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Abstract

We investigate the behaviour of the solutions um(x, t) of the fractional porous medium equa-
tion

ut + (−∆)s(um) = 0, x ∈ R
N , t > 0.

with initial data u(x, 0) ≥ 0, x ∈ R
N , in the limit of as m → ∞ with fixed s ∈ (0, 1). We first

identify the limit of the Barenblatt solutions as the solution of a fractional obstacle problem, and
we observe that, contrary to the case s = 1, the limit is not compactly supported but exhibits
a typical fractional tail with power-like decay. In other words, we do not get a plain mesa in
the limit, but a mesa with tails. We then study the limit for a class of nonnegative initial
data and derive counterexamples to expected propagation and comparison properties based on
symmetrization.

1 The mesa problem as limit of the FPME when m→ ∞

This paper deals with the limit m → ∞ of the solutions of the family of fractional porous medium
equations (FPME) of the form

(1.1) ut + (−∆)s(um) = 0, x ∈ R
N , t > 0.

Here (−∆)s is the fractional Laplacian operator with 0 < s < 1. We will take initial data

(1.2) u(x, 0) = u0(x),

where u0 is a nonnegative and integrable real function defined in R
N , or a Dirac delta. Under the

former assumptions this Cauchy Problem produces a unique solution um(x, t) for every finite m > 1
and every 0 < s < 1, cf. [19, 20] for the basic theory and the survey paper [37] for recent progress
in the qualitative analysis. As s → 1 with m > 1 fixed we obtain the limit the standard porous
medium equation (PME), ut = ∆um, whose mathematical theory and applications are described in
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[34]. In the case of a Dirac delta as initial data, the solutions are called fundamental solutions or
Barenblatt solutions; in the fractional case the Barenblatt solutions have been constructed in [36] and
their uniqueness, properties and role in the asymptotic behaviour are explained, see Section 3 below.

The study of the differences in the behaviour of diffusion equations involving the standard Laplacian,
i. e., involving a local operator, and the fractional variants, which involve nonlocal diffusion opera-
tors, is a matter of much current attention. The comparison between the PME and the FPME is a
convenient setting for such analysis. We tackle here the limit m→ ∞ in both models.

The dramatic effect of the limit m → ∞ is well known in the PME case, i. e., equation (1.1) with
s = 1, as described in [10, 14, 15, 16, 23, 2, 5, 6, 18] and other related literature. It is proved that
given a nonnegative initial datum u0(x) ∈ L1(RN) there is a unique weak solution um(x, t) of the
PME defined in Q = R

N × (0,∞) that is uniformly bounded and Cα continuous for t ≥ s > 0. If u0 is
compactly supported, so is um(·, t) for every m > 1 and every t > 0. Concerning the limit, it is proved
in the above references that there exists the limit of the solutions {um(x, t) : m > 1} as m→ ∞, and
this limit is a function u∞(x) that does not depend on time. If the initial function satisfies the bounds
0 ≤ u0(x) ≤ 1, then we have

lim
m→∞

um(x, t) = u0(x),

so that no diffusion occurs at all, cf. [3]. The more interesting case happens when u0 is larger than 1
on a nontrivial set, and in that case there still exists a unique limit

u∞(x) = lim
m→∞

um(x, t) and 0 ≤ u∞(x) ≤ 1.

This means that the upper part of the initial datum collapses at t = 0+ to the level u = 1, in
response to the fact that the diffusivity mum−1 → ∞ whenever u > 1. In other words, we are facing
a singular perturbation limit and there is an associated initial discontinuity layer. Describing such
phenomenon is the content of the mathematical theory of the mesa problem. A brief description is as
follows: the upper level set Ω = {x : u∞(x) = 1} is found by solving a certain variational inequality,
while away from Ω we have u∞(x) = u0(x) (no diffusion takes place there).

The name of mesa problem for this problem comes from the typical ‘mesa shape’ of u∞(x) (the
shapes seen in landscapes in the West of the USA). What makes the analysis more interesting is the
numerically observed fact that the mesa formation is already apparent for relatively low values of m,
say m ≈ 6, with typically bell-shaped initial data, cf. [14]. Ω can be much larger than the set where
u0(x) > 1.

We study here the limit m → ∞ in the case of fractional diffusion, 0 < s < 1. The analysis shows
some common features, as well as quite interesting novelties worth describing. We will examine in
detail some of these novel aspects. First of all, we focus on the limit behavior of the Barenblatt
solutions since this family plays a major role in the analysis of the standard mesa problem. Here we
identify the limit m→ ∞ of these solutions, which is a nontrivial task since they are not explicit and
the limit is highly singular. We observe that, contrary to the case s = 1, the limit u∞(x, t) = F∞(x) is
not compactly supported but exhibits a typical tail with power-like spatial decay at infinity. In other
words, we do not get a plain mesa in the limit but a mesa with tails. And we are able to identify the
level set u = 1 of the limit via the solution of an obstacle problem. To do that we have to identify
two new asymptotic functions, G∞ and P∞; together they allow to formulate the obstacle problem.
Complete proofs are given in Sections 4 and 5.
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The analysis of the limit uses heavily a pair of associated functions, namely um(x, t) and wm(x, t) =
mumm(x, t). Both behave very differently for large values of m. In the analysis of wm a second surprise
arises: when applied to the Barenblatt solutions, the limit of wm as m→ ∞ is just the spatial profile
of the self-similar solution that describes the asymptotic behaviour of a quite different nonlinear
fractional diffusion model, namely

(1.3) ut = ∇ · (u∇(−∆)−su) ,

studied by Caffarelli and Vázquez in [12], see also Biler et al. [7, 8]. This seems quite unexpected
but subsequent work with Stan and Teso [26] shows that it is part of a more general correspondence
between different models of nonlinear nonlocal diffusion.

Once this analysis is done, we devote Section 6 to identify the limit for a class of nonnegative
and integrable initial data. In the PME, there exists a unique limit u∞(x) = limm→∞ um(x, t), and
0 ≤ u∞(x) ≤ 1. A convenient variational inequality identifies the indicator function w∞(x) that
in turn determines the limit function u∞ and the corresponding tails with fractional type decay as
|x| → ∞. Our present analysis of the fractional case is only partial and will be completed in a separate
publication, but the results we present here show another difference with the standard PME: it is false
that the limit functions u∞(x) equal u0(x) at the points where u∞(x) < 1.

