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1. Introduction

Liquid crystals are an intermediate phase of matter between solid and fluid states which possess pecu-
liar optical properties and are controllable through electric and magnetic fields. As a result, they play a
fundamental role in the development of many scientific applications and in the design of new generation
technologies.

Date: April 6, 2014.
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A nematic shell is a thin film of nematic liquid crystal coating a rigid and curved substrate Σ which is
typically represented as a two-dimensional surface. The basic mathematical description of these shells is
given in terms of a unit vector field constrained to be tangent to the substrate Σ. This vector field will be
called the director, analogous to the nomenclature for liquid crystals in domains. The rigorous mathematical
treatment of nematic shells is intriguing since it combines tools from diverse fields such as the calculus of
variations, partial differential equations, topology, differential geometry and numerical analysis. Our study
is further motivated by the vast technological applications of nematic shells, as discussed in [32]. To the best
of our knowledge, the study of these structures has been mostly confined to the physical literature (see, e.g.,
[20, 25, 31, 41, 44]) with the sole exception of [39].

The form of the elastic energy for nematics is well established, both in the framework of director theory
which is based on the works of Oseen, Zocher, and Frank, and in the framework of the order-tensor theory
introduced by de Gennes (see, e.g., [12, 43]). On the other hand, when dealing with nematic shells, there is
no universal agreement on the form of a two-dimensional free energy. The differences between the various
approaches arise in the choice of the local distortion element of the substrate, i.e., the effect of the substrate’s
extrinsic geometry on the elastic energy of the nematics. Indeed, as observed in [4, 44], the liquid crystal
ground state (and all its stable configurations, in general) is determined by two competing, driving principles:
on one hand the minimization of the “curvature of the texture” penalized by the elastic energy, and on the
other the frustration due to constraints of geometrical and topological nature, imposed by anchoring the
nematic to the surface of the underlying particle. A new energy model proposed by Napoli and Vergori in
[30, 31] affects these two aspects, leading to different results with respect to the classical models [19, 25, 41].
It is interesting to note that a definitive microscopic justification of these energies is still to be found.

The aim of this paper is to analyze the new surface energy for liquid crystal shells proposed in [30, 31].
To describe our results and to highlight some of the related difficulties, let us consider at first the simplest
one-constant approximation of the surface energy on a two-dimensional surface Σ ⊂ R3:

Wκ(n) :=
κ

2

∫
Σ

|Dn|2 + |Bn|2 dVol, (1.1)

where n is a unit norm and tangent vector field on Σ representing, for any point on Σ, the mean orientation
of the nematic molecules; here κ is a positive constant, the symbol D denotes the covariant derivative on Σ,
and B is the shape operator (see Section 2 for all the details and definitions). Our results address

(a) the relation between the topology of the surface and the functional setting,
(b) the minimization of (1.1) and the well posedness of its gradient flow on a general genus one surface,
(c) the precise structure of local minimizers on a particular surface: the axisymmetric torus.

We pay particular attention to the gradient flow of the energy because, aside from being an interesting
mathematical object on its own, it provides an efficient tool for numerical approximations of minimizers.
Furthermore, it can be seen as a first step towards the evolutionary study of liquid crystals on surfaces.
While Step (a) is necessary to give a rigorous formulation to the problem, Steps (b) and (c) complement each
other: The general analysis in (b) has the advantage of being applicable to any two-dimensional topologically
admissible surface and even, up to some technical obstacles, to (N − 1)-dimensional compact and smooth
hypersurfaces embedded in RN . In (c) we sacrifice generality in order to obtain more precise analytical and
numerical information on the solutions. In particular, the regularity issue and the existence of solutions
with prescribed winding number, which seem difficult to be obtained by working directly on (1.1), are more
transparent.

(a) Topological constraints. Given the form of (1.1), it would be natural to set its analysis in the ambient
space of tangent vector fields such that |n| and |Dn| belong to L2(Σ). We refer to the quantity

∫
Σ
|Dn|2 as

the Dirichlet energy of n. However, the topology of the surface may force the subset of vector fields with
|n| = 1, which would represent our directors, to be empty. This could be heuristically explained as follows.
Let v be a smooth tangent vector field on Σ, with finitely many zeroes. The index m ∈ Z of a zero x̄ ∈ Σ is,
intuitively, the number of counterclockwise rotations that the vector completes around a small circle around
x̄. So, if m 6= 0, the corresponding unit-length vector field v/|v| has a discontinuity at x̄ (see Figure 1). By
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the Poincaré-Hopf index Theorem [15, Chapter 3], the global sum of the indices of the zeroes of v equals
the Euler characteristic χ(Σ) and therefore it is possible to find a smooth field n with |n| ≡ 1 on Σ if and
only if χ(Σ) = 0, i.e. if Σ is a genus-1 surface (“hairy ball Theorem”). Moreover, a direct computation
(say for m = 1) shows that the Dirichlet energy of v/|v| in any small enough annulus centered at x̄, with
internal radius ρ, scales like | log(ρ)| as ρ→ 0. Therefore, one would expect the topological constraint of the
hairy ball Theorem to hold also for H1-regular vector fields. Indeed, in Theorem 1 we generalize the hairy

Figure 1. Examples of unitary vector fields on a disc in R2, showing topological defects
with index 1.

ball Theorem to H1-regular vector fields. Our proof is by contradiction. First, using variational methods
we show that if the set of H1-regular tangent unitary fields on Σ is not empty, then it includes a minimizer
of the Dirichlet energy on Σ. Then, using the local representation we study in Section 6 and regularity
theory for elliptic PDEs, we show that this minimizer is continuous, contradicting the classical hairy ball
Theorem. Note that the exponent 2 in (1.1) is a limit-case, as it is possible to construct unitary fields
such that |Dv| ∈ Lp(Σ) for any p ∈ [1, 2), on any smooth compact surface Σ. In view of Theorem 1, we
restrict our study to genus-1 surfaces, where the underlying geometry of the substrate does not force the
creation of defects. A rigorous analysis of the distribution and evolution of defects on nematic surfaces is an
interesting problem which is beyond the scope of this paper. Due to its large potential impact on the design
of new generation metamaterial structures (see [32, 45]), this question has garnered a good deal of interest
within the physics community (see [20, 35, 38, 33, 44]). To the best of our knowledge it still lacks a rigorous
mathematical treatment. A different approach to defects, following an approximation of Ginzburg-Landau
type, was studied in [1].

(b) Well-posedness on general surfaces. The general form of the surface energy (1.1), introduced in
[30], is the surface analogue of the well-studied Oseen, Zocher and Frank model (see, e.g., [43]) and is defined
as

W (n) :=
1

2

∫
Σ

K1(divs n)2 +K2(n · curls n)2 +K3|n× curls n|2 dVol. (1.2)

In the above display, the subscript s denotes surface operators (see Section 2) and K1,K2,K3 are positive
constants known respectively as the splay, twist and bend moduli. Using the direct method of the calculus of
variations, in Proposition 5.2 we prove existence of a minimizer of (1.2). We then focus on the L2-gradient
flow of (1.1), in the case of κ := K1 = K2 = K3. The study of the gradient flow for the energy (1.1) could
be seen as a starting point for the analysis of an Ericksen-Leslie type model for nematic shells. This problem
has already been addressed in [39] where various wellposedness and long time behavior results have been
obtained for an Ericksen-Leslie type model on Riemannian manifolds. However, it should be pointed out
that the model in [39] is purely intrinsic and does not take into account the way the substrate on which the
nematic is deposited sits in the three-dimensional space.

In Theorem 2 we prove the well-posedness of the L2-gradient flow of (1.1), i.e.

∂tn−∆gn + B2n = |Dn|2n + |Bn|2n in Σ× (0,+∞). (1.3)

Here ∆g is the rough Laplacian, D is the covariant derivative and B is the shape operator on Σ (see Section
2). The right-hand side of (1.3) is a result of the unit-norm constraint on the director n. A proof of the
existence relying on i) discretization, ii) a priori estimates, iii) convergence of discrete solutions, would
encounter a difficulty here, as the nonlinear term |Dn|2 in the right-hand side of (1.3) is not continuous
with respect to the weak-H1 convergence expected from the a priori estimates. We overcome this problem
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with techniques employed in the study of the heat flow for harmonic maps (see [10, 11]): we first relax the
unit-norm constraint with a Ginzburg-Landau approximation, i.e., we allow for vectors n with |n| 6= 1, but
we penalize deviations from unitary length at the order 1/ε2, for a small parameter ε > 0. In this way, it
is possible to build a sequence of fields nε, with |nε| → 1 as ε → 0, which solve an approximation of (1.3),
with zero right-hand side. The crucial remark, in order to recover (1.3) in the limit, is that for a smooth
unit-norm field n, (1.3) is equivalent to

(∂tn−∆gn + B2n)× n = 0.

When passing to the limit, the non-trivial term is ∆gn × n, which can be treated by a careful surface
integration by parts.

(c) Parametric representation on a torus. A common way to study unit-norm tangent vector fields on
a surface Σ is to introduce a scalar parameter α which measures the rotation of n with respect to a given
orthonormal frame {e1, e2}, i.e. n = e1 cos(α) + e2 sin(α). The local existence of such a representation is
straightforward, but since a global one on Σ is in general not possible (even when the topology of Σ allows
for H1-fields), we first prove that for every H1-regular unit-norm vector field n there exists a representation
α ∈ H1

loc(R2) defined on the universal covering of Σ (Proposition 6.1). Then, we express the energies (1.1)
and (1.2), and the relative Euler-Lagrange equations, in terms of α. With this representation in hand, we
focus on a specific parametrization of the axisymmetric torus in R3. The main advantages are that we now
deal with the scalar quantity α, instead of the vector n, that through the parametrization we can reduce to
work on a flat domain, e.g. Q = [0, 2π]× [0, 2π], and that the unit-norm constraint does not appear explicitly.
The disadvantages are that the representation is not unique (as α and α + 2kπ yield the same field n) and
that the parametrization introduces an unusual condition of “periodicity modulo 2π” on the boundary of Q.

In [37] we used this approach to explicitly calculate the value of the energy (1.2) on constant deviations
α. The interest lies in understanding the dependence of the energy on the mechanical parameters Ki and on
the aspect ratio of the torus, even on a special set of configurations. The constant configurations αm := 0
and αp := π/2 (see Figure 2) are of particular interest, as, up to an additive constant, the α-representation
of (1.1) is

Wκ(α) =
κ

2

∫
Q

{
|∇sα|2 + η cos(2α)

}
dVol, (1.4)

where η is a function which depends only on the geometry of the torus. This structure, a Dirichlet energy
plus a double (modulo 2π) well potential, is well-studied in the context of Cahn-Hilliard phase transitions.
Depending on the torus aspect ratio, the sign of η may not be constant on Q, thus forcing a smooth transition
between the states αm, where η < 0, and αp, where η > 0.
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Figure 2. The constant states αm ≡ 0 (director oriented along the meridians of the torus),
αp ≡ π/2 (director oriented along the parallels of the torus) and their respective energy
densities.

In Subsection 7.2 we show a correspondence between elements of the fundamental group of the torus
(Z × Z), classes of functions α with the same boundary conditions, and classes of vector fields n with the
same winding number. In view of this decomposition, in Theorem 3 we prove that the Euler-Lagrange
equation of (1.4) has a solution for every element of Z×Z, and that for every (regular enough) initial datum
α0 in a class with fixed boundary conditions, the L2-gradient flow of (1.4) has a unique classical solution,
which converges to a solution of the E.-L. equation as t→∞.
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1.1. Structure of the paper. In Section 2 we introduce the differential geometry notation and tools that
we need for our study. In Section 3 we describe and contextualize the energies (1.1) and (1.2). In Section
4 we set up the functional framework and we state the H1-version of the hairy ball Theorem (Theorem
1). The existence of minimizers (Proposition 5.1) and the gradient flow dynamics (Theorem 2) on general
two-dimensional embedded surfaces are proved in Section 5. Section 6 is devoted to the existence of globalH1-
representations α (Proposition 6.1), which we use in Subsection 6.1 to express the energies in terms of α and
in Subsection 6.2 to prove Theorem 2. In Section 7 we concentrate on the particular case of an axisymmetric
parametrised torus. After a short revision of the minimization problem on constant deviations α (Subsection
7.1), we state and prove the results concerning the correspondence between homotopy classes of the torus,
solutions of the Euler-Lagrange equations, and gradient flows (Theorem 3). Numerical approximations of
these solutions, obtained by evolving the discretized gradient flow, are presented in Section 8. The appendices
contain the computations regarding the explicit parametrization of the torus and the derivation of the Euler-
Lagrange equation for the full energy (1.2), in terms of α.

2. Differential Geometry Preliminaries

We refer the reader to, e.g., [22], for all the material regarding Riemannian geometry. Let Σ ⊂ R3 be
an embedded regular surface of R3. We assume that Σ is compact, connected and smooth. For any point
x ∈ Σ, let TxΣ and NxΣ denote the tangent and the normal space to Σ in the point x, respectively. Let TΣ
denote the tangent bundle of Σ, i.e. the (disjoint) union over Σ of the tangent planes TxΣ. Let π : TΣ→ Σ
be the (smooth) map that assigns to any tangent vector its application point on Σ. A vector field n on a
open neighbourhood A ⊂ Σ, is a section of TΣ, i.e. a map n : A → TΣ for which π ◦ n is the identity on
Σ. We denote by T(Σ) the space of all the smooth sections of TΣ. For any point x ∈ Σ let T ∗xΣ = (TxΣ)∗

be the dual space of TxΣ, also named cotangent space. Its elements are called covectors. The disjoint union
over Σ of the cotangent spaces T ∗xΣ is T ∗Σ. As we did for vector fields, we introduce the space of smooth
sections of T ∗Σ. We denote this space by T∗(Σ), its elements are the covector fields. We denote by g
the metric induced on Σ by the embedding, i.e. the restriction of the metric of R3 to tangent vectors to
Σ. As a consequence, we can unambiguously use the inner product notation (u,v)R3 instead of g(u,v) for

u,v ∈ TxΣ, x ∈ Σ. Similarly, we write |u| =
√

(u,u)R3 to denote the norm of a tangent vector u to Σ. For

a two-tensor A = {aji} we adopt the norm |A|2 := tr(ATA) =
∑
ij(a

j
i )

2, which is invariant under change of

coordinates. If {e1, e2} is any local frame for TΣ, we denote by gij = g(ei, ej) = (ei, ej)R3 the components
of the metric tensor with respect to {e1, e2}. By gij and ḡ we denote the components of the inverse g−1

and the determinant of g, respectively. As it is customary, if (x1, x2) is a coordinate system for Σ, then
( ∂
∂x1 ,

∂
∂x2 ) is the corresponding local basis for TΣ and (dx1,dx2) is the dual basis. Given a vector X, we

denote by X[ the covector such that X[(v) = g(X,v). In coordinates,

X[ = X[
i dx

i, with X[
i = gijX

j .

Being the flat [ operator invertible, we denote by the sharp ] symbol its inverse, which acts in the following
way: Given a covector ω, let ω] be the vector such that ω(v) = g(ω],v). In coordinates, we have

ω] = (ω])i
∂

∂xi
, with (ω])i = gijωj .

In the formulae above and in the rest of the paper we use Einstein summation convention: repeated upper
and lower indices will automatically be summed unless otherwise specified. In particular, indices with greek
letters are summed from 1 to 3, while latin ones are summed from 1 to 2.

