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Abstract

In this paper, we deal with the Tikhonov regularization method for pseudo-

monotone equilibrium problems. Under mild conditions of semicontinuity, we

show that strictly pseudo-monotone bifunctions can be used as regularization

bifunctions rather than strongly monotone bifunctions. We extend Berge’s max-

imum theorem and establish the relationship between quasi-hemivariational in-

equalities and equilibrium problems. An application of the Tikhonov regular-

ization method to quasi-hemivariational inequalities is also given.
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1. Introduction

Let C be a nonempty, closed and convex subset of a real Banach space E

and let Φ : C×C −→ R be a bifunction satisfying Φ (x, x) = 0, for every x ∈ C.

Such a bifunction Φ is called an equilibrium bifunction.
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Recall that an equilibrium problem in the sense of Blum, Muu and Oettli

(see Blum and Oettli (1994); Muu and Oettli (1992)) is a problem of the form:

find x∗ ∈ C such that Φ (x∗, y) ≥ 0 ∀y ∈ C, (EP)

where its set of solutions is denoted by SEP (C,Φ).

Equilibrium problems encompass several problems including variational in-

equalities, mathematical programming, Nash equilibrium, Kakutani fixed points,

optimization and many other problems arising in nonlinear analysis. Recently,

some practical models of interest in engineering and economics have been formu-

lated as an equilibrium problem of the form (EP), see for example Kassay (2010);

Konnov (2001); Hadjisavvas and Schaible (2009) and the references therein.

Equilibrium problems also encompass quasi-hemivariational inequalities. Re-

call that if E is a real Banach space which is continuously embedded in Lp (Ω;Rn),

for some 1 < p < +∞ and n ≥ 1, where Ω is a bounded domain in Rm, m ≥ 1,

then a quasi-hemivariational inequality is a problem of the form:

find u ∈ E and z ∈ A (u) such that

〈z, v〉+ h (u) J0 (iu; iv)− 〈Fu, v〉 ≥ 0 ∀v ∈ E ,

where i is the canonical injection of E into Lp (Ω;Rn), A : E ⇒ E∗ is a nonlinear

multivalued mapping, F : E → E∗ is a nonlinear operator, J : Lp (Ω;Rn) → R

is a locally Lipschitz functional and h : E → R is a given nonnegative functional.

We denote by E∗ the dual space of E and by 〈., .〉 the duality pairing between

E∗ and E.

For technical reasons, we will consider the following quasi-hemivariational

inequality:

find u ∈ C and z ∈ A (u) such that

〈z, v − u〉+ h (u) J0 (iu; iv − iu)− 〈Fu, v − u〉 ≥ 0 ∀v ∈ C, (QHVI)

where its set of solutions is denoted by SQHVI(C,A). Note that in the spe-

cial case when C is the whole space E, the above two formulations of quasi-

hemivariational inequalities are one and the same.
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Studies about inequality problems captured special attention in the last

decades where one of the most recent and general type of inequalities is the

hemivariational inequalities introduced in Panagiotopoulos (1983, 1985) as a

variational formulation for several classes of mechanical problems with nons-

mooth and nonconvex energy super-potentials. The theory of hemivariational

inequalities has produced an abundance of important results both in pure and

applied mathematics as well as in other domains such as mechanics and engi-

neering sciences as it allowed mathematical formulations for new classes of inter-

esting problems, see Naniewicz and Panagiotopoulos (1995); Rădulescu (2008);

Wangkeeree and Preechasilp (2013); Panagiotopoulos (1983, 1985); Alleche and

Rădulescu (2014); Costea and Rădulescu (2012) and the references therein.

When h is equal to zero in the quasi-hemivariational inequality (QHVI)

corresponding to convex super-potentials, we obtain the standard case of vari-

ational inequalities, which were studied earlier by many authors, see Lions and

Stampacchia (1967); Kinderlehrer and Stampacchia (1980). The setting cor-

responding to h equal to 1 describes the hemivariational inequalities. These

inequality problems appear as a generalization of variational inequalities, but

they are much more general than these ones, in the sense that they are not

equivalent to minimum problems but give rise to substationarity problems. The

general case when h is nonconstant corresponds to quasi-hemivariational in-

equalities, which were first studied in (Naniewicz and Panagiotopoulos, 1995,

Section 4.5), in relationship with relevant models in mechanics and engineering.

We refer to Rădulescu (2008); Wangkeeree and Preechasilp (2013); Costea and

Rădulescu (2012) for recent contributions to the qualitative analysis of hemivari-

ational and quasi-hemivariational inequalities. On can also consult Alleche and

Rădulescu (2014); Alleche (2013, 2014) where some techniques on continuity of

functions are introduced and new results in the field are obtained.

On the other hand, regularization methods that are widely used in convex

optimization and variational inequalities have been also considered for equi-

librium problems. The proximal point method as well as the Tikhonov regu-

larization method, which are a fundamental regularization technique for han-
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dling ill-posed problems, have been recently applied to equilibrium problems,

see Moudafi (2010); Dinh and Muu (2011); Ding (2010); Mastroeni (2003); Hung

and Muu (2011) and the references therein.

