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Abstract

For some particular cases in dimension 3 and higher we prove a conjecture of Laugesen and
Pritsker [11] concerning the farthest-point distance function. Moreover, we consider some
examples that provide more insight in the nature of the problem and allow us to simplify
the proof of Gardiner and Netuka in two dimensions.

1 Introduction

For a compact set E ⊂ Rn the farthest-point distance function dE : Rn 7→ R is defined by

dE (x) = max {|x− y| ; y ∈ E} .

Notice that, unless E is singleton, dE(x) is everywhere positive. Next to the intrinsic motivation
the function plays a role in several areas of analysis. See the papers by Gardiner and Netuka
[7] and Wise [16]. Our main interest is the farthest-point distance function itself and a related
probability measure σE . Following Boyd [3] for finite sets E, Pritsker in [12] showed that for a
compact set E ⊂ R2, there exists a probability measure σE such that

log (dE (x)) =

∫
R2

log |x− y| dσE (y) . (1)

Before going into details, let us first give a sketch of the level lines of dE for two special cases in
Figure 1.

Figure 1: Level lines of dE for a triangle and an ellipse; the white lines show where dE is not
C1 and where σE is not absolutely continuous with respect to the Lebesgue measure.

Our main interest are dimensions n ≥ 3. In those dimensions the formula that replaces (1),
is as follows:

dE (x)2−n =

∫
Rn
|x− y|2−n dσE (y) for all x ∈ Rn. (2)
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If E consist of a single point z, then dE (x) = |x− z| and the measure σE necessarily is the
Dirac-delta distribution at z. In that case it obviously holds that σE (E) = 1. For compact sets
E 3 z one finds that dE (x) ' |x− z| as |x| → ∞, which supports the claim that σE (Rn) = 1.
So, if σE is a positive measure, then σE (Rn) = 1 implies that σE is a probability measure and
obviously σE (E) ≤ 1. Surprisingly, except in the case that E is a single point, σE (E) seems to
be strictly less than 1. Laugesen and Pritsker noticed that for a ball E = {x ∈ Rn; |x| ≤ r} it
holds that

σE (E) = 21−n

and they conjectured, that for all compact sets E, containing more than one point, it holds that

σE (E) ≤ 21−n. (3)

The conjecture was shown to be true for n = 2 by Gardiner and Netuka [6] [7]. Our contribution
to a better understanding of the conjecture will provide an alternative proof (see Theorem 3.1)
in the case n = 2 as well as a proof for n ≥ 3 in some special cases (sets of constant width and
centrally symmetric sets) described in Theorems 4.1 and 5.1. Let us first recall some background
material.

1.1 Potential theoretic intermezzo

For dimensions n ≥ 3 the function x 7→ |x− y|2−n is superharmonic and converges to 0 as
|x| → ∞. So, if E consists of finitely many points {y1, . . . yk}, then

x 7→ dE (x)2−n = min
{
|x− yi|2−n ; 1 ≤ i ≤ k

}
is superharmonic as the minimum of superharmonic functions. Similarly for a set E, which is
not finite but still compact, one finds that the function

x 7→ dE (x)2−n = inf
{
|x− z|2−n ; z ∈ E

}
as infimum of superharmonic functions is superharmonic. For a superharmonic function u the
distribution µu := −∆u exists as a nonnegative Riesz measure. See [1, Corollary 4.3.3 and
Definition 4.3.4]. So indeed, the distribution

µE := −∆
(
dE (·)2−n

)
(4)

is a nonnegative Riesz measure, and since Rn, with n ≥ 3, is Greenian ([1, Theorem 4.1.2]) one
finds by [1, Theorem 4.4.1] that

dE (x)2−n =

∫
Rn

Γn (x− y) dµE (y) with Γn (x) =
|x|2−n

(n− 2)nωn
. (5)

Remark 1.1 Here Γn is the fundamental solution for −∆ on Rn with ωn = πn/2

Γ(1+n/2) the volume
of the unit ball. Remember that αn = nωn is the n− 1-dimensional surface area of the unit ball.

The measure σE mentioned above, is defined by

σE :=
1

(n− 2)nωn
µE =

−∆
(
dE (·)2−n

)
(n− 2)nωn

. (6)

Indeed, since we have taken the appropriate normalization, we obtain (2).
For n = 2 the whole space R2 is not Greenian, but nevertheless (1) holds for the probability

measure σE defined by

σE :=
1

2ω2
µE =

−∆ (− log(dE))

2π
. (7)

Since lim
n↓2

t2−n−1
n−2 = − ln t holds, the definition in (7) is the obvious extension of (6).
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1.2 The farthest point envelope

One easily remarks that for a proof of the conjecture (3), it suffices to consider convex sets E.
Indeed, suppose that E is not convex and let co (E) be the convex hull of E. Since

|x− (θya + (1− θ) yb)| ≤ max (|x− ya| , |x− yb|) for all θ ∈ (0, 1) ,

it follows that
dco(E) (x) = dE (x) for all x ∈ Rn, (8)

so σE = σco(E) and hence

σE (E) = σco(E) (E) ≤ σco(E) (co (E)) . (9)

Gardiner and Netuka in [6], [7] noticed that it even suffices to prove the inequality σE (E) ≤ 21−n

for the farthest-point envelope E∗ of a convex set E.

