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Abstract. In this paper we prove the optimal nondegeneracy of the solution
u of the obstacle problem

�u = fχ{u>0}
in a bounded domain D ⊂ Rn, where we only require f to have a nondegen-
eracy of the type f(x) ≥ λ|(x1, · · · , xp)|α for some λ > 0, 1 ≤ p ≤ n (an
integer) and α > 0. We prove optimal uniform (2 + α)-th order and nonuni-
form quadratic nondegeneracy, more precisely we prove that there exists C > 0
(depending only on n, p and α) such that for x a free boundary point and r > 0
small enough we have

sup
∂Br(x)

u ≥ Cλ(r2+α + |(x1, · · · , xp)|αr2).

We also prove the optimal growth with the assumption |f(x)| ≤ Λ|(x1, · · · , xp)|α
for some Λ ≥ 0 and the porosity of the free boundary.

1. Introduction

Let n ≥ 1 be an integer and D ⊂ R
n a bounded domain. Let f ∈ L∞(D),

g ∈ H1(D) such that g ≥ 0 on ∂D. Let u ∈ H1(D) be the unique minimiser (cf.
[3]) of the functional ∫

D

(|∇u|2 + 2fu
)
dx

in the admissible set of functions{
u ≥ 0 a.e. in D and u = g on ∂D

}
.

It is known (cf. [4]) that we have u ∈ W 2,q
loc (D) for all 1 < q < ∞ and thus by

the Sobolev imbeddings we have u ∈ C1,β
loc (D) for all 0 < β < 1. Also we have

(1.1) �u = fχ{u>0} in D

in the sense of distributions.
Let us denote by Ω the noncoincidence set and by Γ the free boundary, i.e.

Ω =
{
x ∈ D

∣∣ u(x) > 0
}

and Γ = D ∩ ∂Ω.
To study the structure and regularity of the free boundary Γ it is crucial to

have an optimal nondegeneracy result of the solution. For example, using this
nondegeneracy estimate one can rule out degenerate blow up limits with the correct
scaling at the free boundary.

In [1, 4], the authors have studied the case when the force term is bounded away
from zero by a positive constant, i.e. λ ≤ f for some constant λ > 0. In this case
one obtains optimal quadratic nondegeneracy of the solution.
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In this paper our aim is to drop the assumption that f should be bounded away
from zero by a positive constant. By requiring f to grow away from its zeros by a
polynomial order, we still obtain the appropriate optimal nondegeneracy estimate.

Let p be an integer such that 1 ≤ p ≤ n and α > 0 a positive real number. For
x ∈ R

n let us denote x = (x′, x′′) where x′ = (x1, · · · , xp) and x′′ = (xp+1, · · · , xn).
Our main result is the following theorem.

Theorem 1 (Optimal Nondegeneracy). There exists a C > 0 (depending only on
n, p and α) such that if

(1.2) f(x) ≥ λ|x′|α for x ∈ D

holds then for x0 ∈ Ω and Br(x0) ⊂⊂ D we have

(1.3) sup
Ω∩∂Br(x0)

u ≥ u(x0) + Cλr2(rα + |x′0|α).

The proof is based on the construction of appropriate comparison functions.
Homogeneous harmonic polynomials which are positive on {x1 = 0}\{0} play an
important role in the construction of these comparison functions.

Although the main result of this paper is the nondegeneracy result stated above,
we also prove the optimal growth of the solution in Theorem 2 and the local porosity
of the free boundary in Theorem 4.

This paper is structured as follows. In Section 2, we state some estimates, which
will be used later. In Section 3 we prove the nondegeneracy estimate. In Section 4
we prove the growth estimate. In Section 5 we prove the local porosity of the free
boundary Γ.

2. Preliminary Analysis

Let us define

ψ(y) =
1

(α+ 2)(α+ p)
|y|α+2 for y ∈ R

p.