In this paper, we deal first with the Tikhonov regularization method for

pseudo-monotone equilibrium problems. Under weakened conditions of upper

semicontinuity of bifunctions in their first variable on a subset, we extend some

results of Hung and Muu (2011); Dinh and Muu (2011) and prove that strictly

pseudo-monotone bifunctions can be also used as regularization bifunctions in-

stead of strongly monotone bifunctions. We extend Berge’s maximum theorem

and develop some results in the qualitative analysis of quasi-hemivariational

inequalities to establish the relationship between quasi-hemivariational inequal-

ity problems and equilibrium problems. We also give examples and apply the

Tikhonov regularization method to quasi-hemivariational inequalities.

2. Notations and preliminary results

Let X be Hausdorff topological space, x ∈ X and f : X −→ R be a function.

Recall that f is said to be

1. upper semicontinuous at x if for every ε > 0, there exists an open neigh-

borhood U of x such that

f (y) ≤ f (x) + ε ∀y ∈ U ;

2. lower semicontinuous at x if for every ε > 0, there exists an open neigh-

borhood U of x such that

f (y) ≥ f (x)− ε ∀y ∈ U.

It is well-known that if X is a metric space (or more generally, a Fréchet-

Urysohn space, see Alleche and Calbrix (1999)), then f is upper (resp. lower)

semicontinuous at x ∈ X if and only if for every sequence (xn)n in X converging

to x, we have

f (x) ≥ lim sup
n→+∞

f (xn) (resp. f (x) ≤ lim inf
n→+∞

f (xn)),

4



where lim sup
n→+∞

f (xn) = inf
n

sup
k≥n

f (xk) and lim inf
n→+∞

f (xn) = sup
n

inf
k≥n

f (xk).

We say that f is upper (resp. lower) semicontinuous on a subset S of X if

it is upper (resp. lower) semicontinuous at every point of S.

The notion of upper (resp. lower) semicontinuous function on a subset gen-

eralizes the notion of upper (resp. lower) semicontinuous function at a point.

If X is a metric space, these notions of upper and lower semicontinuous

functions on a subset coincide respectively with those of sequentially upper and

sequentially lower semicontinuous functions on a subset considered in Alleche

and Rădulescu (2014).

Clearly, if S is an open subset of X, then f : X −→ R is upper (resp. lower)

semicontinuous on S if and only if f|S is upper (resp. lower) semicontinuous on

S, where f|S denotes the restriction of f on S. It is also not difficult to prove

the following result which shows how easy is to construct upper (resp. lower)

semicontinuous functions on subsets.

Proposition 2.1. Let f : X −→ R be a function and let S be a subset of X. If

the restriction f|U of f on an open subset U containing S is upper ( resp. lower)

semicontinuous on S, then any extension of f|U to the whole space X is upper

(resp. lower) semicontinuous on S.

The following result provides us with some properties of upper (resp. lower)

semicontinuous functions.

Proposition 2.2. Let f : X −→ R be a function, S a subset of X and a ∈ R.

1. f is upper semicontinuous on S if and only if

{x ∈ X | f (x) ≥ a} ∩ S = {x ∈ S | f (x) ≥ a} .

In particular, if f is upper semicontinuous on S, then the trace on S of

any upper level set of f is closed in S.

2. f is lower semicontinuous at S if and only if

{x ∈ X | f (x) ≤ a} ∩ S = {x ∈ S | f (x) ≤ a} .
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In particular, if f is lower semicontinuous on S, then the trace on S of

any lower level set of f is closed in S.

Proof. The second statement being similar to the first one, we prove only

the case of upper semicontinuity. Let

x∗ ∈ {x ∈ X | f (x) ≥ a} ∩ S.

Clearly, x∗ ∈ S. To prove that f (x∗) ≥ a, we argue by contradiction and assume

that f (x∗) < a. Take ε > 0 such that f (x∗) + ε < a. By upper semicontinuity

of f at x∗, let U be an open neighborhood of x∗ such that f (y) ≤ f (x∗) + ε,

for every y ∈ U . It follows that

U ∩ {x ∈ X | f (x) ≥ a} = ∅,

which is a contradiction.

Conversely, let x∗ ∈ S, ε > 0 and put a = f (x∗) + ε. We have f (x∗) < a

and then

x∗ /∈ {x ∈ X | f (x) ≥ a}.

Let U be an open neighborhood of x∗ such that {x ∈ X | f (x) ≥ a} ∩ U = ∅.

It follows that

f (y) < a = f (x∗) + ε ∀y ∈ U.

Finally, we have

{x ∈ X | f (x) ≥ a} ∩ S = {x ∈ S | f (x) ≥ a} ,

which yields that the trace on S of any upper level set of f is closed in S. 2

In the sequel, for y ∈ C, we define the following sets:

Φ+ (y) = {x ∈ C | Φ (x, y) ≥ 0} and Φ− (y) = {x ∈ C | Φ (y, x) ≤ 0} .

Clearly, x∗ ∈ C is a solution of the equilibrium problem (EP) if and only if

x∗ ∈
⋂
y∈C

Φ+ (y).

