows for a solution of the nonlinear system of equations in each time step under a moderate step
size restriction.

1. INTRODUCTION

Wave maps into spheres are weak solutions u : (0,7) x Q — R3 of the nonlinear partial differential
equation
O7u — Au = (|Vul® — [9ul*)u
subject to initial and homogeneous Neumann boundary conditions and the pointwise constraint
u(t, z)| =1

for almost every (t,x) € (0,7T) x Q. The difficulty in their numerical approximation is an appro-
priate treatment of the constraint and various numerical schemes have recently been proposed.
Penalty and projection methods are discussed in [BFPO08] and a Lagrange multiplier method is
investigated in [BLP09]. Numerical schemes for general pointwise constraints are devised and an-
alyzed in [Bar09]. The methods discussed in those articles satisfy the constraint at the nodes of
an underlying triangulation and either require the solution of a nonlinear system of equations in
every time step or involve a projection step whose stability leads to restrictive conditions on step
sizes or underlying triangulations. An unconditionally stable, linear method has been analyzed
in [Barl3] which leads to a violation of the constraint at the order of the step size. A recent
development in [KW13] employs an equivalent first order system that has a symplectic structure
which can be preserved by appropriate discretizations. The corresponding spatial finite difference
discretization considered therein leads to nonlinear systems of equations in every time step which
can be efficiently solved with a fixed-point iteration under a moderate condition on the step size.
We show in this article that a similar strategy can be applied for finite element discretizations and
provide a simpler proof for the convergence of the iterative scheme. For related numerical methods
we refer the reader to [Alo97, MS98, BBFP07, BPS10, Barl0] and for analytical aspects of wave
maps to [SS98, FMS98, Tat04, KSTOS§].

For the special case of the unit sphere considered here an equivalent formulation of the wave map
problem can be based on the introduction of the angular momentum w = dyu X u and the identities

Ou=uxXw, Ow=AuXu.

Testing the first equation with v shows that this evolution is constraint preserving. Its equivalence
to the equation above follows from showing that (9?u — Au) x u = 0 by employing the Jacobi
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identity and integrating the equation for dyw. In [KW13] it has been proposed to discretize this
first-order system in time according to

duFtl = F 12 wk+1/2’ dyw

kL Ak t1/2 o g k12
where d; denotes the backward difference quotient for a step size 7 > 0 and the fractional superscript
indicates the average of two successive approximations, i.e.,

dF ! = l(uk+1 _ uk)

- uk+1/2 _ 1( k+uk+1)

’ 2

with analogous expressions for w*. We also apply the backward difference quotient to sequences
of real numbers. Testing the discrete system with ©*71/2 proves the preservation of the constraint,
i.e., that

1
§dt|uk+1|2 — dtuk+1 . uk+1/2 = 0.

Testing the discrete system with AuFt1/2 and w*+1/2 yields that
1
§<1t(||vuk+l||2 + %) =0,

where || - || denotes the L? norm, i.e., that the total energy is preserved. A corresponding argu-
mentation in a fully discrete setting requires a careful definition of a discrete Laplacian and an
appropriate choice of an inner product. With the nodal interpolation operator Z, related to the
P1 finite element space S'(7;,) on a regular triangulation 7, of € into triangles or tetrahedra we
employ the discrete L? inner product (-,-) defined on C(€;R?) by

(6, )n = /Q To-vlde = 3 B.6(2) - 6(2),
zENh

where A, denotes the set of vertices in 7, with associated nodal basis functions (p, : z € Np)
and 8. = [l¢:ll11q) > 0. The discrete Laplacian Ay, @ S'(T,) — S'(Tj) related to homogeneous

Neumann boundary conditions on 9 is for v, € S'(7},) defined by

(Apvn, dn)n = —(Vor, Vo)

for all ¢, € SY(T,)® with (-,-) denoting the L? inner product. Given (u?,w?) € Vj, with
Vi = SY(Tw)? x SY(T1,)? the approximation scheme then consists in computing for k = 1,2, ..., K
approximations (uﬁ, w,’i) € V}, such that

(deuf ™, dmn = (% < w2, gp),
(dywf )y = (A ™2 x uy ™2 ),

for all (¢p,¢p) € Vi and k = 0,1,..., K — 1. This discretization allows us to carry out similar
calculations as above which then prove the constraint preservation at the nodes of the triangulation
and an energy conservation property, i.e., no discrete dissipation effects occur. Moreover, the
discretization has a temporal consistency error of order O(72) and is reversible. What remains to
be addressed is that discrete solutions exist, that these converge to exact solutions, and that they
can be computed reliably and efficiently.

