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Abstract

We present an abstract framework for treating the theory of well-
posedness of solutions to abstract parabolic partial differential equations
on evolving Hilbert spaces. This theory is applicable to variational for-
mulations of PDEs on evolving spatial domains including moving hyper-
surfaces. We formulate an appropriate time derivative on evolving spaces
called the material derivative and define a weak material derivative in
analogy with the usual time derivative in fixed domain problems; our set-
ting is abstract and not restricted to evolving domains or surfaces. Then
we show well-posedness to a certain class of parabolic PDEs under some
assumptions on the parabolic operator and the data.

1 Introduction

Partial differential equations on evolving or moving domains are an active area
of research [99], [1313], [2525], [2626], partly because their study leads to interesting
analysis but also because models describing applications such as biological and
physical phenomena can be better formulated on evolving domains (including
hypersurfaces) rather than on stationary domains. For example, see [33], [2020]
for studies of pattern formation on evolving surfaces, [2121] for the modelling of
surfactants in two-phase flows, [1414] for the modelling and numerical simulation
of dealloying by surface dissolution of a binary alloy (involving a forced mean
curavture flow coupled to a Cahn–Hilliard equation), [1515] (and the references
therein for applications) for the analysis of a diffuse interface model for a linear
surface PDE, and [1616] for the modelling and simulation of cell motility.

One aspect to consider in the study of such equations is how to formulate the
space of functions that have domains which evolve in time. Taking a disjoint
union of the domains in time to form a non-cylindrical set is standard: see
[66], [3333], [2626] for example. Of particular interest is [2222] where the problem of
a semilinear heat equation on a time-varying domain is considered; the set-
up of the evolution of the domains is comparable to ours and similar function
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space results are shown (in the setting of Sobolev spaces). In [55], the authors
define Bochner-type spaces by considering a continuous distribution of domains
{Γ(t)}t∈[0,T ] ⊂ Rn that are embedded in a larger domain Γ. The aim of our work
is to accommodate not only evolving domains but arbitrary evolving spaces. Our
method, which follows that of [3131], is somewhat different to the aforementioned
and contains an attachment to standard Bochner spaces in a fundamental way.

A common procedure for showing well-posedness of equations on evolving
domains involves a transformation of the PDE onto a fixed reference domain
to which abstract techniques from functional analysis are applied [2424], [2727], [22],
[3131]. For example, in [3131], the heat equation

u̇(t)−∆Γ(t)u(t) + u(t)∇Γ(t) ·w(t) = f(t) in H−1(Γ(t)) (1.1)

on an evolving surface {Γ(t)}t∈[0,T ] is considered, with w representing the veloc-
ity field. The equation is pulled back onto a reference domain Γ(s) and standard
results on linear parabolic PDEs are applied. A Faedo–Galerkin method (see
[44] for a historical overview of the method) is used in [2727] (for a different PDE),
where the evolving domain is represented by the evolution of a perturbation of
the reference domain and a priori estimates are derived for a linearised problem.
An adapted Galerkin method that uses the pushforward of eigenfunctions of the
Laplace–Beltrami operator on Γ(0) to form a countable dense subset of H1(Γ(t))
is employed in [1111] for the advection-diffusion equation (1.11.1). We abstract this
approach for one of our results. Well-posedness for the same class of equations is
obtained in [2525] by employing a variational formulation on space-time surfaces
and utilising a standard generalisation of the classical Lax–Milgram theorem
used by Lions for parabolic equations. We also employ this Lions–Lax–Milgram
approach in our abstract setting.

As we have seen, there is much literature in which certain equations on
evolving domains are studied, however, to the best of our knowledge, there is no
unifying theory or framework that treats parabolic PDEs on abstract evolving
spaces. The main aim of this paper is to provide this abstract framework. More
specifically, given a linear time-dependent operator A(t) we study well-posedness
of parabolic problems of the form

u̇(t) +A(t)u(t) = f(t) (1.2)

as an equality in V ∗(t), with V (t) ⊂ H(t) a Hilbert space for each t ∈ [0, T ].
A main feature of our work is the definition of an appropriate time derivative
on evolving spaces in an abstract setting. When the said spaces are simply Lp

spaces on curved or flat surfaces in Rn that evolve in time, it is commonplace
to take the material derivative

u̇(t) = ut(t) +∇u(t) ·w(t)

from continuum mechanics as the natural time derivative. But when we have
arbitrary spaces that may have no relationship whatsoever with Rn it is not at
all clear what the u̇(t) in (1.21.2) should mean. We will deal with this issue and
define a material derivative and a weak material derivative for the abstract case.
Our framework relies on the existence of a family of (pushforward) maps φt for
t ∈ [0, T ] that allow us to map the initial spaces V (0) andH(0) to the spaces V (t)
and H(t). A particular realisation of these maps φt in the case of, for example,
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the heat equation (1.11.1) takes into account the evolution of the surfaces Γ(t)
and hence φt will be a flow map defined by the velocity field w. Although one
motivation behind this work is the analysis of equations on moving domains and
hypersurfaces, the framework can also be useful for problems on fixed domains
where, for example, H(t) and V (t) may be weighted Lebesgue–Sobolev spaces
with time-dependent weights.

Our belief is that the abstract procedure presented in this work is a clean
and elegant approach to problems on moving domains. In addition, the theory
and concepts presented here can be used as a foundation in extensions such as
generalisations to the Banach space setting and the study of nonlinear problems.
We also anticipate that our framework will benefit those working in numerical
analysis since curved, flat, and evolving surfaces can all be treated with the
same abstract procedure.

In a forthcoming paper [11], we will demonstrate the applicability of this ab-
stract framework to the case of moving or evolving hypersurfaces. Four different
examples of parabolic equations on moving hypersurfaces will be studied, and
the well-posedness will be proved using the results we shall give here.

1.1 Outline

In §22, we start by setting up the function spaces and definitions required for the
analysis and indeed the statement of equations of the form (1.21.2). We state our
assumptions on the evolution of the spaces and define abstract strong and weak
material derivatives (in analogy with the usual derivative and weak derivative
utilised in fixed domain problems).

In §33 we precisely formulate the problem (1.21.2) that we consider and list the
assumptions we make on A. Statements of the main theorems of existence,
uniqueness, and regularity of solutions are given. The proof of one of these
theorems is presented in §44. There, we make use of the generalised Lax–Milgram
theorem. In §55 we formulate an adapted abstract Galerkin method similar to
one described in [1111] and use it to prove a regularity result.

1.2 Notation and conventions

Here and below we fix T ∈ (0,∞). When we write expressions such as φ(·)u(·),
our intention usually (but not always) is that both of the dots (·) denote the
same argument; for example, φ(·)u(·) will come to mean the map t 7→ φtu(t).
The notation X∗ will denote the dual space of a Hilbert space X and X∗ will be
equipped with the usual induced norm ‖f‖X∗ = supx∈X\{0}〈f, x〉X∗,X/ ‖x‖X .
We may reuse the same constants in calculations multiple times if their exact
value is not relevant. Integrals will usually be written as

∫
S
f(s) instead of∫

S
f(s) ds unless to avoid ambiguity. Finally, we shall make use of standard

notation for Bochner spaces; for example, see [1919, §5.9].

2 Function spaces

As we mentioned above, in order to properly understand and express the equa-
tion (1.21.2), we need to devise appropriate spaces of functions. First, we begin
with recalling some standard results regarding Sobolev–Bochner spaces from
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parabolic theory for the reader’s convenience; a good reference for this is [1010,
§XVIII].

2.1 Standard Sobolev–Bochner space theory

Let V and H be Hilbert spaces and let V ⊂ H ⊂ V∗ be a Gelfand triple (i.e.,
all embeddings are continuous and dense and H is identified with its dual via
the Riesz representation theorem). Recall that u ∈ L2(0, T ;V) is said to have a
weak derivative u′ ∈ L2(0, T ;V∗) if there exists w ∈ L2(0, T ;V∗) such that

∫ T

0

ζ ′(t)(u(t), v)H = −
∫ T

0

ζ(t)〈w(t), v〉V∗,V for all ζ ∈ D(0, T ) and v ∈ V,

(2.1)
and one writes w = u′. By D(0, T ) we refer to the space of infinitely differ-
entiable functions with compact support in (0, T ). We shall also make use of
D([0, T ];V); this is the space of V-valued infinitely differentiable functions com-
pactly supported in the closed interval [0, T ]. A helpful characterisation of this
space, from Lemma 25.1 in [3232, §IV.25], is that D([0, T ];V) is the restriction
D((−∞,∞);V)|[0,T ] (the restriction to [0, T ] of infinitely differentiable V-valued
functions with compact support).

Lemma 2.1. The space

W(V,V∗) = {u ∈ L2(0, T ;V) | u′ ∈ L2(0, T ;V∗)}

with inner product

(u, v)W(V,V∗) =

∫ T

0

(u(t), v(t))V +

∫ T

0

(u′(t), v′(t))V∗

is a Hilbert space. Furthermore,

1. The embedding W(V,V∗) ⊂ C([0, T ];H) is continuous.

2. The embedding D([0, T ];V) ⊂ W(V,V∗) is dense.

3. For u, v ∈ W(V,V∗), the map t 7→ (u(t), v(t))H is absolutely continuous
on [0, T ] and

d

dt
(u(t), v(t))H = 〈u′(t), v(t)〉V∗,V + 〈u(t), v′(t)〉V,V∗

for almost every t ∈ [0, T ], hence the integration by parts formula

(u(T ), v(T ))H − (u(0), v(0))H =

∫ T

0

〈u′(t), v(t)〉V∗,V +

∫ T

0

〈u(t), v′(t)〉V,V∗

holds.

Proof. The density result is Theorem 2.1 in [2323, §1.2]. For the rest, consult
Proposition 1.2 and Corollary 1.1 in [3030, §III.1].

We can characterise the weak derivative in terms of vector-valued test func-
tions. This is useful because it more closely resembles the weak material deriva-
tive that we shall define later on.
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Theorem 2.2 (Alternative characterisation of the weak derivative). The weak
derivative condition (2.12.1) is equivalent to∫ T

0

(u(t), ψ′(t))H = −
∫ T

0

〈u′(t), ψ(t)〉V∗,V for all ψ ∈ D((0, T );V).

We finish this subsection with some words on measurability.

Definition 2.3 (Weak measurability). Let X be a Hilbert space. A function
f : [0, T ] → X is weakly measurable if for every x ∈ X, the map t 7→ (f(t), x)X
is measurable on [0, T ].

Strong (or Bochner) measurability implies weak measurability. If the Hilbert
space X turns out to be separable, then both notions of measurability are equiv-
alent thanks to Pettis’ theorem [2828, §1.5, Theorem 1.34].

2.2 Evolving spaces

Now we shall define Bochner-type function spaces to treat evolving spaces. We
start with some notation and concepts on the evolution itself. We informally
identify a family of Hilbert spaces {X(t)}t∈[0,T ] with the symbol X, and given a
family of maps φt : X0 → X(t) we define the following notion of compatibility
of the pair (X, (φt)t∈[0,T ]).

Definition 2.4 (Compatibility). We say that a pair (X, (φt)t∈[0,T ]) is compatible
if all of the following conditions hold.

For each t ∈ [0, T ], X(t) is a real separable Hilbert space (with X0 := X(0))
and the map

φt : X0 → X(t)

is a linear homeomorphism such that φ0 is the identity. By φ−t : X(t) → X0

we denote the inverse of φt. Furthermore, we will assume that there exists a
constant CX independent of t ∈ [0, T ] such that

‖φtu‖X(t) ≤ CX ‖u‖X0
∀u ∈ X0

‖φ−tu‖X0
≤ CX ‖u‖X(t) ∀u ∈ X(t).

Finally, we assume that the map

t 7→ ‖φtu‖X(t) ∀u ∈ X0

is continuous.

We often write the pair as (X,φ(·)) for convenience. We call φt and φ−t
the pushforward and pullback maps respectively. In the following we will as-
sume compatibility of (X,φ(·)). As a consequence of these assumptions, we
have that the dual operator of φt, denoted φ∗t : X∗(t) → X∗0 , is itself a linear
homeomorphism, as is its inverse φ∗−t : X

∗
0 → X∗(t), and they satisfy

‖φ∗t f‖X∗
0
≤ CX ‖f‖X∗(t) ∀f ∈ X∗(t)∥∥φ∗−tf∥∥X∗(t)
≤ CX ‖f‖X∗

0
∀f ∈ X∗0 .