Definition 1.2 The farthest-point envelope E∗ of E is defined by

E∗ :=
⋂
x∈E

B (x, dE(x))

with B (x, r) = {y ∈ Rn; |x− y| ≤ r}.

Let us state some features of the farthest-point envelope:

Lemma 1.3 Suppose that E and E0 are convex compact sets. Then the following holds:

1. dE∗ (x) = dE (x) for all x ∈ E;

2. E∗ = (E∗)∗;

3. E∗ =
⋂{

B1/ε (x);B1/ε (x) ⊃ E∗
}

for ε ∈ (0, ε0) with ε0 > 0 sufficiently small;

4. if E ⊂ E0 ⊂ E∗, then E∗0 ⊂ E∗.

Remark 1.4 In Figure 2 one finds an example of the last result with strict inclusions.

Proof. 1. This first claim follows from the definition.

2. E∗ ⊂ (E∗)∗ =
⋂

x∈E∗
B (x, dE∗(x)) ⊂

⋂
x∈E

B (x, dE∗(x)) =
⋂
x∈E

B (x, dE(x)) = E∗.

3. Take ε0 = (maxx∈E dE(x))−1.

4. E∗0 =
⋂

x∈E0

B (x, dE0(x)) ⊂
⋂
x∈E

B (x, dE0(x)) ⊂
⋂
x∈E

B (x, dE∗(x)) = E∗.

By the first item of Lemma 1.3 one finds dE∗ (x) = dE (x) for all x ∈ E, similar to (8) but
now only on E. Hence σE∗ = σE on Eo. As noted in [7, page 42], in general dE∗ ≥ dE , and
since dE∗ = dE on ∂E, it follows that (σE∗ − σE)|∂E ≥ 0 in the sense of measure. Hence

σE (E) ≤ σE∗ (E) ≤ σE∗ (E∗) . (10)

So it will be sufficient to consider (3) for domains satisfying E = E∗.
Gardiner and Netuka also found for n = 2 that equality in (3) holds for all sets E of constant

width wE . For a set of constant width wE one has E∗ = E and

dE(x) = wE + d(x, ∂E) in Rn \ E. (11)
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Figure 2: On the left a triangle E1 and its farthest-point envelope E∗1 . On the right a curvilinear
domain E2 that equals its farthest-point envelope E∗2 . One has E1 $ E2 = E∗2 $ E∗1 . The points
show the centers of the disks that are used in constructing the farthest-point envelope.

Figure 3: On the left a triangle E and the support of σE as three half lines originating from the
circumcenter. On the right the corresponding E∗, a curvilinear triangle, and the support of σE∗.
Inside E one finds σE = σE∗. Outside E the measure σE∗ is absolutely continuous with respect
to the Lebesgue measure.

Definition 1.5 Let E ⊂ Rn be a compact set. We define the width in direction ϑ ∈ Sn−1 :=
{ϑ ∈ Rn; |ϑ| = 1} by

wE (ϑ) = max {(x− y) · ϑ;x, y ∈ E} .

The set E is said to have constant width wE, when wE (ϑ) = wE for all ϑ ∈ Sn−1.

While other examples are discussed below, we will show that in any dimension n, whenever E
is convex, the value of σE(E) can be estimated in terms of a boundary integral on ∂E involving
intrinsic geometric quantities. By way of this estimate we first provide an alternative proof
of conjecture (3) in dimension n = 2. Next we show that in dimension n ≥ 3 the conjecture
holds true both in the class of sets of constant width and in the class of centrosymmetric sets.
In contrast to the 2d-case, however, equality σE(E) = 21−n does no longer hold for any set of
constant width other than a ball. For the particular case of the rotated Reuleaux-triangle in R3

this has also been observed by Wise in [16].
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2 Main Tool

First we formulate an auxiliary result for convex compact sets E and apparently unrelated sets
K. In a first and simpler looking version of this result K was identical to E, and its consequences
are used in Lemma 2.4, but the more general version will turn out to be useful later in Remark
6.4. We generalize outside normals as follows:

Definition 2.1 Let E ⊂ Rn be convex. For x ∈ ∂E we call ν an outer normal at x when

ν · (y − x) ≤ 0 for all y ∈ E.

Proposition 2.2 Suppose n ≥ 2. Let K ⊂ Rn be a compact set consisting of at least two points,
and let E ⊂ Rn be compact, convex, and with nonempty interior. For x ∈ ∂E, let νE (x) denote
an outer normal. Then the following holds.

• The outer normal νE(x) is uniquely defined for all x ∈ ∂E with the exception of a set of
Hn−1 measure zero.

• For those x ∈ ∂E where νE (x) is unique, the one-sided derivative of dK at x in the
direction νE (x) is well-defined:

∂+
νE
dK(x) = lim

ε↓0

dK(x+ ε νE(x))− dK(x)

ε
.

