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Abstract

In this paper we discuss a boundary value and an eigenvalue problem with Robin
boundary conditions of opposite sign. The eigenvalue problem arises in the study
of the reaction-diffusion equation with dynamical boundary conditions. The depen-
dence of the energy and the principle eigenvalues of the domains is investigated. The
first and second domain variations are derived for nearly spherical domains. It is
shown that in contrast to the classical Robin conditions the second variation changes
sign and has singularities which depend on the eigenvalues of a Steklov problem. By
means of the harmonic transplantation isoperimetric inequalities are derived for the
principal eigenvalues in arbitrary domains.

1 Introduction

In this paper we discuss an elliptic boundary value problem with Robin boundary
conditions of the opposite sign and a corresponding eigenvalue problem with the
eigenvalue in the domain and on the boundary. The motivation comes from a classical
model for the heat distribution in a body Ω ⊂ R3, expressed by the heat equation

∂tT (x, t)−∆T (x, t) = 1 in Ω× R+,
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where ∂t denotes partial differentiation with respect to t, ∆ is the Laplace operator
in R3 and the right-hand side describes a source of constant density 1. We suppose
that the body is immersed into an ice bath and that on the boundary there is a
regulating system with the following property: it the temperature drops below zero
heat is carried into and otherwise out of the body, according to the law ∂νT = −αT
on ∂Ω. Here ∂ν denotes the outer normal derivative of Ω and α ∈ R+ is a fixed
positive number. This boundary condition is of the Neumann-Robin type. Observe
that this flux condition is different from the classical Newton’s law where α is of
opposite sign.

We shall also consider the case where at the boundary a reaction takes place.
Then on ∂Ω, T satisfies the dynamical boundary conditions ∂νT = −σ∂tT where
σ < 0.

In the first case the stationary solutions satisfy the elliptic boundary value prob-
lem

∆u+ 1 = 0 in Ω, ∂νu = αu on ∂Ω.(1.1)

Under suitable regularity assumptions it has a unique solution provided α does not
coincide with a eigenvalue 0 = µ1 < µ2 ≤ . . . of the Steklov problem

∆φ = 0 in Ω, ∂νφ = µφ on ∂Ω.(1.2)

If α = µi then the solutions are not unique. To (1.1) we associate the energy

E(Ω) := E(u,Ω) where E(Ω, v) =

∫
Ω

|∇v|2 dx− 2

∫
Ω

v dx− α
∫
∂Ω

v2 dS.

It is well-known that the solution of (1.1) is a critical point of E(v,Ω) in W 1,2(Ω) in
the sense that the Frechet derivative vanishes. However it is not a local extremum.

In this paper we study the dependence of E(Ω) on the domain Ω. In contrast to the
case α < 0 the techniques based on the minimum principle E(Ω) = minW 1,2(Ω)E(v,Ω)
do not apply. Therefore, in the spirit of the previous investigations in [5] and [6], we
compute the first and second order shape derivative and discuss the behavior under
small perturbations of the domain which are volume preserving. This techniques fails
if α is a Steklov eigenvalue. It turns out that the first variation vanishes if Ω is a ball.
The second variation for the ball depends on

∮
∂BR

(v · ν)2 dS and on α. It is singular
if αR = µk and if the kth-Fourier coefficient of (v · ν) with repect to orthonormal
system of Steklov eigenfunctions does not vanish. At this point the second variation
changes sign. This is in contrast to the case α < 0 discussed in [5] where the ball
is a local minimum for all α < 0. In a recent paper Bucur and Giacomini [7] have
shown that it is also a global minimum for the same choice of α. This first section
is a completes the investigations in our previous paper [6] where the case α < 0 is
discussed.

The eigenvalue problem we are dealing with has its origin in the heat equation
with dynamical boundary conditions. A standard method to find solutions is the
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separation of variables. In fact T (x, t) = e−λtφ(x) solves the homogeneous problem
if φ is an eigenfunction of

∆φ+ λφ = 0 in Ω, ∂νφ = σλφ on ∂Ω.(1.3)

It was shown in [4] that there exist two sequences of eigenvalues

. . . λ−k ≤ . . . λ−2 ≤ λ−1 < 0 = λ0 < λ1 ≤ λ2 . . . ,

such that limn→∞ λ−n = −∞ and limn→∞ λn = ∞. These eigenvalues can be char-
acterized by a min-max principle, cf. [4].