By separability of X0, it also follows that the map

t 7→
∥∥φ∗−tf∥∥X∗(t)

∀f ∈ X∗0

is measurable.
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Remark 2.5. If we define U(t, s) : X(s) → X(t) by U(t, s) := φtφ−s for s,
t ∈ [0, T ], it can be readily seen from U(t, r)U(r, s) = φtφ−rφrφ−s = φtφ−s =
U(t, s) that the family of operators U(t, s) is a two-parameter semigroup.

Remark 2.6. Note that the above implies the equivalence of norms

C−1
X ‖u‖X0

≤ ‖φtu‖X(t) ≤ CX ‖u‖X0
∀u ∈ X0,

C−1
X ‖f‖X∗(t) ≤ ‖φ

∗
t f‖X∗

0
≤ CX ‖f‖X∗(t) ∀f ∈ X∗(t).

We now define appropriate time-dependent function spaces to handle func-
tions defined on evolving spaces. Our spaces are generalisations of those defined
in [3131].

Definition 2.7 (The spaces L2
X and L2

X∗). Define the spaces

L2
X = {u : [0, T ]→

⋃
t∈[0,T ]

X(t)× {t}, t 7→ (ū(t), t) | φ−(·)ū(·) ∈ L2(0, T ;X0)}

L2
X∗ = {f : [0, T ]→

⋃
t∈[0,T ]

X∗(t)× {t}, t 7→ (f̄(t), t) | φ∗(·)f̄(·) ∈ L2(0, T ;X∗0 )}.

More precisely, these spaces consist of equivalence classes of functions agreeing
almost everywhere in [0, T ], just like ordinary Bochner spaces.

We first show that these spaces are inner product spaces, and later we prove
that they are in fact Hilbert spaces. For u ∈ L2

X , we will make an abuse of
notation and identify u(t) = (ū(t), t) with ū(t) (and likewise for f ∈ L2

X∗).

Theorem 2.8. The spaces L2
X and L2

X∗ are inner product spaces with the inner
products

(u, v)L2
X

=

∫ T

0

(u(t), v(t))X(t) dt

(f, g)L2
X∗

=

∫ T

0

(f(t), g(t))X∗(t) dt.

(2.2)

Proof. It is easy to verify that the expressions in (2.22.2) define inner products if
the integrals on the right hand sides are well-defined, which we now check. For
the L2

X case, it suffices to show that ‖u(t)‖2X(t) is integrable for every u ∈ L2
X . So

let u ∈ L2
X . Then ũ := φ−(·)u(·) ∈ L2(0, T ;X0). Define F : [0, T ]×X0 → R by

F (t, x) = ‖φtx‖X(t). By assumption, t 7→ F (t, x) is measurable for all x ∈ X0,
and if xn → x in X0, then by the reverse triangle inequality,

|F (t, xn)− F (t, x)| ≤ ‖φt(xn − x)‖X(t) ≤ CX ‖xn − x‖X0
→ 0,

so x 7→ F (t, x) is continuous. Thus F is a Carathéodory function. Due to the
condition |F (t, x)| ≤ CX ‖x‖X0

, by Remark 3.4.5 of [1717], the Nemytskii operator

NF defined by (NFx)(t) := F (t, x(t)) maps L2(0, T ;X0)→ L2(0, T ), so that

‖NF ũ‖2L2(0,T ) =

∫ T

0

‖u(t)‖2X(t) <∞.

This proves the theorem for L2
X . The process is the same for the case of L2

X∗

except we replace φ−t and φt with the dual maps φ∗t and φ∗−t.
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Lemma 2.9. Let u ∈ L2
X and f ∈ L2

X∗ . Then there exist simple measurable
functions un ∈ L2(0, T ;X0) and fn ∈ L2(0, T ;X∗0 ) such that for almost every
t ∈ [0, T ],

φtun(t)→ u(t) in X(t)

φ∗−tfn(t)→ f(t) in X∗(t)

as n→∞.

This lemma can be proved by using the density of simple measurable func-
tions in L2(0, T ;X0). The following result is required to show that the above
spaces are complete.

Lemma 2.10 (Isomorphism with standard Bochner spaces). The maps

u 7→ φ(·)u(·) from L2(0, T ;X0) to L2
X

f 7→ φ∗−(·)f(·) from L2(0, T ;X∗0 ) to L2
X∗

are both isomorphisms between the respective spaces.

For the proof of the L2
X case, one makes an argument similar to that in the

proof of Theorem 2.82.8 and shows that given an arbitrary u ∈ L2(0, T ;X0), the

map t 7→ ‖φtu(t)‖2X(t) is indeed measurable (then it follows that
∥∥φ(·)u(·)

∥∥
L2

X

is finite). That the spaces are isomorphic follows from the above (which shows
that there is a map from L2(0, T ;X0) to L2

X) and the definition of L2
X . The

isomorphism is T : L2(0, T ;X0)→ L2
X where

Tu = φ(·)u(·) and T−1v = φ−(·)v(·).

It is easy to check that T is linear and bijective. The proof for the L2
X∗ case

uses the same readjustments as before.
The next lemma, which is a consequence of the uniform bounds on φt and

φ∗t , will be in constant use throughout this work.

Lemma 2.11. The equivalence of norms

1

CX
‖u‖L2

X
≤
∥∥φ−(·)u(·)

∥∥
L2(0,T ;X0)

≤ CX ‖u‖L2
X

∀u ∈ L2
X

1

CX
‖f‖L2

X∗
≤
∥∥∥φ∗(·)f(·)

∥∥∥
L2(0,T ;X∗

0 )
≤ CX ‖f‖L2

X∗
∀f ∈ L2

X∗

holds.

Corollary 2.12. The spaces L2
X and L2

X∗ are separable Hilbert spaces.

Proof. Since L2
X and L2(0, T ;X0) are isomorphic and the latter space is com-

plete, so too is L2
X by the equivalence of norms result in the previous lemma.

The separability also follows from the previous lemma.

We now investigate the relationship between the dual space of L2
X and the

space L2
X∗ . We in fact prove that these spaces can be identified; this requires

the following preliminary lemmas.

Lemma 2.13. For f ∈ L2
X∗ and u ∈ L2

X , the map

t 7→ 〈f(t), u(t)〉X∗(t),X(t)

is integrable on [0, T ].
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Proof. By considering the Carathéodory map F : [0, T ]×X∗0 ×X0 → R defined
by F (t, x∗, x) = 〈φ∗−tx∗, φtx〉X∗(t),X(t) and using Remark 3.4.2 of [1717], given

f ∈ L2
X∗ and u ∈ L2

X , we have with f̃ := φ∗(·)f(·) and ũ := φ−(·)u(·) that t 7→
〈φ∗−tf̃(t), φtũ(t)〉X∗(t),X(t) = 〈f(t), u(t)〉X∗(t),X(t) is measurable, since t 7→ f̃(t)
and t 7→ ũ(t) are measurable. That the integral is finite is trivial.

Lemma 2.14. Suppose that f(t) ∈ X∗(t) for almost every t ∈ [0, T ] with∫ T

0

‖f(t)‖2X∗(t) <∞,

and that for every u ∈ L2
X , the map t 7→ 〈f(t), u(t)〉X∗(t),X(t) is measurable.

Then f ∈ L2
X∗ .

Proof. We have 〈f(t), u(t)〉X∗(t),X(t) = 〈φ∗t f(t), φ−tu(t)〉X∗
0 ,X0

, and the left hand
side is measurable, hence the map

t 7→ 〈φ∗t f(t), φ−tu(t)〉X∗
0 ,X0

is measurable on [0, T ] for every u ∈ L2
X .

Given w ∈ X0, the element u(·) := φ(·)w ∈ L2
X , so we have (from Definition

2.32.3 or Footnote 80 in [2929, §1.4, p. 36] for example) that φ∗(·)f(·) : [0, T ] → X∗0
is weakly measurable. Now, as remarked after Definition 2.32.3, we use Pettis’
theorem to conclude that φ∗(·)f(·) is indeed strongly measurable. Hence we can
compute∥∥∥φ∗(·)f(·)

∥∥∥2

L2(0,T ;X∗
0 )

=

∫ T

0

‖φ∗t f(t)‖2X∗
0
≤ C2

X

∫ T

0

‖f(t)‖2X∗(t) <∞,

so φ∗(·)f(·) ∈ L2(0, T ;X∗0 ), giving f ∈ L2
X∗ .

Lemma 2.15 (Identification of (L2
X)∗ and L2

X∗). The spaces (L2
X)∗ and L2

X∗

are isometrically isomorphic. Hence, we may identify (L2
X)∗ ≡ L2

X∗ , and the
duality pairing of f ∈ L2

X∗ with u ∈ L2
X is

〈f, u〉L2
X∗ ,L

2
X

=

∫ T

0

〈f(t), u(t)〉X∗(t),X(t) dt.

Proof. Define the linear map J : L2
X∗ → (L2

X)∗ by

〈J f, ·〉(L2
X)∗,L2

X
=

∫ T

0

〈f(t), (·)(t)〉X∗(t),X(t) dt.

This is well-defined due to Lemma 2.132.13. We must check that J is an isometric
isomorphism.

Suppose that F ∈ (L2
X)∗. We first need to show that there exists a unique

f ∈ L2
X∗ such that J f = F. To do this, we use the Riesz map R : (L2

X)∗ → L2
X

to write

〈F, u〉(L2
X)∗,L2

X
= (RF, u)L2

X
=

∫ T

0

(RF (t), u(t))X(t), (2.3)

and then with S−1
t : X(t)→ X∗(t) denoting the inverse Riesz map on X(t), we

get
(RF (t), u(t))X(t) = 〈S−1

t (RF (t)), u(t)〉X∗(t),X(t)
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for almost all t ∈ [0, T ]. Now, from (2.32.3), the right hand side of this equality
must be integrable. Hence

t 7→ 〈S−1
t (RF (t)), u(t)〉X∗(t),X(t)

is measurable for every u ∈ L2
X . Now, the question is whether S−1

(·) (RF (·)) ∈
L2
X∗ . Clearly S−1

t (RF (t)) ∈ X∗(t), and by the isometry of the Riesz maps,∫ T

0

∥∥S−1
t (RF (t))

∥∥2

X∗(t)
=

∫ T

0

‖RF (t)‖2X(t) = ‖RF‖2L2
X

= ‖F‖2(L2
X)∗ (2.4)

which is finite. Therefore, we obtain S−1
(·) (RF (·)) ∈ L2

X∗ by Lemma 2.142.14. So

J (S−1
(·) RF (·)) = F .

For uniqueness, suppose that J f = 0. Then

〈J f, u〉(L2
X)∗,L2

X
=

∫ T

0

〈f(t), u(t)〉X∗(t),X(t)

=

∫ T

0

〈φ∗t f(t), φ−tu(t)〉X∗
0 ,X0

= 〈φ∗(·)f(·), û〉L2(0,T ;X∗
0 ),L2(0,T ;X0), (with û = φ−(·)u(·))

which holds for all û ∈ L2(0, T ;X0). This implies that f = 0.
To see that J is an isometry, we define J−1 : (L2

X)∗ → L2
X∗ by J−1F =

S−1
(·) RF (·) and use (2.42.4) to conclude.

Although we have no notion of continuity in time for a function u ∈ L2
X , we

can nevertheless make the following definition.

Definition 2.16 (Spaces of pushed-forward continuously differentiable func-
tions). Define

CkX = {ξ ∈ L2
X | φ−(·)ξ(·) ∈ Ck([0, T ];X0)} for k ∈ {0, 1, ...}

DX(0, T ) = {η ∈ L2
X | φ−(·)η(·) ∈ D((0, T );X0)}

DX [0, T ] = {η ∈ L2
X | φ−(·)η(·) ∈ D([0, T ];X0)}.

Since D((0, T );X0) ⊂ D([0, T ];X0), we have

DX(0, T ) ⊂ DX [0, T ] ⊂ CkX .