Because α > 0 we have ψ ∈ C2(Rp). It is easy to see that �ψ = |y|α. Functions
v which satisfy |�v| ≤ C|y|α in Bp

1 (0) have also been studied in [2].
There exists C > 0 (depending on α and p) such that

(2.1) |D2ψ(y)| = ( n∑
i,j=1

(∂yiyjψ(y))
2
) 1

2 = C|y|α for y ∈ R
p,

and there exists C > 0 (depending on α and p) such that

(2.2) C|y|α|ζ|2 ≤ ζTD2ψ(y)ζ for y, ζ ∈ R
p.

For y0 ∈ R
p, let us denote by wy0 the difference between ψ and its affine tangent,

i.e.

(2.3) wy0(y) = ψ(y)− ψ(y0)−∇ψ(y0) · (y − y0) for y ∈ R
p.

We have wy0 ∈ C2(Rp) and from the convexity of ψ it follows that wy0 is convex
and nonnegative. Obviously we have wy0(y0) = 0 and ∇wy0(y0) = 0.

We will use the function wy0 to construct appropriate comparison functions in
Theorems 1 and 2.

In the following Lemma we prove estimates of wy0 both from above and below.

Lemma 1. There exist 0 < C1 < C2 such that for y, y0 ∈ R
p we have

(2.4) C1|y − y0|2(|y0|α + |y − y0|α) ≤ wy0(y) ≤ C2|y − y0|2(|y0|α + |y − y0|α).
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Proof. We prove the first inequality in (2.4). The second inequality follows from
(2.1) after some computations.

To obtain the first inequality in (2.4), we compute, using (2.2)

(2.5) wy0(y) =

∫ 1

0

(1 − s)(y − y0)
TD2wy0(y0 + s(y − y0))(y − y0)ds

≥ C|y − y0|2
∫ 1

0

(1− s)|y0 + s(y − y0)|αds.

Now if we show that for some C3 > 0

(2.6)

∫ 1

0

(1− s)|y0 + s(y − y0)|αds ≥ C3

(|y0|α + |y − y0|α
)
for y, y0 ∈ R

p

then by (2.5) the proof will be complete.
In the case y0 = 0, for small enough C3 > 0 the inequality (2.6) holds, so we

consider the case when y0 	= 0. Let Oy0 be an orthonormal transformation such
that Oy0e1 = y0

|y0| . Then by the change of variable y = y0 + |y0|Oy0z it is easy to

see that (2.6) is equivalent to the inequality

(2.7)

∫ 1

0

(1− s)|e1 + sz|αds ≥ C3(1 + |z|α) for z ∈ R
p.

From the inequality z1 ≥ −|z| it follows that
|e1 + sz| ≥ ∣∣e1 − s|z|e1

∣∣ = ∣∣1− s|z|∣∣.
So denoting r = |z| the inequality (2.7) follows from the inequality∫ 1

0

(1 − s)|1− sr|αds ≥ C3(1 + rα) for r ≥ 0

and one may prove this by direct integration. �

3. Optimal Nondegeneracy

In this section we first define for k ∈ N ∪ {0} the polynomials p2k and prove
some properties of these polynomials that we will use later on. For x0 ∈ R

n we will
consider the function wx′

0
(x′) in R

n and by adding appropriate scaled and translated
polynomials p2k to wx′

0
we improve the lower bound in (2.4). In Theorem 1, using

these improved lower bounds we prove the optimal nondegeneracy estimate. The
optimality of our estimate is evident by the optimal growth estimate proved in
Theorem 2.

Let us define for k ∈ N ∪ {0}

p2k(x) =

k∑
j=0

ajx
2j
1 |x|2k−2j

where a0 = 1 and for 1 ≤ j ≤ k, aj are given by the recursive equation

(3.1) 0 = j(2j − 1)aj + (k − j + 1)(2j + 2k + n− 4)aj−1.

In the following lemma we prove some properties of the polynomials p2k which
we will use later.