As a final contribution of the analysis of the limit case, in Section 7 we obtain a contradiction with the
standard statement of the symmetrization result (concentration comparison) that is known to be true
for the standard porous medium equation, cf. [32], [33]. This is another remarkable difference between
standard and fractional diffusion; this failure of comparison was first demonstrated by Volzone and
the author in [38] by completely different methods.

The analysis of the limit behaviour for general initial data is a more elaborate work that is not
discussed here and we hope to perform in a future publication.

Notations. Br(x) denotes the open ball in R
N with center x and radius r > 0, and ωN denotes the

volume of the unit ball in R
N . The s-Laplacian operator (−∆)s, 0 < s < 1, acting in R

N is precisely
defined in the literature, cf. [21, 27, 35] among the many references. We will write s′ = 1− s. We will
have to keep track of the delicate dependence of a number of constants on the values of m ≫ 1, but
we will use the same letter C for different positive constants when their value is not important in the
context. The dependence on s will not be important in most of the text as long as 0 < s < 1.

2 Limits of Barenblatt solutions for the standard PME

We re-do the analysis of the known case s = 1 in order to introduce some detailed calculations that will
fix ideas and serve as motivation. Actually, the situation for the standard porous medium equation

(2.1) ut = ∆(um), m > 1,

posed in the whole space x ∈ R
N , N ≥ 1, has been well-researched in the literature. Thus, we have

the following explicit formulas for the fundamental solution of the PME with data Um(x, 0) =M δ(x):

(2.2) Um(x, t) = t−αF (ξ), Fm(ξ) = (C − kξ2)
1/(m−1)
+ ,
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where ξ = x/tβ and

(2.3) α =
N

N(m− 1) + 2
, β =

α

N
k =

(m− 1)α

2Nm
.

Moreover, the free constant C > 0 is related to the mass M by the formula

M = dmC
γ , γ =

N

2(m− 1)α
,

and dm is given by the formula

dm = NωN

ˆ ∞

0

(1− ky2)1/(m−1)yN−1dy = NωNk
−N/2

ˆ ∞

0

(1− y2)1/(m−1)yN−1dy.

Actually, dm depends also on the dimension N but since this dependence does not play a role we will
omit it as a rule. In the same we write αm, βm, γm, and so on.

Let us now pass to the limit m → ∞. We have mαm → 1, γm → N/2, both nontrivial limits; but

km ∼ 1/(2Nm) → 0, so we rescale C = Ĉ/m and get M = d̂m Ĉ
γ with

d̂m =
dm
mγ

= m−γNωNk
−N/2

ˆ ∞

0

(1− y2)1/(m−1)yN−1dy → ωN(2N)N/2 := D∞.

and put C = Ĉ/m so that M = d̂m Ĉ
γ . Using this, we easily conclude that

lim
m→∞

m(Um)
m(x, t) = W∞(x, tr) :=

1

2Nt

((
M

ωN

)2/N

− |x|2

)

+

=
1

2Nt
(R2

0 − |x|2)+

and

(2.4) lim
m→∞

Um(x, t) = U∞(x) := χBR0
(0)(x).

We have put M = ωNR
N
0 , and this is easily calculated on the basis that U∞ = 1 whenever W∞ > 0.

• Note that ∆xW∞(x, t) = −1/t in the set {(x, t) : W∞ > 0}, which is the exact limit of the
well-known a priori estimate:

∆Um−1
m = −

(m− 1)α

mt
,

which holds in the same type of positivity set, {Um > 0}, for finite m > 1.

• It is interesting to write the equation for wm = m(um)
m, which will allow us to capture part of the

information in the singular limit m→ ∞. The equation is

(2.5) wt = m1/mw1−(1/m)∆w .

In the limit wm → w it gives wt = w∆w. This equation has W∞(x, t) as radial separable-variables
solution, with free parameter R0 > 0.
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• For the self-similar profile we have the following limits as m→ ∞:

(2.6) Fm(ξ) → F∞(x) = χBR0
(0)(ξ), m(Fm(ξ))

m →
1

2N
(R2

0 − |ξ|2)+.

The limit on the left is the so-called mesa profile. For further reference, note also that

(2.7)

ˆ ∞

r

rF (r) dr = (R0 − r2)+/2.

All this is to be compared with the calculations for the fractional case, with 0 < s < 1, to be examined
in the next three sections.

3 Review of the fundamental solutions in the fractional case

We consider next the solution Um(x, t) to the Cauchy problem (1.1)-(1.2) with initial data a Dirac
delta, that is

Um(x, 0;M) =Mδ(x), M > 0, m > 1.

This problem has been studied in [36] where it is proved that for every choice of parameters s ∈ (0, 1)
and m > mc = max{(N − 2s)/N, 0} and every M > 0 the equation admits a unique fundamental
solution, which is a nonnegative continuous weak solution for t > 0 and takes the initial data in the
sense of Radon measure, which means that

lim
t→0

ˆ

Um(x; t)φ(x) dx =Mφ(0)

holds for all φ ∈ C2
b (R

N). By scaling we can reduce the study to the case M = 1 through the formula

Um(x, t;M) =M Um(x,M
m−1t) .

We write in the sequel Um = Um(x, t; 1). This solution also depends on the parameters N and s but
this dependence will be omitted as a rule since it usually plays no part in the arguments. We have
the formulas

Um(x, t) = t−αFm(ξ), Fm(ξ) a selfsimilar profile

where ξ = x/tβ and now we have the expressions

α =
N

N(m− 1) + 2s
, β =

α

N
=

1

N(m− 1) + 2s
.

Moreover, Fm is a bounded, positive, radial, monotone, and Hölder continuous function that goes to
zero as |x| goes to infinity.

Equation. The self-similar profile F = Fm satisfies an elliptic equation

(3.1) (−∆)sFm = αF + βy · ∇F = β∇ · (yF ) ,
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so that, putting s′ = 1− s and integrating in r, we have

(3.2) ∇(−∆)−s′Fm = −β y F .