2.3 Evolving Hilbert space structure

In the preceding, we set up a Hilbert space L2
X and its dual L2

X∗ based on an
arbitrary family of separable Hilbert spaces {X(t)}t∈[0,T ] and a suitable family
of maps {φt}t∈[0,T ]. We now lay the groundwork for posing PDEs on evolving
spaces. For each t ∈ [0, T ], let V (t) and H(t) be (real) separable Hilbert spaces
with V0 := V (0) and H0 := H(0) such that V0 ⊂ H0 is a continuous and dense
embedding. Identifying H0 with its dual space H∗0 , it follows that H0 ⊂ V ∗0
is also continuous and dense. In other words, V0 ⊂ H0 ⊂ V ∗0 is a Gelfand or
evolution triple of Hilbert spaces (i.e., a Hilbert triple) [2828, §7.2].
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Assumptions 2.17. We will assume compatibility in the sense of Definition 2.42.4
for the family {H(t)}t∈[0,T ] and a family of linear homeomorphisms {φt}t∈[0,T ];
that is, we assume (H,φ(·)) is a compatible pair. In addition, we also assume
that (V, φ(·)|V0) is compatible. We will simply write φt instead of φt|V0 , and we
will denote the dual operator of φt : V0 → V (t) by φ∗t : V ∗(t)→ V ∗0 ; we are not
interested in the dual of φt : H0 → H(t).

It then follows that for each t ∈ [0, T ], V (t) ⊂ H(t) is continuously and
densely embedded. Let us summarise the meaning and consequences of As-
sumptions 2.172.17 for the convenience of the reader.

1. For each t ∈ [0, T ], there exists a linear homeomorphism

φt : H0 → H(t)

such that φ0 is the identity.

2. The restriction φt|V0 (which we will denote by φt) is also a linear homeo-
morphism from V0 to V (t).

3. There exist constants CH and CV independent of t ∈ [0, T ] such that

‖φtu‖H(t) ≤ CH ‖u‖H0
∀u ∈ H0,

‖φtu‖V (t) ≤ CV ‖u‖V0
∀u ∈ V0.

4. We will only be interested in the dual operator of φt : V0 → V (t), denoted
by φ∗t : V ∗(t)→ V ∗0 , which satisfies

‖φ∗t f‖V ∗
0
≤ CV ‖f‖V ∗(t) ∀f ∈ V ∗(t).

5. The inverses of φt and φ∗t will be denoted by φ−t and φ∗−t respectively,
and these are uniformly bounded:

‖φ−tu‖H0
≤ C̃H ‖u‖H(t) ∀u ∈ H(t),

‖φ−tu‖V0
≤ C̃V ‖u‖V (t) ∀u ∈ V (t),∥∥φ∗−tf∥∥V ∗(t)
≤ C̃V ‖f‖V ∗

0
∀f ∈ V ∗0 .

6. The maps

t 7→ ‖φtu‖H(t) ∀u ∈ H0

t 7→ ‖φtu‖V (t) ∀u ∈ V0

are continuous, and the map

t 7→
∥∥φ∗−tf∥∥V ∗(t)

∀f ∈ V ∗0

is measurable.

Our work in §2.22.2 tells us that the spaces L2
H , L2

V , and L2
V ∗ are Hilbert spaces

with the inner product given by the formula (2.22.2).
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Remark 2.18. These homeomorphisms φt are similar to Arbitrary Lagrangian
Eulerian (ALE) maps that are ubiquitous in applications on moving domains.
See [22] for an account of the ALE framework and a comparable set-up.

By the density of L2(0, T ;V0) in L2(0, T ;H0), we obtain the next result.

Lemma 2.19. The embedding L2
V ⊂ L2

H is continuous and dense.

Identifying L2
H with L2

H∗ in the natural manner, we have that L2
V ⊂ L2

H ⊂
L2
V ∗ is a Hilbert triple. We make use of the formula

〈f, u〉L2
V ∗ ,L

2
V

= (f, u)L2
H

whenever f ∈ L2
H and u ∈ L2

V .

2.4 Abstract strong and weak material derivatives

Suppose {Γ(t)}t∈[0,T ] is a family of (sufficiently smooth) hypersurfaces evolving
with velocity field w, and that for each t ∈ [0, T ], u(t) is a sufficiently smooth
function defined on Γ(t). Then the appropriate time derivative of u takes into
account the movement of the spatial points too, and this time derivative is known
as the (strong) material derivative, which we can write informally as

u̇(t, x) =
d

dt
u(t, x(t)) = ut(t, x) +∇u(t, x) ·w(t, x). (2.5)

This is well-studied: see [77] or [88, §1.2] for the flat case. Our aim is to generalise
this material derivative to arbitrary functions and arbitrary evolving spaces (and
not just merely evolving surfaces).

Definition 2.20 (Strong material derivative). For ξ ∈ C1
X define the strong

material derivative ξ̇ ∈ C0
X by

ξ̇(t) := φt

(
d

dt
(φ−tξ(t))

)
. (2.6)

This definition is generalised from [3131]. So we see that the space C1
X is the

space of functions with a strong material derivative, justifying the notation. In
the evolving surface case, we show in [11, §4] that this abstract formula agrees
with (2.52.5). The following remark observes that the pushforward of elements of
X0 into X(t) have zero material derivative.

Remark 2.21. Observe that given η ∈ X0,

˙(φtη) = 0

and that for ξ ∈ C1
X

ξ̇ = 0 ⇐⇒ ∃ η ∈ X0 such that ξ(t) = φtη.

It may be the case that solutions to the PDE (1.21.2)

u̇(t) +A(t)u(t) = f(t)

may not exist if we ask for u ∈ C1
V , that is, they may not possess strong material

derivatives. We can relax this and ask for u̇ to exist in a weaker sense, just like
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one does for the usual time derivative in parabolic problems on fixed domains.
Heuristically, what should such a weak material derivative satisfy? Taking a
clue from Lemma 2.12.1, we expect

d

dt
(u(t), v(t))H(t) = 〈u̇(t), v(t)〉V ∗(t),V (t) + 〈v̇(t), u(t)〉V ∗(t),V (t) + extra term

where we envisage an extra term because the Hilbert space associated with the
inner product depends on t itself, and certainly we should require the integration
by parts formula ∫ T

0

d

dt
(u(t), η(t))H(t) = 0 ∀η ∈ DV (0, T ).

The identification of this extra term and a definition of the weak material deriva-
tive is what the rest of this section is devoted to.

Definition 2.22 (Relationship between the inner product onH(t) and the space

H0). For all t ∈ [0, T ], define the bounded bilinear form b̂(t; ·, ·) : H0 ×H0 → R
by

b̂(t;u0, v0) = (φtu0, φtv0)H(t) ∀u0, v0 ∈ H0.

This gives us a way of pulling back the inner product on H(t) onto a bilinear

form on H0 by the formula (u, v)H(t) = b̂(t;φ−tu, φ−tv). It is also clear that

b̂(0; ·, ·) = (·, ·)H0 by definition. In fact, one can see for each t ∈ [0, T ] that

b̂(t; ·, ·) is an inner product on H0 (and it is norm-equivalent with the norm on
H0); thanks to the Riesz representation theorem, there exists for each t ∈ [0, T ]
a bounded linear operator Tt : H0 → H0 such that

b̂(t;u0, v0) = (Ttu0, v0)H0 = (u0, Ttv0)H0 . (2.7)

Remark 2.23. It is not difficult to see that Tt ≡ φAt φt, where φAt : H(t)→ H0

denotes the Hilbert-adjoint of φt : H0 → H(t).

Assumptions 2.24. We shall assume the following for all u0, v0 ∈ H0:

θ(t, u0) :=
d

dt
‖φtu0‖2H(t) exists classically (2.8)

u0 7→ θ(t, u0) is continuous (2.9)

|θ(t, u0 + v0)− θ(t, u0 − v0)| ≤ C ‖u0‖H0
‖v0‖H0

(2.10)

where the constant C is independent of t ∈ [0, T ].

We are now able to define λ̂(t; ·, ·) : H0 ×H0 → R by

λ̂(t;u0, v0) :=
d

dt
b̂(t;u0, v0) =

1

4
(θ(t, u0 + v0)− θ(t, u0 − v0)) . (2.11)

Denoting by Λ̂(t) the operator

〈Λ̂(t)u0, v0〉 := λ̂(t;u0, v0), (2.12)

it follows by (2.102.10) that Λ̂(t) : H0 → H∗0 .
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Definition 2.25 (The bilinear form λ(t; ·, ·)). For u, v ∈ H(t), define the
bilinear form λ(t; ·, ·) : H(t)×H(t)→ R by

λ(t;u, v) = λ̂(t;φ−tu, φ−tv).

Lemma 2.26. For all u, v ∈ L2
H , the map t 7→ λ(t;u(t), v(t)) is measurable

and λ(t; ·, ·) : H(t)×H(t)→ R is bounded independently of t:

|λ(t;u, v)| ≤ C ‖u‖H(t) ‖v‖H(t) .

Proof. If u, v ∈ L2
H , then by (2.112.11),

λ(t;u(t), v(t)) = λ̂(t;φ−tu(t), φ−tv(t))

=
1

4
(θ(t, φ−tu(t) + φ−tv(t))− θ(t, φ−tu(t)− φ−tv(t))) ,

and it follows that t 7→ λ(t;u(t), v(t)) is measurable because t 7→ θ(t, φ−tw(t))
is measurable for w ∈ L2

H . This in turn can be seen by noticing that θ : [0, T ]×
H0 → R is a Carathéodory function: the map t 7→ θ(t, x) is measurable and by
assumption (2.92.9) the map x 7→ θ(t, x) is continuous; thus by [1717, Remark 3.4.2]
the desired measurability is achieved. The bound on λ(t; ·, ·) is a consequence
of the assumption (2.102.10).

Lemma 2.27. For σ1, σ2 ∈ C1([0, T ];H0), the map t 7→ b̂(t;σ1(t), σ2(t)) is
differentiable in the classical sense and

d

dt
b̂(t;σ1(t), σ2(t)) = b̂(t;σ′1(t), σ2(t)) + b̂(t;σ1(t), σ′2(t)) + λ̂(t;σ1(t), σ2(t)).

This follows simply by using the definition of the derivative as a limit.

Definition 2.28 (Weak material derivative). For u ∈ L2
V , if there exists a

function g ∈ L2
V ∗ such that∫ T

0

〈g(t), η(t)〉V ∗(t),V (t) = −
∫ T

0

(u(t), η̇(t))H(t) −
∫ T

0

λ(t;u(t), η(t))

holds for all η ∈ DV (0, T ), then we say that g is the weak material derivative of
u, and we write

u̇ = g or ∂•u = g.

This concept of a weak material derivative is indeed well-defined: if it ex-
ists, it is unique, and every strong material derivative is also a weak material
derivative. It is easy to prove these facts: for uniqueness, assume there exist two
material derivatives for the same function and then linearity and the density of
D((0, T );V0) (the space of test functions) in L2(0, T ;V0) gives the result. To
show that a strong material derivative is also a weak material derivative, one
can use Lemma 2.272.27 and the relations between b̂(t; ·, ·), λ̂(t; ·, ·), and λ(t; ·, ·).
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2.5 Solution space

We can now consider the spaces that solutions of our PDEs will lie in.

Definition 2.29 (The space W (V, V ∗)). Define the solution space

W (V, V ∗) = {u ∈ L2
V | u̇ ∈ L2

V ∗}

and endow it with the inner product

(u, v)W (V,V ∗) =

∫ T

0

(u(t), v(t))V (t) +

∫ T

0

(u̇(t), v̇(t))V ∗(t).

In order to prove existence theorems, we need some properties of the space
W (V, V ∗) which turns out to be deeply linked with the following standard
Sobolev–Bochner space.

Definition 2.30 (The space W(V0, V
∗
0 )). Define

W(V0, V
∗
0 ) = {v ∈ L2(0, T ;V0) | v′ ∈ L2(0, T ;V ∗0 )}

to be the space W(V,V∗) introduced in §2.12.1 with V = V0 and H = H0.

It is convenient to introduce the following notion of evolving space equiva-
lence.

Assumption and Definition 2.31. We assume that there is an evolving space
equivalence between W (V, V ∗) and W(V0, V

∗
0 ). By this we mean that

v ∈W (V, V ∗) if and only if φ−(·)v(·) ∈ W(V0, V
∗
0 ),

and the equivalence of norms

C1

∥∥φ−(·)v(·)
∥∥
W(V0,V ∗

0 )
≤ ‖v‖W (V,V ∗) ≤ C2

∥∥φ−(·)v(·)
∥∥
W(V0,V ∗

0 )

holds.