Lemma 2. p2k is a 2k-th order homogeneous harmonic polynomial such that for
all β > 0 there exists C > 0 (depending only on β, k and n) such that

(3.2) inf
x∈∂B1

(|x1|β + Cp2k(x)
)
> 0.
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Proof. It is clear that p2k is a 2k-th order homogeneous polynomial. To prove that
p2k is harmonic one computes its Laplacian and uses the fact that the coefficients
satisfy the equations (3.1).

To prove (3.2) we write

(3.3) p2k(x) = |x|2k + q2k−2(x)x
2
1

where in the case k = 0 we set q−2 = 0 and for k ≥ 1

q2k−2(x) =

k∑
j=1

ajx
2j−2
1 |x|2k−2j .

Let
A = sup

x∈∂B1

∣∣q2k−2(x)
∣∣

then from (3.3) we have

(3.4) p2k(x) ≥ 1−Ax21 for x ∈ ∂B1.

Let β > 0 then to show (3.2), by (3.4) it is enough to show that there exists a
C > 0 such that

(3.5) inf
t∈[0,1]

(
tβ + C(1 −At2)

)
> 0.

To prove (3.5) let 0 < δ < 1 to be chosen later, now we estimate

tβ + C(1−At2) ≥ χ{0≤t≤δ}
(
C(1 −Aδ2)

)
+ χ{δ<t≤1}

(
δβ + C(1−A)

)
thus if we can choose 0 < δ < 1 and C > 0 such that

(3.6) 1 > Aδ2 and δβ > C(A− 1)

then (3.5) is proved.
For a fixed C > 0 there exists a 0 < δ < 1 such that (3.6) holds if and only if

(3.7)
1√
A
> (C(A− 1)+)

1
β .

For all A ≥ 0 it is possible to choose C > 0 such that (3.7) holds and this
completes the proof of the lemma. �

For x0 ∈ R
n by the first inequality in (2.4) we have wx′

0
(x′) ≥ C|x′−x′0|2(|x′0|α+

|x′ − x′0|α). In the following two lemma by adding polynomial terms to wx′
0
we

improve this inequality, such that instead of |x′ − x′0| we have |x− x0|.
Lemma 3. There exist a > 0 and C > 0 such that for all x,x0 ∈ R

n

wx′
0
(x′) + a|x′0|αp2(x− x0) ≥ C|x′0|α|x− x0|2.

Proof. Let x 	= x0. By Lemma 1 there exists a C1 > 0 such that for x,x0 ∈ R
n

(3.8) wx′
0
(x′) ≥ C1|x′0|α|x′ − x′0|2.

By Lemma 2 there exist C2, C3 > 0 such that

(3.9) |x1|2 + C2p2(x) ≥ C3 for x ∈ ∂B1.

Now by (3.8) and (3.9) taking a = C1C2 we compute

wx′
0
(x′) + a|x′0|αp2(x − x0)

≥ |x′0|α
(
C1|x′ − x′0|2 + ap2(x− x0)

)
= |x′0|α|x− x0|2

(
C1

∣∣ x′ − x′0
|x− x0|

∣∣2 + ap2(
x− x0
|x− x0| )

)
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≥ |x′0|α|x− x0|2
(
C1|x1 − x0,1

|x− x0| |
2 + ap2(

x− x0
|x− x0| )

)
= C1|x′0|α|x− x0|2

(|x1 − x0,1
|x− x0| |

2 + C2p2(
x− x0
|x− x0| )

)
≥ C1C3|x′0|α|x− x0|2

which proves the lemma. �

Lemma 4. Let k ∈ N such that 2k ≥ 2 + α then there exist b > 0 and C > 0 such
that for r > 0, x0 ∈ R

n and x ∈ Br(x0)

(3.10) wx′
0
(x′) +

b

r2k−(2+α)
p2k(x− x0) ≥ C

|x− x0|2k
r2k−(2+α)

.

Proof. Let x 	= x0 and k ∈ N be such that 2k ≥ 2 + α. By Lemma 1 there exists
C1 > 0 such that for x,x0 ∈ R

n we have

(3.11) wx′
0
(x′) ≥ C1|x′ − x′0|2+α.