In radial coordinates this gives

(3.3) Ls′F
m(r) = β

ˆ ∞

r

sF (s)ds ,

where Ls′ the expression of operator (−∆)−s′ acting on radial functions. Note that the fundamental
profile is a function of several parameters F (r) = Fm,s,N,M(r) but only the relevant ones will be
mentioned. The scaling group acts on the profiles FM(r) for different masses M > 0 and indeed we
have

(3.4) FM(r) = µ2sF1(µ
1−mr), M = µN(m−1)+2s ,

which reduces all calculations to the case M = 1. Since N(m − 1) + 2s > 0 for M > mc we get
FM(0) → ∞ as M → ∞. For m ≥ 1 we also have limM→∞ FM(r) = ∞ for all r > 0.

Decay at infinity. First estimate. The precise behaviour of the fundamental profiles F (y) = Fm,s,N(y)
as y → ∞ is a very important question in the qualitative theory. It is known in the linear case m = 1,
since F is given by a linear kernel K that decays like |y|−(N+2s), [9]. The exact rate of decay for m 6= 1
is a nontrivial issue that has been carefully examined by the author in [36] where it is proved that as
r → ∞ we have (al least for m ≥ 1)

(3.5) lim
r→∞

rN+2sFm,s,N(r) = c(m, s,N) > 0 ,

but this estimate in not known to be uniform in m for large m. A less precise but uniform estimate is
obtained by using the fact that F is monotone as a function of r and also integrable in R

N . Since we
have the mass estimate

´∞

0
Fm(r)r

N−1dr = M/NωN and we know that Fm is monotone decreasing,
we conclude that

(3.6) 0 ≤ Fm(r) ≤ Nr−N

ˆ r

0

Fm(s)s
N−1ds ≤

M

ωNrN
.

This is an upper bound that is uniform in m. In the sequel we put M = 1 without loss of generality
in view of the scaling formula (3.4).

4 Limit of the fundamental solutions of the FPME

We are interested in studying the limit of the family of solutions {Um(r, t);m > 1} as m → ∞.
Remember that there is another parameter s ∈ (0, 1) that is kept fixed. Equivalently, we want to pass
to the limit of Fm(r) as m→ ∞ for all r > 0. The behaviour is shown in Figure 1.
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Figure 1: Transition of the Barenblatt solutions to a mesa with tail in the self-similar profiles. Here,
N = 1, s = 0.5 and m = 2 (left) and m = 10 (right).

4.1 Limit as m→ ∞ for N ≥ 2

We begin by assuming that N ≥ 2 since N = 1 has some subtleties that we treat separately. We
introduce the functions Gm(r) = mFm

m (r), that as m → ∞ will have a very different behaviour
compared to Fm. The idea of using these functions to obtain extra information about the limit comes
from the analysis Section 2.

Lemma 4.1 Along a subsequence mk → ∞ we have Fm(r) → F∞(r) in Lp(RN) for all 1 < p < ∞,
while Gm(r) → G∞(r) in Lp(RN) for 1 ≤ p < p1 = N/(N − 2s)+. Convergence takes place also
a.e. in both cases. Moreover, both limits F∞ and G∞ are non-increasing radial functions, integrable
over R

N ; 0 ≤ F∞(r) ≤ 1; F∞(r) < 1 and G∞(r) is zero for r > r0 = ω
−1/N
N ; and finally F∞(r) = 1

whenever G∞(r) > 0.

Proof. (i) Passing to the limit. Fixing some r1 > 0 we can pass to the limit along a subsequence and
we get Fm′(r1) → F∞(r1) as m′ = m′(r1) → ∞. Doing the same for a dense countable set {rk} we
can get the same result for all rk. The limit function F∞(r) is also nonnegative and monotone and
has the same a priori bound, ωNr

N F∞(r) ≤ 1. It is in principle defined for all r = rk, but due to
the monotonicity it can be extended to all r ∈ (0,∞) by limits from the left for instance, hence it is
left-continuous. At all points of continuity the definition coincides with the limit limm′→∞ Fm(r). The
rest of the points (jump points) is at most countable. By Egorov’s theorem Fm → F∞ locally in all
Lp(0,∞), 1 ≤ p <∞, with strong convergence. At this stage it might happen that the limit F∞ will
contain a Dirac delta at r = 0, but this will be excluded later by establishing convergence in some Lp

spaces, p > 1.
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(ii) Uniform estimates for Gm(r). If we put r0 = ω
−1/N
N , we have for all r > r0

(4.1) Gm(r) ≤ m (ωNr
N)−m = m (r0/r)

Nm

which tends very fast to zero, uniformly on any interval of the form [r0 + ε,∞), so that

(4.2) lim
m→∞

Gm(r) = 0 , r > r0.

Therefore, G∞ has compact support. Obtaining a uniform estimate on Gm(r) for r < r0 is more
delicate and we need a different kind of argument. Taking any r1 ∈ (0, r0), by the monotonicity of
Gm w.r.t. r we have Gm(r) ≥ Gm(r1) for 0 < r < r1, so that

ˆ

|x|≤r1

Gm(r) dx ≥ ωN Gm(r1) r
N
1 .

Using the formula for the Riesz kernel, we conclude that for all r ≥ 2r1 we have a constant c1 (not
depending on m) such that

(−∆)−s′Gm(x) ≥ c1Gm(r1)r
N
1 r

−N+2s′, r = |x|.

But on the other hand, we know the uniform bound Fm(r) ≤ c2r
−N for all large r, therefore

(4.3)

ˆ ∞

r

sFm(s) ds ≤ c3r
−N+2 for all r > 0.

Note that for N = 2 the last integral is just the mass in the exterior of a ball, and it is bounded above
by 1. Comparing both formulas via equation (3.3) and using the fact that mβ → 1/N we get

Gm(r1) r
N
1 ≤ c4r

2s, r ≥ 2r1.

In conclusion, after fixing r = 2r1 we get the second uniform estimate

(4.4) Gm(r1) ≤ c5r
−(N−2s)
1 ,

and c1, . . . , c5 do not depend on m.

The two uniform estimates that we have just obtained forGm mean thatGm(x) is uniformly integrable
for all large m:

ˆ

RN

Gm(x) dx ≤ C <∞ for all m ≥ 1,

and C does not depend on m. In fact, when m is large Gm(x) is uniformly bounded in all the spaces
Lp(RN) if 1 ≤ p < p1 = N/(N − 2s). The details for the previous estimate are a bit different in
dimension N = 1, see below.