2. CONSTRAINT AND ENERGY PRESERVATION

We restate the proposed numerical scheme of the introduction.
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Algorithm 1. Given (u),w) € V, with |ul)(z)| =1 for all z € N}, and 7 > 0 compute a sequence
(uf, wi) k=0, C Vi, such that

(g™ o) = (w2 x w2, ),

(dewf ™ on)n = (Anuy ™% ™2 )
fork=0,1,.... K — 1 and all (¢n,n) € Vj.

The unconditonial existence and boundedness of discrete solutions follows from a fixed-point argu-
ment.

Proposition 2.1. Algorithm 1 is feasible and any solution (uf, w¥)r—o Kk satisfies |uf(z)| =1 for
allk=0,1,....K and z € N}, and

1, & 1, 4 1 1
SIVu 2 + §||wh+1||l2z = S IVuRll + S lwrll

fork=0,1,..., K — 1. Moreover, we have HdtuhHHh < Hwar /2Hh fork=0,1,..., K — 1.
Proof. (i) Given (uﬁ,w,’j) €V, we let F,’f : Vi, — Vj, be defined by F,’f(ﬂh,@h) = (rp, sp) with
(rn, sn) € Vi, such that

(Thy o) =

(8h,%n) =
for all (¢p,p) € V. On Vi, we employ the inner product

((on, Br)s (On, n))n = (o, dn)n + (Van, Vor) + (Bh, ¥n)h.
With this it follows that
(F(tn, W), (Wh, Wh))h = (ThyTn)n — (Thy ApTn)n + (S, Wh)n

2, _ _ _ _ _
= ;(HUhHi — (ul, @n)n + IVE|* — (Vuiy, Van) + [@ll; — (wh, @)

_ 1, _
(Tn, — ulf, dn)n — Z(Uh X Wh, Oh)h,

IR RN

1
(W, — W, Pp)n — Z(Ahﬂh X Up, Y )h

Hence, we have (FF(up,, wy,), (U, wy)), > 0 for all (@, wp,) € Vj, such that

Il + Vsl + [@allf = lufli; + [ Vak]? + Jwh]l7-
Brouwer’s ﬁxed point theorem implies the existence of a pair (ap,wy) € V;, with F,’f (up, wp) = 0.
Defining uh = 2up — uh and warl = 2wy, — w}’j we find that the equations of Algorithm 1 are
satisfied.
(i) Given z € N}, the choice ¢, = k“( ). € SY(Tp)? in the first equation of Algorithm 1 implies

S o) =0,

uk'H 2 = 1 provided that |u9(z)|?> = 1. For the choices ¢p = —A}, ukJr /2 and ¥, = wht! w
h\% h
obtam the identities

k+1 2 k+1/2 k+1/2
*d ||vuk+l||2 ( th / h+ / uAhuh+ / )h’

k+12 k+1/2 k+1/2
fdtuw’fﬂuh (A a2 w2,

and their sum leads to the asserted energy identity. We choose ¢, = dtuZJrl and employ
\u2+1/2(z)| <1 for all z € N}, to estimate

k+12 k+1/2
Ideul 13 < g ™2 poe gy llwp 2 n  deud
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which yields the bound for ||dyuf™||s. O

Remarks 2.1. (i) For smooth solutions the temporal consistency of the numerical scheme of Al-
gorithm 1 is of second order.
(ii) The scheme is reversible in the sense that the pairs (uf, wy) = (uf, —wk) satisfy

—(dg@ T ) = (ﬂiﬂn X @;]§+1/2, &n)n,
—(dywy T 2y )p = (Ahflfbﬂ/2 X ﬂZJrl/Zﬂ/}h)h
fork=0,1,.... K — 1 and all (¢p,¥n) € Vi,. In case of the CFL condition 7 < ch the iterates are
uniquely defined, cf. Remarks 4.2 below.
3. CONVERGENCE