By Lemma 2 there exist C2,C3 > 0 such that

(3.12) |x1|2k + C2p2k(x) ≥ C3 for x ∈ ∂B1.

We have

(3.13)
r

|x− x0| ≥ 1 for x ∈ Br(x0).

Now by (3.11), (3.12) and (3.13) taking b = C1C2 for x0 ∈ R
n and x ∈ Br(x0)

we compute

wx′
0
(x′) +

b

r2k−(2+α)
p2k(x− x0)

≥ C1|x′ − x′0|2+α +
b

r2k−(2+α)
p2k(x− x0)

=
|x− x0|2k
r2k−(2+α)

(
C1

r2k−(2+α)

|x− x0|2k |x
′ − x′0|2+α +

b

|x− x0|2k p2k(x− x0)
)

=
|x− x0|2k
r2k−(2+α)

(
C1

r2k−(2+α)

|x− x0|2k−(2+α)

∣∣ x′ − x′0
|x− x0|

∣∣2+α
+ bp2k

( x− x0
|x− x0|

))

≥ |x− x0|2k
r2k−(2+α)

(
C1

∣∣ x′ − x′0
|x− x0|

∣∣2+α
+ bp2k

( x− x0
|x− x0|

))

≥ |x− x0|2k
r2k−(2+α)

(
C1|x1 − x0,1

|x− x0| |
2+α + bp2k

( x− x0
|x− x0|

))

= C1
|x− x0|2k
r2k−(2+α)

(
|x1 − x0,1
|x− x0| |

2+α + C2p2k
( x− x0
|x− x0|

))

≥ C1C3
|x− x0|2k
r2k−(2+α)

which proves the lemma. �

Proof of Theorem 1. Let x0 and r be as in the statement of the theorem. Let k ∈ N

be such that 2k ≥ α+ 2 and a, b > 0 be as in Lemma 3 and 4.
We define

h(x) = u(x)− u(x0)− λ
(
wx′

0
(x′)

+
a

2
|x′0|αp2(x− x0) +

b

2r2k−(2+α)
p2k(x − x0)

)
.
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Then by (1.1) we have

(3.14) �h(x) = �u(x)− λ
(�wx′

0
(x′)

+
a

2
|x′0|α�p2(x− x0) +

b

2r2k−(2+α)
�p2k(x− x0)

)
= f − λ|x′|α ≥ 0 in Ω.

Because wx′
0
(x′0) = 0 we have

(3.15) h(x0) = −λ(wx′
0
(x′0) +

a

2
|x′0|αp2(0) +

b

2r2k−(2+α)
p2k(0)

)
= 0.

For x ∈ Γ we have u(x) = 0, thus because of u(x0) > 0 and Lemma 3 and 4 we
have

(3.16) h(x)

= −u(x0)− λ
(
wx′

0
(x′) +

a

2
|x′0|αp2(x − x0) +

b

2r2k−(2+α)
p4(x− x0)

)
= −u(x0)− λ

(1
2

(
wx′

0
(x′) + a|x′0|αp2(x − x0)

)
+

1

2

(
wx′

0
(x′) +

b

r2k−(2+α)
p2k(x− x0)

))
< 0 on Γ.

By (3.14) we have that h is subharmonic in the domain Ω ∩ Br(x0). Applying
the maximum principle for the domain Ω ∩ Br(x0) and the subharmonic function
h we have

(3.17) h(x0) ≤ sup
∂(Ω∩Br(x0))

h(x).

By (3.15) and (3.17) we obtain

(3.18) 0 ≤ sup
∂(Ω∩Br(x0))

h(x).

Because

∂(Ω ∩Br(x0)) = (∂Ω ∩Br(x0)) ∪ (Ω ∩ ∂Br(x0))

by (3.16) and (3.18) we obtain

(3.19) 0 ≤ sup
Ω∩∂Br(x0)

h(x).