Differential Operators. Let ∇ be the connection with respect to the standard metric of R3, i.e., given two
smooth vector fields Y and X in R3 (identified with its tangent space), the vector field ∇XY is the vector
field whose components are the directional derivatives of the components of Y in the direction X. When eα
(α = 1, . . . , 3) is a basis of R3 we will set ∇αY := ∇eαY . Given u and v in T(Σ), we denote with Dvu the
covariant derivative of u in the direction v, with respect to the Levi Civita (or Riemannian) connection D
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of the metric g on Σ. Now, if u and v are extended arbitrarily to smooth vector fields on RN , we have the
Gauss Formula along Σ:

∇vu = Dvu+ h(u,v)ν. (2.1)

In the relation above, the symmetric bilinear form h : T(Σ)× T(Σ) −→ R is the scalar second fundamental
form of Σ. Associated to h, there is a linear self adjoint operator, called shape operator and denoted with
B : T(Σ) −→ T(Σ), such that Bv = −∇vν for any v ∈ T(Σ). We recall that the operator B satisfies the
Weingarten relation

(Bu,v)R3 = h(u,v) ∀u,v ∈ T(Σ).

Beside the covariant derivative, we introduce another differential operator for vector fields on Σ, which takes
into account also the way that Σ embeds in R3. Let u ∈ T(Σ) and extend it smoothly to a vector field ũ on
R3; denote its standard gradient by ∇ũ on R3. For x ∈ Σ, define the surface gradient of u

∇su(x) := ∇ũ(x)P (x), (2.2)

where P (x) := (Id−ν⊗ν)(x) is the orthogonal projection on TxΣ. Note that ∇su is well-defined, as it does
not depend on the particular extension ũ. The object just defined is a smooth mapping ∇su : Σ→ R3×3, or
equivalently ∇su : Σ→ L(R3,R3) (the space of linear continuous operators on R3), such that ker∇su(x) =
NxΣ, for all x ∈ Σ. In general, ∇su 6= Du = P (∇u) since the matrix product is non commutative. Using
the decomposition (2.1), it is immediate to get

∇su[v] = ∇vu = Dvu+ h(u,v)ν, ∀v ∈ TxΣ,∀x ∈ Σ,

which gives, recalling that the decomposition is orthogonal,

|∇su|2 = |Du|2 + |Bu|2, ∀u ∈ TxΣ,∀x ∈ Σ. (2.3)

Having defined ∇su, we can introduce the related notions of divergence and curl

trg∇su = trgDu =: divs u, in coordinates, divs u =
1√
ḡ

∂

∂xi
(√
ḡui

)
and curls u := −ε∇su, where ε is the Ricci alternator:

εαβγ =

 0 if any of α, β, γ are the same,
+1 if (α, β, γ) is a cyclic permutation of (1,2,3),
−1 otherwise.

Note that the trace operator in the definition of the divergence acts only on tangential directions. Moreover,
note that, contrary to the so-called covariant curl (denoted with curlΣ, see [22]) the surface curls defined
above has, unless the surface Σ is a plane, also in-plane components. To see this, we introduce the Darboux
orthonormal frame (or Darboux trihedron) (n, t,ν), where t = ν ×n. Let κn, κt be the geodesic curvatures
of the flux lines of n and t, defined as κn := (Dnn, t)R3 , κt := −(Dtt,n)R3 , respectively; let cn := (Bn,n)R3

be the normal curvature and let τn = −(Bn, t)R3 be the geodesic torsion of the flux lines of n (see, e.g.,
[13]). The surface gradient of n, with respect to the Darboux frame, has the simple expression (see, e.g.,
[34])

∇sn =

 0 0 0
κn κt 0
cn −τn 0

 ,

from which we read

divs n = κt and curls n = −τnn− cnt + κnν. (2.4)

On the other hand, also the norm of the covariant derivative Dn can be expressed in terms of the geodesic
curvatures κt and κn as |Dn|2 = κ2

t + κ2
n. As a result, we have the following useful expression

(divs n)2 + (n · curls n)2 + |n× curls n|2 = (divs n)2 + | curls n|2 = κ2
t + κ2

n + τ2
n + c2n = |∇sn|2. (2.5)

For a smooth scalar function f : Σ → R, with differential application dfx : TxΣ → Tf(x)R ' R, we

introduce its gradient as grads f = df ], that is, the vector field such that

df(X) = g(grads f,X) for all X ∈ TΣ.
6



Since for scalar functions the expressions of grads f and ∇sf coincide, in what follows we replace grads with
the more common notation ∇sf . In coordinates, denoting X = Xi ∂

∂xi , the above relation means

∇sf := gij
∂f

∂xj
∂

∂xi
.

The Laplace Beltrami operator on Σ is given by

∆s := divs ◦∇s =
1√
ḡ

∂

∂xi

(√
ḡgij

∂

∂xj

)
.

We denote with dVol the volume form of Σ (see, e.g., [22]). We recall the following integration by parts
formula (f and h are smooth functions on Σ)

−
∫

Σ

∆sf h dVol =

∫
Σ

g(∇sf,∇sh) dVol−
∫
∂Σ

hdf(N) dS′, (2.6)

where f and h are smooth functions on Σ and dS′ is the element of length of the induced metric on ∂Σ. For
a smooth vector field n ∈ T(Σ), we denote with D2n the double covariant derivative of n, i.e. the following
tensor field

D2n(X,Y ) := DX(DY n)−DDXY n for X,Y ∈ T(Σ).

If X = ∂
∂xi

and Y = ∂
∂xj

, we set D2
ijn := D2n( ∂

∂xi
, ∂
∂xj

). Then, we denote with ∆gn the rough laplacian of

n, namely the vector field defined as

∆gn := gij(D2
ijn) = gijDi(Djn)− gijDDi

∂
∂xj

n.

In particular, in a local orthonormal frame {e1, e2}, we have that

∆gn = δijDi(Djn)− δijDDiejn.

Note that ∆g can be expressed in divergence form as ∆gn = divsDn. In the flat case, the rough laplacian
reduces to the componentwise laplacian of n.

3. Energetics

Let Ω ⊂ R3 be the volume occupied by the crystal and let S2 ⊂ R3 be the unit sphere. In the framework
of the director theory for nematic liquid crystals, the configurations of the crystal may be described in terms
of the optical axis, a unit vector field n : Ω → S2. A widely used model for nematic liquid crystals is the
Oseen, Zocher and Frank (OZF) model (see, e.g., [43]), which is based on the energy

WOZF (n,Ω) :=
1

2

∫
Ω

[
K1(÷n)2 +K2(n · curl n)2 +K3|n× curl n|2

+(K2 +K24)÷ [(∇n)n− (÷n)n]] dx,

(3.1)

where K1, K2, K3 and K24 are positive constants called the splay, twist, bend and saddle-splay moduli,
respectively. In what follows, we generally omit the dependence of the energy on the domain. A well-studied
case is the so-called one-constant approximation, obtained when the three constants Ki are equal. In this
case (3.1) reduces to

WOZF
κ (n) :=

κ

2

∫
Ω

|∇n|2 dx. (3.2)

This model (both in the general case and the one-constant approximation) has received considerable attention
from the mathematical community. Among the others, we refer to [6], [17]. As it is apparent from the energy
(3.2), the analysis of liquid crystals shares some difficulties with the theory of harmonic maps into spheres
(see, e.g., [6]). More precisely, the study of (3.1) and (3.2) has to face possible topological obstructions coming
from the choice of the boundary conditions. In particular, choices of the boundary data not satisfying proper
topological constraint lead to the formation of singularities, named defects, in the director (see [17]).

In this paper, we study nematic liquid crystals which are constrained on a surface Σ ⊂ R3. We describe
their behaviour via a unit norm vector field n tangent to Σ, that is n(x) ∈ TxΣ, for x ∈ Σ. As in the three-
dimensional theory of Oseen, Zocher, and Frank (OZF), the director n describes the preferred direction of
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the molecular alignment (which coincides with the optical axis of the molecule). In all classical models of
surface free energy for nematics, the derivatives in (3.2) are replaced by the covariant derivative Dn of the
surface Σ (see [25, 41, 42, 44], and [39], where the full hydrodynamic model is considered). Consequently,
the surface energy in the one-constant approximation is

W in
κ (n) :=

κ

2

∫
Σ

|Dn|2 dVol (3.3)

and the surface energy in its full generality is

W in(n) :=
1

2

∫
Σ

K1(divs n)2 +K3| curlΣ n|2dVol, (3.4)

where curlΣ is the covariant curl (see [22]). We adopt the superscript ‘in’ in (3.3) and (3.4), referring to the
intrinsic character of this energy. A recent approach [30, 31] takes into account also the effects of extrinsic
curvature in the deviations of the director. The energy in this case is

W (n) :=
1

2

∫
Σ

K1(divs n)2 +K2(n · curls n)2 +K3|n× curls n|2 dVol. (3.5)

To have a better insight on the extrinsic/intrinsic character of this energy, let us focus on the one-constant
approximation of (3.5), which is given by

Wκ(n) :=
κ

2

∫
Σ

|∇sn|2 dVol, (3.6)

where ∇s is the operator introduced in (2.2). Now, thanks to (2.3) we have

Wκ(n) =
κ

2

∫
Σ

|Dn|2 + |Bn|2 dVol (3.7)

which shows a striking difference between the classical energy (3.3) and the newly proposed (3.6), namely
the presence of the extrinsic term Bn. This term takes into account how the surface Σ, which models the
thin substrate on which the liquid crystal is smeared, is embedded into the three-dimensional space. The
energy (3.5) has been derived in [30, 31] starting from the well established Oseen and Frank’s energy WOZF

(3.1). More precisely, starting from a tubular neighborhood Σh of thickness h (satisfying a suitable constraint
related to the curvature of Σ), Napoli and Vergori in [30, 31] obtain that W (n) in (3.5) is given by

W (n) = lim
h↘0

1

h
WOZF (n,Σh)

The limit above holds for any fixed and sufficiently smooth field n with the property of being independent of
the thickness direction and tangent to any inner surface of the foliation Σh. As a result, the null lagrangian
related to the coefficient (K2 +K24) in (3.1) disappears in the limit procedure and hence it is not considered
in (3.5). It is an open and interesting problem to rigorously justify this formal limit, for example via Gamma
convergence (in the spirit of [21]).

4. Functional Framework

In this Section we introduce the functional framework where to set the problem. As it will be clear in a
moment (see Theorem 1), the choice of our functional setting reflects the topology of the shell. In particular,
we will restrict to surfaces for which the Poincaré - Hopf index Theorem does not force the vector field to
have defects.

Here integration is always with respect to the area form of the metric g induced on Σ by the euclidean
metric of R3. Let L2(Σ) and L2(Σ;R3) be the standard Lebesgue spaces of square-integrable scalar functions
and vector fields, respectively. Define the spaces of tangent vector fields

L2
tan(Σ) :=

{
u ∈ L2(Σ;R3) : u(x) ∈ TxΣ a.e.

}
and H1

tan(Σ) :=
{
u ∈ L2

tan(Σ) : |Du| ∈ L2(Σ)
}
.
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The latter, endowed with the scalar product

(u,v)H1 :=

(∫
Σ

{
tr(DuTDv) + (u,v)R3

}
dVol

)1/2

is a separable Hilbert space. Let ‖u‖H1 :=
√

(u,u)H1 . We can define another norm by

‖u‖H1
s

:=

(∫
Σ

{
|∇su|2 + |u|2

}
dVol

)1/2

.

Let λM denote the maximum value attained by the eigenvalues of the shape operator B on Σ. Since

|Du|2 + (λ2
M + 1)|u|2 ≥ |Du|2 + |Bu|2 + |u|2 ≥ |Du|2 + |u|2,

by (2.3) the two norms are equivalent:

(λ2
M + 1)1/2‖u‖H1 ≥ ‖u‖H1

s
≥ ‖u‖H1 .

Finally, the ambient space for the directors n is defined as

H1
tan(Σ;S2) :=

{
u ∈ H1

tan(Σ) : |u| = 1 a.e.
}
.

Since for u ∈ H1
tan(Σ;S2)

‖u‖2H1
s

=
2

κ
Wκ(u) + Vol(Σ),

it will often be useful to adopt ‖ · ‖H1
s

instead of ‖ · ‖H1 . Note that H1
tan(Σ; S2) ⊂ L2(Σ;R3) with compact

embedding, and thus H1
tan(Σ;S2) is a weakly closed subset of H1

tan(Σ). Note also that H1
tan(Σ;S2) lacks a

linear structure, while H1
tan(Σ) is a linear space.

There are two major problems to address before discussing the existence of minimizers of (3.5):

• Choice of the topology of the surface Σ. This is related to the choice of the functional space thanks
to the H1-version of the hairy ball Theorem giving that there are no global vector fields with unit
length on a compact two-dimensional surface without boundary and with H1 regularity unless the
Euler Characteristic χ(Σ) = 0 (see the next Theorem 1).

• Choice of the boundary conditions. Given a boundary datum nb in some functional class. then we
have to show that the set of competitors A(nb) is not empty, where

A(nb) :=
{
u ∈ H1

tan(Σ;S2) : u = nb on ∂Σ
}
.

This fact is related to some precise topological properties of nb (see [7]).

For the time being, we prefer not to tackle the intriguing and difficult problem of the choice of the boundary
conditions demanding to a future paper its analysis (see [7]). Thus, we restrict to the case of a smooth surface
without boundary. In this context, the following H1 form of the classical hairy ball Theorem, clarifies the
situation.

Theorem 1. Let Σ be a compact smooth surface without boundary, embedded in R3. Let χ(Σ) be the Euler
characteristic of Σ. Then

H1
tan(Σ;S2) 6= ∅ ⇔ χ(Σ) = 0.

According to the above Theorem, in Section 5 we will make this basic topological assumption:

Σ is a compact and smooth two-dimensional surface without boundary, with χ(Σ) = 0. (4.1)

We postpone the proof of the above result to the end of Section 6. In particular, we have that the two-
dimensional sphere cannot be combed with H1-regular vector fields. On the other hand, the above Theorem
(as well as its smooth classical counterpart) does not hold for odd-dimensional spheres as the following
example shows. Take x = (x1, . . . , x2N ) ∈ S2N−1. The vector field u given by

u(x) = (x2,−x1, . . . , x2i,−x2i−1, . . . , x2N ,−x2N−1)

is smooth, tangent, and with unit norm.
9



5. Existence of minimizers and gradient flow of the energy

Now, we come to the question of existence of minimizers of the energy (3.5). Choosing Σ satisfying (4.1),
namely in such a way that H1

tan(Σ; S2) 6= ∅, we have the following (see [17] for the flat case)

Proposition 5.1. Let Σ be a smooth, compact surface in R3, without boundary, satisfying (4.1) and let
W : H1

tan(Σ; S2) → R be the energy functional defined in (3.5). Set K∗ := min {K1,K2,K3} and K∗ :=
3(K1 +K2 +K3). We have that

K∗
2

∫
Σ

(
|Du(x)|2 + |Bu(x)|2

)
dVol ≤W (u) ≤ K∗

2

∫
Σ

(
|Du(x)|2 + |Bu(x)|2

)
dVol.

Moreover, the energy W is lower semicontinuous with respect to the weak convergence of H1(Σ;R3).

Proof. The upper and the lower bound follow by the one-constant approximation (see (2.3)) and the equality
(2.5). The lower semicontinuity can be proved by noting that all the terms in (3.5) are indeed weakly lower
semicontinuous in H1(Σ;R3) and are multiplied by the positive constants K1,K2 and K3. �

Thus, the existence of a minimizer of the energy W follows from the direct method of calculus of variations

Proposition 5.2. There exists n ∈ H1
tan(Σ;S2) such that W (n) = infu∈H1

tan(Σ;S2)W (u).

Proof. Let un be a minimizing sequence uniformly bounded in H1
tan(Σ;S2). This means that |un| = 1 and

that {un} is uniformly bounded in H1
tan(Σ). Thus, up to a not relabeled subsequence of n, we have that

there exists a vector field n ∈ H1
tan(Σ) with |n| = 1 such that

un
n↗+∞−−−−−→ n weakly in H1

tan(Σ;S2) and strongly in L2(Σ).

Thus, the lower semicontinuity of W gives that infu∈AW (u) = lim infn↗+∞W (un) ≥ W (n) which means
that n is a minimizer for W .