• Most important, we have

σK (E) ≤ 1

nωn

∫
∂E
dK(x)1−n ∂+

νE
dK(x) dHn−1(x). (12)

As in Remark 1.1, ωn is the volume of the unit ball in Rn.

Remark 2.3 We call the points x of ∂E regular, when the outer normal to ∂E at x is uniquely
defined. We write νE (x) for this normal. For convex E it is well-defined Hn−1 a.e. Hn−1 is the
(n− 1)-dimensional Hausdorff measure.

Proof of Proposition 2.2. Here we work out the proof for n ≥ 3, the case n = 2 is similar.
• For the first claim, notice that since E has a nonempty interior, the convexity of E implies

that the outside normal ν (x) is uniquely defined on ∂E except for a set of Hn−1-measure zero.
• For the second claim we recall that dK is a convex function. Indeed for all θ ∈ (0, 1) we

have

dK (θx+ (1− θ) y) ≤ max
z∈K

(θ |x− z|+ (1− θ) |y − z|) ≤ θdK (x) + (1− θ) dK (y) .

The one-sided derivative of a convex function is well-defined and hence ∂+
η dK(x) is pointwise

defined for all x in Rn and for all η ∈ Sn−1.
• Since K contains at least two points, dK is strictly positive and hence, using the first two

items, the integral on the right-hand side of (12) is well defined. Moreover we will use the fact
that ∂+

η dK(x) is upper semicontinuous in Rn × Sn−1 (see [14, Theorem 24.5]), in the sense that

lim
(y,µ)→(x,η)

∂+
µ dK(y) ≤ ∂+

η dK(x) for all (x, η) ∈ Rn × Sn−1.

For the estimate we consider σK(Ec). Since σK is a probability measure, we have

σK(E) = 1− σK(Ec). (13)
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Setting

ϕR(x) =


1 for |x| ≤ R
0 for |x| ≥ R+ 1
1− |x| −R for R < |x| < R+ 1

and using (4) and (6) we obtain

σK(Ec) =
−1

n (n− 2)ωn
lim
R→∞

〈
∆
(
dK (·)2−n

)
,1Ec (·) ϕR(·)

〉
, (14)

where 〈·, ·〉 denotes the pairing between measures and continuous functions on the open set Ec.
Since in the open set Ec, ∆(dK (x)2−n) is a bounded measure as divergence of an L∞ vectorfield
and since ϕR is a Lipschitz function, it is possible to apply the divergence theorem (see [5]), and
the pairing term on the righthand side of (14) becomes〈

∆
(
dK (·)2−n

)
,1Ec (·) ϕR(·)

〉
= I −

∫
x∈B(0,R+1)∩Ec

∇
(
dK (x)2−n

)
∇ϕR(x)dx, (15)

with I a boundary term for ∂E.
Let us first consider this boundary term. Taking into account [5, Theorem 2.3] and the fact

that ϕ|∂E ≡ 1, the term I in (15) can be expressed by the following limit:

I = −ess lim
s↓0

∫
∂Es

∇
(
dK(x)2−n) · νEs(x) dHn−1, (16)

where νEs(·) is the unit outer normal to ∂Es and Es is a one-parameter family of sets, with all
sets homothetic to E, that we construct as follows. We fix y0 in the interior of E, and define for
s > 0 the set

Es = {y + t(y − y0) : y ∈ E, 0 ≤ t ≤ s} .
After the change of variables x = y + s(y − y0) the expression in (16) becomes

I = −ess lim
s↓0

∫
∂E
∇
((

dK(y + s(y − y0))
)2−n

)
· νE(y) (1 + s)n−1 dHn−1(y).

Here we have used the homothety, which implies that νEs(y + s(y − y0)) = νE(y) for all s > 0.
Observing that ∇dK ·νE = ∂+

νE
dK holds a.e., the upper semicontinuity of ∂+

νE
dK(y+s(y−y0))

for s ↓ 0 yields

I ≤ (n− 2)

∫
∂E
d1−n
K (x) ∂+

νE
dK (x) dHn−1 (x) . (17)

Next we take care of the second term on the right hand side in (15). This term can be
estimated as follows:∫

x∈BR+1(0)∩Ec
∇
(
dK (x)2−n

)
∇ϕR(x)dx = −

∫
R<|x|<R+1

∇
(
dK (x)2−n

)
· x
|x|
dx

= (n− 2)

∫
R<|x|<R+1

dK (x)1−n ∇dK (x) · x
|x|
dx

= (n− 2)nωn + o(1) as R→∞. (18)

Combining (13), (15) and (18) we find

σK (E) = 1− σK (Ec) =
I

n (n− 2)ωn
+ o(1) as R→∞,

and the proof for n ≥ 3 is complete by using (17). When n = 2 the very same proof works as
well by using now (7) instead of (6).