The following result of Alleche and Rădulescu (2014) is a generalization of

the well-known Ky Fan’s minimax inequality theorem (see Fan (1972); Kassay

(2010)). We sketch the proof for the convenience of the reader.
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Theorem 2.3. Let Φ : C × C −→ R be an equilibrium bifunction and suppose

the following assumptions hold:

1. Φ is quasi-convex in its second variable on C;

2. there exists a compact subset K of C and y0 ∈ K such that

Φ (x, y0) < 0 ∀x ∈ C \K;

3. Φ is upper semicontinuous in its first variable on K.

Then, the equilibrium problem (EP) has a solution and its set of solutions

SEP (C,Φ) is a nonempty compact set.

Proof. Since Φ is an equilibrium bifunction, then Φ+ (y) is nonempty and

closed, for every y ∈ C.

By quasi-convexity of Φ in its second variable, the mapping y 7→ Φ+ (y)

is a KKM mapping (see for example, Alleche and Rădulescu (2014); Alleche

(2014); Bianchi and Schaible (1996); Fan (1961, 1972); Kassay (2010)), and

since Φ+ (y0) is contained in the compact subset K, then by Ky Fan’s lemma,

we have ⋂
y∈C

Φ+ (y) 6= ∅.

On the other hand, we have⋂
v∈C

Φ+ (y) =
⋂
y∈C

(
Φ+ (y) ∩K

)
.

By Proposition 2.2, we have

Φ+ (y) ∩K = Φ+ (y) ∩K ∀y ∈ C.

Thus, ⋂
y∈C

Φ+ (y) =
⋂
y∈C

Φ+ (y) 6= ∅ .

The compactness of the set of solutions is obvious. 2

Remark 1. The set K in the condition 2 of Theorem 2.3 is known in the

literature under the name of the set of coerciveness.

7



The Minty lemma for equilibrium problems deals in particular with properties

such as compactness and convexity of the set of solutions of equilibrium problems

(see for example, Konnov (2001)). For more properties of the set of solutions

of equilibrium problems, we need some additional concepts of monotonicity for

bifunctions.

A bifunction Φ : C × C −→ R is called

1. strongly monotone on C with modulus β if

Φ (x, y) + Φ (y, x) ≤ −β‖x− y‖2, ∀x, y ∈ C;

2. monotone on C if

Φ (x, y) + Φ (y, x) ≤ 0, ∀x, y ∈ C;

3. strictly pseudo-monotone on C if

Φ (x, y) ≥ 0 =⇒ Φ (y, x) < 0, ∀x, y ∈ C, x 6= y;

4. pseudo-monotone on C if

Φ (x, y) ≥ 0 =⇒ Φ (y, x) ≤ 0, ∀x, y ∈ C.

Every strongly monotone bifunction is both monotone and strictly pseudo-

monotone and every strictly pseudo-monotone bifunction Φ is pseudo-monotone

provided it is an equilibrium bifunction, that is, Φ (x, x) = 0,∀x ∈ C.

The following result extends (Bianchi and Schaible, 1996, Theorem 4.2) for

equilibrium problems defined on non necessarily convex sets and its proof is

elementary. We call such a problem, an equilibrium-like problem.

Proposition 2.4. Let Φ : C × C −→ R be a strictly pseudo-monotone bifunc-

tion. Then for every subset A of C, the following equilibrium-like problem

find x∗ ∈ A such that Φ (x∗, y) ≥ 0 ∀y ∈ A

has at most one solution.
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We also need the following notions about convexity of functions. A function

f : C −→ R is said to be

1. semistrictly quasi-convex on C if, for every x1, x2 ∈ C such that f (x1) 6=

f (x2), we have

f (λx1 + (1− λ)x2) < max {f (x1) , f (x2)} ∀λ ∈ ]0, 1[ ;

2. explicitly quasi-convex on C if it is quasi-convex and semistrictly quasi-

convex (see Hadjisavvas and Schaible (1993); Konnov and Schaible (2000);

Avriel et al. (1988)).

Note that there is not any inclusion relationship between the class of semistrictly

quasi-convex functions and that of quasi-convex functions. However, if f is a

lower semicontinuous and semistrictly quasi-convex function, then f is explicitly

quasi-convex, see Cambini and Martein (2009).

Here, we obtain some additional properties of the set of solutions of equilib-

rium problems.

Theorem 2.5. Under assumptions of Theorem 2.3 and suppose the following

conditions hold:

1. Φ is pseudo-monotone;

2. Φ is explicitly quasi-convex in its second variable on C.

Then the equilibrium problem (EP) has a solution and its set of solutions SEP(C,Φ)

is nonempty compact set. If in addition, K is convex, then SEP(C,Φ) is convex.

Proof. The first part of this theorem being proved above, we prove the second

part. By pseudo-monotonicity, we have Φ+ (y) ⊂ Φ− (y), for every y ∈ C. Since⋂
y∈C Φ+ (y) ⊂ K, then

⋂
y∈C

Φ+ (y) ⊂

⋂
y∈C

Φ− (y)

 ∩K.
Now, by explicit quasi-convexity (see (Alleche, 2014, Proposition 1.3)), we ob-

tain ⋂
y∈C

Φ− (y)

 ∩K ⊂ ⋂
y∈C

Φ+ (y) .
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It follows that ⋂
y∈C

Φ+ (y) =

⋂
y∈C

Φ− (y)

 ∩K.
By quasi-convexity, the set Φ− (y) is convex, for every y. Thus, the set of

solutions SEP(C, θ) is convex whenever K is convex. 2

Note that Theorem 2.5 also holds if we replace upper semicontinuity of Φ

in the first variable by upper hemicontinuity in the first variable and lower

semicontinuity in the second variable. Recall that upper hemicontinuity is upper

semicontinuity on line segments. The notion of upper hemicontinuity on a subset

has been used in Alleche (2014); Alleche and Rădulescu (2014).