The energy equality of Proposition 2.1 provides a priori bounds on the approximations and implies
the existence of accumulation points as the discretization parameters tend to zero. These points
define exact solutions of the wave map problem. To prove this we notice the norm equivalence

lonlln < llonll < (d+2)"vn]l
for all v, € SY(T,) and the nodal interpolation estimate
|(0n, )i — (vns §)| < chllvalll o] 2o

for all vy, € SY(7;,) and ¢ € gQ(Q) with & > 0 denoting the maximal diameter of elements in 7.
We also note that for ¢ € C(£2) we have

(Vh, &) = (Vn, Tn@)n

-----

by

_ k+1/2 ~ t—t tpy1 —
p(t,x) = vh+ / (), Oup(t,z) = fvﬁﬂ(x) + +1T v;]f(a:),

for t € (tg,tgs+1] with tp = k7 and for x € Q. With these definitions we have for every solution of
Algorithm 1 that

(Ostip, @) = (Un X Wh, @)y (O¢Wh, V) = (Aplp X Up, )

for almost every t € (0,T) and all ¢, ¢ € C*([0,T]; C>(Q;R3)). With the bounds of Proposition 2.1
we deduce that the inclusions

ay, € Who°(0,T; L2(S; R?)),
Uy, U, € L0, T; HY (O RY)),
Wy, Wy, € L°°(0,T; L*(Q;R?))
hold boundedly as (h,7) — 0 and hence there exist accumulation points of appropriate subse-

quences. These limits are weak solutions of the wave map problem in the sense of the following
proposition. For ease of presentation subsequences are not relabeled.

Proposition 3.1. Assume that (u),w?) — (ug,wo) in H'(Q;R3) x L2(Q;R3) as h — 0 and that
(u,w) € L*(0,T; HY(Q;R?)) x L°(0, T; L?(2;R3)) is such that u € WH°(0,T; L?($;R3)) and

ap =% u  in WHe°(0,T; L?(Q; R?)),
Up, Tp, —* u  in L0, T; H (Q; RY)),

Wy, Wp, —* w in L0, T; L*(;RY)).
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Then |u(t,z)| =1 for almost every (t,x) € (0,T) x Q and

T
[ 000)+ (w x w0} e = (ua, 6000,
T d
/0 {(w,80) + 3 "(u x Oy, 80) } dt = (wp, (0))
j=1
for all ¢, € C([0,T); C=(2;R3)) and

LUV + J)P) <

for almost every t € (0,T).

(IIVuol? + [lwoll?)

N

Proof. Owing to the Aubin-Lions lemma we have that @, — w in L?(0,7;L?(Q;R3)) and in
particular, that a subsequence converges pointwise almost everywhere to u in (0,7) x Q. Let
é,9 € C([0,T); C*(;R3)). An integration by parts and the interpolation estimate for the
discrete inner product imply that

T
/0 {(@n,0k0) + (@, x W, )} dt = (@(0), 6(0)) + O(h)

and a limit passage (h,7) — 0 proves the first identity. For the proof of the second identity we
notice that

(AnTin X Up, )0 = (AnTin, Tnlun x ])n = —(Vag, Via, x ¢]) + O(h)
d d
== (05, Uy x i) + O(h Z Ty, X Oyin, Djab) + O(h).

7=1
This identity allows us to pass to the limit in the equation

T
/0 [(@h,000) + (At x T, )} dt = (@(0), (0)) + O(h)

and to deduce the asserted equation for w. Finally, the energy inequality and the validity of the
constraint follow from the available convergence properties. O

Remark 3.1. The proof shows that we have u(0) = ug continuously in L*(Q;R3). Stronger results
about the attainment of initial data can be found in [SS98].

4. ITERATIVE SOLUTION

We next show that a simple fixed-point iteration allows us to iteratively solve the nonlinear system
of equations of Algorithm 1 in every time step. The iterates satisfy the unit-length constraint.