Corollary 2.32. The space W (V, V ∗) is a Hilbert space.

We now show that Assumption 2.312.31 holds under certain conditions. See also
the remark following the proof of the theorem.

Theorem 2.33. Suppose that

u ∈ W(V0, V
∗
0 ) if and only if T(·)u(·) ∈ W(V0, V

∗
0 ) (T1)

and that there exist operators

Ŝ(t) : V ∗0 → V ∗0 and D̂(t) : V0 → V ∗0

such that for u ∈ W(V0, V
∗
0 ),

(Ttu(t))′ = Ŝ(t)u′(t) + Λ̂(t)u(t) + D̂(t)u(t) (T2)

and

Ŝ(·)u′(·) ∈ L2(0, T ;V ∗0 ) and D̂(·)u(·) ∈ L2(0, T ;V ∗0 ).

Suppose also that Ŝ(t) and D̂(t) are bounded independently of t ∈ [0, T ], and that
Ŝ(t) has an inverse Ŝ(t)−1 : V ∗0 → V ∗0 which also is bounded independently of
t ∈ [0, T ]. Then W (V, V ∗) is equivalent to W(V0, V

∗
0 ) in the sense of Definition

2.312.31.
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Proof. First, suppose u ∈ W(V0, V
∗
0 ). Clearly φ(·)u(·) ∈ L2

V and we need only
to show that ∂•(φ(·)u(·)) ∈ L2

V ∗ exists. Let η ∈ DV (0, T ) and consider∫ T

0

(φtu(t), η̇(t))H(t) =

∫ T

0

(Ttu(t), (φ−tη(t))′)H0

(rewriting the integrand using b̂(t; ·, ·) and (2.72.7))

= −
∫ T

0

〈Ŝ(t)u′(t) + Λ̂(t)u(t) + D̂(t)u(t), φ−tη(t)〉V ∗
0 ,V0

(by (T1T1) and (T2T2))

= −
∫ T

0

〈φ∗−t(Ŝ(t)u′(t) + D̂(t)u(t)), η(t)〉V ∗(t),V (t)

−
∫ T

0

λ(t;φtu(t), η(t)). (2.13)

This shows that ∂•(φ(·)u(·)) exists.
Conversely, let u ∈W (V, V ∗). We need to show the existence of (φ−(·)u(·))′

in L2(0, T ;V ∗0 ). We start with the weak material derivative condition:∫ T

0

〈u̇(t), η(t)〉V ∗(t),V (t) = −
∫ T

0

(u(t), η̇(t))H(t) −
∫ T

0

λ(t;u(t), η(t))

for test functions η ∈ DV (0, T ). Pulling back leads to∫ T

0

〈φ∗t u̇(t), φ−tη(t)〉V ∗
0 ,V0

= −
∫ T

0

b̂(t;φ−tu(t), (φ−tη(t))′)

+

∫ T

0

λ̂(t;φ−tu(t), φ−tη(t)).

Using (2.72.7) and (2.122.12) and rearranging:∫ T

0

(Ttφ−tu(t), (φ−tη(t))′)H0
= −

∫ T

0

〈φ∗t u̇(t) + Λ̂(t)φ−tu(t), φ−tη(t)〉V ∗
0 ,V0

.

(2.14)

It follows that T(·)φ−(·)u(·) has a weak derivative, and hence by (T1T1) as does
φ−(·)u(·). This proves the bijection between W(V0, V

∗
0 ) and W (V, V ∗).

For the equivalence of norms, let u ∈W (V, V ∗). From (2.132.13), we see that

u̇(t) = φ∗−t(Ŝ(t)(φ−tu(t))′ + D̂(t)φ−tu(t))

which we can bound thanks to the boundedness of Ŝ(t) and D̂(t):

‖u̇(t)‖V (t) ≤ C
(
‖(φ−tu(t))′‖V ∗

0
+ ‖φ−tu(t)‖V0

)
.

So we have achieved ‖u‖W (V,V ∗) ≤ C2

∥∥φ−(·)u(·)
∥∥
W(V0,V ∗

0 )
. For the reverse in-

equality, we use (T2T2) and (2.142.14) to find

(φ−tu(t))′ = Ŝ(t)−1(φ∗t u̇(t)− D̂(t)φ−tu(t)).

From this we obtain a bound of the form

‖(φ−tu(t))′‖V ∗
0
≤ C

(
‖u̇(t)‖V ∗(t) + ‖u(t)‖V (t)

)
which implies the result.
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Remark 2.34. If we knew that Ttv0 ∈ V0 for every v0 ∈ V0, then the as-
sumption (T2T2) would follow from (T1T1) with 〈Ŝ(t)f, v〉V ∗

0 ,V0
:= 〈f, Ttv〉V ∗

0 ,V0
and

D̂(t) ≡ 0.

We are able to specify initial conditions of solutions to PDEs via the follow-
ing lemma, which is an easy consequence of the continuity of the embedding
W(V0, V

∗
0 ) ⊂ C0([0, T ];H0).

Lemma 2.35. The embedding W (V, V ∗) ⊂ C0
H holds, hence for any u ∈

W (V, V ∗) the evaluation t 7→ u(t) is well-defined for every t ∈ [0, T ]. Fur-
thermore, we have the inequality

max
t∈[0,T ]

‖u(t)‖H(t) ≤ C ‖u‖W (V,V ∗) ∀u ∈W (V, V ∗).

This lemma allows us to define the subspace

W0(V, V ∗) = {u ∈W (V, V ∗) | u(0) = 0}.

Definition 2.36 (The space W (V,H)). Define the space

W (V,H) = {u ∈ L2
V | u̇ ∈ L2

H}.

In order to obtain a regularity result, we need to make the following natural
assumption, which will also tell us that W (V,H) is a Hilbert space.

Assumption 2.37. We assume that there is an evolving space equivalence
between W (V,H) and W(V0, H0).

Let us note that this assumption follows if, for example, the assumption (T1T1)
is changed in the natural way and the maps Ŝ(t) and D̂(t) of Theorem 2.332.33
satisfy Ŝ(t) : H0 → H0 and D̂(t) : V0 → H0, with both maps and Ŝ(t)−1 being
bounded independently of t ∈ [0, T ], and if Ŝ(·)u′(·), D̂(·)u(·) ∈ L2(0, T ;H0) for
u ∈ W(V0, H0).

Some density results With the help of the density result in Lemma 2.12.1, it
is easy to prove the following lemma.

Lemma 2.38. The space DV [0, T ] in dense in W (V, V ∗).

The next few results are necessary to prove Lemma 3.53.5, which turns out to
be vital for one of our existence proofs.

Lemma 2.39. For every η ∈ DV (0, T ), there exists a sequence {ηn} ⊂ DV (0, T )
of the form

ηn(t) =

n∑
j=1

ζj(t)φtwj where ζj ∈ D(0, T ) and wj ∈ V0,

such that ηn → η in W (V, V ∗).

Proof. It suffices to show that for every ψ ∈ D((0, T );V0), there exists a sequence
{ψn} ⊂ D((0, T );V0) of the form

ψn(t) =

n∑
j=1

ζj(t)wj where ζj ∈ D(0, T ) and wj ∈ V0,
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such that ψn → ψ in W(V0, V
∗
0 ).

Let wj be an orthonormal basis for V0. Given ψ ∈ D((0, T );V0), define

ψn(t) =

n∑
j=1

(ψ(t), wj)V0wj ,

i.e., ζj(t) = (ψ(t), wj)V0 . It is clear that ζj vanishes at the boundary (since

ψ does), and ζ
(m)
j (t) = (ψ(m)(t), wj)V0 also implies that ζj ∈ D(0, T ). What

remains to be checked is that ψn → ψ inW(V0, V
∗
0 ). We have the pointwise con-

vergence ψn(t)→ ψ(t) in V0 because wj is a basis, and there is also the uniform
bound ‖ψn(t)‖V0

≤ ‖ψ(t)‖V0
. So by the dominated convergence theorem,

ψn → ψ in L2(0, T ;V0).

The same reasoning applied to ψ′n allows us to conclude.

Transport theorem Like in part (3) of Lemma 2.12.1, we want to differentiate
the inner product on H(t). Writing Lemma 2.272.27 in different notation, we obtain
for u, v ∈ C1

H the transport theorem for C1
H functions:

d

dt
(u(t), v(t))H(t) = (u̇(t), v(t))H(t) + (u(t), v̇(t))H(t) + λ(t;u(t), v(t)).

We can obtain a formula for general functions u, v ∈ W (V, V ∗) by means of a
density argument.

Theorem 2.40 (Transport theorem). For all u, v ∈W (V, V ∗), the map

t 7→ (u(t), v(t))H(t)

is absolutely continuous on [0, T ] and

d

dt
(u(t), v(t))H(t) = 〈u̇(t), v(t)〉V ∗(t),V (t) + 〈v̇(t), u(t)〉V ∗(t),V (t) + λ(t;u(t), v(t))

for almost every t ∈ [0, T ].

Proof. Given u ∈ W (V, V ∗), by Lemma 2.382.38, there exists a sequence um ∈
DV [0, T ] converging to u in W (V, V ∗). By the transport theorem for C1

H func-
tions, the um satisfy

d

dt
‖um(t)‖2H(t) = 2(u̇m(t), um(t))H(t) + λ(t;um(t), um(t)).

This statement written in terms of weak derivatives is that for any ζ ∈ D(0, T ),
it holds that

−
∫ T

0

‖um(t)‖2H(t) ζ
′(t)

=

∫ T

0

(
2〈u̇m(t), um(t)〉V ∗(t),V (t) + λ(t;um(t), um(t))

)
ζ(t). (2.15)
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Now we must pass to the limit in this equation. For the left hand side, because
um → u in L2

H , we have by the reverse triangle inequality∫ T

0

∣∣ ‖um(t)‖H(t) − ‖u(t)‖H(t)

∣∣2 ≤ ∫ T

0

‖um(t)− u(t)‖2H(t) → 0,

i.e., ‖um(·)‖H(·) → ‖u(·)‖H(·) in L2(0, T ), which implies that

‖um(·)‖2H(·) → ‖u(·)‖2H(·) in L1(0, T ).

Clearly, the functional F : L1(0, T )→ R, defined

F (y) =

∫ T

0

y(t)ζ ′(t),

is an element of L1(0, T )∗ because ζ ′(t) is bounded. Therefore, we have conver-
gence of the left hand side of (2.152.15):

−
∫ T

0

‖um(t)‖2H(t) ζ
′(t)→ −

∫ T

0

‖u(t)‖2H(t) ζ
′(t).

To deal with the terms on the right hand side of (2.152.15), we require the estimates

|〈u̇m(t), um(t)〉V ∗(t),V (t) − 〈u̇(t), u(t)〉V ∗(t),V (t)|
≤ ‖u̇m(t)‖V ∗(t) ‖um(t)− u(t)‖V (t) + ‖u̇m(t)− u̇(t)‖V ∗(t) ‖u(t)‖V (t)

and

|λ(t;um(t), um(t))− λ(t;u(t), u(t))|

≤ C1

(
‖um(t)‖H(t) ‖um(t)− u(t)‖H(t) + ‖um(t)− u(t)‖H(t) ‖u(t)‖H(t)

)
.

With these, it is easy to show that∣∣∣∣ ∫ T

0

(
2〈u̇m(t), um(t)〉V ∗(t),V (t) + λ(t;um(t), um(t))

)
ζ(t)

−
∫ T

0

(
2〈u̇(t), u(t)〉V ∗(t),V (t) + λ(t;u(t), u(t))

)
ζ(t)

∣∣∣∣→ 0.

In other words, as m→∞, the equation (2.152.15) becomes

−
∫ T

0

‖u(t)‖2H(t) ζ
′(t) =

∫ T

0

(
2〈u̇(t), u(t)〉V ∗(t),V (t) + λ(t;u(t), u(t))

)
ζ(t),

(2.16)
which is precisely the statement

d

dt
‖u(t)‖2H(t) = 2〈u̇(t), u(t)〉V ∗(t),V (t) + λ(t;u(t), u(t))

in the sense of distributions. From this, it follows that

d

dt
(u(t), v(t))H(t) = 〈u̇(t), v(t)〉V ∗(t),V (t) + 〈v̇(t), u(t)〉V ∗(t),V (t) + λ(t;u(t), v(t))

(2.17)
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holds in the weak sense. So we have shown the transport theorem in the
weak sense. However, because the right hand side of the above is in L1(0, T )
(since the right hand side of (2.162.16) holds for every ζ ∈ D(0, T )) and because
(u(t), v(t))H(t) ∈ L1(0, T ), it follows that (u(t), v(t))H(t) is a.e. equal to an abso-
lutely continuous function, with (classical) derivative a.e., and therefore (2.172.17)
exists in the classical sense.