3. The Tikhonov regularization method for equilibrium problems

The Tikhonov regularization method (or ridge regression in statistics) (see

Tikhonov (1963)) is a powerful tool in convex optimization to handle discrete

or continuous ill-posed problems. In the framework of monotone variational

inequalities, the basic idea of this method is to perturb the problem with a

strongly monotone operator depending on a regularization parameter to the

monotone cost operator to obtain a strongly monotone variational inequality.

The optimal regularization parameter is usually unknown and usually in prac-

tical problems it is determined by various methods, such as the discrepancy

principle, cross-validation, L-curve method, Bayesian interpretation, restricted

maximum likelihood, and unbiased predictive risk estimator. The resulting reg-

ularized inequality problem has a unique solution that depends on the regular-

ization parameter. Next, passing to the limit as the parameter goes to a suitable

value, the unique solution of the regularized problem tends to a solution of the

original problem. We point out that if the cost operator is pseudo-monotone

rather than monotone, then the monotonicity of the regularized problem may

fail.
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3.1. Main result

In this section, we define a regularized equilibrium problem for the equilib-

rium problem (EP). Let θ : C × C −→ R be an equilibrium bifunction that we

call the regularization equilibrium bifunction. Then, for every ε > 0, we define

the equilibrium bifunction Φε : C × C −→ R by

Φε (x, y) = Φ (x, y) + εθ (x, y)

and we associate with the equilibrium problem (EP), the regularized equilibrium

problem defined as follows:

find x∗ε ∈ C such that Φε (x∗ε , y) ≥ 0 ∀y ∈ C, (REP)

where its set of solutions is denoted by SREP(C,Φε).

Note that when Φ or θ is pseudo-monotone, the regularized equilibrium

bifunction Φε does not inherit any monotonicity property from Φ and θ in

general.

The following result is an extension of (Dinh and Muu, 2011, Theorem 2.9)

(see also (Hung and Muu, 2011, Theorem 3.2)) in which we avoid the strong

monotonicity of the bifunction θ. We also avoid the lower semicontinuity of Φ

and θ in their second variable on C.

Theorem 3.1. Let (εn)n be a sequence of positive numbers such that lim
n→+∞

εn =

0 and suppose the following conditions hold:

1. Φ and θ are pseudo-monotone on C;

2. Φ and θ are quasi-convex in the second variable on C;

3. there exist a compact subset K of C and y0 ∈ C such that Φ (x, y0) < 0,

for every x ∈ C \K;

4. Φ and θ are upper semicontinuous in the first variable on K.

Then any cluster point x∗ ∈ C of a sequence (xn)n with xn ∈ SREP (C,Φεn)∩K

for every n, is a solution to the equilibrium-like problem:

find x∗ ∈ SEP (C,Φ) such that θ (x∗, y) ≥ 0 ∀y ∈ SEP (C,Φ) . (E-LP)

Assume in addition that the following hypotheses hold:
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1. θ is strictly pseudo-monotone on C;

2. there exists A ⊂ K such that θ (x, y0) < 0, for every x ∈ C \A.

Then, the regularized equilibrium problem (REP) is solvable, for every n, and

any sequence (xn)n with xn ∈ SREP (C,Φεn) for every n, converges to the

unique solution of the equilibrium-like problem (E-LP).

Proof. Let (xn)n be a sequence with xn ∈ SREP (C,Φεn) ∩K for every n,

and admitting x∗ ∈ C as a cluster point. We have x∗ ∈ K and without loss of

generality, we may assume that (xn)n converges to x∗. Then, for every n

Φ (xn, y) + εnθ (xn, y) ≥ 0 ∀y ∈ C.

By Theorem 2.3, we have SEP (C,Φ) 6= ∅. Let z ∈ SEP (C,Φ). By pseudo-

monotonicity of Φ, we have Φ (xn, z) ≤ 0 and then

εnθ (xn, z) ≥ −Φ (xn, z) ≥ 0,

which implies that θ (xn, z) ≥ 0. Letting n go to +∞, we obtain by upper

semicontinuity of θ in its first variable on K that θ (x∗, z) ≥ 0. Thus,

θ (x∗, z) ≥ 0 ∀z ∈ SEP (C,Φ) .

It remains now to prove that x∗ ∈ SEP (C,Φ). Again by upper semicontinuity

of Φ and θ in their first variable on K and since

Φ (xn, y) + εnθ (xn, y) ≥ 0 ∀y ∈ C,

then by using the properties of the upper limits, we have

Φ (x∗, y) ≥ 0 ∀y ∈ C.

Now, we prove the second part of the theorem. Note that for every n,

Φ (xn, y0) + εnθ (xn, y0) < 0 ∀x ∈ C \K.