For later reference we shall now study a useful companion of Proposition 2.2 in the case that
E = K.
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Lemma 2.4 Let E ⊂ Rn be compact, convex, and with non empty interior. Suppose that x ∈ ∂E
is a regular point. Then the following holds:

1. For all x̃ in ∂E with dE(x) = |x− x̃| it holds that

∂+
νE
dE(x) ≥ lim

ε↓0

|x+ ενE(x)− x̃| − |x− x̃|
ε

= νE(x) · x− x̃
|x− x̃|

. (19)

2. There exists x̄ on ∂E such that dE(x) = |x− x̄| and

∂+
νE
dE(x) = νE(x) · x− x̄

|x− x̄|
. (20)

Proof. The first estimate follows from dE (x+ ε νE(x)) ≥ |x+ ενE(x)− x̃|. In order to prove
equality (20) we consider x ∈ ∂E and a sequence xn converging to x from the direction normal
to ∂E, so that νE(x) = xn−x

|xn−x| . We also consider a sequence

x̄n ∈ argmax {|xn − y| ; y ∈ E}

which, possibly by considering a subsequence, converges to some x̄ ∈ ∂E. By continuity

x̄ ∈ argmax {|x− y| ; y ∈ E}

and hence |x− x̄| = dE(x). We fix ξn = xn−x̄n
|xn−x̄n| , find that lim

n→∞
ξn = ξ := x−x̄

|x−x̄| and use

dE(xn) = |xn − x̄n| = |x− x̄n|+ (xn − x) · ξn + o (|xn − x|)

to deduce that

∂+
νE
dE(x) = lim

n→∞

dE(xn)− dE(x)

|xn − x|
= lim

n→∞

|xn − x̄n| − |x− x̄|
|xn − x|

≤ lim
n→∞

|xn − x̄n| − |x− x̄n|
|xn − x|

= lim
n→∞

νE (x) · ξn = νE(x) · ξ. (21)

With the estimate from part 1 the result follows.

3 A 2-dimensional Result

Results from [6] and [7] can be combined to get to the following statement.

Theorem 3.1 (Gardiner - Netuka) Let E ⊂ R2 be a compact set.

1. Suppose that E contains at least two points. Then

σE (E) ≤ 1

2
, (22)

2. Suppose that E is convex and that ∂E is of class C1. Then σE (E) = 1
2 implies that E is

a set of constant width.

Remark 3.2 The C1-smoothness of the boundary in the second item is necessary, as one might
see from Example 3.8. It obviously implies also that E has a nonempty interior.
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By way of (12) with K ≡ E we can provide a alternative proof of the theorem above. In
case of strongly convex smooth domains the proof becomes rather elementary. In the case that
E has corners or faces, the proof can be adjusted but the technicalities become cumbersome.
For the first item strongly convex is not a real restriction since σE (E) ≤ σE∗ (E∗). See (10).
By strongly convex we mean that there exists ε > 0 such that E = Eε, where

Eε =
⋂{

B1/ε (x);B1/ε (x) ⊃ E
}

. (23)

For smooth domains it means that the curvature of the boundary is larger than or equal to ε.
Note that for ε < w−1

E one finds that (E∗)ε = E∗, and hence that E∗ is strongly convex.

Remark 3.3 Concerning the first claim Gardiner and Netuka showed that it is sufficient to
prove inequality (22) for the farthest point distance envelope E∗. So indeed, also for proving the
first item we may assume that E has a nonempty interior.

In our proof of Theorem 3.1 we will use a special parametrization of the boundary. For
smooth, strongly convex E, the parametrization is straightforwardly defined in the next lemma.

Lemma 3.4 Suppose E ∈ R2 is compact. If ∂E is C2 and E is strongly convex, then there
exists a bijective C1 parametrization ϑ 7→ x (ϑ) : S1 → ∂E such that for all ϑ ∈ S1:

1. νE (x (ϑ)) = −νE (x (−ϑ)) and

2. ϑ =
x (ϑ)− x (−ϑ)

|x (ϑ)− x (−ϑ)|
.

Remark 3.5 S1 =
{
ϑ ∈ R2; |ϑ| = 1

}
. We call ϑ 7→ x (ϑ) : S1 → ∂E a parametrization, if

x (·) is continuous, surjektiv and ‘turns around left at most once’. Assuming (0, 0) ∈ Eo and
arg (x (1, 0)) = 0, we mean by the last condition that θ 7→ arg (x (cos θ, sin θ)) : [0, 2π) → [0, 2π)
is increasing.

Remark 3.6 If one removes the assumption ∂E ∈ C2 or replaces strong convexity by convexity,
one may still show the existence of a parametrization with the properties as in 1 and 2. The
parametrization will still be Lipschitz but not necessarily C1. It would however still be appro-
priate for our approach. Even allowing ∂E to have corners, would still give such a Lipschitz
parametrization. In that case such a parametrization ϑ 7→ x (ϑ) : S1 → ∂E will still be ‘increas-
ing’ but no longer necessarily ‘strictly increasing’. A proof is rather technical and cumbersome.
For example, in the case of opposite faces, a parametrization x (·) is not uniquely defined by the
geometric properties 1 and 2. Instead one may define x (·) as the limit of xε (·) : S1 → ∂ (Eε)
with Eε as in (23). Since it doesn’t contribute to a better understanding we have skipped such a
proof.