(iii) Limit of Gm(r) = mFm
m (r) as m → ∞. We can now apply the same argument used for Fm and

prove that Gm(r) converges to some G∞(r) along some subsequences not only a.e. but also in all
Lp(RN \Bε(0)), 1 ≤ p < p1, with strong convergence, and

G∞(x) ≤ H(|x|) = c5|x|
−(N−2s)χBr0

(0)(x).
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This convergence eliminates the possibility of having a Dirac delta at r = 0 in the limit. The same
happens with F∞(r).

(iv) More on the limit of Fm(r) as m → ∞. The previous results for Gm(r) immediately imply that
F∞(r) ≤ 1 for all r > 0. Actually, for all r > 0

Fm
m (r) → 0

along subsequences m′ → ∞. And indeed, we can say m → ∞ and we do not have to take subse-
quences. This also means that for every r1 > 0 there existsm1(r1) large enough such that Fm

m (r) < 1/2
for r ≥ r1 and m ≥ m1, and this means that Fm(r) ≤ 1 in the same domain. On the other hand, near
the origin Fm(x) ∈ Lm(RN) with uniform norm, hence the limit Fm → F∞ takes place in Lp for all
p <∞.

Next, we establish that mass is conserved in the limit by estimating the amount of mass on the far
field (what is called the tails).

Lemma 4.2 Fm → F∞ in L1(RN) and
´

F∞(|x|) dx = 1.

Proof. We take a nonnegative non-increasing cutoff function ζ(x) such that ζ(x) = 1 for 0 < |x| < 1,
ζ(x) = 0 for |x| > 2 and define ζR(x) = ζ(x/R). We also put ψR(x) = 1 − ζR(x). We calculate the
change in the weighted mass of the fundamental solutions Um between t = 0 and t = T for all large
m. We take the fundamental solution with mass M = 1 without loss of generality. We have

1−

ˆ

RN

Um(x, T )ζR(x) dx =

ˆ

RN

Um(x, T )ψR(x) dx−

ˆ

RN

Um(x, 0)ψR(x) dx

=

ˆ T

0

ˆ

RN

∂tUm(x, t)ψR(x) dxdt = −

ˆ T

0

ˆ

RN

(−∆)sUm
m (x, t)ψR(x) dxdt

= −

ˆ T

0

ˆ

RN

Um
m (x, t)((−∆)sψR)(x) dxdt = −

ˆ T

0

tNβ−mα

ˆ

RN

Fm
m (y)((−∆)sψR)(yt

β) dydt = (∗)

We have introduced the self-similar space variable y = xt−β . Of course, Um
m means (Um)

m and likewise
for the notation Fm

m . Due to the scaling property of ψ

((−∆)sψR)(y) = R−2s((−∆)sψ1)(y/R)

and we also know that (−∆)sψ1 bounded in all Lp spaces 1 ≤ p ≤ ∞.

(ii) We now go back to (*) to point out the estimate

|

ˆ T

0

tNβ−mα

ˆ

RN

Fm
m (y)(−∆)sψR(y) dydt|

≤ R−2s|

ˆ T

0

tNβ−mα

m
‖Gm‖1‖(−∆)sψ1(y/R)‖∞

=
C‖Gm‖1

m(1 +Nβ −mα)
R−2sT 1+Nβ−mα .
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Recall that ‖Gm‖1 is uniformly bounded by Lemma (4.1). After observing that m(1 +Nβ −mα) =
2smβ ∼ 2s/N as m→ ∞, we get

lim
m→∞

T 1+Nβ−mα

m(1 +Nβ −mα)
→

N

2s

so that, putting T = 1,

|

ˆ 1

0

tNβ−mα

ˆ

RN

Fm
m (y)(−∆)s ψR(yt

β) dydt| ≤ CR−2s

for all large m and R, where does not depend on R or m. Going back to the beginning of the
calculation, it follows that ∣∣∣∣1−

ˆ

RN

Um(x, 1) ζR(x) dx

∣∣∣∣ ≤ CR−2s

From this we conclude the convergence of Fm to F∞ in L1(RN ) and also that
ˆ

RN

F∞(x) ζR(x) dx =

ˆ

RN

U∞(x, 1) ζR(x) dx = 1.

Let us now perform a further analysis of the form of F∞.

Lemma 4.3 There exists R > 0, R < r0, such that F∞(r) = 1 for r < R and 0 < F∞(r) < 1 for
r > R. Moreover,

(4.5)

ˆ ∞

0

F∞(r) rN−1 dr =
1

nωN
; F∞(r) ∼ c1r

−(N+2s) as r → ∞.

Proof. (i) It follows from the previous lemma that F∞ is monotone, and
´

F∞(|x|) dx = 1, so that

R ≤ r0 = ω
−1/N
N , hence F∞ must be less than 1 for r > R.

(ii) Next, we need the equation relating the limit profiles,

(4.6) ((−∆)−s′G∞)(r) =
1

N

ˆ ∞

r

sF∞(s)ds.

This is obtained by passage to the limit m → ∞ in (3.3). The left-hand side is immediate, while for
the right-hand side it comes from the Dominated Convergence Theorem if N ≥ 3. For N = 2 we
argue as follows: the expression on the r.h.s. is just the mass of F∞ outside of the ball Br(0). Then
we observe that l.h.s gives a uniform small estimate for the mass of Fm and F∞(x) in the complement
of any large ball, and we find a case of tight convergence of probability distributions.

(iii) Let us now use the equation. It is easy to prove that (−∆)−s′G∞(r) must be positive for all r > 0
which means that

´∞

r
sF∞(s)ds cannot be compactly supported, hence neither F∞(r) is. Actually, the

decay rate of (−∆)−s′G∞(r) is O(r−N−2s′) which means that the decay rate of F∞ is approximately
F∞(r) ∼ Cr−(N+2s), just as in the finite case m < ∞. In any case, F∞(r) cannot be compactly
supported.
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(iv) We have to exclude the possibility that R = 0 in the statement of the lemma. However, in that
case G∞(r) = 0 for all r > 0. We have to be sure that G∞(r) is not a Dirac delta, but this has been
already excluded by the convergence in some Lp, p > 1. We can exclude it here in a different way:
using the equation we would conclude that

ˆ ∞

r

sF∞(s)ds = Cr−(N−2s′),

which means F∞(r) = c1r
−(N+2s) for all r. This contradicts the previous conclusion F∞(r) ≤ 1.

Summing up, R = 0 would mean G∞(r) ≡ 0, and using (4.6) this would imply that F∞ ≡ 0, which
goes against the conservation of mass. Therefore 0 < R < r0 <∞.