By Theorem 2.3, the regularized equilibrium problem (REP(C,Φεn)) is solv-

able and its set of solutions SREP (C,Φεn) is contained in K. Let (xn)n be
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a sequence such that xn ∈ SREP (C,Φεn), for every n. Then the sequence

(xn)n has a cluster point x∗ ∈ K and by the first part of the theorem, x∗ is

a solution to the equilibrium-like problem (E-LP). Since θ is strictly pseudo-

monotone, then by Proposition 2.4, the above equilibrium-like problem (E-LP)

has a unique solution. It follows that every subsequence of the sequence (xn)n

admits this unique solution of the equilibrium-like problem (E-LP) as a clus-

ter point. Thus, the sequence (xn)n converges to the unique solution of the

equilibrium-like problem (E-LP). 2

Remark 2. Note that when E is a finite dimensional real Banach space, θ

is strongly monotone on C, θ and Φ are convex and lower semicontinuous in

the second variable on C, then the sequence (Φ + εnθ)n is uniformly coercive

whenever Φ has a set of coerciveness, see (Dinh and Muu, 2011, Corollary 2.6).

This means that Theorem 3.1 can also be considered as a generalization of (Dinh

and Muu, 2011, Theorem 2.9) even when θ is strongly monotone on C. In this

case, we choose θ such that θ and Φ are upper semicontinuous in their first

variable on the subset of the uniform coerciveness.

3.2. Example of suitable bifunctions

We construct in what follows two bifunctions Φ and θ satisfying all the

conditions of Theorem 3.1 without being upper semicontinuous in their first

variable on the whole space C and where θ is strictly pseudo-monotone but

not strongly monotone on C. This example is obtained by modification of some

equilibrium bifunctions constructed in the literature, see Alleche (2013); Bianchi

and Schaible (1996, 2004); Ansari et al. (2014).

Example 3.2. Let E = C = R, K = [−1,+1] and y0 = 0.

• The bifunction θ : C × C −→ R is defined by

θ (x, y) =


y4−x4

65 if (x, y) ∈ {2} × [−3, 3] ,

y4 − x4 otherwise.
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1. Clearly θ (x, x) = 0, for every x ∈ C and θ (x, 0) < 0, for every

x /∈ K = [−1,+1]. It is also easy to see that θ is strictly pseudo-

monotone and not strongly monotone on C.

2. To see that θ is quasi-convex in its second variable, let x ∈ C be

fixed.

(a) if x 6= 2, then θ (x, y) = y4 − x4, for every y ∈ C. The function

y 7→ y4 − x4 is convex on C.

(b) if x = 2, then

θ (2, y) =


y4−16

65 if y ∈ [−3, 3] ,

y4 − 16 otherwise.

If y′ /∈ [−3, 3], then θ (2, y) ≤ θ (2, y′), for every y ∈ [−3, 3].

Thus, the function y 7→ θ (2, y) is quasi-convex on C.

3. To see that θ is upper semicontinuous in its first variable on [−1,+1],

let y ∈ C be fixed and denote by f : C −→ R the function defined by

f (x) = θ (x, y) .

The restriction f|U of f on the open set U = ]−∞, 2[ containing

[−1,+1] is defined by f|U (x) = y4−x4 which is continuous on U and

then by Proposition 2.1, f is upper semicontinuous on [−1,+1].

4. Finally, the bifunction θ is not upper semicontinuous in its first vari-

able on C. Indeed, consider y = 3 (or y = −3). Let (xn)n be a

converging sequence to 2 such that xn 6= 2, for every n. We have

θ (2, 3) = 1 < 65 = lim sup
n→+∞

θ (xn, 3) .

• The bifunction Φ : C × C −→ R is defined by

Φ (x, y) =


(x+ 2) (y − x) if x ∈ ]−∞,−2[ ,

(x+ 1) (y − x) if x ∈ [−2,−1[ ,

max (x, 0) (y − x) otherwise.
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1. Clearly, Φ (x, x) = 0, for every x ∈ C and Φ (x, 0) < 0, for every

x /∈ [−1,+1].

2. To verify that Φ is pseudo-monotone on C, let x, y ∈ C such that

Φ (x, y) ≥ 0.

(a) If x ∈ ]−∞,−2[, then Φ (x, y) = (x+ 2) (y − x). It follows that

y−x ≤ 0 and then, y < −2. Thus Φ (y, x) = (y + 2) (x− y) ≤ 0.

(b) If x ∈ [−2,−1[, then y−x ≤ 0 and then, y < −1. If y ∈ [−2,−1[,

then Φ (y, x) = (y + 1) (x− y) ≤ 0, and if y ∈ ]−∞,−2[, then

Φ (y, x) = (y + 2) (x− y) ≤ 0.

(c) If x ≥ −1, then y ≥ x. It follows that y ≥ −1 and then Φ (y, x) =

max (y, 0) (x− y) ≤ 0.

3. Clearly, Φ is quasi-convex in its second variable on C and upper

semicontinuous in its first variable on [−1,+1].

4. To see that Φ is not upper semicontinuous in its first variable on C,

consider y > −2 and take a sequence (xn)n in ]−∞,−2[ converging

to −2. We have

Φ (−2, y) = − (y + 2) < 0 = lim sup
n→+∞

(xn + 2) (y + 2) = lim sup
n→+∞

Φ (xn, y) .