Proof. We may assume that (0, 0) lies in the interior of E and that the ω 7→ r (ω)ω : S1 → ∂E
with r (ω) ≥ r0 > 0 is a C2 parametrization of the boundary in polar coordinates. We write
X (ω) = r (ω)ω. Since the curvature is strictly bounded away from 0, the map ω 7→ νE (X (ω))
is a diffeomorphism homothetic to the identity, which maps ω = x

|x| for x ∈ ∂E to the normal

νE (x). Let Υ : S1 → S1 denote its inverse. Consider Ψ : S1 → S1 defined by

Ψ (ξ) =
X (Υ (ξ))−X (Υ (−ξ))
|X (Υ (ξ))−X (Υ (−ξ))|

. (24)

Since ξ 7→ Υ (ξ) = X(Υ(ξ))
|X(Υ(ξ))| and ξ 7→ −Υ (−ξ) = −X(Υ(−ξ))

|X(Υ(−ξ))| are diffeomorphisms on S1 homoth-

etic to the identity, also a ‘weighted’ average in S1-sense, such as Ψ, is such a diffeomorphism
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on S1. Note that Ψ maps a normal direction ξ ∈ S1 to an angle Ψ(ξ) = ϑ = (cos θ, sin θ) ∈ S1

and this is what we want to use from our parametrization. Indeed, the parametrization with
the desired properties is the following:

ϑ 7→ x (ϑ) = X
(
Υ ◦Ψinv (ϑ)

)
from ϑ ∈ S1 to ∂E.

See Figure 4.

ϑ = Ψ(ξ)

θ

ξ = νE(x)

x = x(ϑ)

wE(ξ)
y = x(−ϑ)

Figure 4: Illustration for the parametrization in Lemma 3.4

Proof of Theorem 3.1 assuming E to be strongly convex and ∂E ∈ C2. Let ϑ 7→
x (ϑ) : S1 → ∂E be the parametrization as in Lemma 3.4.

Since the outer normal νE(x) is uniquely defined for x ∈ ∂E, also the width at x ∈ ∂E is
well-defined by

w̃(x) := wE (νE(x)) ,

where wE (·) is as in Definition 1.5. Setting x = x (ϑ) and y = x (−ϑ) and using that x and y
have opposite outer normals, we find

w̃ (x (ϑ)) = (x− y) · νE(x) = (y − x) · νE(y) = w̃ (x (−ϑ)) . (25)

Let x̃ ∈ E be such that dE (x) = |x− x̃|. One finds, since |x− y| ≤ dE (x) = |x− x̃| and by
Lemma 2.4, that

∂+
νE
dE(x) = νE (x) · x− x̃

|x− x̃|
≤ w̃(x)

dE (x)

and one obtains
w̃(x) ≥ dE(x) ∂+

νE
dE(x).

Using the result of Proposition 2.2, we find that

σE (E) ≤ 1

2π

∫
∂E
d−1
E (x) ∂+

νE
dE(x) dH1(x) ≤ 1

2π

∫
∂E
d−2
E (x) w̃(x) dH1(x). (26)

Using the parametrization mentioned above we continue with (26), identifying

ϑ = (cos θ, sin θ) and x (θ) := x (cos θ, sin θ) = x (ϑ) ,
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x(θ)

θ

γ

x(θ + ε)

ε

x(θ + π)
x(θ + π + ε)

Figure 5: Illustration for the proof of Theorem 3.1

to find

σE (E) ≤ 1

2π

∫
∂E
d−2
E (x) w̃(x) dH1(x)

=
1

2π

∫ 2π

0
d−2
E (x (θ)) w̃ (x (θ))

∣∣x′ (θ)∣∣ dθ
≤ 1

2π

∫ 2π

0
|x (θ)− x (θ + π)|−2 w̃ (x (θ))

∣∣x′ (θ)∣∣ dθ
=

1

2π

∫ π

−π
|x (θ)− x (θ + π)|−2 w̃ (x (θ))

∣∣x′ (θ + π)
∣∣ dθ. (27)

In the last step we used (25). Averaging the two last terms in (27) we obtain

σE (E) ≤ 1

4π

∫ 2π

0
|x (θ)− x (θ + π)|−2 w̃ (x (θ))

(∣∣x′ (θ)∣∣+
∣∣x′ (θ + π)

∣∣) dθ, (28)

which yields the desired inequality once we have shown that

|x (θ)− x (θ + π)|−2 w̃ (x (θ))
(∣∣x′ (θ)∣∣+

∣∣x′ (θ + π)
∣∣) = 1 for all θ ∈ [0, 2π].

Indeed one has, with γ the angle from ϑ to νE (x (ϑ)) as in Figure 5, that

|x(θ + ε)− x(θ)|+ |x(θ + π + ε)− x(θ + π)| = w̃ (x (θ)) (tan(γ + ε)− tan(γ)) + o(ε).

Dividing by ε and passing to the limit for α→ 0 we find∣∣x′ (θ)∣∣+
∣∣x′ (θ + π)

∣∣ =
w̃ (x (θ))

cos2(γ)
=
|x (θ)− x (θ + π)|2

w̃ (x (θ))
. (29)

The equations in (29) and (28) imply σE (E) ≤ 1
2 .