In the second part of this paper we study the domain dependence of λ1 and λ−1.
By means of the harmonic transplantation [8] a global upper bound for λ1(Ω) and a
global lower bound for λ−1 is derived. They are expressed in terms of the harmonic
radius which plays an essential role. Both bounds are sharp. In [3] it was shown
that for small σ the ball has for all domains of given volume the smallest λ1. The
situation is more involved if λ−1. An investigation is carried out for nearly spherical
domains of prescribed volume by means of the first and second domain variations.

Throughout this paper we shall assume that Ω is a bounded Lipschitz domain.
This guarantees that the embedding W 1,2(Ω) into L2(Ω) as well as the trace operator
Γ : W 1,2(Ω) → L2(∂Ω) is compact. Under this condition both problems (1.1) and
(1.3) are solvable in W 1,2(Ω) in the classical sense.

2 The boundary value problem

2.1 First domain variation

Consider problem (1.1) in a class of domains Ωt which are small perturbations of Ω.
We assume that

(2.1) Ωt =

{
y : y = x+ tv(x) +

t2

2
w(x) + o(t2) : x ∈ Ω

}
.

where v and w are vector fields such that

v, w : Ω→ Rn are in C1(Ω).

The solutions of (1.1) in Ωt will be denoted by u(y; t) and the corresponding energy
by E(t).

Example 1 If Ω is the ball BR of radius R then for all α there exists a unique radial
solution

u(r) =
R2

2n
− R

αn
− r2

2n
.

The corresponding energy is

E(BR) = −
∫
BR

u dx = |BR|
(
R

αn
− R2

n(n+ 2)

)
.
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If α is not a Steklov eigenvalue u(y, ; t) is continuous and continuously differentiable
in t. Under this condition it was shown in [5] that the first domain variation is

Ė(0) =

∫
∂Ω

(v · ν)[|∇u|2 − 2u− 2α2u2 − α(n− 1)u2H] dS,

where H is the mean curvature of ∂Ω and u is the solution of (1.1) in Ω.

Example 2 If Ω = BR then

˙̃E(0) =

(
(n+ 1)R

αn2
− R2

n2

)∫
∂BR

(v · ν) dS.(2.2)

This leads to the following

Corollary 1 Let Ωt be a family of nearly spherical domains with prescribed volume
|Ωt| = |BR|. Then Ė(0) = 0.

Proof The volume of Ωt is given by
∫
BR

J(t) dx where J(t) is the Jacobian de-
terminant corresponding to the transformation y : BR → Ωt.The Jacobian matrix
corresponding to this transformation is up to second order terms of the form

I + tDv +
t2

2
Dw, where (Dv)ij = ∂jvi and ∂j = ∂/∂xj .

By Jacobi’s formula we have for small t

J(t) := det (I + tDv +
t2

2
Dw)(2.3)

= 1 + t div v +
t2

2

(
(div v)2 −Dv : Dv + div w

)
+ o(t2).

Here we used the notation

Dv : Dv := ∂ivj∂jvi.

Hence

|Ωt| =
∫
BR

J(t)dx = |BR|+t
∫
BR

div vdx+
t2

2

∫
BR

((divv)2−Dv : Dv+divw)dx+o(t2).

For the first variation we have only to require that y is volume preserving of the first
order, that is ∫

BR

div v dx =

∫
∂BR

(v · ν) dS = 0.(2.4)

This together with (2.2) proves the assertion. �

A further consequence of (2.2) is the local monotonicity property

Corollary 2 If 0 < αR < n + 1 and |Ωt| > |BR| then Ė(0) > 0, otherwise if
αR > n+ 1 then Ė(0) < 0.

Proof By our assumption we have
∫
∂BR

(v · ν) dS > 0 The sign of Ė(0) depends

therefore on the sign of (n+ 1)αR− (αR)2. �
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2.2 Second domain variation for nearly spherical do-
mains

Corollary 1 gives rise to the following question: is E(BR) a local extremum among
the family (Ωt)t of perturbed domains with the same volume as BR? The answer
will be obtained from the second variation.