By the definition of h, from (3.19) we get the inequality

(3.20) u(x0) + λ inf
Ω∩∂Br(x0)

(
wx′

0
(x′)

+
a

2
|x′0|αp2(x− x0) +

b

2r2k−(2+α)
p2k(x− x0)

) ≤ sup
Ω∩∂Br(x0)

u.

Now by Lemma 3 and 4 we obtain for x ∈ ∂Br(x0)

(3.21) wx′
0
(x′) +

a

2
|x′0|αp2(x − x0) +

b

2r2k−(2+α)
p2k(x− x0)

=
1

2

(
wx′

0
(x′) + a|x′0|αp2(x− x0)

)
+

1

2

(
wx′

0
(x′) +

b

r2k−(2+α)
p2k(x− x0)

)
≥ 1

2
C2|x′0|α|x− x0|2 + 1

2
C3

|x− x0|2k
r2k−(2+α)

=
1

2
C2|x′0|αr2 +

1

2
C3r

2+α

≥ C4r
2(rα + |x′0|α).

By (3.20) and (3.21) the theorem is proved. �
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4. Optimal Growth

In the following theorem we prove the optimal growth of solutions.

Theorem 2 (Optimal Growth). There exists a C > 0 (depending only on n, p and
α) such that if for some Λ > 0 we have

(4.1) |f(x)| ≤ Λ|x′|α for x ∈ D

then for Br(x0) ⊂ D we have

u(x) ≤ C
(
u(x0) + Λr2(rα + |x′0|α)

)
for x ∈ B r

2
(x0).

Proof. Let us split u = u1 + u2 where u1 is the solution to{�u1 = �u in Br(x0),

u1 = 0 on ∂Br(x0)

and u2 is the solution to {�u2 = 0 in Br(x0),

u2 = u on ∂Br(x0).

Let
φ(x) = Λ

(
Cr2(rα + |x′0|α)− wx′

0
(x′)

)
with C > 0 as in the second inequality in (2.4). Then because of �wx′

0
(x′) = |x′|α

and the second inequality in (2.4) we have{ −�φ = Λ|x′|α in Br(x0),

φ ≥ 0 in Br(x0).

We have by (4.1)
−Λ|x′|α ≤ −χ{u>0}f ≤ Λ|x′|α

thus because −�u1 = −�u = −χ{u>0}f , −�φ = Λ|x′|α, u1 = 0 on ∂Br(x0) and
φ ≥ 0 on ∂Br(x0) we have{ −�(−φ) ≤ −�u1 ≤ −�φ in Br(x0),

− φ ≤ u1 ≤ φ on ∂Br(x0)

hence by the comparison principle we obtain

(4.2) −φ ≤ u1 ≤ φ in Br(x0).

Because −�u1 = −�u and u1 = 0 ≤ u on ∂Br(x0) we have u1 ≤ u in Br(x0)
and therefore

u2 = u− u1 ≥ 0 in Br(x0).

By the first inequality in (4.2) we have

u2(x0) = u(x0)− u1(x0) ≤ u(x0) + φ(x0).

Thus by the Harnack inequality

u2(x) ≤ C1u2(x0) ≤ C1

(
u(x0) + φ(x0)

)
for x ∈ B r

2
(x0)

for a dimensional constant C1 > 0.
Now because wx′

0
(x′0) = 0 and wx′

0
≥ 0 we have φ(x0) = ΛCr2(rα+|x′0|α) ≥ φ(x)

and by the second inequality in (4.2) we obtain the estimate

u(x) = u1(x) + u2(x) ≤ φ(x) + C1(u(x0) + φ(x0))

≤ C1u(x0) + (1 + C1)φ(x0)

= C1u(x0) + (1 + C1)ΛCr
2(rα + |x′0|α) for x ∈ B r

2
(x0)

which proves the theorem. �
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5. Porosity of the Free Boundary

In this section we prove that the free boundary Γ is locally porous in D. The
definition of local porosity is as follows.

Definition 1. For the sets A1,A2 ⊂ R
n we say that A1 is locally porous in A2

if for every compact set K ⊂⊂ A2 there exists a constant 0 < δK < 1 with the
property that every ball Br(x) ⊂ R

n contains a smaller ball BδKr(x1) such that
BδKr(x1) ⊂ Br(x)\(A1 ∩K).