�

Now, in the case of the one-constant approximation, we compute, the Euler Lagrange equation associated
to the minimization of (3.7) (see also). Incidentally, note that up to technical modifications, the same
computations are valid for an (n−1)-hypersurface in Rn. Thus, let n ∈ H1

tan(Σ; S2) be a minimizer for (3.7).
Take a smooth v ∈ H1

tan(Σ;S2) and consider the family of deformations ϕ(t) := n+tv
|n+tv| , for t ∈ (0, 1). Note

that |ϕ| = 1 by construction and that ϕ ∈ H1
tan(Σ; S2). Moreover, ϕ(0) = n and ϕ̇(0) = v − (v,n)n and

thus Wκ(ϕ(t)) has a minimum at t = 0. Hence, we have

0 =
d

dt |t=0
Wκ(ϕ(t)) = κ

∫
Σ

(Dϕ(0), Dϕ̇(0))R3dVol + κ

∫
Σ

(Bϕ(0),Bϕ̇(0))R3dVol

= κ

∫
Σ

(Dn, Dv)R3dVol + κ

∫
Σ

(Bn,Bv)R3dVol

− κ
∫

Σ

|Dn|2(n,v)R3dVol− κ
∫

Σ

|Bn|2(n,v)R3dVol,

where we have used that, being |n| = 1, there holds that (Dn,n)R3 = 0, and the fact that B[n(n,v)R3 ] =
−∇n(n,v)R3

ν = −(n,v)R3∇nν = (n,v)R3Bn. Now, since the shape operator B is self-adjoint, we may

introduce the operator B2 given by

(B2u,v)R3 := (Bu,Bv)R3 for any u,v ∈ T(Σ).

Thus, collecting all the computations, we obtain that a minimizer n of Wκ is a solution of the following
system of nonlinear partial differential equations

−∆gn + B2n = |Dn|2n + |Bn|2n in Σ. (5.1)

Since the equations do not depend on κ, in the remainder of this section we take κ = 1, but we still write
Wκ, to tell the one-constant energy from the general W with three constants.
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Remark 5.1. As it happens for harmonic maps, a vector field n solving (5.1) is parallel to −∆gn + B2n.
Viceversa, if −∆gn + B2n is parallel to n, then there exists a function λ on Σ (the Lagrange multiplier)
such that

−∆gn + B2n = λn,

from which it follows that (recall that |n| = 1)

λ = λ(n,n)R3 = (−∆gn,n)R3 + (B2n,n)R3 = |Dn|2 + |Bn|2,
where we have used the general identity

0
|n|=1

= ∆g|n|2 = 2
{
|Dn|2 + (∆gn,n)R3

}
, (5.2)

holding for any smooth vector field n on Σ. Therefore, a smooth unitary vector field n ∈ T(Σ) is a solution
of (5.1) if and only if it solves

(−∆gn + B2n)× n = 0. (5.3)

Evolution of the energy (3.6) (Παντα ρει). In this paragraph, we study the L2 gradient flow of the
energy (3.6), namely the following evolution

∂tn−∆gn + B2n = |Dn|2n + |Bn|2n a.e. in Σ× (0,+∞), (5.4)

n(0) = n0 a.e. in Σ. (5.5)

We make precise the definition of weak solution to (5.4).

Definition n is a global weak solution to (5.4) if

n ∈ L∞(0,+∞;H1
tan(Σ; S2)), ∂tn ∈ L2(0,+∞;L2

tan(Σ)),

n weakly solves (5.4), that is∫
Σ

(∂tn, ϕ)R3dVol +

∫
Σ

(Dn, Dϕ)R3dVol +

∫
Σ

(B2n− |Dn|2n− |Bn|2n, ϕ)R3dVol = 0, (5.6)

for all ϕ ∈ H1
tan(Σ).

We are going to prove the following Theorem.

Theorem 2. Let Σ be a two-dimensional surface satisfying (4.1). Given n0 ∈ H1
tan(Σ; S2) there exists a

global weak solution to (5.4) with n(·, 0) = n0(·) in Σ.

Note that equation (5.4) has some similarities with the heat flow for harmonic maps and it offers similar
difficulties. In particular, the treatment of the quadratic terms in the right hand side requires some care.
Note that these terms are related to the constraint n(x) ∈ S2 for a.a. x ∈ Σ. As it happens in the study
of the heat flow for harmonic maps (see [10, 11]), we relax this constraint with a Ginzburg-Landau type
approximation, i.e., we allow for vectors n with |n| 6= 1, but we penalise deviations from unitary length. The
approximating equation is then obtained as the Euler-Lagrange equation of the unconstrained functional

Eε : H1
tan(Σ)→ R, Eε(v) := Wκ(v) +

1

4ε2

∫
Σ

(|v|2 − 1)2. (5.7)

Thus, we approximate the solutions to (5.4)-(5.5) with solutions of (ε is a small parameter intended to go
to zero)

∂tn
ε −∆gn

ε + B2nε + 1
ε2 (|nε|2 − 1)nε = 0 a.e. in Σ× (0,+∞), (5.8)

nε(0) = n0 a.e. in Σ. (5.9)

Existence of a global solution to (5.8)-(5.9), with all the terms in L2(0,∞;L2
tan(Σ)) follows from the time

discretization procedure we are going to briefly outline. Owing to the decomposition described in Remark
5.1, the nonlinear terms (|Dn|2 + |Bn|2)n are eventually recovered, in the limit as ε→ 0, by showing (5.3).

First of all we introduce a uniform partition P of (0,+∞), i.e.

P := {0 = t0 < t1 < t2 < . . . < tk < . . .} , τ := ti − ti−1, lim
k↗+∞

tk = +∞.
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Now, starting from the initial value n0, we find an approximate solution Nk ≈ nε(tk), k = 1, . . . , by solving
iteratively the following problem in the unknown Nk (for notational simplicity, we skip for a while the ε
dependence)

Find Nk with Nk(x) ∈ TxΣ for a.a. x ∈ Σ such that

Nk −Nk−1

τ
−∆gNk + B2Nk +

1

ε2
(|Nk|2 − 1)Nk = 0 for a.a. x ∈ Σ. (5.10)

The existence of a solution to the above problem follows by minimization. More precisely, given (5.7), it is
not difficult to show that the solution of the iterative minimization problem

Given Nk−1 ∈ H1
tan(Σ), find Nk ∈ argminv∈H1

tan(Σ)

{
|v −Nk−1|2

τ
+ Eε(v)

}
, (5.11)

is a solution to (5.10). Problem (5.11) can be easily solved using the direct method of calculus of variations as

we did in Proposition 5.1. Subsequently, we introduce the piecewise linear (N̂τ ) and the piecewise constant
(N̄τ ) interpolants of the discrete values {Nk}k≥1. Namely, given n0, N1, . . . , Nk, . . . , we set

N̂τ (0) := n0, N̂τ (t) := ak(t)Nk + (1− ak(t))Nk−1,

N̄τ (0) := n0, N̄τ (t) := Nk for t ∈ ((k − 1)τ, kτ ], k ≥ 1,

where ak(t) := (t− (k − 1)τ)/τ for t ∈ ((k − 1)τ, kτ ], k ≥ 1. Note that, for almost any (x, t) ∈ Σ× (0,+∞),

we have that N̂τ ∈ TxΣ and N̄τ ∈ TxΣ, being TxΣ a linear space for any fixed x ∈ Σ. Hence, we can rewrite
(5.10) in the form

∂tN̂τ −∆gN̄τ + B2N̄τ +
1

ε2
(|N̄τ |2 − 1)N̄τ = 0 for a.a. (x, t) ∈ Σ× (0,+∞). (5.12)

Once we have (5.12), we can obtain in a standard way some uniform (with respect to τ) a priori estimates
and we can pass to the limit as τ ↘ 0. As a consequence, we obtain a solution to (5.8). Note that this
procedure provides a map nε which, besides solving (5.8) pointwise, is a tangent vector field, namely for a.a.
x ∈ Σ there holds nε(x) ∈ TxΣ. This property follows from the fact that Nk(x) ∈ TxΣ and from the fact
that the convergence of the discrete solutions to nε is strong enough.

The question is clearly to pass to the limit as ε↘ 0 and to recover a solution of (5.4)-(5.5). To this end,
we perform some a priori estimates on the solutions to (5.8) that are independent of ε. We take the scalar
product of R3 between the approximate equation and ∂tn

ε and then we integrate over Σ. We have

‖∂tnε(t)‖2 +
d

dt
Eε(nε(t)) = ‖∂tnε(t)‖2 +

d

dt
Wκ(nε(t)) +

1

4ε2

d

dt

∫
Σ

(|nε(t)|2 − 1)2dVol = 0. (5.13)

Thus, integrating on (0, T ), T > 0, and using that n0 ∈ H1
tan(Σ;S2), we get the following estimate

‖∂tnε‖2L2(0,T ;L2
tan(Σ)) + ‖Dnε‖2L∞(0,T ;L2

tan(Σ)) + ‖Bnε‖2L∞(0,T ;L2
tan(Σ))

+ sup
t∈(0,T )

1

4ε2

∫
Σ

(|nε(t)|2 − 1)2dVol ≤ 3Eε(n0) = 3Wκ(n0). (5.14)

Now, the estimate above gives the existence of a vector field n ∈ H1(0, T ;L2
tan(Σ))∩L∞(0, T ;H1

tan(Σ)) with
n(0) = n0 and of a not relabeled subsequence of ε such that

nε
ε↘0−−−→ n weakly star in L∞(0, T ;H1

tan(Σ)) and strongly in L2(0, T ;L2
tan(Σ)), (5.15)

∂tn
ε ε↘0−−−→ ∂tn weakly in L2(0, T ;L2

tan(Σ)), (5.16)

B2nε
ε↘0−−−→ B2n strongly in L2(0, T ;L2

tan(Σ)), (5.17)

where the last convergence follows directly from the continuity of the shape operator with respect to the
strong convergence in L2 and from the definition of the operator B2. Moreover, from (5.14) we have that∫

Σ

(|nε(t)|2 − 1)2dVol ≤ 12Wκ(n0)ε2 ∀ε > 0, ∀t ∈ (0, T ),
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which implies that (up to subsequences)

|nε|2 ε↘0−−−→ 1 a.e. on Σ× (0, T ). (5.18)

As a consequence, we have that |n| = 1 a.e. in Σ for any time interval (0, T ), and hence n ∈ L∞(0,+∞;H1
tan(Σ;S2)).

Moreover, integrating (5.13) between 0 and +∞, we have ∂tn ∈ L2(0,+∞;L2
tan(Σ)). To conclude, we have

to prove that n solves (5.4). We have the following result which is reminiscent of the approach used in [10].

Lemma 5.1. Let n be a smooth vector field on Σ. Then there holds

∆gn× n = trg∇(∇n× n) + F(n,∇n), (5.19)

with the trace operator trg taken only in tangent directions and

F(n,∇n) := −gij∇i[h(ej ,n)ν]× n− gijh(ei, Djn)ν − (gij∇Diejn)× n− gijh(Diej ,n)ν × n. (5.20)

Proof. Let {e1, e2} be a local frame for TΣ. First of all we extend n to be a smooth vector field on R3 and
we still denote (with some abuse of notation) this extension with n. We recall the Gauss relation (2.1)

Din = ∇in− h(ei,n)ν, ∀x ∈ Σ, i = 1, 2,

where ∇ is the connection of R3. Then, using the definition of ∆g, we compute

∆gn× n = gijDiDjn× n = gijDi(Djn)× n− (gijDDiejn)× n

= gij∇i(∇jn)× n− gij∇i[h(ej ,n)ν]× n

− gijh(ei, Djn)ν − (gij∇Diejn)× n− gijh(Diej ,n)ν × n,

where the summations above run for i, j = 1, 2. Now, by the symmetry of the metric tensor and the skew
symmetry of the cross product, we have that gij∇jn×∇in = 0 and thus

gij∇i(∇jn)× n = gij∇i(∇jn× n),

from which the thesis follows. �

Note that, when n is just a map n : Σ → S2 without the constraint of being a tangent vector field to Σ
(hence ∆g is the Laplace Beltrami operator), then (5.19) reduces to the formula proven in [10, Lemma 2.2]

It is important to note that the term F in (5.19) is a combination of products of n and its first derivatives
∇n. Moreover, note that the local expression of F in a point x̄ simplifies if we use normal coordinates
centered in x̄. In fact, since for these coordinates the Christoffel’s symbols of the metric vanish, we have that

F(n,∇n) = −gij∇i[h(ej ,n)ν]× n− gijh(ei, Djn)ν.

The importance of this Lemma becomes more evident when we analyze the behaviour of ∆gn
ε × nε with

respect to the typical weak convergence (5.15) we have for the sequence nε (see Lemma 5.4).

Lemma 5.2. Let be given n ∈ L∞(0,+∞;H1
tan(Σ; S2)) with ∂tn ∈ L2(0,+∞;L2

tan(Σ)). Then n solves (5.4)
if and only if n solves

∂tn× n− trg∇(∇n× n) + F(n,∇n) + B2n× n = 0 in Σ× (0,+∞). (5.21)

Proof. If n is a weak solution of (5.4) with the above regularity, then we can take the cross product of (5.4)
with n and get (5.21) using Lemma 5.1. On the other hand, if (5.21) holds, then (∂tn−∆gn+B2n)×n = 0,
which means that there exists a function λ such that

∂tn−∆gn + B2n = λn a.e. in Σ× (0,+∞).

Hence, being |n| = 1 almost everywhere in Σ× (0,+∞), we get that 0 = ∂t|n|2 = 2∂tn · n and

λ = (λn,n)R3 = (∂tn−∆gn + B2n,n)R3

(5.2)
= |Dn|2 + |Bn|2 a.e. in Σ× (0,+∞),

which means that n solves (5.4). �
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Lemma 5.3. Let n be a smooth vector field on Σ. Then, for any smooth normal vector field ϕ with compact
support on Σ there holds the following integration by parts formula∫

Σ

trg(∇(∇n× n), ϕ)R3dVol = −
∫

Σ

trg(∇n× n,∇ϕ)R3dVol. (5.22)

Proof. In the support of ϕ we choose isothermal coordinates x = (x1, x2), which always exist for two-
dimensional regular surfaces (see [13]), in such a way that the metric tensor is locally conformal to the flat
metric, i.e. g has the form gij = fδij (and thus gij = 1

f δ
ij) for some strictly positive and smooth real

function f . As a consequence, the volume form in this coordinates becomes dVol = fdx1 ∧ dx2. Now, we
introduce the 1-form ω defined, for any tangent vector v, as ω(v) = (∇ν×vn, ϕ)R3 . The Stokes Theorem
(see [22, Theorem 16.11]) gives that ∫

Σ

dω = 0.

The differential of ω can be computed as

dω = hdx1 ∧ dx2 =
h

f
dVol

where the function h has the form

h =
∂

∂x1
ω2 −

∂

∂x2
ω1,

with ωi := ω( ∂
∂xi ) for i = 1, 2. We have

∂

∂x1
ω2 = − ∂

∂x1
(∇1n× n, ϕ)R3 = −(∇1(∇1n× n), ϕ)R3 − (∇1n× n,∇1ϕ)R3

and
∂

∂x2
ω1 =

∂

∂x2
(∇2n× n, ϕ)R3 = (∇2(∇2n× n), ϕ)R3 + (∇2n× n,∇2ϕ)R3 .

Thus, we conclude

0 =

∫
Σ

dω =

∫
Σ

h

f
dVol = −

∫
Σ

trg(∇(∇n× n), ϕ)R3dVol−
∫

Σ

trg(∇n× n,∇ϕ)R3dVol.

�

Now, we proceed with the passage to the limit ε↘ 0 in (5.8)-(5.9). Take the cross product of (5.8) with
nε. We get

∂tn
ε × nε −∆gn

ε × nε + B2nε × nε = 0 for a.a. (x, t) ∈ Σ× (0,+∞). (5.23)

Note that all the terms in the equation above belong, for any (x, t) ∈ Σ× (0,+∞), to the normal space NxΣ.
Then, test (5.23) with a smooth normal vector field ϕ and integrate on Σ× (0, T ), T > 0. We obtain∫ T

0

∫
Σ

(∂tn
ε × nε −∆gn

ε × nε + B2nε × nε, ϕ)R3dVol dt = 0.