Algorithm 2. Given egop > 0, (uf, wf) € Vj, with |uf ()| =1 for all z € N, set (uj, k+1, O,wlZH’O) _
(uf,wf) and compute (u i“ A+ ZH ZH) for £ =0,1,... such that

k+1,0+1 k+1,0

) T
(g, dndn = (ks o+ (™ ] < ™ o+ wf] )i
T
(wp ™ dnn = (why dn)n + + (Anluy ™+ af] x [y ™+ uf] )

4
for all (¢n,n) € Vi Stop the iteration if

k+1,0+1 k+1,4
Hwh — wy Hh < Estop
k41 _ l<:+1,£+1 k+1 _  k+1441
Up, = wp, :

and set uy, and wy,



Remarks 4.1. (i) The equations of the algorithm are linear, admit unique solutions, and can be
solved successively.
(ii) Any output (u; k1 k+1) € Vi of the algorithm satisfies

k12 k12 E+1/2 &
(dus ™, dp)n = (uy, / wy, / , On)n + (uy, 2 x Ths Oh)hs
k+1/2 k+1/2

(dewf ™ n)n = (Apuy ™ 2 xu o 2 o)

or all (¢n, ) € Vi, and with rF = wh e w"ﬁLl’ngl such that |||, < eston-
h h h h P

(i1i) Assuming that Algorithm 2 terminates in every time step, unconditional convergence of the
corresponding approximations can be proved as (h, T, Estop) — 0.

To analyze the convergence of Algorithm 2 we notice that with ¢j, > 0 and the minimal mesh-size
Amin > 0 such that the inverse estimate

IVonll < Cinvhoginllvalln
holds for all v, € S'(T},) we also have
1ARonlln < Ehvhmilivnlln, 1200kl L 0) < Envlminllvnll oo
for all v, € SY(Ty).

Proposition 4.1. Assume that uf € S*(T)? satisfies |uf(2)| = 1 for all 2 € Ny, Then, the iterates

of Algorithm 2 satisfy \uﬁ“’é(z)P =1 foralll>0 and z € Ny. If cinyT < hmin then the iteration
is a contraction in the sense that for £ = 1,2, ... we have
k+1,6 k+1 /—1

BHLEHL kL
[[wp, wp, In < qllwy, wp, I

with a number 0 < q < 1/2.

Proof. We abbreviate (uf,w!) = (uﬁ“é,wlgﬂ’e) and (up, W) = (uf,wf) in this proof. Given

z € N}, the choice ¢p, = [u “1( ) + 1p(2)] - yields that
B (™ (2) = (=) - (u™ () + i (2) = 0

Z—H( )|2

from Wthh we deduce that |u [ip(2)|? = 1. Subtracting the equations that define ufﬁl

and uh leads to

(up™ — ufy, dn)p = 4([ upt 4Gy X [wp, + @), o) — %([ufl +Gp) % [wh D), du)n
= (g™ = ] x fwf, + @, @ + 7 ([uf, + @] x [wf, — wf ™, @)

Analogously, we subtract the equations that define w“l and wa to deduce that

(wytt — wh, ) = E(Ah[ wp™ + Gp) X ™+ ), ) — *(Ah[uh + @p] X [uf, + n], ¥n)n
= Z(Anfuf ™ = ] x [+ @nl ) + 7 (Anluf + @) x [uf ! = uf], v

The choice ¢p, = uffl uj, and the fact that [[uf + U || 1= (o) < 2 allow us to estimate

V4 —
g™ = il < 5||wh —wy -

Similarly, upon choosing v, = wffl — wfl we find
041 041 ’ T L~ 241 ¢
[wy ™ = wp s < *HAh[ =]l + 71 An[un + Un)ll oo llug, ™ — uplln

Tho? us™ — uf|a-

1nv min
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The combination of the last two estimates yields

1
041 y4 2 27 —2 Y4 /—1
Jwy, = wlln < 5 Cinv T Ponin W, — wy, " [l
which proves that the iteration is a contraction provided that cin,7 < h. ]

Remarks 4.2. (i) If c¢inym < h and egop = h then N > alog(h)/log(q) steps of Algorithm 2 are
required to meet the stopping criterion.
(ii) Proposition 4.1 implies that the iterates of Algorithm 1 are uniquely defined if CinyT < h.
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