4.2 Limit of the fundamental solutions in 1D

Let us examine the proofs of this section when N = 1. Some problems arise: thus, when s ≤ 1/2 so
that s′ ≥ 1/2, 2s′ −N ≥ 0, and the argument of the Lemma 4.1 has a problem at the start since the
kernel involves a positive power of |x − y| (or a logarithm for s = 1/2). Moreover, even if equation
(3.3) holds for every finite m > 1, the estimate on the asymptotic behaviour that ensures that the
r.h.s. integral is finite is not uniform in m, and the uniform estimate we have

´

R
Fm(x)dx = 1 is not

sufficient.

(i) Our approach consists in taking the differentiated version (3.2), i. e.,

(4.7) −∂x(−∂xx)
−s′Gm(r) = mβrFm(r) .

Using the integral kernel for (−∂xx)
−s′ and differentating we get a representation for the operator

A = −∂x(−∂xx)
−s′ (at least for smooth f)

Af(x) = c

ˆ x

−∞

f(y)

(x− y)2−2s′
dy − c

ˆ ∞

x

f(y)

(y − x)2−2s′
dy

= c

ˆ x

−∞

f(y)− f(2x− y)

(x− y)2−2s′
dy ,

where c = c(s) > 0. In this formula we have to be careful with the cancellations. By the monotonicity
of Gm we have nonnegative integrand for AGm(x) if x > 0. Then,

AGm(x) ≥ c

ˆ r0

−r0

Gm(y)−Gm(2x− y)

(x− y)2s
dy = c

ˆ r0

−r0

Gm(y)

(x− y)2s
dy − c

ˆ 2x+r0

2x−r0

Gm(y)

(x+ y)2s
dy .

Due to the high decay rate of Gm(x) for x > 2r0 if m is very large, the last integral is very small,
uniformly in m ≫ 1 and x > 2r0. Hence, we conclude in the same spirit of the previous calculation
for N ≥ 2 that for all x ≥ 2r0 we have a constant c1 (not depending on m) such that

|AGm(x)| ≥ c1 (

ˆ r0

−r0

Gm(x) dx) r
−2+2s′ − ε, r = |x|.

11



Since on the other hand, 2xFm(x) ≤ 1 (by the integrability and monotonicity of Fm) we get the
estimate

‖Gm‖L1(Br0
) ≤ c2r

1+2sFm(r) + ε r2s ≤ c3 r
2s , r ≥ 2r0.

Fix now r = 2r0 to get a uniform estimate and in the limit the conclusion that G∞ ∈ L1(Br0), hence
G∞ ∈ L1(R).

(ii) In order to improve that estimate we have two cases, depending on s being small or not. Thus,
when 1/2 < s < 1 operator A has symbol −iξ/|ξ|−2s′ = |ξ|2s−1sign (ξ), so the fact that AGm is
bounded and that Gm ∈ L1(R) (uniformly in m) implies that AGm is bounded in some fractional
Sobolev space and this implies that Gm is uniformly in some Hölder space, and so it G∞. Note that
we only need the result in a ball around the origin. In case s = 1/2, then A is a Hardy transform (but
for a constant) and we conclude that Gm is in Lp for every p, uniformly in m, and so is G∞.

When 0 < s < 1/2 we expect an estimate of the possible singularity at x = 0 like (4.4). We argue
as follows: we take a small x > 0 and look at the kernel expression for AGm as before, but now we
select the interval x/3 < y < 2x/3 to get

AGm(x) ≥ c

ˆ 2x/3

x/3

Gm(y)−Gm(2x− y)

(x− y)2s
dy ≥ c(Gm(2x/3)−Gm(4x/3))x

1−2s

so that, using the equation |AGm(x)| ≤ cxFm(x) ≤ C1, we get

(Gm(2x/3)−Gm(4x/3))x
1−2s ≤ C2 .

After applying this in a dyadic sequence xk = x02
−k and putting zk = 2xk/3 we get Gm(zk) ≤

C3 z
−(1−2s)
k , as we wanted to prove. We sum up the results.

Lemma 4.4 The statement of Lemma 4.1 is true without change for N = 1 if 2s < 1. When s = 1/2
there is no restriction on p in the convergence of Gm → G∞, when s > 1/2 the convergence is uniform
(and in some Hölder space). The rest of the statements holds.

Once this is established the rest of the analysis of Gm and Fm of the section holds too with small
changes that are not difficult. In Figure 2 below we represent the functions Fm and Gm for large
m = 20, already showing approximation to their limit shapes.

5 Characterization of the limit. Obstacle problem

The support of G∞ is some interval [0, R1] with R1 ≤ R. We have also concluded that G∞ belongs to
some Lp space with p > 1. Let us now introduce the function

(5.1) P∞(r) =
1

N

ˆ ∞

r

sF∞(s) ds

12
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Figure 2: Formation of the mesa shape in Fm and the concave function Gm for m = 20. The scale on the vertical axis
is real for Fm.

and let also us write without fear of confusion P∞(x) = P∞(r). We know that (−∆)s
′

P∞(x) = G∞(x)
at least in some weak sense. Due to the form of F∞ we conclude that

(5.2) P∞(r) = C − r2/(2N) for 0 < r < R, P∞(r) ≥ C − r2/(2N) ∀r > 0.

Hence, we know the exact shape of P∞(r) near r = 0 up to a constant. Moreover, for all r > 0 it is
always above the obstacle Φ(r) = C − r2/(2N). Here C is a positive constant that may depend on
the subsequence mk we have taken.

We can now present the Obstacle Problem: To determine radial nonnegative functions G and P
such that P (r) ≥ C − r2/(2N), P (r) → 0 as r → ∞,

(5.3) (−∆)s
′

P (r) = 0 on the non-contact set where P (r) > C − r2/(2N) ,

(5.4) G(r)(P (r)− Φ(r)) = 0 i. e., either G = 0 or P equals the obstacle Φ(r) := C − (r2/2N).

The reader could be surprised to find that the obstacle problem is formulated in terms of the two
variables G and P , and not the original profile F . This is quite remarkable in our opinion, even if F
is easily obtained from P .

Regarding the solution of this problem, for any given C > 0 the Caffarelli-Silvestre theory [24], [11],
[1], says that it has a solution and it is unique. The estimated regularity is C1,s′(RN) for P (x) and
C1−s′ = Cs(RN) for G(x).