Let n denote the limit in (5.15)-(5.18). Recall that we have that n ∈ H1
loc(0,+∞;L2(Σ))∩L∞(0,+∞;H1

tan(Σ;S2))
and thus ∂tn× n + B2n× n ∈ L2(0, T ;L2(Σ;R3)). Moreover, using the convergences (5.15)-(5.18) we have

lim
ε↘0

∫ T

0

∫
Σ

(∂tn
ε × nε + B2nε × nε, ϕ)R3dVol dt =

∫ T

0

∫
Σ

(∂tn× n + B2n× n, ϕ)R3dVol dt.

Thus, it remains to identify the weak limit of ∆gn
ε×nε. For this, we use the following Lemma (in the spirit

of the general results in [18]) which gives, for sequences of solutions to (5.8), a sort of weak continuity for
the nonlinear term ∆gn× n.
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Lemma 5.4. Given a sequence nε os solutions to (5.8) such that nε
ε↘0−−−→ n weakly star in L∞(0, T ;H1

tan(Σ))
and strongly in L2(0, T ;L2

tan(Σ)), then for any smooth vector field ϕ in R3 there holds

lim
ε↘0

∫ T

0

∫
Σ

(∆gn
ε × nε, ϕ)R3dVol dt =−

∫ T

0

∫
Σ

trg(∇n× n,∇ϕ)R3dVol dt

+

∫ T

0

∫
Σ

(F(n,∇n), ϕ)R3dVol dt. (5.24)

Proof. First note that for any ε > 0 fixed, ∆gn
ε × nε ∈ L1(Σ) and thus the integral in the left hand side

of (5.24) makes sense. Now, we come to the proof of the convergence. Using Lemma 5.1 we rewrite the left
hand side of (5.24) in the form (5.19). A closer inspection of the term F(nε,∇nε) in (5.20) reveals that it is
weakly continuous with respect to the convergence of the statement, since it contains only products between
nε and its first derivatives. Regarding the first term, we use the integration by parts of Lemma 5.3 and we
obtain

lim
ε↘0

∫ T

0

∫
Σ

(trg∇(∇nε × nε), ϕ)R3dVol dt = − lim
ε↘0

∫ T

0

∫
Σ

(trg(∇nε × nε),∇ϕ)R3dVol dt

= −
∫ T

0

∫
Σ

(trg(∇n× n),∇ϕ)R3dVol dt

and the thesis follows. �

Thus, Lemma 5.4 implies that n solves for any smooth normal vector field ϕ,∫ T

0

∫
Σ

(∂tn×n, ϕ)R3dVol dt+

∫ T

0

∫
Σ

(trg(∇n×n),∇ϕ)R3dVol dt+

∫ T

0

∫
Σ

(F(n,∇n)+B2n, ϕ)R3dVol dt = 0,

which gives (5.21). Hence, Theorem 2 follows from Lemma 5.2.

6. Representation of vector fields n via local deviation α

A reference textbook to the material covered in this Section is [22]. Let Σ ⊂ R3 be a regular orientable
compact surface (with or without boundary) with a maximal system of coordinates (Vj , xj), xj : Vj ⊆ R2 →
Σ. A set U ⊂ Σ is said to be open in Σ if x−1

j (U ∩ xj(Vj)) is open in R2 for all j. For any open set U ⊆ Σ,

let {e1, e2} be a smooth local orthonormal frame, i.e. a pair of smooth sections of the tangent bundle TΣ
such that {e1(p), e2(p)} is an orthonormal basis for TpΣ, for all p ∈ U .

Degree. Suppose now that Σ and N are compact, connected, oriented, smooth manifolds of dimension n. If
Φ : Σ→ N is a smooth mapping, a point p ∈ Σ is said to be a regular point of Φ if dΦp : TpΣ→ TΦ(p)N is

surjective. A point c ∈ N is said to be a regular value of Φ if every point of the level set Φ−1(c) is a regular
point of Φ. If c ∈ N is a regular value of Φ, then the degree of Φ, denoted by deg(Φ,Σ, N), is defined as the
integer k such that

k =
∑

p∈Φ−1(c)

sgn(det(dΦp)),

or, equivalently, such that for every smooth n-form ω on N∫
Σ

Φ∗ω = k

∫
N

ω, (6.1)

where Φ∗ω is the pullback of ω via Φ. If the set of regular values of Φ is empty, it is consistent to set
deg(Φ,Σ, N) = 0.

Lemma 6.1. Two useful properties of the degree:

(1) If Φ0,Φ1 : Σ→ N are homotopic, then they have the same degree.
(2) If Φ : Σ→ N is not surjective, then deg(Φ,Σ, N) = 0.
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More generally, if either Σ or N are manifolds with boundary, it holds

∫
Σ

Φ∗ω =

∫
N

 ∑
p∈Φ−1(c)

sgn(det(dΦp))

ω. (6.2)

(Note that the integral in the left-hand side is well defined since by Sard’s Lemma the set of singular values
of Φ has volume measure zero in N .)

Winding number. Define the 1-form

ω :=
xdy − y dx

x2 + y2
on R2 \ {0}. (6.3)

Given an oriented curve γ in R2 \ {0}, the line integral
∫
γ
ω measures the winding of γ around 0 in coun-

terclockwise direction. The winding number of a closed curve γ with respect to 0 is the integer W (γ) :=
(2π)−1

∫
γ
ω. Given a regular parametrization γ : [0, 1]→ R2 \ {0} with components γ(t) = (γ1(t), γ2(t)), its

winding number can be computed via the pullback of ω:

W (γ) =
1

2π

∫
[0,1]

γ∗ω =
1

2π

∫ 1

0

γ1(t)γ̇2(t)− γ2(t)γ̇1(t)

|γ(t)|2
dt.

The relation between degree and winding number for a regular simple closed curve γ : [0, 1] → R2 \ {0} is
then W (γ) = deg(γ/|γ|,S1,S1) (after identifying the endpoints {0} and {1} in [0, 1]).

Let now v : U ⊆ R2 → R2 be a smooth vector field v = (v1, v2). If γ ∩ v−1(0) = ∅, it is natural to
measure the winding of v along γ by

Wγ(v) :=

∫
γ

v∗ω. (6.4)

To illustrate the meaning of this definition we provide several examples which exhaust all possibilities for
one-dimensional manifolds, up to homeomorphism. We restrict to nowhere vanishing smooth fields v which
are the ones relevant to the study of director fields.

Examples.

1. (γ ∼ [0, 1] ∼ v(γ)). Let v(x, y) := (cos(y), sin(y)), θ̄ ∈ (0, 2π), and γ : [0, θ̄] → R2, γ(t) := (0, t) (see
Figure 3). Then, we can compute directly

Wγ(v) =

∫
γ

v∗ω =

∫ θ̄

0

v1(γ)d(v2(γ))− v2(γ)d(v1(γ)) =

∫ θ̄

0

[
cos2(t) + sin2(t)

]
dt = θ̄. (6.5)

This can also be seen from formula (6.2): denoting Σ = γ, N = v(γ), p = γ(t), and choosing e2(p) = (0, 1)
as basis for TpΣ and τ (t) = (− sin(t), cos(t)) as basis for Tv(p)N , we have

dvp(e2) = τ (t) ⇒ det(d(v|γ)p) ≡ 1. (6.6)

(I.e., identifying TpΣ and Tv(p)N with R, then dv|γ is the identity mapping.) Collecting these computations
we see

θ̄
(6.5)
= Wγ(v)

(6.2),(6.6)
=

∫
v(γ)

ω,

which is not surprising, as v(γ) is just an arc of the unitary circle of length θ̄.
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v

0 1

θ̄

γ1

γ2

γ3

γ4 v ◦ γ

0 1

v(γ)

θ̄

Figure 3. The vector field v of Examples 1–4, on the left. In Example 1 v maps a vertical
side of the rectangle to an arc in S1; in Example 3 the whole boundary of the rectangle is
mapped to the same arc.

2. (γ ∼ [0, 1],v(γ) ∼ S1). Let v and θ̄ be as above, let m ∈ N, γ : [0, 2mπ + θ̄]→ R2, γ(t) := (0, t). Since v
is 2π-periodic and v(γ) = S1, following the same computations as the previous example, we find

Wγ(v) =

∫
v([0,θ̄])

(m+ 1)ω +

∫
v([θ̄,2π])

mω

= m

∫
S1
ω +

∫
v([0,θ̄])

ω

= 2mπ + θ̄.

3. (γ ∼ S1,v(γ) ∼ [0, 1]). Let v be as above, let γi, i = 1, 2, 3, 4 be the four sides of a rectangle R of height
θ̄ ∈ (0, 2π), as in Figure 3. Denote γ = ∂R. Since dvi = 0 on γ1 and γ3, we have

Wγ(v) =

∫
γ

v∗ω =

∫
γ2

v∗ω +

∫
γ4

v∗ω =

∫ θ̄

0

[
cos2(t) + sin2(t)

]
dt+

∫ 0

θ̄

[
cos2(t) + sin2(t)

]
dt = 0.

For all p ∈ γ2, q ∈ γ4, such that v(p) = v(q), we have

det(d(v|γ2)p) + det(d(v|γ4)q) = 1− 1 = 0,

while the line integral is
∫
v(∂R)

ω = θ̄, as above. In conclusion, W∂R(v) = 0.

4. (γ ∼ S1,v(γ) ∼ S1). If v is as above and ∂Q is the boundary of a square of side larger or equal than
2π, we can repeat the computations of the last example. Moreover, since domain and codomain of v ◦ γ are
closed smooth loops, i.e., compact one-dimensional manifolds, we can connect the winding to the degree via
(6.1), and find

0 = W∂Q(v) = deg(v|∂Q, ∂Q, S1)

∫
S1
ω.

Winding of fields on surfaces. Assume that TΣ admits a global orthonormal frame {e1, e2}, it is defined a
smooth diffeomorphism

ι : TΣ→ Σ× R2, (p,v) 7→ (p, (v1, v2))

for all p ∈ Σ, v = viei ∈ TpΣ (see, e.g., [22, Corollary 10.20]). We can then extend the winding Wγ(v) to
sections of the tangent bundle TΣ, i.e., to smooth vector fields Σ 3 p 7→ v(p) ∈ TpΣ. For every smooth
curve γ on Σ such that γ ∩ (ι ◦ v)−1(0) = ∅, we define the winding of v along γ, with respect to {e1, e2}, by

Wγ(v) :=

∫
γ

(ι ◦ v)∗ω, (6.7)

where ω is the angle 1-form defined in (6.3).
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Proposition 6.1. Let Σ be a smooth surface embedded in R3. Assume that there exist:

a smooth global orthonormal frame {e1, e2} on Σ,
a smooth covering map πΣ : R2 → Σ,
a vector field n ∈ H1

tan(Σ;S2).

Then there exists α ∈ H1
loc(R2) such that

n ◦ πΣ = cos(α)(e1 ◦ πΣ) + sin(α)(e2 ◦ πΣ) a.e. in R2. (6.8)

Moreover, α is unique modulo 2π. Conversely, for all α ∈ H1
loc(R2) such that α(x) = α(y) ⇔ πΣ(x) =

πΣ(y), (6.8) defines a vector field n ∈ H1
tan(Σ;S2). As a particular case, if Σ is simply connected, or if

deg(n|γ , γ,n(γ)) = 0 for all closed loops γ ⊂ Σ, then there exists α ∈ H1(Σ) such that

n = cos(α)e1 + sin(α)e2 a.e. in Σ. (6.9)

This lemma applies, in particular, to the cases where Σ is diffeomorphic to a torus or to a disc. It is a
common notation, which we adopt in the following sections, to drop “◦πΣ”. It will be clear from the context
whether α,n, ei are defined on Σ or parametrized on R2.

Proof. Assume first that n is C1-regular and let γ : [0, 1] → Σ be a simple, parametrized, C1 curve. Let
n(t), ei(t) denote n(γ(t)), ei(γ(t)), respectively. Since {e1(t), e2(t)} is an orthonormal positive basis of Tγ(t)Σ
for all t ∈ [0, 1], n(t) may be expressed as

n(t) = a(t)e1(t) + b(t)e2(t)

for some functions a, b ∈ C1([0, 1]) satisfying a2 + b2 = 1. Let α0 ∈ R be such that a(0) = cos(α0),
b(0) = sin(α0). Denote ȧ = d

dta. Then

αγ(t) := α0 + Wγ|[0,t](n)
(6.7)
= α0 +

∫ t

0

{
a(s)ḃ(s)− b(s)ȧ(s)

}
ds (6.10)

is C1-regular and it satisfies n = cos(α)e1 + sin(α)e2 on [0, 1] ([13, Lemma 1, Section 4-4]). In order
to show that αγ depends only on the point γ(t) ∈ Σ and not on the curve γ, let γ̃ : [0, 1] → Σ be a
simple, parametrized, C1 curve such that γ̃(0) = γ(0), γ̃(1) = γ(1), and such that the loop Γ obtained by
concatenating γ and γ̃ is simple. If n is constant on Γ, then Wγ ≡ 0 ≡ Wγ̃ and αγ(1) = αγ̃(1). Otherwise
(see also Example 4 above) it holds

αγ(1)− αγ̃(1) = Wγ(n)−Wγ̃(n) = WΓ(n) =

∫
Γ

(ι ◦ n)∗ω = deg
(
(ι ◦ n)|Γ,Γ, (ι ◦ n)(Γ)

) ∫
(ι◦n)(Γ)

ω. (6.11)

Since Γ is homeomorphic to S1, and (ι◦n)(Γ) ⊆ S1, if Γ is homotopic to a constant path, e.g., if Γ(t) ∼ γ(0),
then Γ cannot be surjective onto S1, and by Lemma 6.1

deg
(
(ι ◦ n)|Γ,Γ, (ι ◦ n)(Γ)

)
= 0. (6.12)

If Σ is simply connected, then every closed loop is homotopic to a constant path, so that (6.11) and (6.12)
show that the angle αγ defined in (6.10) is independent of the path γ. To define α on Σ it is then sufficient
to fix a base point p0 ∈ Σ, a base value α0 ∈ R such that n(p0) = cos(α0)e1(p0) + sin(α0)e2(p0) (the latter
is unique modulo 2π), and define

α(p) := αγ(1), for all p ∈ Σ, for any γ ∈ C1([0, 1]; Σ) : γ(0) = p0, γ(1) = p. (6.13)

Regarding regularity of α, choose a path γ such that γ(t) = p ∈ Σ, and γ̇(t) = ei(p). In components, we
may write n = njej . Then, by (6.10),

∂iα(p) = a(t)ḃ(t)− b(t)ȧ(t) = n1(p)∂in
2(p)− n2(p)∂in

1(p).

Since the components nj are C1-regular, we deduce that α is C1-regular. Moreover, since |nj | ≤ 1,

|∇sα|2 ≤ 2
∑
i,j

|∂inj |2. (6.14)
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This construction yields (6.9) in the case of a C1-regular field n. If Σ is not simply connected, we consider
the covering πΣ : R2 → Σ. Since R2 is simply connected, we can choose paths γ, γ̃ in R2 and apply the same
construction of (6.10)–(6.13) to n ◦ πΣ and ei ◦ πΣ to obtain (6.8).

We extend now this representation to H1-regular fields. Consider first the case of a simply connected
manifold. Define the operator Φ : L2(Σ)→ L2(Σ;S2) by

Φ[α] := cos(α) e1 + sin(α) e2. (6.15)

Owing to the approximation result of [36, Proposition, Section 4], for any given n ∈ H1
tan(Σ;S2), there exists

a sequence {nk} ⊂ C1
tan(Σ;S2) such that nk → n, strongly in H1

tan(Σ;S2). Up to extracting a subsequence,
we can assume that nk is converging also almost everywhere. For α ∈ C1(Σ) denote

ᾱ :=
1∫

Σ
1 dVol

∫
Σ

α dVol.