5. Note that in addition, Φ is not lower semicontinuous in its first vari-

able on C. To see this fact, consider y < −2 and take a sequence

(xn)n in ]−∞,−2[ converging to −2. We have

Φ (−2, y) = − (y + 2) > 0 = lim inf
n→+∞

(xn + 2) (y + 2) = lim inf
n→+∞

Φ (xn, y) .

6. Finally, let us point out that Φ is not strictly pseudo-monotone on C

since Φ (x, y) = Φ (y, x) = 0 whenever x, y ∈ [−1, 0].

4. Applications to quasi-hemivariational inequalities

In this section we give some results on the relationship between equilibrium

problems and quasi-hemivariational inequalities. We develop results in the qual-

itative analysis of quasi-hemivariational inequalities and give a generalization
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to Berge’s maximum theorem in order to apply the Tikhonov regularization for

quasi-hemivariational inequalities.

Recall that a function φ : E → R is called locally Lipschitzian if for every

u ∈ E, there exists a neighborhood U of u and a constant Lu > 0 such that

|φ (w)− φ (v) | ≤ Lu‖w − v‖X ∀w ∈ U, ∀v ∈ U.

If φ : E → R is locally Lipschitzian near u ∈ E, then the Clarke generalized

directional derivative of φ at u in the direction of v ∈ E, denoted by Φ0 (u, v),

is defined by

φ0 (u, v) = lim sup
w→u
λ↓0

φ (w + λv)− φ (w)

λ
.

Among several important properties of the generalized directional derivative

of locally Lipschitzian functions, we will make use in the present paper of the

following properties (for proofs and related properties, we refer to (Clarke, 1990,

Proposition 2.1.1)).

Suppose that φ : E → R is locally Lipschitzian near u ∈ E. Then,

1. the function v 7−→ φ0 (u, v) is finite, positively homogeneous and subad-

ditive;

2. the function (u, v) 7−→ φ0 (u, v) is upper semicontinuous.

Remark 3. To avoid any confusion in the definition of semicontinuity on sub-

sets, from now on and in all what follows, the functions h and F , and the

multivalued mapping A will be considered from C rather than from E.

It is easily seen that any solution of the quasi-hemivariational inequality (QHVI)

is a solution of the equilibrium problem (EP) where the equilibrium bifunction

Φ : C × C → R is defined by

Φ (u, v) = sup
z∈A(u)

〈z, v − u〉+ h (u) J0 (iu; iv − iu)− 〈Fu, v − u〉 ∀u, v ∈ C.

The converse needs some additional conditions on the multivalued mapping A

and holds by a classical approach.
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Theorem 4.1. If A has nonempty, convex and weak* compact values, then any

solution of the equilibrium problem (EP) is a solution of the quasi-hemivariational

inequality problem (QHVI).

Proof. Let u∗ ∈ C be such that Φ (u∗, v) ≥ 0, for every v ∈ C, and assume

that there does not exist z ∈ A (u∗) satisfying

〈z, v − u∗〉+ h (u∗) J0 (iu∗; iv − iu∗)− 〈Fu∗, v − u∗〉 ≥ 0 ∀v ∈ C.

Clearly, for every z ∈ A (u∗), there exists vz ∈ C such that

〈z, vz − u∗〉+ h (u∗) J0 (iu∗; ivz − iu∗)− 〈Fu∗, vz − u∗〉 < 0.

Since, for every v ∈ C, the mapping defined on E∗ by

z 7→ 〈z, v − u∗〉+ h (u∗) J0 (iu∗; iv − iu∗)− 〈Fu∗, v − u∗〉

is weak* continue, and since A (u∗) is weak* compact, there exist ε > 0 and

vj ∈ C, j = 1, . . . , n, such that for all z ∈ A (u∗)

min
j=1,...,n

(
〈z, vj − u∗〉+ h (u∗) J0 (iu∗; ivj − iu∗)− 〈Fu∗, vj − u∗〉

)
< −ε .

The Clarke generalized directional derivative being finite, then for every j =

1, . . . , n, the functions

z 7→ 〈z, vj − u∗〉+ h (u∗) J0 (iu∗; ivj − iu∗)− 〈Fu∗, vj − u∗〉,

defined on the convex set A (u∗) are concave and proper with domain containing

A (u∗), and therefore by a standard result of convex analysis (see (Rockafellar,

1970, Theorem 21.1)), there exist µj ≥ 0, j = 1, . . . , n, with
∑n
j=1 = 1 such

that for all z ∈ A (u∗)

n∑
j=1

µj
(
〈z, vj − u∗〉+ h (u∗) J0 (iu∗; ivj − iu∗)− 〈Fu∗, vj − u∗〉

)
< −ε .

Set v∗ =
∑n
j=1 µjvj . Then v

∗ ∈ C and by the positive homogeneity and the sub-

additivity of the Clarke generalized directional derivative in its second variable,

we have

〈z, v∗ − u∗〉+ h (u∗) J0 (iu∗; iv∗ − iu∗)− 〈Fu∗, v∗ − u∗〉 < −ε ∀z ∈ A (u∗)
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which implies that Φ (u∗, v∗) < 0, a contradiction. 2

We turn now into studying the properties inherited by the equilibrium bi-

functions defined from quasi-hemivariational inequalities.