Scaling and uniqueness. Since our functions P∞(r) and G∞(r) satisfy the assumptions for some
C > 0, they coincide with the unique solution of the obstacle problem, and the stated regularity applies

13



to them, in particular to P∞. Then, rF∞(r) = NP ′
∞(r) ∈ Cs′, hence away from zero F∞(r) ∈ Cs′,

while near zero F∞ is constant equal to 1.

Since the solution of the Obstacle Problem depends on the constant C there is in principle an infinite
family of possible solutions. The uniqueness of C depends on the mass conservation law that fixes
´

F∞(x) dx = 1. Actually, when we pass from our normalized mass 1 to mass M > 0 we easily
understand what happens. We have a whole sequence of solutions of the limit problem given by the
formulas

(5.5) FM,∞(r) = F∞(r/M)

(this is a simple scaling formula that is to be compared with (3.4)). Then, PM,∞(r) = M2P∞(r/M),
so that we get all the possible constants CM = M2C, a one-to-one correspondence between mass M
and constant CM .

We conclude from this analysis that there is a unique C for which the mass of F = F∞ is one, and
this ends the proof of uniqueness and implies that not only a subsequence m′ = mk converges but the
whole sequence m→ ∞ does.

Moreover, we see that the sequence of continuous and monotone decreasing functions Fm′(r) converges
to a continuous and monotone decreasing function F∞(r), hence this convergence is locally uniform.

Connection with the CV fractional diffusion model. Explicit formulas. The above obstacle
problem was derived by Caffarelli and Vazquez [12] in the study of selfsimilarity for the fractional
diffusion model

(5.6) ut = ∇ · (u∇(−∆)−σ/2u)

The existence and uniqueness of the self-similar solution of the form U(x, t) = t−α1F1(xt
−β1) was

reduced to find a solution F1(y) of that obstacle problem, and this is done via the results of [11]. It
is quite interesting that Biler et al. gave in [8, 7] an explicit formula for the solution of the evolution
equation, that for the obstacle problem becomes a solution of the form

(5.7) F1(x) = (A− Bx2)
1−(σ/2)
+

with A and B suitable positive constants. This is based on the remarkable explicit formula

(−∆)σ/2(1− |y|2)
σ/2
+ = K(σ,N) > 0 for |y| < 1 .

due to Blumental-Getoor’s [9] and valid for 0 ≤ σ ≤ 2.

In the application to our problem we must take σ = 2s′ = 2 − 2s, and the solution is called G∞(x)
instead of F1(y). Since putting R = (A/B)1/2 we get

Ls′(A− Bx2)+ = ALs′(1− (x/R)2)+ = AR−2s′Ls′(1− y2)+

∣∣∣
y=x/R

= −AR−2s′K = −BR2sK

for |x| ≤ R, and since M = cRN we get the system

M = cRN , BR2sK = 1, A = BR2,
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to determine R, A and B in the explicit solution G∞(x) = (A − B|x|2)s+. As mentioned above, the
pressure is given by P∞(x) = (R2 − |x|2)/(2N) in the so-called coincidence set {P = Φ} which is the
ball of radius R. In any case P∞ = (−∆)s−1G∞ in R

N .

Remarks. (1) The explicit formulas show that the positivity set of G∞ is the same as the interior of
the ball where F∞ = 1 (i. e., the flat set of F∞).

(2) It is interesting to compare the results of this section for 0 < s < 1 with the explicit computations
performed for the standard PME in Section 2. The limit s → 1 of the present results gives correct
answers. The main qualitative difference is that F∞ is compactly supported for s = 1, while it is not
for s < 1. Actually, the obstacle problem simplifies drastically when s → 1. Then, s′ = 0, so that
P = G and the alternative G(P −Φ) = 0 becomes G = Φ+, which is is a parabola continued by zero,
as we have calculated in (2.6).

(3) The difference between the initial data of the limit process, which is Mδ(x), and the value of the
limit Um(x, t) for t > 0, which is F∞(x) is very striking, but is known in the theory of the standard
mesa problems and explained as a consequence of the singular character of the limit. It takes the form
of an initial discontinuity or initial layer. We will comment later on this issue.

(4) The connection between the two equations that is described here has been extended to a more
general correspondence in [26].

6 The limit for more general solutions

We now consider a general initial datum given by a function u0 ≥ 0 that is bounded and integrable,
u0 ∈ L1(RN ) ∩ L∞(RN). For convenience we some times assume it to be compactly supported too.
We denote by um(x, t) the solution of the Cauchy problem with exponent m > 1 and fixed data u0.
The existence, uniqueness and properties of these solutions is studied in [19, 20]. Figures 3 and 4
below illustrate the behaviour that we expect. Note that m = 10 produces graphs similar to m = ∞.

6.1 Main facts

We want to pass to the limit in the family {um(x, t)}m>1. The existence and properties of the limit
will depend on various a priori estimates which are uniform in m, and will happen up to subsequences.
We have to justify the type of convergence and this is what we do next.

• Lp bounds. First of all, it is known that for every m > 1 and every p ≥ 1 we have the estimate

‖um(·, t)‖p ≤ ‖u0‖p .

This first uniform bound allows us to pass to the limit weakly-* in L∞(QT ) and weakly in Lp(RN )
for all p < ∞, along a subsequence that we denote by m′, to obtain a limit function u∞(x, t) ∈
L∞(QT ) ∩ L

∞(0, T : L1(RN)).
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Figure 3: Collapse of solutions to the level u = 1. On the right, effect of a lateral step with height less than 1. In
both figures m = 10.
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Figure 4: Interaction of two humps at several times. Here m = 10.

• Contractivity. We have a stronger property in the L1(RN) norm: for two solutions um and ûm with
initial data u0 and û0

‖um(t)− ûm(t)‖1 ≤ ‖u0 − û0‖1
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and this is valid for all m ≥ 1 and will be also valid in the limit m→ ∞.

• Monotonicity. It is well-known in the FPME theory [4] that for every m > 1 we have for all
nonnegative solutions

(6.1) ∂tum ≥ −
um

(m− 1)t
.

As a consequence, we have in the limit

(6.2) ∂tu∞ ≥ 0 ,

which means that under such general initial conditions, every limit function u∞(x, t) is monotone
nondecreasing in time.