Let us first mention some known results about the classical obstacle problem
with nondegenerate force term.

The optimal growth estimate for the classical obstacle problem states that there
exists a C > 0 (depending only on n) such that if for a constant Λ > 0, |f | ≤ Λ in
D then for Br(x0) ⊂ D we have

(5.1) u(x) ≤ C
(
u(x0) + Λr2

)
for x ∈ B r

2
(x0).

The optimal nondegeneracy estimate for the classical obstacle problem states
that there exists a C > 0 (depending on n) such that if for a constant λ > 0, λ ≤ f
in D then for x0 ∈ Ω and Br(x0) ⊂⊂ D we have

u(x0) + Cλr2 ≤ sup
Ω∩∂Br(x0)

u.

By the continuity of u as a corollary we have that even if x0 ∈ Γ and Br(x0) ⊂⊂ D
then

(5.2) Cλr2 ≤ sup
Ω∩∂Br(x0)

u.

Lemma 5. For each a > 0 there exists 0 < δa < 1 with the property that if f > 0
in B1 and

supB1
f

infB1 f
≤ a

then for any u ≥ 0 solution to the obstacle problem in B1 with the force term f
such that 0 ∈ Γ, there exists Bδa(x0) ⊂ Ω.

Proof. By (5.2) we have for some x0 ∈ ∂B 1
2

(5.3) C1(
1

2
)2 inf

B1

f ≤ sup
Ω∩∂B 1

2

u = u(x0).

Let

(5.4) 0 < r ≤ 1

6

then for x1 ∈ Br(x0) we have

x0 ∈ Br(x1) ⊂ B2r(x1) ⊂ B2r+|x1−x0|+|x0|(0) ⊂ B3r+ 1
2
(0) ⊂ B1(0)

hence by (5.1) we have

(5.5) u(x0) ≤ C2(u(x1) + (2r)2 sup
B1

f).

From (5.3) and (5.5) it follows that if r satisfies

(5.6) r <
1

4

√
C1

C2

1√
a

then Br(x0) ⊂ Ω.
Now if we define

δa = min
(1
6
,
1

8

√
C1

C2

1√
a

)
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then r = δa satisfies both (5.4) and (5.6). �
In the following theorem we prove a general porosity result.

Theorem 3. Let u ≥ 0 be a solution of the obstacle problem (1.1). If there exists
0 < δf < 1 and a > 0 with the property that for all balls Br(x) ⊂ D there exists
Bδf r(x1) ⊂ Br(x) such that

supBδf r(x1) f

infBδf r(x1) f
≤ a

then Γ is locally porous in D.

Proof. Let K ⊂⊂ D then we should find a 0 < δK < 1 such that for arbitrary
Br(x) ⊂ R

n there exists BδKr(x0) ⊂ Br(x)\(Γ ∩K).
Now fix K ⊂⊂ D and let Br(x) ⊂ R

n be an arbitrary ball. We consider the two
cases r ≥ diam(K) and r < diam(K) separately.

Assume first that r ≥ diam(K).
If B r

4
(x − 3

4re1) ∩ (Γ ∩K) = ∅ we set x0 = x − 3
4re1 and by taking δK ≤ 1

4 we

obtain BδKr(x0) ⊂ Br(x)\(Γ ∩ K). If B r
4
(x − 3

4re1) ∩ (Γ ∩ K) 	= ∅ then because

r ≥ diam(K) we have that B r
4
(x + 3

4re1) ∩ (Γ ∩ K) = ∅ and similarly as in the

previous case we set x0 = x + 3
4re1 and obtain BδKr(x0) ⊂ Br(x)\(Γ ∩K). This

finishes the analysis of the case r ≥ diam(K).
Assume now that r < diam(K).
If B r

2
(x) ∩ (Γ ∩ K) = ∅ then we set x0 = x and taking δK ≤ 1

2 we have
BδKr(x0) ⊂ B r

2
(x0) = B r

2
(x) = B r

2
(x)\(Γ ∩K) ⊂ Br(x)\(Γ ∩K).