Theorem 4.2. The bifunction Φ is lower semicontinuous and convex in its

second variable on C.

Proof. From the positive homogeneity and the subadditivity of the Clarke

generalized directional derivative in its second variable, the function

v 7→ 〈z, v − u〉+ h (u) J0 (iu; iv − iu)− 〈Fu, v − u〉

is convex, for every u ∈ C and every z ∈ A (u∗). It is also lower semicontinuous

since the Clarke generalized directional derivative is lower semicontinuous. The

bifunction Φ being the superior envelope of a family of convex and lower semi-

continuous functions, it is then convex and lower semicontinuous in its second

variable on C. 2

The properties inherited by Φ in its first variable are more complicated and

need additional conditions on the functions and multivalued mappings involved

in the quasi-hemivariational inequalities.

Recall that a multivalued mapping T from a topological space X with values

in the set of subsets of a topological space Y is called upper semicontinuous at

a point x ∈ X if whenever V an open subset containing T (x), there exist an

open neighborhood U of x such that T (x′) ⊂ V , for every x′ ∈ U . We say that

T is upper semicontinuous on a subset S of X if T is upper semicontinuous at

every point of S.

The following result is a generalization of the well-known Berge’s maximum

theorem, see (Papageorgiou and Kyritsi-Yiallourou, 2009, Theorem 6.1.18).

Theorem 4.3. Let X and Y be two Hausdorff topological spaces, S a nonempty

subset of X, U an open subset containing S, T : X ⇒ Y a multivalued mapping

and ψ : Y ×X → R∪{+∞} a function. Suppose that ψ is upper semicontinuous

on Y × U and T is upper semicontinuous on S with nonempty compact values
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on U . Then the value function f : X → R ∪ {+∞} defined by

f (x) = sup
y∈T (x)

ψ (y, x)

is upper semicontinuous on S.

Proof. By Proposition 2.1, it suffices to prove that the restriction g = f|U of

f on U is upper semicontiunuous on S. Let a ∈ R and by Proposition 2.2, we

have to prove that

{x ∈ U | g (x) ≥ a} ∩ S = {x ∈ S | g (x) ≥ a} ,

where the closure is taken with respect to U . Let x∗ ∈ {x ∈ U | g (x) ≥ a} ∩ S

and choose a net (xα)α∈Λ in {x ∈ U | g (x) ≥ a} converging in U to x∗. Since

xα ∈ U , then the restriction of the function ψ on Y × {xα} is upper semi-

continuous and therefore, by the Weierstrass theorem, it attains its maximum

on the compact set T (xα), for every α ∈ Λ. Let yα ∈ T (xα) be such that

g (xα) = ψ (yα, xα), for every α ∈ Λ.

The net (yα)α∈Λ has a cluster point in T (x∗). Indeed, suppose the contrary

holds. Then the compactness of T (x∗) yields the existence of an open set V

containing T (x∗) and α0 ∈ Λ such that yα /∈ V , for every α ≥ α0. It follows

by upper semicontinuity of T at x∗ the existence of an open neighborhood W

of x∗ such that T (x) ⊂ V , for every x ∈ W . Let α1 ∈ Λ be such that xα ∈ W ,

for every α ≥ α1. Thus yα ∈ V , for every α ≥ α1. Contradiction.

Take now y∗ ∈ T (x) and (yα)α∈Γ a subnet of (yα)α∈Λ converging to y∗. The

net ((yα, xα))α∈Γ is in Y × U , converging to (y∗, x∗) and satisfies

ψ (yα, xα) ≥ a ∀α ∈ Γ.

By upper semicontinuity of ψ on Y × U , it follows that g (x∗) ≥ ψ (y∗, x∗) ≥ a,

which completes the proof. 2

We give in what follows a sufficient condition for the upper semicontinuity

in its first variable of the equilibrium bifunction Φ.

Corollary 4.4. Let K be a subset of C, U be an open subset containing K and

suppose the following conditions hold:
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1. the nonlinear multivalued mapping A is upper semicontinuous on K with

respect to the strong topology of E∗ and has nonempty compact values on

U ;

2. for every v ∈ C, the mapping u ∈ C 7→ h (u) J0 (iu; iv − iu) is upper

semicontinuous on U ;

3. for every v ∈ C, the mapping u ∈ C 7→ 〈F (u) , v − u〉 is lower semicon-

tinuous on U .

Then Φ is upper semicontinuous in its first variable on K.

Proof. Let v ∈ C be fixed and define the function ψ : E∗ × C → R by

ψ (z, u) = 〈z, v − u〉+ h (u) J0 (iu; iv − iu)− 〈Fu, v − u〉.

The function ψ being a sum of upper semicontinuous functions on E∗ × U ,

it is upper semicontinuous on E∗ × U , where E∗ is equipped with the strong

topology. It follows by Theorem 4.3 that the value function u 7→ Φ (u, v) is

upper semicontinuous on K. 2

Corollary 4.5. Let K be a subset of C, U be an open subset containing K and

suppose the following conditions hold:

1. the nonlinear multivalued mapping A is upper semicontinuous on K with

respect to the weak* topology of E∗ and has nonempty weak* compact

values on U ;

2. for every v ∈ C, the mapping

(z, u) ∈ E∗ × U 7→ 〈z, v − u〉+ h (u) J0 (iu; iv − iu)− 〈Fu, v − u〉

is upper semicontinuous on E∗ × U .