We shall use the following corollary frequently without referencing in future
sections.

Corollary 2.41 (Integration by parts). For all u, v ∈W (V, V ∗), the integration
by parts formula

(u(T ), v(T ))H(T ) − (u(0), v(0))H0

=

∫ T

0

〈u̇(t), v(t)〉V ∗(t),V (t) + 〈v̇(t), u(t)〉V ∗(t),V (t) + λ(t;u(t), v(t)) dt

holds.

3 Formulation of the problem and statement of
results

3.1 Precise formulation of the PDE

Having built up the essential function spaces and results, we are now in a po-
sition to formulate PDEs on evolving spaces. We continue with the framework
and notation of §22; we reiterate in particular Assumptions 2.172.17, 2.242.24, and 2.312.31
(which relate respectively to the compatibility of the evolving Hilbert spaces, a
well-defined material derivative, and the evolving space equivalence). We are in-
terested in the existence and uniqueness of solutions u ∈W (V, V ∗) to equations
of the form

Lu̇+Au+ Λu = f in L2
V ∗

u(0) = u0 in H0,
(P)

where we identify
(Lu̇)(t) = L(t)u̇(t)

(Au)(t) = A(t)u(t)

(Λu)(t) = Λ(t)u(t),

with L(t) and A(t) being linear operators that satisfy the minimal assumptions
given below, and

Λ(t) : H(t)→ H∗(t) is defined by 〈Λ(t)v, w〉H∗(t),H(t) := λ(t; v, w),

with λ(t; ·, ·) the bilinear form in the definition of the weak material derivative
(Definition 2.252.25). Note that Λ(t) is symmetric in the sense that 〈Λ(t)v, w〉 =
〈Λ(t)w, v〉.

Remark 3.1. We showed in Lemma 2.352.35 that specifying the initial condition
as in (PP) is well-defined.
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Assumptions 3.2 (Assumptions on L(t)). In the following, all constants Ci
are positive and independent of t ∈ [0, T ].

We shall assume that for all g ∈ L2
V ∗ ,

Lg ∈ L2
V ∗ and C1 ‖g‖L2

V ∗
≤ ‖Lg‖L2

V ∗
≤ C2 ‖g‖L2

V ∗
. (L1)

We suppose that the restriction L|L2
H

satisfies L|L2
H

: L2
H → L2

H , we identify

(L|L2
H
h)(t) =: LH(t)h(t), and we suppose that

LH(t) : H(t)→ H(t) is symmetric, and

LH(t) : V (t)→ V (t).

We simply write L and L(t) for the above restrictions. Furthermore, for almost
every t ∈ [0, T ], we assume

〈L(t)g, v〉V ∗(t),V (t) = 〈g, L(t)v〉V ∗(t),V (t) ∀g ∈ V ∗(t), ∀v ∈ V (t) (L2)

‖L(t)h‖H(t) ≤ C3 ‖h‖H(t) ∀h ∈ H(t) (L3)

(L(t)h, h)H(t) ≥ C4 ‖h‖2H(t) ∀h ∈ H(t) (L4)

Lv ∈ L2
V ∀v ∈ L2

V (L5)

v ∈W (V, V ∗) ⇐⇒ Lv ∈W (V, V ∗), (L6)

and we suppose the existence of a (linear symmetric) map L̇ : L2
V → L2

V ∗ (and
we identify (L̇v)(t) =: L̇(t)v(t)) satisfying

∂•(Lv) = L̇v + Lv̇ ∈ L2
V ∗ ∀v ∈W (V, V ∗) (L7)

‖L̇(t)v‖V ∗(t) ≤ C5 ‖v‖H(t) ∀v ∈ V (t). (L8)

Assumptions 3.3 (Assumptions on A(t)). Suppose that the map

t 7→ 〈A(t)v(t), w(t)〉V ∗(t),V (t) ∀v, w ∈ L2
V

is measurable, and that there exist positive constants C1, C2 and C3 independent
of t such that the following holds for almost every t ∈ [0, T ]:

〈A(t)v, v〉V ∗(t),V (t) ≥ C1 ‖v‖2V (t) − C2 ‖v‖2H(t) ∀v ∈ V (t) (A1)

|〈A(t)v, w〉V ∗(t),V (t)| ≤ C3 ‖v‖V (t) ‖w‖V (t) ∀v, w ∈ V (t). (A2)

Observe that we have generalised the PDE (1.21.2) by introducing the operator
L. The standard equation

u̇+Au+ Λu = f

is a special case of (PP) when L = Id. Our demands in Assumptions 3.23.2 are (of
course) automatically met in this case. Also, there is no loss of generality by
considering the equation (PP) instead of the more natural equation Lu̇+Au = f.
We include the operator Λ purely because it is convenient in applications (such
as those in [11]).

Implicit in (PP) is the claim that Au and Λu are elements of L2
V ∗ . The fact

Au ∈ L2
V ∗ follows by the weak (and thus strong) measurability of t 7→ φ∗tA(t)u(t)

and the boundedness of A(t), and similarly one obtains the result Λu ∈ L2
V ∗ .

Let us mention an important consequence of the transport theorem (Theorem
2.402.40) and assumptions (L2L2), (L6L6) and (L7L7).

20



Lemma 3.4. For every v, w ∈ W (V, V ∗), the map t 7→ (L(t)v(t), w(t))H(t) is
absolutely continuous with derivative

d

dt
(L(t)v(t), w(t))H(t) = 〈L(t)v̇(t), w(t)〉V ∗(t),V (t) + 〈L(t)ẇ(t), v(t)〉V ∗(t),V (t)

+ 〈M(t)v(t), w(t)〉V ∗(t),V (t) (3.1)

almost everywhere, where M(t) : V (t)→ V ∗(t) is the operator

〈M(t)v, w〉V ∗(t),V (t) := 〈L̇(t)v, w〉V ∗(t),V (t) + 〈Λ(t)L(t)v, w〉V ∗(t),V (t)

which generates the bounded bilinear form m(t; ·, ·) : V (t)× V (t)→ R:

m(t; v, w) := 〈M(t)v, w〉V ∗(t),V (t).

To conclude this preliminary subsection we state and prove the following
lemma which is used in §5.45.4.

Lemma 3.5. Let u ∈ L2
V and g ∈ L2

V ∗ . Then

u̇ ∈ L2
V ∗ exists and Lu̇ = g

if and only if

d

dt
(L(t)u(t), φtv0)H(t) = 〈g(t)+M(t)u(t), φtv0〉V ∗(t),V (t) for all v0 ∈ V0 (3.2)

in the weak sense.

Proof of Lemma 3.53.5. If u ∈ W (V, V ∗) and Lu̇ = g, then (3.23.2) follows easily
by utilising ∂•(φtv0) = 0 and the previous lemma. For the converse, first,
we see from Lemma 2.392.39 that given any η ∈ DV (0, T ), there exist functions
ηn ∈ DV (0, T ) of the form

ηn(t) =
∑
j

ζj(t)φtwj

with ζj ∈ D(0, T ) and wj ∈ V0 such that ‖η − ηn‖W (V,V ∗) → 0. Now, (3.23.2)
states that∫ T

0

(L(t)u(t), ζ ′(t)φtv0)H(t) = −
∫ T

0

〈g(t) +M(t)u(t), ζ(t)φtv0〉V ∗(t),V (t)

holds for all ζ ∈ D(0, T ) and all v0 ∈ V0. In particular, we may pick ζ = ζj and
v0 = wj and sum up over j to obtain∫ T

0

(L(t)u(t), η̇n(t))H(t) = −
∫ T

0

〈g(t) +M(t)u(t), ηn(t)〉V ∗(t),V (t).

Passing to the limit and using the convergence above, we find∫ T

0

(L(t)u(t), η̇(t))H(t) = −
∫ T

0

〈g(t) +M(t)u(t), η(t)〉V ∗(t),V (t)

= −
∫ T

0

〈g(t) + L̇(t)u(t) + Λ(t)L(t)u(t), η(t)〉V ∗(t),V (t)

for arbitrary η ∈ DV (0, T ), i.e., we have the existence of ∂•(Lu) = g+L̇u ∈ L2
V ∗

which, thanks to assumptions (L6L6) and (L7L7) implies that Lu̇ = g.
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3.2 Well-posedness and regularity

We begin with a well-posedness theorem which is proved in §44. A sketch of a
second proof will be presented in §5.45.4 where we utilise a Galerkin method.

Theorem 3.6 (Well-posedness of (PP)). Under the assumptions in Assumptions
3.23.2 and 3.33.3, for f ∈ L2

V ∗ and u0 ∈ H0, there is a unique solution u ∈W (V, V ∗)
satisfying (PP) such that

‖u‖W (V,V ∗) ≤ C
(
‖u0‖H0

+ ‖f‖L2
V ∗

)
.

Now, suppose we now know that f ∈ L2
H and u0 ∈ V0. Can we expect

the same regularity on the solution u as holds in the case of stationary spaces?
It turns out that we can obtain u̇ ∈ L2

H under some additional assumptions,
including some on the differentiability of A(t).

Before we list these assumptions, let us just note that if we define bilinear
forms l(t; ·, ·) : V ∗(t)× V (t)→ R and a(t; ·, ·) : V (t)× V (t)→ R to satisfy

l(t; g, w) := 〈L(t)g, w〉V ∗(t),V (t)

a(t; v, w) := 〈A(t)v, w〉V ∗(t),V (t),

then the problem (PP) is in fact equivalent to

l(t; u̇(t), v) + a(t;u(t), v) + λ(t;u(t), v) = 〈f(t), v〉V ∗(t),V (t)

u(0) = u0

(3.3)

for all v ∈ V (t) and for almost every t ∈ [0, T ] (the null set is independent of
v). Similarly, if f ∈ L2

H and u̇ ∈ L2
H , then (PP) is equivalent to

l(t; u̇(t), v) + a(t;u(t), v) + λ(t;u(t), v) = (f(t), v)H(t)

u(0) = u0

(P’)

for all v ∈ V (t) and for almost every t ∈ [0, T ], where now l(t; ·, ·) : H(t)×H(t)→
R is l(t; ·, ·) = (L(t)·, ·)H(t). It is this form of the problem that turns out to be
more convenient to work with to show regularity. To see the equivalence, for
one side, we may take the duality pairing of (PP) with v = ξφ(·)v0 where v0 ∈ V0

and ξ ∈ D(0, T ); then an argument involving the separability of V0 gives (P’P’).
The converse follows by the density of simple measurable functions in L2

V (see
Lemma 2.92.9).

Since V0 is separable, we may find a basis {χ0
j}, by which we mean that for

all N ∈ N, the set {χ0
j}Nj=1 is linearly independent and finite linear combinations

of χ0
j are dense in V0.

Assumption 3.7. We assume that there exists a basis {χ0
j}j∈N of V0 and a

sequence {u0N}N∈N with u0N ∈ span{χ0
1, ..., χ

0
N} for each N , such that

u0N → u0 in V0 (B1)

‖u0N‖H0
≤ C1 ‖u0‖H0

(B2)

‖u0N‖V0
≤ C2 ‖u0‖V0

(B3)

where C1 and C2 do not depend on N or u0.
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Remark 3.8. Such a basis as required by the last assumption always exists if
V0 ⊂ H0 is compact thanks to Hilbert–Schmidt theory. In fact, in such a case
we can find a basis χ0

j which is orthonormal in H0 and orthogonal in V0.

Let AC([0, T ]) be the space of absolutely continuous functions from [0, T ]
into R.

Definition 3.9. We define the space

C̃1
V = {u | u(t) =

m∑
j=1

αj(t)χ
t
j , m ∈ N, αj ∈ AC([0, T ]) and α′j ∈ L2(0, T )}.

Note that C̃1
V ⊂ C0

V and C̃1
V ⊂W (V, V ).