• Stronger estimate. Stationary limit. Moreover, for every m > 1 we have for all nonnegative solutions
with u0 ∈ L1(RN ) we know that

(6.3) ‖∂tu‖1 ≤
2‖u0‖1
(m− 1)t

As a consequence, we have in the limit ∂tu = 0 a.e., which means that u∞(x, t) does not depend
on time for t > 0. In other words, the limit is stationary. This does not mean that necessarily
u∞(x) = u0(x), because the estimate for um is good only for t > 0, but is singular near t = 0. The
difference between the initial data of a process and the limit of the values for the solution of the
process for t > 0 is usually labeled in the theory of singular limits as an initial discontinuity or initial
layer. Identifying the stationary level u∞(x) that corresponds to an initial function u0(x) is the main
remaining problem of the theory.

• Further regularity. Strong limit. Estimate (6.3) implies compactness in time for the sequence
{um : m > 1} that we already knew to be uniformly bounded. Compactness in space depends on the
L1 contractivity in space.

ˆ

|um(x+ h, t)− um(x, t)| dx ≤

ˆ

|u0(x+ h)− u0(x)| dx

and this quantity goes to 0 as h → 0. Therefore, the sequence is compact in L1(RN × (s, T )),
0 < s < T < ∞, and the convergence um → u can be assumed from this moment on as being an L1

convergence locally in QT , and also a convergence almost everywhere.

• The case of simple limit. There is one case in which the identification is simple, and there is no
initial discontinuity.

Proposition 6.1 If u0(x) ≤ 1 then u∞(x, t) = u0(x).

Proof. Assume first that u0(x) ≤ 1 − ε. In that case we may write the weak solution and easily pass
to the limit in the diffusion term to get

ˆ

RN

u0(x)ζ(x) dx =

ˆ

RN

u(x, t)ζ(x) dx

for every smooth test function ζ , hence, the conclusion. For u0(x) ≤ 1 use L1 contraction. We leave
these details to the reader.
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6.2 New upper estimates

At this moment we have examined two options, the last one where u0(x) is preseved in time, and the
other extreme case where u0(x) is a Dirac delta, and then there is a huge jump from this initial data
to the stationary situation u∞(x) for t > 0. In order to examine some cases where u0 is an integrable
function and undergoes a jump from t = 0 to t = 0+ we will consider initial functions that take values
larger than 1 in some nontrivial set. In order to study the limit m→ ∞ we need further estimates.

• Uniform boundedness. This is an instance of use of the properties of the limit of the self-similar
solutions that we have studied in the previous section.

Proposition 6.2 Suppose that u0(x) ≥ 0 is nonnegative, compactly supported and bounded. Then for
a.e. x ∈ R

N and t > 0 we have

(6.4) u∞(x, t) ≤ 1.

The same is true for initial data u0 ∈ L1(RN ). If u0 is bounded and compactly supported we have

(6.5) umm(x, t) ≤ C1 t
−mα

for all t > 0 and some C1 that does not depend on m.

Proof. (i) Let us assume that u0(x) ≤ C and is supported in the ball of radius R0. We want to bound
above the evolving solutions um(x, t) by putting on top of them a fundamental solution with some
large mass to be adjusted, and using some small shift in time. The upper bound will then be uniform
in m for all m large enough.We consider the fundamental solution of unit mass

Um(x, t+ τ) = (t+ τ)−αFm(x(t+ τ)−β) ,

and then we rescale this solution to mass M > 1

UM,m(x, t+ τ) =M2sβ(t+ τ)−αFm(x(t+ τ)−βM−(m−1)β) .

We want to make sure that for some choice of τ = τm and M we have UM,m(R0, 0) ≥ C, i. e.,

M2sβ τ−αFm(R0τ
−βM (m−1)β) ≥ C .

Recall that for m very large we have (m − 1)β ∼ 1/N and α ∼ 0. Putting τβ = λ and recalling
that Fm → F∞ we get sufficient conditions as follows: we first select a radius, say R1 = R0 at which
F∞(R1) ≥ c1, then we put

R0λ
−1M−1/N ≤ R1 and λ−N ≥ (C + ε)/c1.

Therefore, select λ = (2C/c1)
−1/N and putM = λ−N . This means that τm = λ1/β = (2C/c1)

−1/Nβ → 0
as m→ ∞.

We can now use the comparison result for the FPME. From um(x, 0) ≤ UM,m(x, τm) for all m large
enough we conclude that for all x ∈ R

N and t > 0

um(x, t) ≤ UM,m(x, t+ τm) ,
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which in the limit gives a limit u∞(x, t) ≤ 1 for every fixed t > 0.

(ii) It also gives immediately an upper bound on the spatial tail of the form um(x, t) = O(|x|−(N+2s)),
the same as in the fundamental solution.

(iii) It is not difficult to show that the quantities m(um(x, t))
m are uniformly bounded and integrable

in x by the same comparison trick. Indeed,

m‖um(·, t)‖
m
∞ ≤ max

x
mUM,m(x, t + τm) = mt−mαFm

M,m(0) = GM,m(0)t
−mα ≤ C1t

−mα.

Recall now that mα → 1 as m→ ∞. Similar argument for integrability.

(iv) It follows by approximation that estimate (6.4) holds for the limit solution corresponding to any
initial data u0 ≥ 0, u0 ∈ L1(RN ).

Remark. Estimate (6.4) is true for much more general data. We only need a bound of the form

u0(x) ≤ c+ φ(x), with c < 1 and φ(x) ∈ L1(RN).

We can derive a useful consequence from the two last results and comparison.

Proposition 6.3 We have u∞(x, t) = 1 a.e. in the set {x : u0(x) ≥ 1}.

Proof. Define f = min{u0, 1}. The limit of the solutions for the FPME with data f is again f , and
by comparison u∞(x) ≥ f . Together with Proposition 6.2 it implies the result.

Therefore, a solution with initial data u0 lying somewhere above the line u = 1 must collapse into
a state u∞(x) ≤ 1. Since the total mass is conserved, see next, this implies that the integral of
u∞(x) on the set {x : u0(x) < 1} must be larger than the integral of u0(x) over the same set, hence
u∞(x) > u0(x) in a set of nonzero measure.

• Next, we prove the property of mass conservation.

Proposition 6.4 For every u0 ∈ L1(RN), u0 ≥ 0, and every limit u∞(x) we have
´

u0(x) dx =
´

u∞(x) dx.