By construction (6.10)–(6.13), for all k ∈ N, there exists

αk ∈ Φ−1[nk] ⊂ C1(Σ), satisfying 0 ≤ ᾱk ≤ 2π. (6.16)

By Poincaré-Wirtinger’s inequality, there exists a constant C1 > 0, depending only on (Σ, g), such that∫
Σ

(αk − ᾱk)2dVol ≤ C1

∫
Σ

|∇sαk|2dVol. (6.17)

By (6.14),(6.16) and (6.17), there exists a constant C2 > 0 such that

‖αk‖2H1(Σ) =

∫
Σ

{
α2
k + |∇sαk|2

}
dVol ≤ C2

(
‖nk‖2H1

tan(Σ;S2) + 1
)
.

Therefore, by compactness, there exists a subsequence of representatives {αkl} and a function α, with
αkl , α ∈ H1(Σ) such that

αkl ⇀ α weakly in H1(Σ) and αkl(p)→ α(p) for a.e. p ∈ Σ.

By (6.15) and pointwise convergence, we deduce that

n · e1 = lim
l→∞

nkl · e1 = lim
l→∞

cos(αkl) = cos(α), a.e. in Σ,

and, in the same way, that n · e2 = sin(α), a.e. in Σ. This concludes the proof of (6.9). The general case of

a covering πΣ : R2 → Σ follows replacing n by n ◦ πΣ and Σ by BR(0) ⊂ R2, for arbitrary R > 0. �

We notice that, if Σ is not simply connected, it may not be possible to define α on the whole surface
Σ. For example, given the standard parametrization of the torus X : [0, 2π] × [0, 2π] → T (7.1), n(θ, φ) :=
cos(θ)e1(θ, φ) + sin(θ)e2(θ, φ) defines a smooth vector field on ]0, 2π[×]0, 2π[. The only possible α is clearly
α(θ, φ) = θ + 2hπ, for h ∈ Z, which cannot be continuously extended to [0, 2π] × [0, 2π] since 2hπ =
limt→0+ α(t, φ) 6= limt→2π− α(t, φ) = 2π(1 + h).

6.1. Formulas for the deviation α. In this subsection, we perform the formal computations which lead
to the representation of ∇sn, in terms of α.

First of all, we introduce the spin connection A, which, for a two-dimensional manifold Σ embedded in
R3, can be expressed using the 1-form ω defined as

ω(v) = (e1, Dve2)R3 ∀v ∈ TpΣ, (6.18)

where {e1, e2} is a local orthonormal frame for TΣ. Deriving the relation (ei, ej)R3 = δij one obtains

0 = ∂k(ei, ej)R3 = (Dkei, ej)R3 + (ei, Dkej)R3 , for k = 1, 2, (6.19)

which implies that ω(v) = −(e2, Dve1)R3 for any v tangent and that (e1, Die1)R3 = (e2, Die2)R3 = 0 for
i = 1, 2. The spin connection A is the tangent vector field A := ω], that is Ai = gijωj . In what follows we
will unambiguously refer to A and to ω as the spin connection. Let κ1, κ2 be the geodesic curvatures of the
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flux lines of e1, e2, respectively. By the definition of geodesic curvature, (6.18) and (6.19), it is immediate
to see that

A = −κ1e1 − κ2e2. (6.20)

Now we show how the spin connection A and its related 1-form ω change when we change the orthonormal
frame. In particular, it will be important to be able to choose a local orthonormal frame with divergence-
free spin connection (see [23, Lemma 3.2.9] for a similar result). Thus, let {f1, f2} be another smooth local
orthonormal frame centered U . We denote with β the angle that f1 forms with e1. Thus, have

f1 = cosβe1 + sinβe2,

f2 = − sinβe1 + cosβe2.

Lemma 6.2. Let ω′ denote the spin connection in the frame {f1, f2}, namely the 1-form ω′(v) = (f1, Dvf2)R3

for v tangent. Then there holds
ω′(v) = ω(v)− dβ(v). (6.21)

Moreover, if A′ = (ω′)], we have
divsA′ = divsA−∆sβ. (6.22)

Proof. We have

ω′
(

∂

∂xj

)
= (f1, Djf2)R3 = (cosβe1 + sinβe2, Dj(− sinβe1 + cosβe2))R3

= cosβ(e1, Dj(− sinβe1))R3 + sinβ(e2, Dj(cosβe2))R3

+ cosβ(e1, Dj(cosβe2))R3 + sinβ(e2, Dj(− sinβe1))R3

(6.19)
= − cosβ∂j(sinβ)− sin2β (e2, Dje1)R3 + cos2β (e1, Dje2)R3 + sinβ∂j(cosβ)

(6.18)
= ωj − ∂jβ = ω

(
∂

∂xj

)
− dβ

(
∂

∂xj

)
.

By linearity of ω′, ω, and dβ, we conclude (6.21). Now, to prove (6.22), we notice that (6.21) corresponds,
after the ] isomorphism, to

A′ = A−∇sβ,
thus (6.22) follows. �

We are going to prove the following

Lemma 6.3. Let U ⊂ Σ be open and simply connected and let n ∈ H1
tan(U ;S2). Then, for a.a. x ∈ U ,

|Dn|2 =|∇sα− A|2, (6.23)

|∇sn|2 =|∇sα− A|2 + |Be1|2 cos2 α+ |Be2|2 sin2 α+ 2(Be1,Be2)R3 sinα cosα. (6.24)

Proof. For a.a x ∈ U , let {e1, e2} be a smooth local orthonormal frame for TxΣ, Then n ∈ H1
tan(U ;S2) is

represented as in (6.8) with α ∈ H1(U) being the angle between n and e1. We have that, for a.a. x ∈ U and
for i = 1, 2,

Dein = (cosα)Deie1 + (sinα)Deie2 − (dα(ei)) sinαe1 + (dα(ei)) cosαe2.

Thus, using again that e1 and e2 are orthonormal, we have that

|De1
n|2 = |ω(e1)− dα(e1)|2,

|De2n|2 = |ω(e2)− dα(e2)|2,
which implies (6.23) by recalling again the orthonormality of e1 and e2. Once we have (6.23), we can easily
obtain (6.24) using the orthogonal decomposition (2.3) once we have written |Bn| in terms of α. We have

Bn = B(cosαe1 + sinαe2) = cosαBe1 + sinαBe2,

thus,
|Bn|2 = cos2 α|Be1|2 + sin2 α|Be1|2 + 2(Be1,Be2)R3 cosα sinα,
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which, combined with (6.23), gives (6.24). �

The expression (6.24) further simplifies if we choose, for any point x ∈ Σ, {e1, e2} to be the principal
directions of Σ at x. In particular, {e1, e2} are orthonormal eigenvectors of B. The relative eigenvalues c1
and c2 are named principal curvatures of Σ at x ([13]). As a result, we have

|∇sn|2 =|∇sα− A|2 + |Be1|2 cos2 α+ |Be2|2 sin2 α

=|∇sα− A|2 +
(c21 − c22)

2
cos(2α) +

(c21 + c22)

2
(6.25)

Note that
(c21+c22)

2 = (trgB)2 = 2H, where H is the mean curvature of Σ.

Lemma 6.4. Let {e1, e2} be the orthonormal frame provided by the principal directions on Σ. Let c1, c2 be
the corresponding principal curvatures and let κ1, κ2 be the corresponding geodesic curvatures. The energy
(3.5) of a director field n, in terms of the deviation angle α characterized by n = cos(α)e1 + sin(α)e2 and of
the spin connection (6.20) is

W (n) =
1

2

∫
Σ

{
K1((∇sα− A) · t)2 +K2(c1 − c2)2 sin2 α cos2 α

+K3((∇sα− A) · n)2 +K3(c1 cos2 α+ c2 sin2 α)2
}

dVol. (6.26)

The corresponding one-constant approximation (κ = K1 = K2 = K3) is

Wκ(n) =
κ

4

∫
Σ

{
c21 + c22

}
dVol +

κ

2

∫
Σ

{
|∇sα− A|2 +

1

2
(c21 − c22) cos(2α)

}
dVol. (6.27)

Proof. The expression in (6.27) follows directly from (6.25). Regarding (6.26), we use Liouville’s formula
[13, Proposition 4, Section 4–4] to compute

κn = κ1 cos(α) + κ2 sin(α) + dα(n) = (∇sα− A) · n,
κt = −κ1 sin(α) + κ2 cos(α) + dα(t) = (∇sα− A) · t.

Using the definitions of τn and cn and the choice of e1, e2 as principal directions, we get

cn = (Bn,n)R3 = c1 cos2(α) + c2 sin2(α),

τn = −(Bn, t)R3 = c1 cos(α) sin(α)− c2 cos(α) sin(α).

The expression in (6.26) follows then by (2.4). �

6.2. Proof of Theorem 1.

Proof of Theorem 1. Let Σ be given, as in the hypothesis of Theorem 1. Referring to Section 4, we consider
E := H1

tan(Σ;S2) as a subset of the Hilbert space X := H1
tan(Σ). Assume that E 6= ∅, we need to prove that

χ(Σ) = 0. We study the minimization problem related to the energy

E : X → R, E(u) :=
1

2

∫
Σ

|Du|2dVol. (6.28)

Since the function f : Σ × R3 → R, f(x, ξ) = gx(ξ, ξ)
√
gx is continuous and convex in ξ for all x ∈ Σ, the

energy E is weakly lower semicontinuous on X. As the constraint “|u| = 1 a.e. on Σ” is continuous with
respect to the L2 convergence, we deduce that sublevel sets of E in E are sequentially weakly compact in X.
Hence, using the direct method of the calculus of variations we can find a field u∗ ∈ E which minimizes E
on E. We get a contradiction as soon as we prove that u∗ is actually more regular (say continuous) hence
violating the classical Poincaré-Hopf Theorem (see [28]). Now, thanks to the local representation of tangent
vectors in Proposition 6.1, for any given point x ∈ Σ we can find an open neighbourhood U ⊂ Σ and a real
function α : U → R such that any vector field u ∈ E can be locally represented as u = cosα e1 + sinα e2

a.e. in U . Here {e1, e2} is a smooth local orthonormal frame for TxΣ for all x ∈ U , and α ∈ H1(U) is the
angle that u forms with e1. Owing to Lemma 6.2, it is not restrictive to assume that the spin connection
A corresponding to {e1, e2} is divergence-free: indeed if divs A 6= 0, we can define a new orthonormal frame
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by rotating {e1, e2} of an angle β such that ∆sβ = divs A in U . The spin connection A′ in the new frame,
owing to (6.22), satisfies then divs A′ = divs A−∆sβ = 0.

Now, since u∗ minimizes (6.28) on E, by Lemma 6.3 any function α∗ ∈ H1(U), such that u∗ := cosα∗ e1+
sinα∗ e2 on U , minimizes

F : H1(U)→ R, F(α) :=
1

2

∫
U

|∇sα− A|2dVol, (6.29)

on the set {α ∈ H1(U) : α|∂U = α∗|∂U}. As a result, α∗ is a stationary point of (6.29), with respect to

variations in H1
0 (U), and hence it solves

∆sα
∗ = 0 in U.

As the Laplace Beltrami operator on a smooth compact manifold is an elliptic operator with smooth coeffi-
cients, we have that α∗, hence u∗, is smooth in U . Being the choice of the point x completely arbitrary, we
have proved that u∗ is a unit norm vector field which is smooth everywhere in Σ. Thanks to the classical
Poincaré-Hopf Theorem, Σ must be a genus-1 surface, i.e. χ(Σ) = 0. The opposite implication is straight-
forward. More precisely, assuming that χ(Σ) = 0, classical results give the existence of a smooth vector field
on Σ with unit norm, which, in particular, belongs to H1

tan(Σ; S2).

�

7. Energy minimizers on a torus

In this section we study the problem of minimizing the surface energy (3.5) and its one-constant approxi-
mation (3.6) in the particular case of an axisymmetric torus T ⊂ R3. Given the radii 0 < r < R (see Figure
4), we consider the parametrization X : R2 → R3 defined by

X(θ, φ) =

(R+ r cos θ) cosφ
(R+ r cos θ) sinφ

r sin θ

 . (7.1)

Let {e1, e2} be the orthonormal frame associated to X (see Appendix A). By Proposition 6.1, any vector

φ

T

θ
R

r

Figure 4. Schematic representation of the torus T parametrized by (7.1).

field n ∈ H1
tan(T;S2) can be represented by a scalar deviation α, with respect to e1, such that

n ◦X = cos(α)e1 + sin(α)e2.

Moreover, since X is 2π-periodic in both variables, we can assume that α ∈ H1(Q), for Q := [0, 2π]×[0, 2π] ⊂
R2. (Note that, since T is not simply connected, we cannot define α directly on T.)
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7.1. A toy-problem: constant deviation. In this section, with a slight abuse of notation, we let W (α) :=
W (n), for n = cosαe1 + sinαe2. We study the simpler case of α ≡ const, where the energy W (α) in (6.26)
reduces to

W (α) =
1

2

∫
Q

{
K1 cos2 α (κ2)

2
+K2(c1 − c2)2 sin2 α cos2 α

+K3 sin2 α (κ2)
2

+K3(c1 cos2 α+ c2 sin2 α)2
}

dVol.

Here K1,K2,K3 are positive constants and (see Appendix A)

c1 =
1

r2
, c2 =

cos θ

R+ r cos θ
, κ2 = − sin θ

R+ r cos θ
, dVol = r(R+ r cos θ)dθdφ.

Lemma 7.1. Let b := R/r. In the case of constant deviation α, the energy W has the explicit expression

W (α) = π2

[
(K1 +K3)

(
b−

√
b2 − 1

)
+
K2 +K3

2

(
b2√
b2 − 1

)]
+ π2 cos(2α)

[
(K1 −K3)

(
b−

√
b2 − 1

)
+K3

(
2b− b√

b2 − 1

)]
+ π2 cos2(2α)

[
K3 −K2

2

(
b2√
b2 − 1

)]
.

The proof relies on algebraic manipulations and integration of trigonometric functions, which are detailed
in [37]. There are four parameters which influence the minimizers of W , that is R/r, K1,K2,K3. In Figure 5
we plot the graph {(α,W (α)/π2} for some especially meaningful choices of these parameters. The rescaling
by π2 is just for plotting purposes.

Since we are assuming that α = const, instead of the first variation of W we can just take the first
derivative with respect to α:

d

dα
W (α) = 2π2 sin(2α)

[
A(K3 −K1)− CK3

]
+ 2B(K2 −K3) cos(2α) sin(2α)

= 2 sin(2α)
(
A(K3 −K1) +B cos(2α)(K2 −K3)− CK3

)
,

where

A := b−
√
b2 − 1, B :=

b2√
b2 − 1

, C := 2b− b2√
b2 − 1

.

Therefore, W ′(α) = 0 if and only if

sin(2α) = 0 or cos(2α) =
CK3 −A(K3 −K1)

B(K2 −K3)
,

i.e.

α = m
π

2
or α = ±1

2
arccos

(
CK3 −A(K3 −K1)

B(K2 −K3)

)
+mπ,

for m ∈ Z, provided the argument of the arccos function is in [−1, 1]. For short, we refer to the critical points
obtained via the arccos function as to points of the second type.

To check stability, we compute the second derivative of W

1

π2

d2

dα2
W (α) = 4 cos(2α)

(
A(K3 −K1) +B cos(2α)(K2 −K3)− CK3

)
− 4B sin2(2α)(K2 −K3)

= 4A(K3 −K1) cos(2α) + 4B(K2 −K3) cos(4α)− 4CK3 cos(2α).