If B r
2
(x) ∩ (Γ ∩K) 	= ∅ then there exists x1 ∈ B r

2
(x) ∩ (Γ ∩K).

Let us denote

δ̃K = min
(1
2
,
dist(K,Dc)

diam(K)

)
.

Since
dist(x1, D

c) ≥ dist(K,Dc) ≥ δ̃K diam(K) > δ̃Kr

we have

(5.7) Bδ̃Kr(x1) ⊂ D.

Also we have

(5.8) Bδ̃Kr(x1) ⊂ Bδ̃Kr+|x1−x|(x) ⊂ Br(x).

By (5.7) and (5.8) we have

(5.9) Bδ̃Kr(x1) ⊂ D ∩Br(x).

By the condition on f there exists Bδf δ̃Kr(x2) ⊂ Bδ̃Kr(x1) such that

(5.10)
supBδf δ̃Kr(x2) f

infBδf δ̃Kr(x2) f
≤ a.

If B 1
2 δf δ̃Kr(x2) ∩ (Γ ∩K) = ∅ then we set x0 = x2 and taking δK ≤ 1

2δf δ̃K we

have BδKr(x0) = BδKr(x2) ⊂ B 1
2 δf δ̃Kr(x2) ⊂ Br(x)\(Γ ∩K).

If B 1
2 δf δ̃Kr(x2) ∩ (Γ ∩K) 	= ∅ then there exists x3 ∈ B 1

2 δf δ̃Kr(x2) ∩ (Γ ∩K) and

we have

(5.11) B 1
2 δf δ̃Kr(x3) ⊂ B 1

2 δf δ̃Kr+|x3−x2|(x2) ⊂ Bδf δ̃Kr(x2).

Now by (5.10) and (5.11) we have

(5.12)
supB 1

2
δf δ̃Kr

(x3) f

infB 1
2
δf δ̃Kr

(x3) f
≤

supBδf δ̃Kr(x2) f

infBδf δ̃Kr(x2) f
≤ a.
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After a scaling, by Lemma 5 because of (5.12) we obtain

(5.13) B 1
2 δaδf δ̃Kr(x4) ⊂ B 1

2 δf δ̃Kr(x3)\Γ.
So we have

B 1
2 δaδf δ̃Kr(x4) ⊂ B 1

2 δf δ̃Kr(x3)\Γ ⊂ Bδf δ̃Kr(x2)\Γ
⊂ Bδ̃Kr(x1)\Γ ⊂ Br(x)\Γ ⊂ Br(x)\(Γ ∩K)

and by setting x0 = x4 and taking δK ≤ 1
2δaδf δ̃K the lemma is proved. �

Theorem 4 (Porosity). If for some 0 < λ ≤ Λ the following inequalities hold

(5.14) λ|x′|α ≤ f(x) ≤ Λ|x′|α for x ∈ D

then Γ is locally porous in D.

Proof. Let us check that the condition on f in Theorem 3 holds. Let Br(x) ⊂ D
then because the set {x′ = 0} is porous with porosity constant 1

2 there exists

B r
2
(x1) ⊂ Br(x)\{x′ = 0} ⊂ D\{x′ = 0}. Now by (5.14) because

|x′
1|
r ≥ 1

2 we have

supB 1
4
r
(x1) f

infB 1
4
r
(x1) f

≤ Λ

λ

( supB 1
4
r
(x1) |x′|

infB 1
4
r
(x1) |x′|

)α ≤ Λ

λ

( |x′1|+ 1
4r

|x′1| − 1
4r

)α
=

Λ

λ

( |x′
1|
r + 1

4
|x′

1|
r − 1

4

)α ≤ Λ

λ
3α

so f satisfies the condition of Theorem 3 with δf = 1
4 and a = Λ

λ 3
α, and the theorem

is proved. �
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