Concerning the second claim it follows from σE (E) = 1
2 that it is necessary to have equality

in (27). This means that

|x (ϑ)− x (−ϑ)| = dE(x (ϑ)) = dE(x (−ϑ)) for all ϑ ∈ S1,

which implies for ∂E ∈ C1 that the normal to ∂E at x (ϑ) is given by

νE (x (ϑ)) = ϑ =
x (ϑ)− x (−ϑ)

|x (ϑ)− x (−ϑ)|
.
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Hence we find

w̃ (x (ϑ)) = (x (ϑ)− x (−ϑ)) · νE (x (ϑ)) = |x (ϑ)− x (−ϑ)| ,

and

∂

∂θ
w̃ (x (θ)) =

x (θ)− x (θ + π)

|x (θ)− x (θ + π)|
·
(
x′ (θ)− x′ (θ + π)

)
= ϑ ·

(
x′ (θ)− x′ (θ + π)

)
.

Through x′ (θ) · ϑ = 0 = x′ (θ + π) · ϑ for ϑ = νE (x (ϑ)) = νE (x (−ϑ)) it follows that w̃ (x (ϑ))
is constant. In other words, E is a set of constant width.

Remark 3.7 As we shall see in the following example, if the set E is not C1, then equality in
(22) can hold true also if E has non constant width. In this respect the C1 assumption in the
statement of Theorem 3.1 is optimal.

Example 3.8 This example is taken from [6, 7]. In R2 we consider three points x1 = (0, 1),
x2 = (1

2

√
3,−1

2), x3 = (−1
2

√
3,−1

2), which are vertices of
an equilateral triangle T . We define also the Steiner tree
connecting these points

E :=
3⋃
i=1

{txi : t ∈ [0, 1]}.

The farthest point envelope according to Definition 1.2 is
given by T ∗ =

⋂
x∈T B(x, dE(x)) and happens to coincide

now with the Reuleaux triangle
⋂3
i=1B(xi,

√
3). In-

deed, writing r (t) := dE (txj) =
√
t2 + t+ 1 for t ≥ 0 and

using that
⋂3
i=1B

(
xi,
√

3
)
⊂ B (txj , r (t)) for all t ∈ [0, 1]

and j ∈ {1, 2, 3}, we find Figure 6: Reuleaux Triangle.

T ∗ =
⋂{

B (txi, r (t)); 0 ≤ t ≤ 1, i ∈ {1, 2, 3}
}

=
3⋂
i=1

B(xi,
√

3) = {x1, x2, x3}∗ .

It is instructive to note that for the line segment I = [−e1, e1] = co{−e1, e1} with e1 denoting
the first unit vector, I∗ does not happen to coincide with {−e1, e1}∗:

I∗ =
⋂

−1≤θ≤1

B (θe1, 1 + |θ|) = B (0, 1) $ B(−e1, 2) ∩B(e1, 2) = {−e1, e1}∗.

So the fact that E∗ coincides with the Reuleaux triangle T ∗ is not an automatism.
Since it is proven in [6, 7], that for planar convex set of constant width the equality in (3)

is achieved, we have σT ∗(T ∗) = 1
2 . However, one finds directly that

dT ∗(x) = max |x− xi| for all x ∈ R2,

and therefore log dT ∗(x) is harmonic in T ∗ \ E implying that σT ∗ vanishes there. Furthermore,
σT ∗ is absolutely continuous on R2 \E with respect to Lebesgue measure. We also have dT ∗(x) =
dE(x) = dT (x) on T ∗, and we can deduce, that

σE(E) = σT (T ) = σT ∗(T ∗) =
1

2
.

In fact, the set

A =

3⋂
i=1

B(2xi,
√

7)

is strictly convex and such that T ⊂ A ⊂ T ∗. One may check that also σA (A) = 1
2 . So the C1

condition in the second part of Theorem 3.1 cannot be removed.
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4 Bodies of Constant Width in n Dimensions

We consider now the case of n-dimensional bodies of constant width. This class is particularly
interesting because – as we already observed in the 2-dimensional case – it provides the optimal
bound in the sense that for any given E of constant width σE(E) = 1

2 . In contrast to this we
shall now prove the following result for n ≥ 3.

Theorem 4.1 Suppose that n ≥ 3 and that E ⊂ Rn is a closed set of positive constant width.
Then σE (E) ≤ 21−n and equality holds only for the ball.

Proof. First we observe that for any given convex set E, inequality (21) implies ∂+
νE
dE(x) ≤ 1

for all x on ∂E. Moreover for bodies of constant width dE is constant on the boundary of E
and equals the width wE . From (12), with K ≡ E, we immediately have

σE (E) ≤ 1

nωn
w1−n
E |∂E|

It remains to estimate |∂E| in terms of wE . We know of two approaches.
a) One can refer to [8], their estimate (7) with ω = d = wE in Theorem 1 and observe

that the upper bound on |∂E| given there is sharp for n ≥ 3 only if E is a ball, and then
|∂E| = nωn(wE/2)n−1. The authors of [8] seem to have overlooked the equality case (Barbier’s
Theorem) for sets of constant width in n = 2 dimensions. Barbier’s theorem states that in R2

any set of constant width has perimeter π times its width, regardless of its shape.
b) Alternatively, one can refer to the Alexandrov-Fenchel inequalities in [15, Section 6.6

page 351] and observe that, when n ≥ 3, among all sets of same mean-width only balls achieve
maximal surface area. In either case the proof is complete.