Let ut(x) := u(y(x); t) be the solution of ∆u + 1 = 0 in Ωt, ∂νu = αu on ∂Ωt

transformed onto Ω. If ut is differentiable then

d

dt
ut(x)|t=0 = u′(x) + v · ∇u,

where u = u0 is the solution of (1.1) in BR.
It was shown in [5] that formally u′ solves the inhomogeneous boundary value

problem

∆u′ = 0 inBR(2.5)

∂νu
′ = αu′ +

(
1− α R

n

)
v · ν on ∂BR.(2.6)

Let us assume for the moment that such a u′ exists. This is certainly the case if α
does not coincide with a Steklov eigenvalue µi.

For the next result we consider perturbations which, in addition to the condition
(2.4), satisfy the volume preservation of the second order, namely∫

BR

((div v)2 −Dv : Dv + div w) dx = 0.(2.7)

Set

Q(u′) :=

∫
BR

|∇u′|2 dx− α
∫

∂BR

u′2 dS.

Then the following formula was derived in [5].

Lemma 1 Assume α 6= µi, (2.4) and (2.7). Put S(t) := |∂Ωt|. Then

Ë(0) = −2Q(u′) +
2R

n2
(1− αR)

∫
∂BR

(v · ν)2 dS − R2

αn2
S̈(0).(2.8)

For a ball and for volume preserving perturbations the second variation of the surface
is of the form

S̈(0) =

∮
∂BR

(
|∇τ (v · ν)|2 − (n− 1)

R2
(v · ν)2

)
dS,

where ∇τ stands for the tangential gradient on ∂BR.
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2.2.1 Discussion of Ë(0)

We write for short

F := −2Qg(u
′) +

2R

n2
(1− αR)

∫
∂BR

(v · ν)2 dS.(2.9)

In order to estimate F we consider the Steklov eigenvalue problem (1.2) An elemen-
tary computation yields µ1 = 0, and µk = k−1

R (for k ≥ 2 and counted without
multiplicity). The second eigenvalue µ2 = 1/R has multiplicity n and its eigenfunc-
tions are x1

R , . . . ,
xn
R .

From now on we shall count the eigenvalues µi with their multiplicity, i.e. µ2 = µ3 =
µn+1 = 1/R and µn+2 = 2/R etc. There exists a complete system of eigenfunctions
{φi}i≥1 such that ∮

∂BR
φiφj dS = δij .(2.10)

In view of the completeness we can write

u′(x) =

∞∑
i=1

ciφi and (v · ν) =

∞∑
i=1

biφi.

Note that the first eigenfunction φ1 ≡ constant. The condition

0 =

∮
∂BR

(v · ν) dS =

∮
∂BR

φ1(v · ν) dS

implies that b1 = 0. From (2.6) we have also c1 = 0. The coefficients bi for i ≥ 2 are
determined from the boundary value problem (2.5), (2.6). In fact

bi =
n ci (µi − α)

1− α R
for i = 2, 3, . . . .(2.11)

From the orthonormality conditions of the eigenfunctions it follows that

Q(u′) =
∞∑
i=2

c2
i (µi − α).

Inserting this into (2.9) we get

F = 2

∞∑
2

c2
i (µi − α)2

[
R

1− α R
− 1

µi − α

]
.(2.12)

Discussion of S̈(0). Observe that

R[χ] =

∮
∂BR
|∇τχ|2 dS∮

∂BR
χ2 dS

is the Rayleigh quotient of the Laplace- Beltrami operator on the (n−1)-dimensional
sphere of radius R. Its eigenvalues are k(n − 2 + k)/R2, k ∈ N+. For volume
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preserving perturbations of the first order (v·ν) is orthogonal to the first eigenfunction
(
∮
∂BR

(v · ν) dS = 0) and thus

R[(v · ν)] ≥ n− 1

R2
.

Equality holds if and only if (v · ν) belongs to the eigenspace spanned by {xi}ni=1,
|xi| = R. This does not occur if we exclude small translations. Consequently S̈(0) >
0.

Sign of Ë(0) Let us write for short

A :=
2(1− αR)2

n2
and dk :=

R

1− α R
− R

k − 1− αR
=

k − 2

(1− αR)(k − 1− αR)
.

Clearly

dk

{
> 0 if αR < 1 or αR > k − 1,

< 0 if 1 < αR < k − 1.

By (2.11)

F =
2(1− αR)2

n2

∞∑
2

b2i

[
R

1− α R
− 1

µi − α

]
= A

∞∑
3

b̃2kdk.