Remark 3.10. Note that if u ∈ C̃1
V with u(t) =

∑m
j=1 αj(t)χ

t
j as in the defini-

tion then u̇(t) =
∑m
j=1 α

′
j(t)χ

t
j . We skip the proof which is straightforward: just

use the definition of the weak material derivative and perform some manipula-
tions. We could not have calculated the strong material derivative of u via the
formula (2.62.6) because the pullback

φ−(·)u(·) =

n∑
j=1

αj(·)χ0
j

is not necessarily in C1([0, T ];V0) since the αj are not necessarily C1.

Assumptions 3.11 (Further assumptions on a(t; ·, ·)). Suppose that a(t; ·, ·)
has the form

a(t; ·, ·) = as(t; ·, ·) + an(t; ·, ·)

where

as(t; ·, ·) : V (t)× V (t)→ R
an(t; ·, ·) : V (t)×H(t)→ R

are bilinear forms (we allow the possibility an ≡ 0) such that the map

t 7→ as(t; y(t), y(t)) is absolutely continuous on [0, T ] for all y ∈ C̃1
V . (A3)

Suppose also that there exist positive constants C1, C2 and C3 independent of
t such that for almost every t ∈ [0, T ],

|an(t; v, w)| ≤ C1 ‖v‖V (t) ‖w‖H(t) ∀v ∈ V (t), w ∈ H(t) (A4)

|as(t; v, w)| ≤ C2 ‖v‖V (t) ‖w‖V (t) ∀v, w ∈ V (t) (A5)

as(t; v, v) ≥ 0 ∀v ∈ V (t) (A6)

d

dt
as(t; y(t), y(t)) = 2as(t; y(t), ẏ(t)) + r(t; y(t)) ∀y ∈ C̃1

V , (A7)

where the d
dt here is the classical derivative, and r(t; ·) : V (t)→ R satisfies

|r(t; v)| ≤ C3 ‖v‖2V (t) ∀v ∈ V (t). (A8)
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Remark 3.12. Note that we require only one part of the bilinear form a(t; ·, ·)
to be differentiable; however, any potentially non-differentiable terms require
the stronger boundedness condition (A4A4).

As alluded to above, it is permissible to take an ≡ 0 so that a ≡ as. In
this case, we are in the same situation as in Assumptions 3.33.3 except with the
addition of (A3A3), (A6A6), (A7A7), and (A8A8).

We have the following regularity result proved in §55.

Theorem 3.13 (Regularity of the solution to (PP)). Under the assumptions
in Assumptions 3.23.2, 3.33.3, 3.73.7, and 3.113.11, if f ∈ L2

H and u0 ∈ V0, the unique
solution u of (PP) from Theorem 3.63.6 satisfies the regularity u ∈ W (V,H) and
the estimate

‖u‖W (V,H) ≤ C
(
‖u0‖V0

+ ‖f‖L2
H

)
.

4 Proof of well-posedness

We use a generalisation of the Lax–Milgram theorem sometimes called the
Banach–Nečas–Babuška theorem [1818, §2.1.3] to establish existence.

Theorem 4.1 (Banach–Nečas–Babuška). Let X be a Banach space and let Y
be a reflexive Banach space. Suppose d(·, ·) : X × Y → R is a bounded bilinear
form and f ∈ Y ∗. Then there is a unique solution x ∈ X to the problem

d(x, y) = 〈f, y〉Y ∗,Y for all y ∈ Y

satisfying
‖x‖X ≤ C ‖f‖Y ∗ (4.1)

if and only if

1. There exists α > 0 such that

inf
x∈X

sup
y∈Y

d(x, y)

‖x‖X ‖y‖Y
≥ α. (“inf-sup condition”)

2. For arbitrary y ∈ Y , if

d(x, y) = 0 holds for all x ∈ X,

then y = 0.

Moreover, the estimate (4.14.1) holds with the constant C = 1
α .

Recall the equation (PP):

Lu̇+Au+ Λu = f in L2
V ∗

u(0) = u0

where f ∈ L2
V ∗ and u0 ∈ H0. By considering a suitable initial value problem on

a fixed domain we know that there is a function y ∈ W(V0, V
∗
0 ) with y(0) = u0

and
‖y‖W(V0,V ∗

0 ) ≤ C ‖u0‖H0
.
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Then the function ỹ(·) = φ(·)y(·) is such that ỹ ∈ W (V, V ∗) with ỹ(0) = u0.
So then we can transform (PP) into a PDE with zero initial condition if we set
w = u− ỹ:

Lẇ +Aw + Λw = f̃

w(0) = 0
(P0)

where f̃ := f − L∂•ỹ − Aỹ − Λỹ ∈ L2
V ∗ . It is clear that well-posedness of (P0P0)

translates into well-posedness of (PP). The idea is to apply Theorem 4.14.1 to the
problem (P0P0) with X = W0(V, V ∗), Y = L2

V , and the bilinear form

d(u, v) = 〈Lu̇, v〉L2
V ∗ ,L

2
V

+ 〈Au, v〉L2
V ∗ ,L

2
V

+ 〈Λu, v〉L2
V ∗ ,L

2
V
.

Remark 4.2. The space W0(V, V ∗) is indeed a Hilbert space because by Lemma
2.352.35, it is a closed linear subspace of W (V, V ∗).

The arguments in the next two lemmas follow §4 in [2525]. See also [1818, §6.1.2].

Lemma 4.3. For all w ∈W0(V, V ∗), there exists a function vw ∈ L2
V such that

〈Lẇ, vw〉L2
V ∗ ,L

2
V

+ 〈Aw, vw〉L2
V ∗ ,L

2
V

+ 〈Λw, vw〉L2
V ∗ ,L

2
V
≥ C ‖w‖W (V,V ∗) ‖vw‖L2

V
.

Proof. This proof requires two estimates.

First estimate Let w ∈ W0(V, V ∗) and set wγ(t) = e−γtw(t). Note that
wγ ∈W0(V, V ∗) too with ẇγ(t) = e−γtẇ(t)− γwγ(t), so

〈L(t)ẇγ(t), w(t)〉V ∗(t),V (t) = 〈L(t)ẇ(t)− γL(t)w(t), wγ(t)〉V ∗(t),V (t).

Rearranging, integrating, and then using (3.13.1):

〈Lẇ,wγ〉L2
V ∗ ,L

2
V

=
1

2

(
〈Lẇ,wγ〉L2

V ∗ ,L
2
V

+ 〈Lẇγ , w〉L2
V ∗ ,L

2
V

)
+

1

2
γ(Lw,wγ)L2

H

(4.2)

=
1

2

∫ T

0

d

dt
(L(t)w(t), wγ(t))H(t) −

1

2
〈Mw,wγ〉L2

V ∗ ,L
2
V

+
1

2
γ(Lw,wγ)L2

H

≥ −1

2
〈Mw,wγ〉L2

V ∗ ,L
2
V

+
1

2
γ(Lw,wγ)L2

H

as (L(T )w(T ), wγ(T ))H(T ) ≥ 0 by (L4L4). Hence

〈Lẇ,wγ〉L2
V ∗ ,L

2
V

+ 〈Aw,wγ〉L2
V ∗ ,L

2
V

+ 〈Λw,wγ〉L2
V ∗ ,L

2
V

≥ 〈Aw,wγ〉L2
V ∗ ,L

2
V

+ 〈Λw,wγ〉L2
V ∗ ,L

2
V
− 1

2
〈Mw,wγ〉L2

V ∗ ,L
2
V

+
1

2
γ(Lw,wγ)L2

H

≥
∫ T

0

e−γt
(
C1 ‖w(t)‖2V (t) − C2 ‖w(t)‖2H(t)

)
− 1

2

∫ T

0

C3e
−γt ‖w(t)‖2H(t)

+
γC4

2

∫ T

0

e−γt ‖w(t)‖2H(t)

(by the coercivity of A(t) and L(t) and the boundedness of Λ(t) and M(t))

= C1

∫ T

0

e−γt ‖w(t)‖2V (t) +
γC4 − C3 − 2C2

2

∫ T

0

e−γt ‖w(t)‖2H(t)

≥ e−γTC1 ‖w‖2L2
V

(E1)

25



with the final inequality holding if we choose γ such that γC4 > C3 +2C2. Note
that we used Young’s inequality in conjunction with the boundedness of M(t)
above.

Second estimate Now, by the Riesz representation theorem, there exists
z ∈ L2

V such that

〈Lẇ, v〉L2
V ∗ ,L

2
V

= (z, v)L2
V

for all v ∈ L2
V (4.3)

with ‖z‖L2
V

= ‖Lẇ‖L2
V ∗

. We have

〈Lẇ +Aw + Λw, z〉L2
V ∗ ,L

2
V
≥ ‖z‖2L2

V
− C5

∫ T

0

‖w(t)‖V (t) ‖z(t)‖V (t)

(by (4.34.3) and the bounds on A and Λ)

≥ C6 ‖z‖2L2
V
− C7 ‖w‖2L2

V

(using Young’s inequality)

= C6‖Lẇ‖2L2
V ∗
− C7 ‖w‖2L2

V
. (E2)

Combining the estimates Estimate (E2E2) gives us control of Lẇ at the
expense of w, but the latter is controlled by estimate (E1E1). So let us put
vw := z + µwγ where µ > 0 is a constant to be determined and consider:

〈Lẇ, vw〉L2
V ∗ ,L

2
V

+ 〈Aw, vw〉L2
V ∗ ,L

2
V

+ 〈Λw, vw〉L2
V ∗ ,L

2
V

≥ C6 ‖Lẇ‖2L2
V ∗
− C7 ‖w‖2L2

V
+ µe−γTC1 ‖w‖2L2

V

≥ C6 ‖Lẇ‖2L2
V ∗

+ C8 ‖w‖2L2
V

(if µ is large enough)

≥ C9 ‖w‖2W (V,V ∗)

thanks to (L1L1). Finally, because

‖vw‖L2
V
≤ ‖z‖L2

V
+ µ ‖wγ‖L2

V

= ‖Lẇ‖L2
V ∗

+ µ

(∫ T

0

|e−γt|2 ‖w(t)‖2V (t)

) 1
2

≤ ‖Lẇ‖L2
V ∗

+ µ ‖w‖L2
V

≤ C10 ‖w‖W (V,V ∗) (by (L1L1))

we end up with

〈Lẇ, vw〉L2
V ∗ ,L

2
V

+ 〈Aw, vw〉L2
V ∗ ,L

2
V

+ 〈Λw, vw〉L2
V ∗ ,L

2
V
≥ C ‖w‖W (V,V ∗) ‖vw‖L2

V
.

Lemma 4.4. If given arbitrary v ∈ L2
V , the equality

〈Lẇ, v〉L2
V ∗ ,L

2
V

+ 〈Aw, v〉L2
V ∗ ,L

2
V

+ 〈Λw, v〉L2
V ∗ ,L

2
V

= 0 (4.4)

holds for all w ∈W0(V, V ∗), then necessarily v = 0.
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Proof. Define the operator Ã(t) : V (t)→ V ∗(t) by

〈Ã(t)v(t), η(t)〉V ∗(t),V (t) := 〈A(t)η(t), v(t)〉V ∗(t),V (t)

and identify (Ãv)(t) = Ã(t)v(t). Take w = η ∈ DV in (4.44.4) and rearrange to
give

(Lη̇, v)L2
H

= (Lv, η̇)L2
H

= −〈Ãv, η〉L2
V ∗ ,L

2
V
− 〈Λv, η〉L2

V ∗ ,L
2
V

= −〈Ãv − ΛLv + Λv, η〉L2
V ∗ ,L

2
V
− 〈ΛLv, η〉L2

V ∗ ,L
2
V

where we used the symmetric property of L(t). (We could not simply have used
A in place of Ã above because a(t; ·, ·) may not be symmetric.) This tells us
that ∂•(Lv) = Ãv − ΛLv + Λv ∈ L2

V ∗ , and so Lv ∈W (V, V ∗) (we already have
Lv ∈ L2

V from (L5L5)). So

〈∂•(Lv), η〉L2
V ∗ ,L

2
V

= 〈(Ã− ΛL+ Λ)v, η〉L2
V ∗ ,L

2
V

∀η ∈ DV .