Proof. We assume first that u0 ∈ L∞(RN ). Using a typical cutoff function ζ and then rescaling it to
ζR(x) = ζ(Rx) we have

|

ˆ

u0(x) ζR(x) dx−

ˆ

um(x, t) ζR(x) dx| = |

ˆ t

0

ˆ

umm(−∆)sζR dxdt|

≤

ˆ t

0

‖um(t)‖
(m−1)
∞ dt

ˆ

um(x, t)|(−∆)sζR| dx =
C

2smβ
R−2st2sβ ,

where we have used the uniform bound ‖um(t)‖
(m−1)
∞ ≤ Ct(m−1)Nβ of Proposition 6.2. In the limit it

gives

|

ˆ

u0(x) ζR(x) dx−

ˆ

u∞(x) ζR(x) dx| ≤ C2R
−2s .
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Let now R → ∞ to conclude the mass conservation rule. For general u0 ∈ L1(RN) we use approxima-
tion and the property of L1 contraction.

Control of the initial layer. We now introduce a new variable, hm(x, t) =

ˆ t

0

umm(x, s)ds. In the

limit m → ∞ it will serve as an indicator of the initial collapse that the solution undergoes, and a
locator of the resulting ‘debris mound’, so to say. Integrating in time equation (1.1), we have

(6.6) (−∆)shm(x, t) = u0(x)− um(x, t) .

In view of the a priori estimates we know that hm(x, t) converges to some h∞(x) that does depend on
t for t > 0 and we have in the limit

(6.7) (−∆)sh∞(x) = u0(x)− u∞(x),

that we call the h∞-equation. Since h∞(x) has compact support (see addendum below) we conclude
that −(−∆)sh∞ behaves like c|x|−(N+2s), c > 0 as |x| → ∞. This is precisely the behaviour of
u∞ under the assumption that u0(x) has compact support and h∞ is not identically zero. The last
situation is implied by the assumption u0(x) 6= u∞(x, t), and this in turn is true if and only if u0 is
not equal or less than 1. Here is the conclusion.

Proposition 6.5 Assume that u0 is nonnegative, bounded, compactly supported. If moreover u0 is
not equal or less than 1 everywhere, then h∞ 6≡ 0 and

(6.8) u∞(x) ∼ c |x|−(N+2s) as |x| → ∞.

On the other hand, if u0 ≤ 1, then h∞ ≡ 0 and u∞ = u0(x), which can have varied decay forms as
|x| → ∞.

Addendum. A useful computation. In the case of the fundamental solutions we have for t = 1

Hm(x) =

ˆ 1

0

t−NmβFm
m (rt−β)dt =

ˆ ∞

1

β−1Fm
m (rρ)ρNm−1ρ−1/βdρ,

where we have put ρ = t−β (we use capital letter for the hm function of the fundamental solutions).
Therefore, putting λ = Nm− β−1 = N − 2s

Hm(r) = (mβ)−1

ˆ ∞

1

Gm(rρ)ρ
λ−1dρ ≤

1

mβλ
Gm(r).

As m→ ∞ it converges to H∞(r) = N
´∞

1
G∞(rρ)ρλ−1dρ, which is easy to compute and has compact

support. By comparison the same property of compact support is true for the h∞ corresponding to a
bounded and compactly supported initial function u0.
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7 Negative result for symmetrization

Symmetrization techniques are a very popular tool of obtaining a priori estimates for the solutions of
different partial differential equations, notably those of elliptic and parabolic type. Symmetrization
techniques appear in classical works like [17, 22]. The application of Schwarz symmetrization to
obtaining a priori estimates for elliptic problems is described by Weinberger in [40]. Sharp a priori
estimates for the solutions can be derived by using comparison with a model symmetric problem.
Pointwise comparison was firmly established in the works of Talenti [28, 29]. For parabolic problems
pointwise comparison is replaced by so-called concentration comparison. In the case of the porous
medium equation ut = ∆um that result was established in [32, 33], and holds for all m > 1. In order
to state the result we want, the following definition is needed:

Definition. Let f, g ∈ L1
loc(R

N) be two radially symmetric functions on R
N . We say that f is less

concentrated than g, and we write f ≺ g if for all R > 0 we get

(7.1)

ˆ

BR(0)

f(x) dx ≤

ˆ

BR(0)

g(x) dx.

The partial order relationship ≺ is called comparison of mass concentrations. The following result is
well-known.

Theorem 7.1 Let Let u1, u2 be nonnegative, weak solutions of the PME ut = ∆um, posed in Q =
R

N × (0,∞), with initial data u01, u02 ∈ L1(RN) ≥ 0. Assume that both u02 and u01 are radially
symmetric and u01 ≺ u02. Then, for all t > 0 we have

(7.2) u2(·, t) ≺, u1(·, t).

In particular, we have ‖u2(·, t)‖p ≤ ‖u1(·, t)‖p for every t > 0 and every p ∈ [1,∞].

Recently, such concentration comparison has been extended by the author and Volzone [38] to the
fractional Laplacian version ut + (−∆)sum = 0 for all m ≤ 1, and the authors were surprised to find
that the result does not hold for m > 1. We find here a confirmation for such negative result for the
limit case m = ∞. As a simple consequence, it cannot hold for large enough m due to the continuity
of the limit demostrated in Section 4.6.

Counterexample. It consists of radial functions. As a first candidate we take an initial function
u01 such that 0 ≤ u01(x) = 2N for all |x| ≤ 1, and u01(x) = 0 otherwise. As a second candidate,
we take u02(|x|) such that u01(x) = 1 in a ball of radius R = 2 and u02(x) = 0 otherwise, so that
´

u01(x) dx =
´

u02(x) dx, and u02 ≺ u01.

However, we know that u∞,2(x) = u02(x) is compactly supported, while u∞,1(x) decays as |x| →
∞ like c|x|−(N+2s). Therefore, it is impossible that u∞,2 ≺ u∞,1. The reader who does not like
discontinuous functions will find it easy to adapt the argument and provide an example where u01 and
u01 are continuous and compactly supported functions.
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Comments and open problems

- We hope to continue the analysis of the limit m→ ∞ for general data with the unique identification
of the limit. This is more elaborate work that involves the associated variational inequality problem.

- We do not know what is the correct statement about comparison after symmetrization that will be
valid for the solutions of the parabolic problem (1.1)-(1.2) and useful in the applications. Any input
in this topic will be most welcome.
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