Remark 1 The last equality is read in the following way. Assume for some k ≥ 2
there are m identical eigenvalues

µk = µk1 = . . . = µkm

The sum to the left thus contains the finite sum

m∑
j=1

b2kj

[
R

1− α R
− 1

µk − α

]
.

The sum on the right side abbreviates this by setting b̃2k =
∑m

j=1 b
2
kj

.

Let µ be the largest eigenvalue such that µα := max{µi : µi < α}. Suppose that
0 < p − 1 < αR < p. Then dk > 0 for k = 1, . . . , p and dk < 0 for k > p. Then F
can be split into a positive and negative part,

F = F+ + F−, where F+ = A

p∑
3

b̃2kdk ≥ 0, F− = A
∞∑
p+1

b̃2kdk ≤ 0.

If 0 < αR < 1 then dk > 0 for all k = 3, . . .. Hence

F = F+ = A
∞∑
3

b̃2kdk.(2.13)
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Moreover

F+ ≤ A dp
p∑
3

b̃2k ≤ A dp
∫
∂BR

(v · ν)2 dS(2.14)

F− ≥ A dp+1

∞∑
p+1

b̃2k ≥ A dp+1

∫
∂BR

(v · ν)2 dS,

F ≤ A
[

R

1− α R
− 1

µα − α

] ∮
∂BR

(v · ν)2 dS.

Recall that

Ë(0) = F+ + F− − R2

αn2
S̈(0).

Theorem 1 Suppose that the perturbations y are different from translations and
rotations. Under the assumptions of Lemma 1 and if 0 < αR < ε for ε sufficiently
small then Ë(0) < 0. The ball is a local maximizer for E(t).

Proof By (2.13), F+ is bounded from above for αR < ε . Hence the last term
dominates and S̈(0) < 0. �

Sign changes occur if α is in a neighborhood of µα. More precisely we have

Theorem 2 Let b̃p 6= 0. Suppose that α is close to µα = p − 1. Then there exists
ε0 > 0 sufficiently small and depending only on v and w such that Ë(0) > 0 if
p− 1 < α < p− 1 + ε0. On the other hand if b̃p+1 6= 0 there exists ε1 > 0 sufficiently
small such that Ë(0) < 0 if p− ε1 < α < p. If b̃p = 0 in the first case then Ë(0) can
be positive or negative depending on (v · ν). The same is true in the second case if
b̃p+1 = 0.

Proof The expressions containing dp in the first case and, dp+1 in the second case
dominate. �

In order to get a sharper upper bound for Ë(0) in terms of v we impose the
”barycenter” condition ∮

∂BR

x (v(x) · ν(x)) dS = 0.(2.15)

Setting N = (v · ν) we get∮
∂BR

|∇τN |2 dS ≥ 2n

R2

∮
∂BR

N2 dS.

Thus S̈(0) ≥ n+1
R2

∮
∂BR

N2 dS ≥ n+1
R2

∑p
3 b̃

2
k.

We then get the following upper bound for Ë(0).

Ë(0) ≤
{
−n+ 1

α n2
+ 2

R(1− α R)

n2
− 2(1− α R)2

n2(µα − α)

} p∑
3

b̃2k.(2.16)
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Remark 2 Observe that since (2.15) is assumed, bi = 0 for i = 1, . . . , n. By (2.11)
this implies ci = 0 for i = 1, . . . , n. If

p− 1 < α R < p

then

µα =
p− 1

R
.

Consequently

Ë(0) ≤ − 1

α n2

{
n+ 1− 2 α R (1− α R)(p− 2)

p− 1− α R

} p∑
3

b̃2k.(2.17)

If p = 2 then it follows immediately that Ë(0) ≤ 0. Let p > 2. The second term in
the brackets is monotone decreasing in αR. Thus

inf
αR∈(p−1,p)

2 α R (1− α R)(p− 2)

p− 1− α R
= 2p(p2 − 3p+ 2) ≥ 12.

Hence if n ≥ 12, Ë(0) < 0 for αR close to p.

Example 3 Let Ωt ⊂ R2 be the ellipse whose boundary ∂Ωt is given by{
R cos(θ)

1 + t
, (1 + t)R sin(θ)

}
,

where (r, θ) are the polar coordinates in the plane. This ellipse has the same area as
the circle BR and can be interpreted as a perturbation described in (2.1). We have

y = x + t(−x1, x2) + t2

2 (x1, 0) + o(t2). The eigenvalues and eigenfunctions of the
Steklov eigenvalue problem (1.3) are

µ =
m

R
+ α and φ = rm(a1 cos(mθ) + a2 sin(mθ)).