By the density of D((0, T );V0) ⊂ L2(0, T ;V0), we have the density of DV ⊂ L2
V ,

which implies

〈∂•(Lv), w〉L2
V ∗ ,L

2
V

= 〈(Ã− ΛL+ Λ)v, w〉L2
V ∗ ,L

2
V

∀w ∈ L2
V . (4.5)

If in particular w ∈ W0(V, V ∗), then we can use (4.44.4) on the right hand side of
(4.54.5) to give

〈Lẇ, v〉L2
V ∗ ,L

2
V

+ 〈∂•(Lv), w〉L2
V ∗ ,L

2
V

+ 〈Λw,Lv〉L2
V ∗ ,L

2
V

= 0 ∀w ∈W0(V, V ∗).

(4.6)
Using (L(t)w(t), v(t))H(t) = (L(t)v(t), w(t))H(t), we have

d

dt
(L(t)w(t), v(t))H(t) = 〈∂•(L(t)v(t)), w(t)〉V ∗(t),V (t)

+ 〈ẇ(t), L(t)v(t)〉V ∗(t),V (t) + 〈Λ(t)w(t), L(t)v(t)〉

to which an application of (L2L2) shows us that (4.64.6) is exactly∫ T

0

d

dt
(L(t)w(t), v(t))H(t) = (L(T )w(T ), v(T ))H(T ) = 0

for all w ∈W0(V, V ∗). Thus we have shown that v(T ) = 0.
Let 0 > γ ∈ R and set w(t) = vγ(t) = e−γtv(t) in (4.54.5) to obtain

0 = 〈∂•(Lv), vγ〉L2
V ∗ ,L

2
V
− 〈(Ã− ΛL+ Λ)v, vγ〉L2

V ∗ ,L
2
V
. (4.7)

We showed that Lv ∈ W (V, V ∗) earlier; by (L6L6), v ∈ W (V, V ∗) too, and so we
can apply (L7L7) to the first term on the right hand side of (4.74.7):

〈∂•(Lv), vγ〉L2
V ∗ ,L

2
V

= 〈L̇v, vγ〉L2
V ∗ ,L

2
V

+ 〈Lv̇, vγ〉L2
V ∗ ,L

2
V

= 〈L̇v, vγ〉L2
V ∗ ,L

2
V

+
1

2

(
〈Lv̇, vγ〉L2

V ∗ ,L
2
V

+ 〈Lv̇γ , v〉L2
V ∗ ,L

2
V

)
+

1

2
γ(Lv, vγ)L2

H
(follows like the equation (4.24.2))

≤ 1

2
〈L̇v, vγ〉L2

V ∗ ,L
2
V
− 1

2
〈Λvγ , Lv〉L2

V ∗ ,L
2
V

+
1

2
γ(Lv, vγ)L2

H
.

(since v(T ) = 0 and by coercivity of L(0))
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Note that (L8L8) together with Young’s inequality implies

〈L̇(t)v(t), v(t)〉V ∗(t),V (t) ≤ C5‖v(t)‖H(t)‖v(t)‖V (t) ≤ Cε‖v(t)‖2H(t) + ε‖v(t)‖2V (t).

Using this and the previous inequality, (4.74.7) becomes

0 ≤ 〈L̇v, vγ〉L2
V ∗ ,L

2
V

+ 〈Λvγ , Lv〉L2
V ∗ ,L

2
V

+ γ(Lv, vγ)L2
H
− 2〈(Ã+ Λ)v, vγ〉L2

V ∗ ,L
2
V

=

∫ T

0

e−γt〈L̇(t)v(t), v(t)〉V ∗(t),V (t) +

∫ T

0

e−γtλ(t;L(t)v(t), v(t))

+

∫ T

0

γe−γt(L(t)v(t), v(t))H(t) − 2

∫ T

0

e−γt〈(Ã(t) + Λ(t))v(t), v(t)〉V ∗(t),V (t)

≤ (C1 + γC2)

∫ T

0

e−γt ‖v(t)‖2H(t) − 2Ca

∫ T

0

e−γt ‖v(t)‖2V (t)

using the bound on λ(t; ·, ·) and the assumptions (L3L3), (L4L4) and (A1A1) (coerciv-
ity). If we pick γ = −C1

C2
, it follows that v = 0 in L2

V .

Proof of Theorem 3.63.6. The inf-sup condition (which is an easy consequence of
Lemma 4.34.3) in combination with Lemma 4.44.4 furnishes the requirements of the
Banach–Nečas–Babuška theorem (Theorem 4.14.1) thus yielding the existence and
uniqueness of a solution w ∈W0(V, V ∗) to

Lẇ +Aw + Λw = f̃

w(0) = 0

where f̃ ∈ L2
V ∗ is arbitrary. Hence, we have well-posedness of (P0P0) with the

estimate
‖w‖W (V,V ∗) ≤ C‖f̃‖L2

V ∗
.

From this well-posedness result, we also obtain unique solvability of (PP) by
setting u = w + ỹ (note that w depends on ỹ), with the solution u ∈W (V, V ∗)
satisfying

‖u‖W (V,V ∗) ≤ C
(
‖f‖L2

V ∗
+ ‖u0‖H0

)
.

5 Galerkin approximation

In this section we abstract the pushed-forward Galerkin method used in [1111] for
the advection-diffusion equation on an evolving hypersurface.

5.1 Finite-dimensional spaces

Let {χ0
j}j∈N be the basis of V0 described in Assumption 3.73.7. We can turn this

into a basis of V (t) with the help of the continuous map φt.

Lemma 5.1. With χtj := φt(χ
0
j ) for each j ∈ N, the set {χtj}j∈N is a countable

basis of V (t).

The next result is an extremely useful property of the basis functions follow-
ing from Remark 2.212.21 (see [1111] for the finite element analogue).
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Lemma 5.2 (Transport property of basis functions). The basis {χtj}j∈N satisfies
the transport property

χ̇tj = 0.

We now construct the approximation spaces in which the discrete solutions
lie.

Definition 5.3 (Approximation spaces). For each N ∈ N and each t ∈ [0, T ],
define

VN (t) = span{χt1, ..., χtN} ⊂ V (t).

Clearly VN (t) ⊂ VN+1(t) and
⋃
j∈N Vj(t) is dense in V (t). Define

L2
VN

= {u ∈ L2
V | u(t) =

N∑
j=1

αj(t)χ
t
j where αj : [0, T ]→ R}.

Similarly, L2
VN
⊂ L2

VN+1
, and we shall state a density result below which follows

from the density of the embedding
⋃
j∈N L

2(0, T ;Vj(0)) ⊂ L2(0, T ;V0) and from

the fact that L2(0, T ;Vj(0)) ⊂ L2(0, T ;Vj+1(0)).

Lemma 5.4. The space
⋃
j∈N L

2
Vj

is dense in L2
V .

Remark 5.5. If u ∈ L2
VN

and u(t) =
∑N
j=1 αj(t)χ

t
j has coefficients αj ∈

C1([0, T ]), then u ∈ C1
V with strong material derivative u̇(t) =

∑N
j=1 α

′
j(t)χ

t
j ,

and u̇ ∈ L2
VN
. Our Galerkin ansatz (see below) has coefficients in a slightly less

convenient space.

Galerkin ansatz. Later on, we construct finite-dimensional solutions which
have the form

uN (t) =

N∑
j=1

uNj (t)χtj ∈ VN (t)

where the uNj : [0, T ]→ R turn out to be absolutely continuous coefficient func-

tions with u̇Nj ∈ L2(0, T ), i.e., uN ∈ C̃1
V . It holds that uN ∈ L2

V and by defi-

nition, uN ∈ L2
VN
. By Remark 3.103.10, the material derivative of uN is u̇N ∈ L2

VN

with u̇N (t) =
∑N
j=1 u̇

N
j (t)χtj .

Definition 5.6 (Projection operators). For each t ∈ [0, T ], define a projection
operator P tN : H(t)→ VN (t) by the formula

(P tNu− u, vN )H(t) = 0 for all vN ∈ VN (t).

It follows that (P tN )2 = P tN ,∥∥P tNu∥∥H(t)
≤ ‖u‖H(t)

and

P tNu→ u in H(t) (5.1)

for all u ∈ H(t).
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Remark 5.7. We could have relaxed the definition of the spaces VN (t) and
instead have asked for a family of finite-dimensional spaces {VN (0)}N∈N such
that for all N ∈ N,

(i) VN (0) ⊂ V0

(ii) dim(VN ) = N

(iii)
⋃
i∈N Vi(0) is dense in V0

(iv) For every v ∈ V0, there exists a sequence {vN}N∈N with vN ∈ VN (0) such
that ‖vN − v‖V0

→ 0.

Furthermore, we can define the spaces VN (t) := φt(VN (0)). The continuity of
the map φt implies that these spaces share the same properties (with respect to
V (t)) as the VN (0) given above; in particular the density result⋃

N∈N
VN (t) is dense in V (t)

is true. Note that the basis of VN (t) does not necessarily have to be a subset of
the basis of VN+1(t); this is the situation in finite element analysis, for example,
so this relaxation can be useful for the purposes of numerical analysis. See [1111],
[1212].

5.2 Galerkin approximation of (PP)

We now proceed with the regularity result. With f ∈ L2
H and u0 ∈ V0, the

finite-dimensional approximation is to find a unique uN ∈ L2
VN

with u̇N ∈ L2
VN

satisfying

l(t; u̇N (t), χtj) + a(t;uN (t), χtj) + λ(t;uN (t), χtj) = (f(t), χtj)H(t)

uN (0) = u0N

(5.2)

for all j ∈ {1, ..., N} and for almost every t ∈ [0, T ] (cf. the equation (P’P’)).
Here, u0N is as in Assumption 3.73.7.

Theorem 5.8 (Well-posedness of solutions to the finite-dimensional problem).
Under the hypotheses of Theorem 3.133.13, there exists a unique uN ∈ L2

VN
with

u̇N ∈ L2
VN

satisfying the problem (5.25.2). With uN (t) =
∑N
i=1 u

N
i (t)χti, the coef-

ficient functions satisfy

uNi ∈ AC([0, T ])

u̇Ni ∈ L2(0, T ).

for all i ∈ {1, ..., N}.

Proof. Substitute uN (t) =
∑N
i=1 u

N
i (t)χti into (5.25.2) to yield

N∑
i=1

u̇Ni (t)lij(t) + uNi (t)(aij(t) + cij(t)) = fj(t) (5.3)
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with lij(t) = l(t;χti, χ
t
j), aij(t) = a(t;χti, χ

t
j), λij(t) = λ(t;χti, χ

t
j) and fj(t) =

(f(t), χtj)H(t). Defining the vectors (uN(t))i = uNi (t) and (F(t))i = fi(t), and
matrices (L(t))ij = lji(t), (A(t))ij = aji(t), and (Λ(t))ij = λji(t), we can write
(5.35.3) in matrix-vector form as

L(t)u̇N(t) + (A(t) + Λ(t))uN(t) = F(t).

Elementary considerations show that L(·)−1 ∈ L∞(0, T ;RN×N ), so we can re-
arrange the system to

u̇N(t) + L(t)
−1

(A(t) + Λ(t))uN(t) = L(t)
−1

F(t). (5.4)

Note that F(·) ∈ L2(0, T ;RN ) and A(·) + Λ(·) ∈ L∞(0, T ;RN×N ). So the
coefficients of (5.45.4) are all measurable in time, and we can apply standard
theory that guarantees the existence and uniqueness of uNj ∈ AC([0, T ]) with

u̇Nj ∈ L2(0, T ), and thus the existence and uniqueness of uN . The function uN ∈
C̃1
V is a solution in the sense that the derivative u̇N exists almost everywhere

and the ODE is satisfied almost everywhere.

The Galerkin approximation is equivalent to the discrete equation

l(t; u̇N (t), vN (t)) + a(t;uN (t), vN (t)) + λ(t;uN (t), vN (t)) = (f(t), vN (t))H(t)

(P′d)
for all vN ∈ L2

VN
. We look for a priori estimates on uN and u̇N in appropriate

norms.

Lemma 5.9 (A priori estimate on uN ). Under the hypotheses of Theorem 3.133.13,
the following estimate holds:

‖uN‖L2
V
≤ C

(
‖u0‖H0

+ ‖f‖L2
V ∗

)
.

Remark 5.10. This a priori estimate is still valid under the hypotheses of
Theorem 3.63.6 if we pick uN (0) differently. See §5.45.4 for more.