Therefore,

• critical points of type α = mπ are stable local minimizers if

A(K3 −K1) +B(K2 −K3)− CK3 > 0
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W (α)

π2

α
Pure splay (K1 = 1, K2 = K3 = 0).

W (α)

π2

α
Pure twist (K2 = 1, K1 = K3 = 0).

W (α)

π2

α
Pure bend (K3 = 1, K1 = K2 = 0).

W (α)

π2

α
One-constant approximation

(K1 = K2 = K3 = 1).

Figure 5. Frank energy W (rescaled by π2) as a function of deviation α from e1, for
different choices of the parameters Ki. The four colours represent four different choices
of the ratio R/r, namely: R/r = 1.1 (orange), R/r = 2/

√
3 (red), R/r = 1.25 (green),

R/r = 1.6 (blue).

i.e. if

K1(
√
b2 − 1− b) +K2

b2√
b2 − 1

−K3(
√
b2 − 1 + b) > 0,

• critical points of type α = (2m+ 1)π2 are stable local minimizers if

−A(K3 −K1) +B(K2 −K3) + CK3 > 0,

• critical points of the second type are (stable local) minimizers if K3 > K2.

We make now a special choice of the parameters, in order to be able to plot a stability diagram for the
minimizers. Namely, we assume that K1 = K3, K2 6= 0, and we introduce the variables

λ :=
K3

K2
, η :=

C

B
= 2

√
b2 − 1

b
− 1,

so that second type minimizers take the form

α = ±1

2
arccos

(
CK3

B(K2 −K3)

)
= ±1

2
arccos

(
η

λ

1− λ

)
.
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Note that λ ≥ 0 and, since b = R/r > 1, then η ∈ (−1, 1) and η = 0 if and only if R/r = 2/
√

3. A necessary
condition for α = mπ to be a stable local minimum for W is then

B

B + C
=

2b√
b2 − 1

=
1

1 + η
> λ.

A necessary condition for a second type α to be a critical point of W is that∣∣∣∣ λ

1− λ

∣∣∣∣ ≤ 1

|η|
,

while a sufficient condition for a critical point to be a stable local minimum is that λ > 1. Finally, λ1 := 1
1+η

is a bifurcation point for the unstable critical points of W , while λ2 := 1
1−η is a bifurcation point for the

stable global minimizers of W .

α

π

2

−π
2

λ1 λ2 λ0

Figure 6. Bifurcation diagram for minimizers α of W as a function of λ = K3/K2, for
λ ∈ (0, 3.25). The other parameters are chosen as K1 = K3, R/r = 1.25. The diagram
shows the stable global minimizer (green continuous line), the stable local minimizer (green
dashed line) and the unstable critical points (red dotted lines).

α

W (α)

π2
λ=0.7λ1

λ=λ1

λ=λ2

λ=2λ2

Figure 7. Graphs of the energy W (rescaled by π2) as a function of α, for R/r = 1.25,
K1 = K3 = 1, and different choices of λ = K3/K2.
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7.2. The one-constant approximation for the torus. Since not every function in H1(Q) corresponds
to a vector field on the torus, before proceeding with the analysis of energy (3.6), we study the structure of
the space of configurations α. This will enable us to study the gradient flow of the energy functional and to
give a geometrical interpretation to its solutions.

Let n ∈ H1
tan(T;S2) be fixed, and let us assume that n is also continuous. In general, we cannot expect

the corresponding α to be periodic on Q = [0, 2π]× [0, 2π]. We observe that the vector field n is continuous
if and only if there exist m,n ∈ Z such that

α(2π, φ) = α(0, φ) + 2mπ, α(θ, 2π) = α(θ, 0) + 2nπ, ∀ (θ, φ) ∈ Q.
By continuity of n, m and n do not depend on the choice of θ and φ. Moreover, since α is unique up to an
additive constant, m and n are also independent of the choice of α which represents n. Therefore, we define
the winding number of n on T as the couple of indices h(n) = (hθ, hφ) ∈ Z× Z, given by

hθ :=
α(2π, 0)− α(0, 0)

2π
, hφ :=

α(0, 2π)− α(0, 0)

2π
. (7.2)

This definition is also consistent with that of winding of a vector field along a curve given in Section 6:
indeed, let γ : [0, 2π]→ Q be given by γ(θ) := (θ, 0), then

Wγ(n)
(6.7)
=

∫
γ

(ι ◦ n)∗ω =

∫ 2π

0

{cos(α)∂θ{sin(α)} − sin(α)∂θ{cos(α)}}|φ=0 dθ =

∫ 2π

0

∂θα(θ, 0) dθ = 2πhθ,

that is, hθ = deg(ι ◦n ◦X|φ=0,S1,S1). An analogous computation holds for hφ. For n ∈ H1
tan(T;S2), by the

trace theorem, n|{φ=0},n|{θ=0} ∈ H1/2(S1;S1) and the winding number is well-defined by an approximation

of the formula for continuous functions [3]. Moreover, by Lemma 6.1, if n,v ∈ H1
tan(T;S2) are homotopic,

then h(n) = h(v).

Let h = (hθ, hφ) ∈ Z2, define

Ah :=
{
α ∈ H1(Q) : α|{xj=2π} = α|{xj=0} + 2πhxj , for xj = θ, φ

}
, A :=

⋃
h∈Z2

Ah, (7.3)

where the equality is in the sense of traces of H1-regular functions. Note that A0 and A are linear vector
spaces, while each Ah is an affine space. Indeed, for h = (hθ, hφ), m = (mθ,mφ) ∈ Z2, α ∈ Ah and β ∈ Am,
the function u(x) := α(x) + β(x) ∈ H1(Q) satisfies

u|{xj=2π} = α|{xj=2π} + β|{xj=2π}

(7.3)
= α|{xj=0} + 2πhxj + β|{xj=0} + 2πmxj

= u|{xj=0} + 2π(hxj +mhj )

in the sense of traces, which implies that u = α+ β ∈ Ah+m, for h+m = (hθ +mθ, hφ +mφ). As norm we
choose

‖α‖A :=

(∫
Q

{
|∇sα|2 + α2

}
dVol

) 1
2

, (7.4)

where dVol =
√
g dθdφ = r(R+ r cos θ)dθdφ is the area element induced by the metric g (see Appendix A).

Remark 7.1. Owing to definition (7.3), this choice of norm yields (A0, ‖ · ‖A ) = H1
per(Q; Vol). In the

remainder of this section, we will alternate between the notations A0 and H1
per(Q), depending on the context.

Owing to Proposition 6.1, the map Φ : α 7→ e1 cosα+e2 sinα defines a bijection Φ : A /2πZ→ H1
tan(T;S2),

and by definition (7.2) we have Φ−1[n] ⊂ Ah(n).

The Euler-Lagrange equation for the one-constant approximation (6.27) can be obtained, of course, by
setting K1 = K2 = K3 = κ in the corresponding equation for the full energy (see Appendix C). We prefer,
though, to derive it from (6.27), which is shorter and more direct. The equations, in the case of the sphere
and the cylinder, were derived in [29, 30]. Since on T every geometric quantity can be computed explicitly
(see Appendix A), we first reduce (6.27) to a simpler form.
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Lemma 7.2. The energy Wκ, for Σ = T has the explicit representation

Wκ(α) =
1

2

∫
Q

{
κ|∇sα|2 + η cos(2α)

}
dVol + κπ2

(
2− b2√
b2 − 1

+ 2b

)
, (7.5)

where η(θ, φ) := κ
c21−c

2
2(θ,φ)
2 = κ R2+2Rr cos θ

2r2(R+r cos θ)2 , and b := R
r .

Proof. Let α ∈ Ah, h = (hθ, hφ). Since A = sin θ
R+r cos θe2,∫

Q

∇sα · AdVol =

∫ 2π

0

∫ 2π

0

∂φα(θ, φ)
sin θ

R+ r cos θ
r(R+ r cos θ) dθ dφ

=

∫ 2π

0

[∫ 2π

0

∂φα(θ, φ) dφ

]
r sin θ dθ = 2πrhφ

∫ 2π

0

sin θ dθ = 0.

Thus, letting b = R/r,∫
Q

|∇sα− A|2dVol =

∫
Q

|∇sα|2dVol +

∫
Q

|A|2dVol− 2

∫
Q

∇sα · A dVol

=

∫
Q

|∇sα|2dVol + 2π

∫ 2π

0

r sin2 θ

R+ r cos θ
dθ

(B.1)
=

∫
Q

|∇sα|2dVol + 4π2
(
b−

√
b2 − 1

)
.

(7.6)

Recall that (by Gauss-Bonnet Theorem or by direct computation)∫
T
K dVol =

∫
Q

c1c2 dVol = 0. (7.7)

Using the value of Willmore’s functional computed in Lemma 7.1 we get∫
Q

c21 + c22
4

dVol
(7.7)
=

∫
Q

(
c1 + c2

2

)2

dVol = π2

(
b2√
b2 − 1

)
. (7.8)

Substituting (7.6) and (7.8) into (6.27) we obtain

Wκ(α) =
κ

2

∫
Q

{
|∇sα|2 +

c21 − c22
2

cos(2α)

}
dVol + κπ2

(
b2√
b2 − 1

+ 2b− 2
√
b2 − 1

)
,

using (A.3) and simplifying the last term, we get (7.5). �

Lemma 7.3. The Euler-Lagrange equation of (7.5) is

∆sα+
1

2
(c21 − c22) sin(2α) = 0. (7.9)

Proof. In order to find the Euler-Lagrange equation of (6.27), we compute the first variation in the direction
ω ∈ A0

d

dt
Wκ(α+ tω)

∣∣∣
t=0

=
d

dt

κ

2

∫
Q

|∇s(α+ tω)|2 +
1

2
(c21 − c22) cos(2α+ 2tω) dVol

∣∣∣
t=0

= κ

∫
Q

(∇sα) · ∇sω −
1

2
(c21 − c22) sin(2α)ω dVol

= −κ
∫
Q

divs(∇sα)ω − 1

2
(c21 − c22) sin(2α)ω dVol,

which, after integration by parts, yields (7.9). �

We compute also the second variation, in the direction ω

d2

dt2
Wκ(α+ tω)

∣∣∣
t=0

= κ

∫
Q

|∇sω|2 − (c21 − c22) cos(2α)ω2 dVol. (7.10)
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Proposition 7.1. Let b := R/r. There exists b∗ ∈ (2/
√

3, 2] such that the constant values α = π/2 + mπ,
m ∈ Z, are local minimizers for Wκ in A0 if and only if b ≥ b∗. Moreover, if b ≥ 2, there exists no
non-constant solution w to (7.9) such that

π

2
+mπ ≤ w ≤ π

2
+ (m+ 1)π. (7.11)

Proof. Owing to the periodicity of the functions involved, it is not restrictive to assume m = −1. By (7.10),
the second variation of Wκ, in α = π/2, in the direction ω ∈ A0, is positive if and only if∫

Q

|∇sω|2 + (c21 − c22)ω2 dVol > 0. (7.12)

Let b = R/r > 1, since

c21 − c22
(A.3)
=

(
1

r2
− cos2 θ

(R+ r cos θ)2

)
=

b

r2(b+ cos θ)2
(b+ 2 cos θ), (7.13)

we see immediately that if b ≥ 2 then c21 − c22 ≥ 0 everywhere in Q, and c21 − c22 = 0 if and only if b = 2 and
θ = π. Therefore, if b ≥ 2, the integral in (7.12) is nonnegative for all ω ∈ A0 (equal to zero if and only if
ω = 0) and we can conclude that the stationary point α = π/2 is a local minimum. Restricting to constant
variations ω, (7.12) is satisfied if and only if

0 <

∫
Q

(c21 − c22) dVol = 2πb

∫ 2π

0

b+ 2 cos θ

b+ cos θ
dθ = 4π2b

(
2− b√

b2 − 1

)
(see Appendix B for the integration formula), that is, if and only if b > 2/

√
3. If b = 2/

√
3, then all

configurations with constant angle α(x) = ᾱ have the same energy, while for b < 2/
√

3, Wκ(α ≡ 0) <
Wκ(α ≡ π/2). The uniqueness of the bifurcation point b∗ follows from the monotonicity of (c21− c22)Vol with
respect to b:

∂

∂b
(c21 − c22)Vol =

∂

∂b

{
b2 + 2b cos θ

b+ cos θ

}
= 1 +

cos2 θ

(b+ cos θ)2
> 0, ∀ θ ∈ [0, 2π], ∀ b > 1.

The proof of the last step of the statement of Proposition 7.1 is inspired by [9, Theorem 2.4]. Assume that
b ≥ 0 and let w be a solution to (7.9), satisfying (7.11) for m = −1. Then v(x) := π/2− w(x) satisfies

∆sv = −∆sw =
1

2
(c21 − c22) sin(2w) =

1

2
(c21 − c22) sin(π − 2v) =

1

2
(c21 − c22) sin(2v). (7.14)

Multiplying the first and the last member of (7.14) by v, and integrating on Q with respect to dVol, after
integration by parts we obtain

−
∫
Q

|∇sv|2 dVol =

∫
Q

1

2
(c21 − c22) sin(2v)v dVol

(7.13)

≥ b(b− 2)

2(b+ 1)

∫
Q

sin(2v)v dθ dφ
(7.11)

≥ 0.

Thus, ∫
Q

|∇sv|2 dVol = 0, and

∫
Q

sin(2v)v dθ dφ = 0,

implying v ≡ 0, v ≡ −π/2 or v ≡ π/2, as we wanted to prove. �

In order to find a numerical minimizer of W , we study the L2-gradient flow of (6.27), that is, we want to
find α ∈ C0([0,+∞); A ) such that

∂tα = κ∆sα+
κ

2
(c21 − c22) sin(2α), on R2 × (0,+∞) (7.15)

with suitable initial data α0 ∈ A . As above, denote Φ : α 7→ n = e1 cosα + e2 sinα. Since the index of a
vector field h(Φ[α]) is invariant under homotopy, if α0 ∈ Ah, then α(t) ∈ Ah for all t > 0. The spaces Ah

(see (7.3)) are constructed to take care of the correct boundary conditions, which require some attention,
since in general we cannot expect a periodic solution.
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Exploiting the affine structure of A , for any h ∈ Z2, for any fixed ψh ∈ Ah, it holds Ah = A0 + ψh, i.e.,
any α ∈ Ah can be decomposed as

α(x) = u(x) + ψh(x), with u ∈ A0.

Using the decomposition α(t, x) = u(t, x) + ψh(x), we see that problem (7.15) is equivalent to finding
u ∈ C0([0,+∞); A0) such that

∂tu− κ∆su = κ∆sψh +
κ

2
(c21 − c22) sin(2u+ 2ψh) on Q× (0,+∞), (7.16)

with initial condition u0 ∈ A0 and where h ∈ Z2 is the constant degree of the mappings Φ[α(t)]. Equation
(7.16) can be further simplified by choosing a ∆s-harmonic function ψh, so that the term κ∆sψh vanishes.

Lemma 7.4. Let h := (hθ, hφ) ∈ Z2, and let b = R/r, where R > r > 0 are the radii of the torus, as in
(7.1). Define

ψ(θ, φ) := hθ
√
b2 − 1

∫ θ

0

1

b+ cos(s)
ds+ hφφ. (7.17)

Then ψ ∈ C∞(R2), ψ|Q ∈ Ah, and ∆sψ = 0.

Proof. Since b > 1, ψ ∈ C∞(R2) and a simple check, using the explicit expression of the Laplace-Beltrami
operator on the torus (A.5) shows that ∆sψ = 0. In order to check that ψ ∈ Ah, according to definition

(7.3), we use the 2π-periodicity of 1/(b + cos(s)) and the explicit integration
√
b2 − 1 =

∫ 2π

0
1/(b + cos(s))

(see Appendix B) to compute

ψ(θ + 2π, φ+ 2π) = hθ
√
b2 − 1

∫ θ+2π

0

1

b+ cos(s)
ds+ hφ(φ+ 2π)

= hθ
√
b2 − 1

∫ 2π

0

1

b+ cos(s)
ds+ hφ2π + hθ

√
b2 − 1

∫ 2π+θ

2π

1

b+ cos(s)
ds+ hφφ

= hθ2π + hφ2π + hθ
√
b2 − 1

∫ θ

0

1

b+ cos(s)
ds+ hφφ

= hθ2π + hφ2π + ψ(θ, φ).