Then Φ is upper semicontinuous in its first variable on K.

Recall that a multivalued mapping T : C → 2E
∗
is said to be:

1. pseudo-monotone on C if

〈z, u− v〉 ≤ 0 =⇒ 〈t, v − u〉 ≥ 0 ∀u, v ∈ C,∀z ∈ A (u) ,∀t ∈ A (v) ;
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2. strictly pseudo-monotone if

〈z, u− v〉 ≤ 0 =⇒ 〈t, v − u〉 > 0 ∀u, v ∈ C, ∀z ∈ A (u) ,∀t ∈ A (v) .

It is well-known that if T has weak* compact values, then T is pseudo-monotone

(resp. strictly pseudo-monotone) if and only if the equilibrium bifunction θ is

pseudo-monotone (resp. strictly pseudo-monotone) where θ : C × C → R is

defined by

θ (u, v) = sup
z∈T (u)

〈z, v − u〉.

This follows from the fact that for every u, v ∈ C, by the weak* compactness of

the values of T , there exist z ∈ T (u) and t ∈ T (v) such that

θ (u, v) = 〈z, v − u〉 and θ (v, u) = 〈t, u− v〉.

Now, to apply the Tikhonov regularization for quasi-hemivariational inequal-

ities, first we take a multivalued function G : C → 2E
∗
and ε > 0, and define

the multivalued function Aε : C → 2E
∗
by

Aε (x) = A (x) + εG (x) .

The regularized quasi-hemivariational inequality has the following form:

Find u ∈ C and z ∈ Aε (u) such that

〈z, v − u〉+ h (u) J0 (iu; iv − iu)− 〈Fu, v − u〉 ≥ 0 ∀v ∈ C. (RQHVI)

As previously, we denote its set of solutions by SRQHVI(C,Aε).

We say that a quasi-hemivariational inequality (QHVI) is pseudo-monotone

on C if the associated equilibrium bifunction Φ is pseudo-monotone on C.

Theorem 4.6. Let K be a compact subset of C, U an open subset containing

K and (εn)n is a sequence of positive numbers such that lim
n→+∞

εn = 0. Suppose

that the following assumptions hold:

1. G is pseudo-monotone on C, upper semicontinuous on K with respect to

the strong topology of E∗ and has nonempty, convex and compact values

on C;
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2. the quasi-hemivariational inequality (QHVI) is pseudo-monotone on C;

3. A is upper semicontinuous on K with respect to the strong topology of E∗

and has nonempty, convex and compact values on C;

4. for every v ∈ C, the mapping u ∈ C 7→ h (u) J0 (iu; iv − iu) is upper

semicontinuous on U ;

5. for every v ∈ C, the mapping u ∈ C 7→ 〈F (u) , v − u〉 is lower semicon-

tinuous on U .

6. there exists v0 ∈ C such that

〈z, v0−u〉+h (u) J0 (iu; iv0 − iu)−〈Fu, v0−u〉 < 0 ∀u ∈ C\K,∀z ∈ A (u) .

Then any cluster point x∗ ∈ C of a sequence (xn)n with xn ∈ SRQHVI (C,Aεn)∩

K for every n, is a solution to the multivalued variational inequality:

Find u ∈ SQHVI (C,A) and z ∈ G (u) such that

〈z, v − u〉 ≥ 0 ∀v ∈ SQHVI (C,A) .

Assume in addition, that the following conditions hold:

1. G is strictly pseudo-monotone on C;

2. there exists K ′ ⊂ K such that 〈z, v0 − u〉 < 0, for every u ∈ C \K ′ and

every z ∈ G (u).

Then the regularized quasi-hemivariational inequality (RQHVI(C,Fεn)) is solv-

able, for every n, and any sequence (xn)n with xn ∈ SRQHVI (C,Fεn) for ev-

ery n, converges to the unique solution of the multivalued variational inequality

problem:

Find u ∈ SQHVI (C,A) and z ∈ G (u) such that

〈z, v − u〉 ≥ 0 ∀v ∈ SQHVI (C,A) .

Proof. Note that

sup
z∈Aε(x)

〈z, y − x〉 = sup
z∈A(x)

〈z, y − x〉+ ε sup
z∈G(x)

〈z, y − x〉 ∀x, y ∈ C.

The result holds now easily from the results developed above and by applying

Theorem 3.1. 2
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Remark 4. Under assumptions of Theorem 4.6, the set of solutions of the

quasi-hemivariational inequality (QHVI) is nonempty and compact. It is also

convex whenever K is convex.

Conclusions. In this work, we have proved that under weakened conditions

of semicontinuity, the Tikhonov regularization method can be applied to pseudo-

monotone equilibrium problems with strictly pseudo-monotone bifunctions as

regularized equilibrium bifunctions instead of strongly monotone bifunctions.

We have obtained a generalization of Berge’s maximum theorem and developed

new techniques in the qualitative analysis of quasi-hemivariational inequalities

in order to establish the relationship between quasi-hemivariational inequalities

and equilibrium problems. We have also applied the Tikhonov regularization

method to quasi-hemivariational inequality problems.
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