For convenience, we shall sometimes omit the argument (t) in expressions
like uN (t). It should be clear from the context the instances in which we are
referring to an element of H(t) as opposed to an element of L2

H .

Proof of Lemma 5.95.9. Picking vN = uN in (P′dP′d) gives

l(t; u̇N , uN ) + a(t;uN , uN ) + λ(t;uN , uN ) = (f, uN )H(t),

which we integrate in time and apply the transport identity (3.13.1) to yield∫ T

0

1

2

d

dt
l(t;uN , uN ) + a(t;uN , uN ) + λ(t;uN , uN )− 1

2
m(t;uN , uN )

=

∫ T

0

(f, uN )H(t).

Using the boundedness (L3L3) and coercivity (L4L4) of l(t; ·, ·) leads to

Cc
2
‖uN (T )‖2H(T ) +

∫ T

0

a(t;uN , uN ) +

∫ T

0

λ(t;uN , uN )− 1

2

∫ T

0

m(t;uN , uN )

≤
∫ T

0

〈f, uN 〉V ∗(t),V (t) +
Cb
2
‖uN (0)‖2H0

,
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to which we use (A1A1) (the coercivity of a(t; ·, ·)), the boundedness of λ(t; ·, ·)
and m(t; ·, ·), and Young’s inequality with ε > 0:

Cc
2
‖uN (T )‖2H(T ) +

C1

2
‖uN‖2L2

V
≤ C2

2
‖uN‖2L2

H
+

1

2ε
‖f‖2L2

V ∗
+
ε

2
‖uN‖2L2

V

+
Cb
2
‖uN (0)‖2H0

.

That is,

Cc ‖uN (T )‖2H(T ) + (C1 − ε) ‖uN‖2L2
V
≤ 1

ε
‖f‖2L2

V ∗
+C2 ‖uN‖2L2

H
+Cb ‖uN (0)‖2H0

,

(5.5)
and if ε is picked small enough, we can discard the second term on the left hand
side and then an application of Gronwall’s inequality yields

‖uN (t)‖2H(t) ≤ C4

(
‖f‖2L2

V ∗
+ ‖uN (0)‖2H0

)
.

Using this on (5.55.5) and utilising (B2B2) produces the desired estimate.

Lemma 5.11 (A priori estimate on u̇N ). Under the hypotheses of Theorem
3.133.13, the following estimate holds:

‖u̇N‖L2
H
≤ C

(
‖u0‖V0

+ ‖f‖L2
H

)
.

Proof. In (P′dP′d), pick vN = u̇N and use (L4L4) to get

C1 ‖u̇N‖2H(t) +as(t;uN , u̇N )+an(t;uN , u̇N )+λ(t;uN , u̇N ) ≤ (f, u̇N )H(t). (5.6)

Then using assumption (A7A7), (5.65.6) is

C1 ‖u̇N‖2H(t) +
1

2

d

dt
as(t;uN , uN ) ≤ (f, u̇N )H(t) +

1

2
r(t;uN )− an(t;uN , u̇N )

− λ(t;uN , u̇N ).

Integrating this yields

C1

∫ T

0

‖u̇N‖2H(t) +
1

2
as(T ;uN (T ), uN (T ))

≤
∫ T

0

(f, u̇N )H(t) +
1

2

∫ T

0

r(t;uN )−
∫ T

0

an(t;uN , u̇N )−
∫ T

0

λ(t;uN , u̇N )

+
1

2
as(0;uN (0), uN (0)).

where we used (A3A3). With (A6A6) (positivity of as(t; ·, ·)), the bound (A5A5) on
as(0; ·, ·), the bound (A8A8) on r(t; ·), the bound (A4A4) on an(t; ·, ·), the bound on
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λ(t; ·, ·) and Young’s inequality with ε > 0 and δ > 0, we get

C1 ‖u̇N‖2L2
H
≤ 1

2δ
‖f‖2L2

H
+

(
C2 +

C3

2ε

)
‖uN‖2L2

V
+

(δ + C3ε)

2
‖u̇N‖2L2

H

+ C4 ‖uN (0)‖2V0

≤ 1

2δ
‖f‖2L2

H
+ C5

(
C2 +

C3

2ε

)
(‖uN (0)‖2H0

+ ‖f‖2L2
H

)

+
(δ + C3ε)

2
‖u̇N‖2L2

H
+ C4 ‖uN (0)‖2V0

(by the first a priori bound)

=

(
1

2δ
+ C5

(
C2 +

C3

2ε

))
‖f‖2L2

H
+ C5

(
C2 +

C3

2ε

)
‖uN (0)‖2H0

+
(δ + C3ε)

2
‖u̇N‖2L2

H
+ C4 ‖uN (0)‖2V0

.

If ε and δ are small, we can obtain the estimate by using the assumption (B3B3).

5.3 Proof of regularity

By the estimates above, we obtain the convergence

uN ⇀ u in L2
V

u̇N ⇀ w in L2
H

(5.7)

for some u ∈ L2
V and w ∈ L2

H and for a subsequence which we have relabelled.
Now we show that in fact, w = u̇.

Lemma 5.12. In the context of the above convergence results, w = u̇.

Proof. By definition∫ T

0

〈u̇N (t), η(t)〉V ∗(t),V (t) = −
∫ T

0

(uN (t), η̇(t))H(t)−
∫ T

0

λ(t;uN (t), η(t)) (5.8)

holds for all η ∈ DV (0, T ). Since 〈·, η〉L2
V ∗ ,L

2
V

, (·, η̇)L2
H

, and 〈Λ(·), η〉L2
V ∗ ,L

2
V

are

all elements of L2
V ∗ , using (5.75.7), we can pass to the limit in (5.85.8) to obtain∫ T

0

〈w(t), η(t)〉V ∗(t),V (t) = −
∫ T

0

(u(t), η̇(t))H(t) −
∫ T

0

λ(t;u(t), η(t)),

i.e., w = u̇.

Proof of Theorem 3.133.13. Given v ∈ L2
V , by density, there is a sequence {vM}

with vM ∈ L2
VM

for each M such that

vM (t) =

M∑
j=1

αMj (t)χtj and ‖vM − v‖L2
V
→ 0.

For j = 1, ..., N, consider the equation (5.25.2):

l(t; u̇N (t), χtj) + a(t;uN (t), χtj) + λ(t;uN (t), χtj) = (f(t), χtj)H(t).
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If M ≤ N , then vM ∈ L2
VN

and we multiply the above by αMj (t) and sum up to
get

l(t; u̇N (t), vM (t)) + a(t;uN (t), vM (t)) + λ(t;uN (t), vM (t)) = (f(t), vM (t))H(t).

By the bounds on the respective bilinear forms, we see that 〈L(·), vM 〉L2
V ∗ ,L

2
V

,

〈A(·), vM 〉L2
V ∗ ,L

2
V

, and 〈Λ(·), vM 〉L2
V ∗ ,L

2
V

are elements of L2
V ∗ , so we obtain after

integrating the above equation and taking the limit as N →∞ the equation∫ T

0

l(t; u̇(t), vM (t)) + a(t;u(t), vM (t))+λ(t;u(t), vM (t))

=

∫ T

0

(f(t), vM (t))H(t).

Now note that as a function of vM , each term in the above equation is an element
of L2

V ∗ again because of the bounds on l(t; ·, ·), a(t; ·, ·) and λ(t; ·, ·). So we send
M →∞, bearing in mind that vM strongly converges to v in L2

V :∫ T

0

l(t; u̇(t), v(t)) + a(t;u(t), v(t)) + λ(t;u(t), v(t)) =

∫ T

0

(f(t), v(t))H(t).

Hence u ∈ W (V,H) is a solution. Let us now check the initial condition. Let
w ∈ V0, take ζ ∈ C1[0, T ] with ζ(T ) = 0, and set v(t) = ζ(t)φtw; we see that
v ∈ L2

V . Since w ∈ V0, there exist coefficients αj with w =
∑∞
j=1 αjχ

0
j , so

v(t) = ζ(t)

∞∑
j=1

αjχ
t
j . (5.9)

The sequence {vN}N∈N defined by

vN (t) = ζ(t)

N∑
j=1

αjχ
t
j (5.10)

is such that vN ∈ L2
VN

and satisfies ‖vN − v‖L2
V
→ 0 by definition of w as an

infinite sum. Similarly, we can show that v̇N → v̇ in L2
V . Using the identity

(3.13.1) with v chosen as in (5.95.9), we see that

−l(0;u(0), v(0))+

∫ T

0

a(t;u(t), v(t)) + λ(t;u(t), v(t))

=

∫ T

0

(f(t), v(t))H(t) + l(t;u(t), v̇(t)) +m(t;u(t), v(t)).

(5.11)

Similarly, with vN chosen as in (5.105.10) in the Galerkin equation (P′dP′d), to which
we again apply (3.13.1) and integrate to obtain

−l(0;uN (0),vN (0)) +

∫ T

0

a(t;uN (t), vN (t)) + λ(t;uN (t), vN (t))

=

∫ T

0

(f(t), vN (t))H(t) + l(t;uN (t), v̇N (t)) +m(t;uN (t), vN (t)).
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Using uN ⇀ u, vN → v, v̇N → v̇, and (B1B1), we may pass to the limit in this
equation and a comparison of the result to (5.115.11) will tell us that

l(0;u0 − u(0), ζ(0)w) = 0.

The arbitrariness of w ∈ V0 and the density of V0 in H0 yield the result.
The stability estimate follows directly from the estimates in Lemmas 5.95.9 and

5.115.11. That the solution is unique follows by a straightforward adaptation of the
standard technique.

5.4 Second sketch proof of existence

Sketch proof of Theorem 3.63.6. We can take the Galerkin approximation of (3.33.3)
and instead of picking the initial data of uN to be u0N we pick uN (0) = P 0

N (u0),
where P 0

N is the projection operator in Definition 5.65.6. We still obtain the uni-
form bound of Lemma 5.95.9, which implies that

uN ⇀ u in L2
V (5.12)

for some u ∈ L2
V . An equation similar to (P′dP′d) will hold, in which we pick

vN (t) = χtj , where j ∈ {0, ..., N}, and multiplying by ζ ∈ C1[0, T ] with ζ(T ) = 0,
we get

l(t; u̇N , ζχj) + a(t;uN , ζχj) + λ(t;uN , ζχj) = 〈f, ζχj〉V ∗(t),V (t),

and then integrating, using the transport formula (3.13.1), and passing to the limit
with the help of (5.125.12) and (5.15.1):∫ T

0

l(t;u(t), ζ ′(t)χtj) + a(t;u(t), ζ(t)χtj) + λ(t;u(t), ζ(t)χtj)−m(t;u(t), ζ(t)χtj)

= −
∫ T

0

〈f(t), ζ(t)χtj〉V ∗(t),V (t) − l(0;u0, ζ(0)χ0
j ). (5.13)

Now, we can write an arbitrary element of V0 as v =
∑∞
i=1 αjχ

0
j . By definition,

the sequence vn =
∑n
i=1 αjχ

0
j converges to v in V0. It follows that φtvn → φtv

in V (t). Letting ζ(0) = 0, multiplying (5.135.13) by αj and summing over j gives
us ∫ T

0

ζ ′(t)l(t;u(t), φtvn)

= −
∫ T

0

ζ(t)〈f(t)−A(t)u(t)− Λ(t)u(t) +M(t)u(t), φtvn〉V ∗(t),V (t).

(5.14)

It is not difficult to see that the dominated convergence theorem applies and we
can pass to the limit in (5.145.14) to obtain∫ T

0

ζ ′(t)l(t;u(t), φtv)

= −
∫ T

0

ζ(t)〈f(t)−A(t)u(t)− Λ(t)u(t) +M(t)u(t), φtv〉V ∗(t),V (t).
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If we further let ζ ∈ D(0, T ), this is precisely the statement

d

dt
l(t;u(t), φtv) = 〈f(t)−A(t)u(t)− Λ(t)u(t) +M(t)u(t), φtv〉V ∗(t),V (t)

in the weak sense. This is true for every v ∈ V0, and because f − Au − Λu ∈
L2
V ∗ , by Lemma 3.53.5, Lu̇ + A + Λu = f holds as an equality in L2

V ∗ with u ∈
W (V, V ∗).
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