5 Centro-symmetric Sets

Finally we present another class of sets for which the conjectured bound holds true. We recall
that E ⊂ Rn is centro-symmetric with respect to the origin O, when x ∈ E implies that −x ∈ E.

Theorem 5.1 Suppose that n ≥ 3 and that the set E ⊂ Rn, which consists of at least two
points, is compact and centrosymmetric. Then σE (E) ≤ 21−n. If equality holds, then E is a
ball.

Proof. If E is centrosymmetric, we may assume that the center is the origin O. Furthermore,
we assume that E is also convex and with nonempty interior. Otherwise we can replace E by
its convex hull co(E). This convex hull is still centrosymmetric and, as explained in section 1.2,
satisfies σE(E) ≤ σco(E)(co(E)). Moreover if co(E) has empty interior then σco(E)(co(E)) = 0
(see Remark 6.4).

We now introduce the polar representation ϑ 7→ x(ϑ) : Sn−1 → Rn of the boundary ∂E. By
Proposition 2.2

σE (E) ≤ 1

nωn

∫
∂E
d1−n
E ∂+

ν dE dHn−1 =
1

nωn

∫
Sn−1

|x|n−1

dn−1
E

∂+
ν dE
ϑ · ν

dSϑ, (30)

where we have used the change of variables ϑ = x/|x| ∈ Sn−1, and with a little abuse of notation

we mean x ≡ x(ϑ), dE ≡ dE(x(ϑ)) and ν ≡ νE(x(ϑ)). One uses dHn−1 = |x(ϑ)|n−1

ν(ϑ)·ϑ dSϑ and as

usual dSϑ denotes the surface area element on Sn−1.
Since the set E is centrosymmetric with respect to the origin O, one has |x(ϑ)| = |x(−ϑ)|,

and we immediately have

|x(ϑ)|n−1 =

(
|x(ϑ)|+ |x(−ϑ)|

2

)n−1

≤ 21−ndE(ϑ)n−1.
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Using the last inequality in (30) the proof is complete, once we show that

0 ≤ ∂+
ν dE(x(ϑ)) ≤ ϑ·νE(x(ϑ)) for all ϑ ∈ Sn−1,

or equivalently, that we have 0 ≤ ∂+
ν dE(x) ≤ x

|x| · νE (x) for all x ∈ ∂E.

To this aim we use inequality (20) and notice that

∂+
ν dE(x) ≤ max

{
νE(x) · x− y

|x− y|
; y ∈ ∂E

}
=

x

|x|
· νE(x),

In the last inequality we have used the symmetry of E, which implies that νE(x) = −νE(−x)
and that the maximum is reached for y = −x.

It remains to consider the equality case. When a convex centrosymmetric set E with
nonempty interior satisfies σE(E) = 21−n, then, following the previous steps, we necessarily
have

dE(ϑ) = 2 |x (ϑ)| = |x(ϑ)− x(−ϑ)| for all ϑ ∈ Sn−1.

This means that the vector θ is orthogonal to ∂E at x(ϑ) for all ϑ ∈ Sn−1 and therefore E is
a ball. Hence, if E ⊂ Rn consists of at least two points, is compact and centrosymmetric, then
σE(E) = 21−n if and only if co(E) is a closed ball. Let D denote such a closed ball. Obviously
∂D ⊆ E and hence σE = σco(E) = σD on Rn. Since σD is absolutely continuous with respect to
Lebesgue measure, σE(E) = σE (D) implies E = D.

6 Examples and Remarks

The general conjecture of Laugesen and Pritsker [11] remains open.

Conjecture 6.1 Let n ≥ 3 and suppose that E ⊂ Rn is compact and consists of more than one
point. Let σE be the probability measure given by (2). Then σE (E) ≤ 21−n. Moreover equality
holds only if E is a ball.

Remark 6.2 As mentioned before, if E consists of one point z, then σE = δz, the Dirac measure
at z, and σE (E) = 1.

Example 6.3 Wise in [16] considered E consisting of two points or the connecting interval.
Similar results hold in higher dimensions. Set e1 = (1, 0, . . . , 0) and consider E = {−e1, e1} or
E = [−e1, e1]. In both cases

dE (x) =

√
1 + 2 |x1|+ |x|2.

With δx1=0 the one-dimensional Dirac measure and λ′ the (n− 1)-dimensional Lebesgue-measure
with respect to x′ = (x2, . . . , xn) one finds

σE = δx1=0 ×
2

nωn

(
1 + |x′|2

)n/2λ′.
So this σE is not absolutely continuous with respect to the n-dimensional Lebesgue measure.
Moreover, one checks directly that σE(E) = σco(E)(co(E)) = 0.