�

We now have all the ingredients to state and prove the result regarding solutions to the L2-gradient flow
of the one-constant approximation of the surface elastic energy Wκ.

Theorem 3. Let X be the parametrization of the torus (7.1) with radii R, r, embedded in R3. Let Ah,A be
the spaces defined in (7.3), endowed with the norm (7.4). Then

(0) For all h ∈ Z2 there exists a classical solution α ∈ Ah ∩ C∞(Q) to the stationary problem

− κ∆sα =
κ

2
(c21 − c22) sin(2α). (7.18)

Moreover, α is odd on any line passing through the origin.
(i) (Weak well-posedness) For any α0 ∈ A , for all T > 0, there exists a unique mild solution α to (7.15)

and it satisfies

α ∈ C0([0, T ); A ).

Moreover, if α0 ∈ Ah, then α(t) ∈ Ah for all t > 0.
(ii) (Strong well-posedness) For any m ∈ N, for any α0 ∈ H2m(Q) ∩ A , for all T > 0, the unique

solution α to (7.15) satisfies

α ∈
⋂

k=0,...,m

Ck([0, T ];H2m−2k(Q)). (7.19)

In particular, if α0 ∈ C∞(Q) ∩A , then α ∈ C∞([0, T ]×Q).
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(iii) (A maximum principle) Under the hypothesis of step (ii),

α ∈ L∞(0,+∞; A ) and ∂tα ∈ L2(0,+∞;L2(Q)). (7.20)

(iv) (Long-time behaviour) Define the omega-limit set of a solution α to (7.15) by

ω(α) :=
{
α∞ ∈ A : there exists tn ↗ +∞ with α(tn)→ α∞ in L2(Q)

}
.

Under the hypothesis of Step (ii), the omega-limit set is nonempty and it is contained in the set of
solutions to (7.9), namely if α∞ ∈ ω(α) then α∞ is a solution of (7.9).

Proof. The idea of the proof is that using the decomposition Ah = A0 + ψh, we can reduce the problem
of finding a solution to (7.15) in C0([0, T ]; Ah), with initial value α0, to the simpler problem of finding
u ∈ C0([0, T ]; A0) such that

∂tu− κ∆su =
κ

2
(c21 − c22) sin(2u+ 2ψh) on Q× (0,+∞), (7.21)

and u(0) = α0 − ψh. The term ∆sψh disappears by choosing the harmonic function ψh defined in (7.17).
Therefore, through the proof, let h ∈ Z2 be fixed, and let ψh be given by (7.17). Moreover, in order to make
the symmetry properties of the involved functions more visible, we redefine Q := (−π, π)× (π, π).

Step (0). Define the Hilbert space H := L2(Q), with the scalar product

(u, v)H :=

∫
Q

uv dVol, u, v ∈ L2(Q),

and denote the average of a function u ∈ H by 〈u〉 := 1
4π2Rr

∫
Q
udVol. Let V := {v ∈ H1

per(Q) : 〈v〉 = 0},
then, by Wirtinger’s inequality, the bilinear form a : V × V → R

a(u, v) := κ

∫
Q

∇su · ∇sv dVol

defines a scalar product on V , such that the induced norm is equivalent to the standard Sobolev norm of
H1(Q) defined in (7.4). By Riesz-Fréchet representation Theorem [5, Theorem 5.5], for all f ∈ H there
exists a unique u ∈ V such that

a(u, v) = (f, v)H ∀ v ∈ V (7.22)

and there exists a constant Ca > 0, depending only on Q, κ, and on the ellipticity constant of a, such that
‖u‖A ≤ Ca‖f‖H . Moreover (see, e.g., [5, Section 9.6]), if f ∈ Hm

per(Q), then u ∈ Hm+2
per (Q); in particular, if

m > 1, then u ∈ C2(Q). For f ∈ V , the solution u to (7.22) satisfies, for all w ∈ H1
per(Q)∫

Q

∇su · ∇s(w − 〈w〉)dVol =

∫
Q

f(w − 〈w〉)dVol

=

∫
Q

fw dVol− 1

|Q|

∫
w dVol

∫
f dVol

=

∫
Q

(f − 〈f〉)w dVol,

that is,
−∆su = f − 〈f〉 on Q.

Let η(x) := κ
2

(
c21 − c22(x)

)
, note that η ∈ C∞per(Q). Let f : H1

per(Q) → H1
per(Q) be defined by f(u)(x) :=

η(x) sin(2u(x) + 2ψh(x)), and consider the operator T : H1
per(Q) → H1

per(Q) which maps v into the unique
solution u ∈ V to

−∆su = f(v)− 〈f(v)〉.
By a standard bootstrapping argument (see, e.g., [5, Section 9.6]), u ∈ C∞(Q). In order to find a stationary
solution to (7.21), we need to find a fixed point u∗ = T (u∗), such that 〈f(u∗)〉 = 0. We say that a function
F : Q → R is 2-even if F (θ, φ) = F (−θ,−φ), and we say that it is 2-odd if F (θ, φ) = −F (−θ,−φ), for all
(θ, φ) ∈ Q. It is immediate to check that

(1) if F ∈ L1(Q) is 2-odd, then
∫
Q
F (θ, φ) dθ dφ = 0;
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(2) if F is 2-odd and G is 2-even, then FG is 2-odd;
(3) if F is 2-odd and ϕ : R→ R is odd, then ϕ ◦ F is 2-odd;
(4) if F ∈ C1(Q) is 2-odd (even), then ∂iF is 2-even (odd).

(To check the last property, note that a function is 2-odd (even) if and only if its restriction to a line passing
by the origin is odd (even). Denote x = (θ, φ), ν := x/|x|, then if F is odd ∇F (x) · ν = −∇F (−x) · ν,
owing to the corresponding property for 1-d functions.) By the definitions of dVol (7.4), ψh (7.17), c1, c2
(A.3), and ∆s (A.5), we see that η and dVol are 2-even, ψh is 2-odd, and if u is 2-odd, then f(u) and ∆su
are 2-odd. Instead, if ∆su is 2-odd, we cannot conclude that u is 2-odd. We resort to the projection P of a
function onto its 2-odd part

Pu(θ, φ) :=
u(θ, φ)− u(−θ,−φ)

2
.

Then, letting Id be the identity operator in H,

(Id− P)u(θ, φ) =
u(θ, φ) + u(−θ,−φ)

2

is 2-even. P is linear and continuous with respect to the topology of H:

‖Pv1 − Pv2‖H ≤ ‖v1 − v2‖H , ∀ v1, v2 ∈ H.
Note that for all v ∈ V

‖f(v)‖H =

(∫
Q

(η sin(2v + 2ψh))2dVol

)1/2

≤ ‖η‖H =: M. (7.23)

Let K := {v ∈ V : ‖v‖A ≤ CaM} . The set K is a convex and nonempty subset of H, moreover, by Rellich-
Kondrachov Theorem [5, Theorem 9.16], it is compactly embedded in H. The operator T ◦P maps a function
v ∈ K into the function u ∈ H which is the unique solution (in V ) to

−∆su = f(Pv)− 〈f(Pv)〉 = f(Pv).

Moreover, by (7.23), u ∈ K. The mapping T ◦ P is also continuous, with respect to the topology of H:

‖T ◦ P(v1)− T ◦ P(v2)‖A ≤ Ca‖f(Pv1)− f(Pv2)‖H

= Ca

(∫
Q

(η sin(2Pv1 + 2ψh)− η sin(2Pv2 + 2ψh))2dVol

)1/2

≤ Ca‖η‖∞

(∫
Q

(2Pv1 + 2ψh − 2Pv2 − 2ψh)2dVol

)1/2

≤ 2Ca‖η‖∞‖v1 − v2‖H .

By Schauder fixed point Theorem [46, p. 56], we conclude that there exists u∗ ∈ K such that u∗ = T ◦P(u∗),
that is

−∆su
∗ = f(Pu∗).

Since ∆s and P commute (owing to the symmetry of ∆s), we have

0 = (Id− P)f(Pu∗) = −(Id− P)∆su
∗ = −∆s(Id− P)u∗,

that is, we can decompose u∗ into a 2-odd and a 2-even function

u∗ = Pu∗ + (Id− P)u∗

such that
−∆sPu∗ = f(Pu∗), −∆s(Id− P)u∗ = 0.

By the strong maximum principle [14, Section 6.4.2, Theorem 3] and the periodicity of u∗ on Q, (Id−P)u∗

is constant. Since
〈(Id− P)u∗〉 = 〈u∗〉 − 〈Pu∗〉 = 0,

we conclude that (Id− P)u∗ = 0, hence Pu∗ = u∗. We have thus proved that

−∆su
∗ = f(u∗).
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The function αk := u∗+ψh+kπ ∈ Ah is a solution to the stationary problem for every k ∈ Z. The regularity
of αk follows directly from the C∞ regularity of u∗ and ψh.

Step (i). The Laplace-Beltrami operator on the torus, defined in (A.5), is a linear second order differential
operator, with C∞-regular and bounded coefficients. It is uniformly elliptic, with ellipticity constant µ :=
min{1/r2, 1/(R − r)2}. In order to prove existence and uniqueness of solutions to (7.21), we exploit the
powerful machinery of analytic semigroups, developed in [26]. We only need to show that our problem fits
in the framework.

Let D(A) := H2
per(Q). Note that D(A) is dense in H and in H1

per(Q), and that the realization of the
Laplace-Beltrami operator A : D(A)→ H, Au := κ∆su, is self-adjoint and dissipative. Therefore, (A,D(A))
is a sectorial operator ([24, Proposition 2.2.1]) and it generates the analytic semigroup etA : H → H. For all
u, v ∈ H1

per(Q)

‖f(u)− f(v)‖H ≤ ‖η‖∞‖u− v‖H ≤ C‖u− v‖A . (7.24)

For T > 0, a continuous function u : (0, T ] → H1
per(Q) such that t 7→ f(u(t)) ∈ L1(0, T ;H) is said to be a

mild solution of

∂tu = Au+ f(u), u(0) = u0 ∈ H, on (0, T ), (7.25)

if

u(t) = etAu0 +

∫ t

0

e(t−s)Af(u(s)) ds,

where integration is in the sense of Bochner (see, e.g. [40, Chapter 3]). By [26, Theorem 7.1.3 (i) and
Proposition 7.1.8], (7.23) and (7.24), for every initial datum u0 ∈ H1

per(Q), for every T > 0, there exists

a unique mild solution u ∈ C0([0, T ];H1
per(Q)). The winding number of the vector field n(t) = cos(u(t) +

ψh)e1 + sin(u(t) + ψh)e2 is then W (n(t)) ≡ h along the flow.

Step (ii). If u0 ∈ D(A) and Au0 + f(u0) ∈ H, then

u ∈ C0([0, T ];D(A)) ∩ C1([0, T ];H) (7.26)

and u solves (7.25) pointwise, for all t ∈ [0, T ] [26, Proposition 7.1.10 (iii)].

More in general, parabolic equations governed by a strongly uniformly elliptic operator A with C∞-regular
coefficients obey the following maximal regularity principle: the terms ∂tu and Au have independently the
same regularity as f(u), provided that the initial datum and the boundary conditions (if present) are smooth
enough, see, e.g., [14, Theorem 6, Section 7.1], [5, p.341–343], or [8]. In our case, since f is Lipschitz-
continuous and bounded, from (7.26) we read that f(u) ∈ C0([0, T ];H2(Q)) ∩ C1([0, T ];L2(Q)), and by the
maximal regularity principle we obtain that u ∈ C0([0, T ];H4(Q))∩C1([0, T ];H2(Q)). Iterating this process
we obtain the regularity (7.19) and eventually, provided we choose an initial datum u0 ∈ C∞(Q)∩H1

per(Q),

for all T > 0 we obtain a Q-periodic function u ∈ C∞([0, T ] × Q) (see, e.g., [14, Theorem 7, Section 7.1]).
Reconstruction of α is done as before by α(t, x) := u(t, x) + ψh(x).

Step (iii). Let u ∈ C2([0, T ] × Q) be a solution to (7.21), as in the previous step. We prove the uniform
bound (7.20) by showing that there exists a constant C > 0, independent of time, such that

sup
T>0
‖u(T )‖∞ < C and sup

T>0

{
‖∂tu‖L2(0,T ;H) + ‖∇su(T )‖H

}
≤ C. (7.27)

Note that, if u ∈ A0 ∩ C2(Q) has a local maximum in x0 ∈ Q, then ∇u(x0) = 0 and ∆u(x0) ≤ 0. We
remark that the inequality is valid also in points belonging to ∂Q, owing to the periodicity of u. Since the
coefficients of the second-order derivatives of the Laplace-Beltrami operator are positive, ∆su(x0) ≤ 0.

Equipped with this regularity, we can use the maximum principle for parabolic semilinear problems [24,
Proposition 6.2.5] to establish boundedness of u. Let u0 ∈ C2(Q) be the initial datum for u. Let u∗ be a
solution to the stationary problem (7.18) as in Step (0). Since u0 and u∗ are bounded, there exist m1,m2 ∈ N
such that

u∗(x) +m1π ≤ u0(x) ≤ u∗(x) +m2π, ∀x ∈ Q.
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Define v1(t, x) := u∗(x) +m1π, v2(t, x) := u∗(x) +m2π. Then v1 and v2 satisfy

∂tv1 = Av1 + f(v1), ∂tv2 = Av2 + f(v2) ∀ t ∈ [0, T ].

By [24, Proposition 6.2.5],

v1(t, x) ≤ u(t, x) ≤ v2(t, x) for all t, x ∈ [0, T ]× Ω.

Since the estimate does not depend on T , we obtain the first half of (7.27).

Regarding the second half, we take the scalar product (in H) of (7.21) times ∂tu, obtaining∫
Q

(∂tu(t))2 dVol + a(u(t), ∂tu(t)) =

∫
Q

f(u(t))∂tu(t) dVol.

By the linearity of a and the regularity of u, integrating in time between 0 and T we get∫ T

0

∫
Q

(∂tu(t))2 dVol dt+
1

2
a(u(T ), u(T )) =

1

2
a(u(0), u(0)) +

∫ T

0

∫
Q

f(u(t))∂tu(t) dVol dt. (7.28)

Recalling the definition of f(u) and exploiting its regularity, we compute∫ T

0

∫
Q

f(u(t))∂tu(t) dVol dt =

∫
Q

∫ T

0

f(u(t))∂tu(t) dtdVol

=

∫
Q

η

∫ T

0

sin(2u(t) + 2ψh)∂tu(t) dtdVol

=

∫
Q

η(cos(2u(0) + 2ψh)− cos(2u(T ) + 2ψh)) dVol

and therefore ∣∣∣∣∣
∫ T

0

∫
Q

f(u(t))∂tu(t) dVol dt

∣∣∣∣∣ ≤
∫
Q

2|η|dVol ≤ C.

Using this estimate in (7.28), we get

2‖∂tu‖2L2(0,T ;H) + κ‖∇su(T )‖2H ≤ κ‖∇su0‖2H + 2C.

Since the estimate does not depend on T , we obtain the second half of (7.27).

Step (iv). Now, we come to the issue of the long-time behaviour. First, note that the above regularity implies
that the set {α(t), t ∈ (0,+∞)} is bounded in H1(Q), hence compact in H. As a consequence, we have that
ω(α) is a nonempty compact set of H. Moreover, since by interpolation, α ∈ C0(0,+∞;H), a classical
dynamical systems argument (see, e.g., [16]) shows that ω(α) is connected in H. Consider now an element
α∞ ∈ ω(α) and a sequence of times tn such that tn ↗ +∞ for n ↗ +∞ and α(tn) → α∞ in H. For any
t ≥ 0, set αn(t) := α(t+ tn). Note that ‖∂tαn‖L2(0,T ;H) ≤ ‖∂tα‖L2(tn,+∞;H). Hence, we have that ∀T > 0

lim
n↗+∞

(
‖αn − α∞‖C0(0,T ;H) + ‖∂tαn‖L2(0,T ;H)

)
= 0.