More generally we have the following property.

Remark 6.4 If F ⊂ Rn is a compact subset of an (n−1)-dimensional hyperplane H and consists
of at least two points, then σF (F ) = 0. In other words, a “flat” set F has zero σF measure.
Indeed, if H denotes the hyperplane, then there exists an n − 1 dimensional closed ball D ⊂ H
so that E ⊂ D. In an orthogonal reference frame in which the first (n − 1) coordinate axes
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are parallel to the plane H, we consider the closed cylinder Cε = D × [−ε, ε] for some ε > 0.
Obviously

σF (F ) ≤ lim
ε→0

σF (Cε).

Using (12) and identifying K with F and E with Cε we can now estimate σF (Cε). Denoting by
ŷ a unit vector normal to H and using the upper semicontinuity of ∂+

η dF (x) for (x, η) varying
in Rn × Sn−1 (see [14, Theorem 24.5]), a direct computation gives

lim
ε→0

σF (Cε) ≤
1

nωn

∫
B
dF (x)1−n

(
∂+
ŷ dF (x) + ∂+

−ŷdF (x)
)
dHn−1(x).

Finally we have to observe that ∂+
ŷ dF (x) = ∂+

−ŷdF (x) = 0 on D because the set F is ‘flat’.
Therefore we can deduce σF (F ) = 0.

Example 6.5 For E = B(0, 1), a closed Ball in Rn one finds dE (x) = |x|+ 1, and since for
n ≥ 3

−∆ (|x|+ 1)2−n =
(n− 2) (n− 1)

|x| (1 + |x|)n

it follows with ωn = nπn/2

Γ(1+n/2) and the fundamental solution for −∆, namely Fn (x) = |x|2−n
n(n−2)ωn

,
that

(|x|+ 1)2−n =

∫
y∈Rn

|x− y|2−n

n (n− 2)ωn

(n− 2) (n− 1)

|y| (1 + |y|)n
dy

=

∫
y∈Rn

|x− y|2−n (n− 1)

nωn |y| (1 + |y|)n
dy.

Hence

dσE (y) =
(n− 1)

nωn |y| (1 + |y|)n
dy

which implies σE (Rn) = 1 and

σE (E) =

∫
E
dσE (y) =

∫ 1

r=0

(n− 1) rn−2

(1 + r)n
dr = 21−n.

This confirms part of Theorems 4.1 and 5.1 in another explicit way.

Example 6.6 Recall that in Example 3.8 we saw in case n = 2 for the equilateral triangle T
with side length ` as well as for the Reuleaux-triangle T ∗ := ∩i=1,...,3B(xi, `) that we attain the
optimal bound σT (T ) = σT ∗(T ∗) = 21−n.

This observation does not extend to higher dimensions. In fact, let W denote a regular
tetrahedron in R3 with edge length ` and corners xi i = 1, . . . 4 on the unit sphere. Then one
can calculate (see Example 8 in [16]) that

σW (W ) =
1

π

(
3 arccos

1

3
− π

)
≈ 0.1755 <

1

4
.

Next consider the corresponding Reuleaux-tetrahedron W̃ := ∩i=1,...,4B(xi, `) and no-
tice that by the same reasoning as in Example 3.8 for the Reuleaux triangle we have

W̃ =
⋂

i∈{1,2,3,4}

B (xi, dW (xi)) =
⋂
x∈W

B (x, dW (x)) = W ∗.
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Out[32]=

Figure 7: A tetrahedron W and the corresponding Reuleaux-tetrahedron W ∗

Therefore (12) yields now

σ
W̃

(
W̃
)

= σW ∗ (W ∗) ≤ 1

4π

∫
∂W ∗

d−2
W ∗(x) ∂+

ν dW ∗(x) dσ

≤ 1

4π`2
|∂W ∗| = 1

4π

(
8π − 18 arccos

1

3

)
≈ 0.2367 <

1

4
.

Example 6.7 In case n = 3 the following two bodies of constant width can be explicitly studied.
If R denotes the rotated Reuleaux triangle, then (see [16])

σR(R) ≈ 0.1042,

and if Mi, i = 1, 2 denotes one of the Meissner bodies, then (see [10])

σMi(Mi) =
1

4π`2
|∂Mi| =

1

4

(
2−
√

3

2
arccos

1

3

)
≈ 0.2335.

Both are less than 1/4 as implied by Theorem 4.1.

Remark 6.8 The examples in this section can be ordered as W ⊂ Mi ⊂ W ∗ ⊂ D = B(0, 1).
The corresponding measures satisfy σW (W ) < σMi(Mi) < σW ∗(W ∗) < σD(D). While this
suggests that A ⊂ B might imply σA(A) ≤ σB(B), for general convex sets A and B, let us
present a simple counterexample. If W ∗ is the Reuleaux-tetrahedron let δ denote its inradius.
Then Dδ := B(0, δ) ⊂W ∗, but σW∗(W

∗) < σDδ(Dδ)) = 1/4.
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