Thus, passing to the limit with respect to n in (7.15), written for αn, we immediately conclude that α∞ is
a solution of (7.9). �

7.3. Comparison with the classical energy. In view of the results of this Section, it is worthwile to
compare the predictions of the so called intrinsic energy (3.3) with the ones of the Napoli-Vergori energy
(3.6) on a torus. In particular, in [25] it is found that the Euler-Lagrange equation for (3.3) on a torus is
∆sα = 0 and simple explicit solutions are given by

α(θ, φ) = m(φ− φ0) + θ0
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for all constants θ0, φ0 ∈ R, for all m ∈ Z. The minimizer, in particular is obtained for m = 0. Note that
this set of solutions corresponds to winding numbers (0,m), we give the complete set of solutions in Lemma
7.4. The second variation of (3.3) is

d2

dt2
W̃in(α+ tω)

∣∣
t=0

= κ

∫
Σ

|∇sω|2 dS.

Since it is always nonnegative, and zero if and only if ω is constant, the conclusion is that every constant
α ≡ α0 ∈ R is a global minimizer for W̃in, independently of the ratio R/r. The scenario depicted by the
Napoli-Vergori energy (3.6) is quite different. In fact, the presence of the extrinsic term related to the shape
operator acts as a selection principle for equilibrium configurations. More precisely, when R/r is sufficiently
large (numerics indicate that the threshold ratio b∗ should be between 1.51 and 1.52) then (see Proposition
7.1) the only constant solution is α = π/2 + mπ (m ∈ Z). Moreover, when R/r < b∗ a new class of non
constant solution appears (see Figures 8 and 9). With respect to the heuristic principle expressed in [30],
that “the nematic elastic energy promotes the alignment of the flux lines of the nematic director towards
geodesics and/or lines of curvature of the surface”, we make the following observation: This new solution
tries to minimize the effect of the curvature by orienting the director field along the meridian lines (α = 0),
which are geodesics on the torus, near the hole of the torus, while near the external equator the director is
oriented along the parallel lines α = π/2, which are lines of curvature. A smooth transition occurs between
α = π/2 and α = 0. In this sense, the new solution can be understood as an interpolation between α = π/2
and α = 0, which are the two constant stationary solutions of the system.

8. Numerical experiments

In this section we report on some simple numerical experiments carried out to approximate minimizers of
the one-constant approximation energy (3.6) on the axisymmetric torus with radii 0 < r < R parametrized
by (7.1). Regarding numerics, we note that Monte Carlo methods with simulated annealing were employed
in [27, 33, 38] and finite elements on surfaces were developed in [2], in order to study defects evolution and
variable surfaces. Since the problem we study is considerably easier, we can afford to use simpler methods.
The discussion in sections 6 and 7 shows that instead of studying the minimization on H1

tan(Σ), constrained
to the nonconvex subset H1

tan(Σ; S2), we can look at the simpler energy (7.5) on H1(Q), with suitable
boundary conditions. Theorem 3, in particular, shows that the L2-gradient flow of (7.5) is well-posed and its
winding number is constant along the flow. Therefore, there exist infinite local minimizers of (3.6), at least
one for every element of the fundamental group of the torus π(T) = Z× Z. We actually conjecture that, if
h 6= (0, 0), there is a unique local minimizer for every h ∈ Z×Z (uniqueness, up to the group of symmetries
of T, of course).

For sake of completeness, we detail the method we used in our experiments, but we remark that once the
original problem is reduced to the formulation (7.15), then any standard method would produce the same
results. We discretize the gradient flow (7.15) with finite differences in space and the Euler forward method
in time, stopping the evolution when the difference between the (discrete) energy at two consecutive steps is
less than 10−4 (the energy is of the order of 10). Convergence of this discretization scheme is classic, as long
as the time step is sufficiently fine with respect to the size of the space grid, according to Von Neumann’s
stability analysis. The scheme is implemented in Matlab and carried out on a standard laptop (Intel Core i7
R©CPU @ 2.8 GHz). Figures 8–10 have relatively rough grids (40x40, 64x64) for graphical purposes, however,
refining up to 512x512 yields the same qualitative results. The CPU-time needed for the calculation of one
time step on a 256x256 grid, for example, is around 0.02 seconds.

I. Case h = (0, 0). As expected from Proposition 7.1, the numerical experiments indicate that for R/r ≥ 2,
there is one constant global minimizer, given by α = π/2 (Figure 8), i.e. n ≡ ±e2. Numerically α = π/2
remains a minimizer for R/r ≥ 1.52, while for R/r < 1.51, the director field in the inner part of the cylinder
bends in order to follow the geodesics oriented like e1, and the bending becoming steeper and deeper as
the ratio R/r decreases (Figures 8-right, 9). Numerical evidence thus suggests that the bifurcation point b∗

considered in Proposition 7.1 satisfies 1.51 < b∗ < 1.52.
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α

Figure 8. Configuration of a numerical solution α of the gradient flow. If R/r = 2.5, then
α = π/2, W (α) = 11.61·π2 (left). When R/r = 1.33, W (α) = 9.95·π2 < W (π/2) = 10.22·π2

(right). The colour represents the angle α ∈ [0, π], the arrows represent the corresponding
vector field n.

Figure 9. Configuration of the scalar field α and of the vector field n of a numerical solution
to the the gradient flow (7.15), in the case R/r = 1.2 (left). Zoom-in of the central region
of the same fields (right). The colour represents the angle α ∈ [0, π], the arrows represent
the corresponding vector field n.

h 0 1 2 3

0 10.24 12.71 16.47 22.40
1 14.85 16.42 20.03 25.93
2 25.80 27.04 30.57 36.44
3 43.33 44.54 48.06 53.93

Table 1. Values of the numerical minimum of the energy, R/r = 2. The i-th row and j-th
column in the table correspond to index h = (j, i). Values obtained running 30k time-steps,
with dt =0.00025, on a 128x128 grid.

II. Case h 6= (0, 0). When the initial datum α0 has nonzero winding number h on the torus (see Figure 10),
the whole evolution takes place in the same homotopy class, approximating a local minimizer with nontrivial
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Figure 10. Some examples of local minimizers with mixed (θ, φ) winding numbers. In
clockwise order, from top-left corner: index (1,1), (1,3), (3,3), (3,1). The colour represents
the angle α ∈ [0, 2π], the arrows represent the corresponding vector field n.

winding. In Table 1 we collect the numerical values of the energy Wκ corresponding to minimizers in different
homotopy classes.
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Appendix A. Geometric quantities on the torus

Let Q := [0, 2π] × [0, 2π] ⊂ R2, and let X : Q → R3 be the following parametrization of an embedded
torus T

X(θ, φ) =

(R+ r cos θ) cosφ
(R+ r cos θ) sinφ

r sin θ

 . (A.1)

36



Using parametrization (A.1), in the next paragraph we derive the main geometrical quantities, like tangent
and normal vectors, first and second fundamental form, in order to obtain an explicit expression for the
metric and the curvatures of T and for ∇sn.

Letting

Xθ :=
∂

∂θ
X, Xφ :=

∂

∂φ
X, ν :=

Xθ ∧Xφ

|Xθ ∧Xφ|
,

we have

Xθ =

−r sin θ cosφ
−r sin θ sinφ

r cos θ

 , Xφ =

−(R+ r cos θ) sinφ
(R+ r cos θ) cosφ

0

 , ν = −

cos θ cosφ
cos θ sinφ

sin θ

 ,

Xθθ =

−r cos θ cosφ
−r cos θ sinφ
−r sin θ

 , Xφφ =

−(R+ r cos θ) cosφ
−(R+ r cos θ) sinφ

0

 , Xθφ =

 r sin θ sinφ
−r sin θ cosφ

0

 .

The unit tangent vectors are

e1(θ, φ) :=
Xθ

|Xθ|
=

− sin θ cosφ
− sin θ sinφ

cos θ

 , e2(θ, φ) :=
Xφ

|Xφ|
=

− sinφ
cosφ

0

 .

Note that this choice of tangent vectors yields an inner unit normal ν. The first and second fundamental
forms are

g =

(
r2 0
0 (R+ r cos θ)2

)
, II =

(
1
r 0
0 cos θ

R+r cos θ

)
.

We have
√
ḡ = r(R+ r cos θ), gii := (gii)

−1. Thus, the shape operator B has the form{
Be1 = 1

re1

Be2 = cos θ
R+r cos θe2

(A.2)

from which we have that e1 and e2 are the principal directions. Then, the principal curvatures are

c1 =
1

r
, c2 =

cos θ

R+ r cos θ
. (A.3)

Now, we compute (∇ei)ej . Deriving the relation ei · ej = δij we see that

(∇e1)Te1 = (∇e2)Te2 = 0 and (∇e1)Te2 = −(∇e2)Te1. (A.4)

To differentiate along e1, let {
θ(t) = t

r + θ0

φ(t) = φ0

,

and set γ(t) = X(θ(t), φ(t)). We have γ(0) = X(θ0, φ0) and γ′(0) = 1
rXθ(θ0, φ0) = e1(θ0, φ0). Thus, the

directional derivatives of e1 and e2 along e1 are given by

(∇e1)e1 =
d

dt

∣∣∣∣
t=0

1

r
Xθ(θ(t), φ(t)) =

1

r2
Xθθ, (∇e2)e1 =

d

dt

∣∣∣∣
t=0

e2(θ(t), φ(t)) = 0.

To differentiate along e2, we set {
θ(t) = θ0

φ(t) = t
R+r cos θ0

+ φ0

,

and take γ(t) = X(θ(t), φ(t)), so that γ(0) = X(θ0, φ0) and γ′(0) = 1
R+r cos θ0

Xφ(θ0, φ0) = e2(θ0, φ0). Thus,

(∇e1)e2 =
d

dt

∣∣∣∣
t=0

1

r
Xθ(θ(t), φ(t)) =

1

r(R+ r cos θ0)
Xθφ,

(∇e2)e2 =
d

dt

∣∣∣∣
t=0

1

R+ r cos θ(t)
Xφ(θ(t), φ(t)) =

1

(R+ r cos θ0)2
Xφφ.
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The geodesic curvatures κ1 and κ2 of the principal lines of curvature can thus be obtained by

κ1 = e2(∇e1)e1 =
1

R+ r cosφ
Xφ ·

1

r2
Xθθ = 0,

κ2 = e2(∇e1)e2 =
1

r(R+ r cos θ)2
Xφ ·Xθφ =

− sin θ

R+ r cos θ
.

By the definition of spin connection A in subsection 6.1, we also read

A1 = (e1, De1
e2)R3

(A.4)
= −κ1 = 0, A2 = (e1, De2

e2)R3

(A.4)
= −κ2 =

sin θ

R+ r cos θ
.

The explicit forms of the surface differential operators on the torus are

∇sα = gii∂iα =
1

r2
(∂θα)Xθ +

1

(R+ r cos θ)2
(∂φα)Xφ

=
1

r
(∂θα)e1 +

1

R+ r cos θ
(∂φα)e2,

∆s =
1√
ḡ
∂i(
√
ḡgij∂j) =

1√
ḡ

(
∂θ

(√
ḡ

1

r2
∂θ

)
+ ∂φ

(√
ḡ

1

(R+ r cos θ)2
∂φ

))
=

1

r2
∂2
θθ −

sin θ

r(R+ r cos θ)
∂θ +

1

(R+ r cos θ)2
∂2
φφ. (A.5)

For n = cosαe1 + sinαe2, the explicit expression of the surface gradient ∇sn in terms of the deviation angle
α, with respect to the Darboux frame (n, t,ν) is

∇sn =


0 0 0

αθ
r cosα+

(
αφ

R+r cos θ −
sin θ

R+r cos θ

)
sinα −αθr sinα+

(
αφ

R+r cos θ −
sin θ

R+r cos θ

)
cosα 0

1
r cos2 α+ cos θ

R+r cos θ sin2 α
(

cos θ
R+r cos θ −

1
r

)
sinα cosα 0

 .

Appendix B. Some integration formulas

Let b > 1, it holds ∫ 2π

0

sin2 θ

b+ cos θ
dθ = 2π

(
b−

√
b2 − 1

)
, (B.1)∫ 2π

0

cos2 θ

b+ cos θ
dθ = 2πb

(
b√

b2 − 1
− 1

)
. (B.2)

For θ ∈ [0, π), b > 1 ∫
1

b+ cos θ
dθ =

2√
b2 − 1

arctan

(
(b− 1) sin θ√
b2 − 1(1 + cos θ)

)
+ c

=
2√
b2 − 1

arctan

(
(b− 1)√
b2 − 1

tan

(
θ

2

))
+ c.

Thus, ∫ 2π

0

1

b+ cos θ
dθ = 2 lim

s→π+

∫ s

0

1

b+ cos θ
dθ =

2π√
b2 − 1

.

Appendix C. The general Euler-Lagrange equation

The Euler-Lagrange equation of (6.26) is

−K1 divs

[
((∇sα− A) · t)t

]
−K3 divs

[
((∇sα− A) · n)n

]
+ (K3 −K1)((∇sα− A) · t)((∇sα− A) · n)

−K3
(c21 − c22)

2
sin(2α) + (K2 −K3)

(c1 − c2)2

4
sin(4α) = 0.

(C.1)
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Proof. Let β ∈ C∞c (Σ), we study the first variation of (6.26) in the direction β, i.e. d
dtW (nt)

∣∣
t=0

, where

nt := cos(α+ tβ)e1 + sin(α+ tβ)e2, tt := − sin(α+ tβ)e1 + cos(α+ tβ)e2.

It holds d
dtnt = β tt,

d
dttt = −β nt. We split the energy W into four terms

W1(t) =
K1

2

∫
Σ

((∇s(α+ tβ)− A) · tt)2dS,

W2(t) =
K2

2

∫
Σ

(c1 − c2)2 sin2(α+ tβ) cos2(α+ tβ) dS,

=
K2

2

∫
Σ

(c1 − c2)2

(
sin(2α+ 2tβ)

2

)2

dS,

W3a(t) =
K3

2

∫
Σ

((∇s(α+ tβ)− A) · nt)2dS,

W3b(t) =
K3

2

∫
Σ

(c1 cos2(α+ tβ) + c2 sin2(α+ tβ))2 dS

=
K3

2

∫
Σ

(
c1 + c2

2
+
c1 − c2

2
cos(2α+ 2tβ)

)2

dS.

We compute the first variation of each term

d

dt
W1(t)

∣∣∣
t=0

= K1

∫
Σ

((∇s(α+ tβ)− A) · tt)(∇sβ · tt + (∇s(α+ tβ)− A) · (−β nt))dS
∣∣∣
t=0

= K1

∫
Σ

((∇sα− A) · t)(∇sβ · t− β(∇sα− A) · n)dS

= −K1

∫
Σ

{
divs

[
((∇sα− A) · t)t

]
+ ((∇sα− A) · t)((∇sα− A) · n)

}
β dS,

d

dt
W2(t)

∣∣∣
t=0

=
K2

4

∫
Σ

(c1 − c2)2 sin(4α)β dS,

d

dt
W3a(t)

∣∣∣
t=0

= −K3

∫
Σ

{
divs

[
((∇sα− A) · n)n

]
− ((∇sα− A) · t)((∇sα− A) · n)

}
β dS,

d

dt
W3b(t)

∣∣∣
t=0

= −K3

2

∫
Σ

{
(c21 − c22) sin(2α) +

(c1 − c2)2

2
sin(4α)

}
β dS.

Collecting the four terms, we obtain (C.1) �
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