We have
(v · ν) = −R cos(2θ) = b3φ3,

and

S̈(0) =

∮
∂BR

(
|∇τN |2 − N2

R2

)
dS = 3πR.

A straightforward computation yields

Ë(0) =

[
− 3

4α
+
R(1− αR)

2(2− αR)

] ∮
∂BR

(v · ν)2 dS.

with
∮
∂BR

(v · ν)2 dS = πR3. From this expression it follows immediately that

Ë(0)

{
> 0 if αR > 2

< 0 if αR < 2.

In this example there is only one coefficient b̃3 which does not vanish. In accordance
with Theorem 2, Ë(0) has only one singularity at α = µ3 = 2

R .
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3 Eigenvalue problem

Let Ω ⊂ Rn be a bounded domain with smooth boundary. We consider the eigenvalue
problem

∆u+ λu = 0 in Ω, ∂νu = λ σ u in ∂Ω.(3.1)

σ is a negative number. Clearly λ0 = 0 is a eigenvalue and the corresponding
eigenfunction is u0 = const.. We define

σ0(Ω) := − |Ω|
|∂Ω|

.

In [4] [3] the following properties were shown.

(P1) There exists an infinite sequence of positive eigenvalues (λn)n with limn→∞ λn =
∞.

(P2) There exists an infinite sequence of negative eigenvalues (λ−n)n with limn→∞ λ−n =
−∞.

(P3) If σ < σ0(Ω), then λ1 is simple and the corresponding eigenfunction u1 is of
constant sign.

(P4) If 0 > σ > σ0(Ω), then λ−1 is simple and the corresponding eigenfunction u−1

is of constant sign.

(P5) Let BR be a ball such that |BR| = |Ω|. If σ < σ0(BR), then λ1(Ω) ≥ λ1(BR).

(P6) For any domain Ω (with |BR| = |Ω|), there exist a number σ̂ ∈ (σ0(Ω), 0) such
that λ−1(Ω) ≥ λ−1(BR) whenever σ ∈ (σ0(Ω), σ̂).

Remark 3 For (P5) we note that the condition σ < σ0(BR) is more restrictive than
the condition σ < σ0(Ω) if |Ω| = |BR|. This is a consequence of the isoperimetric
inequality.

From (3.1) we obtain a representation formula for λ−1 and λ1. In fact, multiplying
the equation for u1 (resp. u−1) with u1 (resp. u−1) and integrating over Ω we obtain

λi(Ω) =

∫
Ω

|∇ui|2 dx∫
Ω

u2
i dx+ σ

∫
∂Ω

u2
i dS

i = −1, 1 .

Remark 4 Note that from (3.1) we deduce∫
Ω

|∇ui|2 dx = 0

and hence ui = const., if the denominator∫
Ω

u2
i dx+ σ

∫
∂Ω

u2
i dS = 0.
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From now on λ and u will denote λi and ui in either case i = ±1.

Let (Ωt)t be a smooth family of small perturbations of Ω as described in (2.1).
In particular they are volume preserving in the sense of (2.4) and (2.7). Denote by
ut the solution to

∆ut + λ(Ωt)ut = 0 in Ωt, ∂νtut = λ(Ωt) σ ut in ∂Ωt.(3.2)

Here λ(Ωt) has the representation

λ(t) := λ(Ωt) =

∫
Ωt

|∇ut|2 dy∫
Ωt

u2
t dy + σ

∫
∂Ωt

u2
t dSt

.(3.3)

As in [5] we transform the integrals onto Ω for small t and differentiate λ(t) with
respect to t. Then we get

λ̇(0) =

∫
∂Ω

(
|∇u|2 − λ u2 − λ2 σ2 u2 − (n− 1)λ σ H

)
(v · ν) dS .

In particular Ω = BR implies that λ̇(0) = 0. We are interested in extremality prop-
erties of the ball. Thus let Ω = BR from now on and let σ < σ0(BR).

We consider the following boundary value problem.

∆u′ + λ u′ = 0 in BR ∂νu
′ − λ σ u′ = k(R)(v · ν) in ∂BR(3.4)

where

k(R) := λ u(R)

(
1 +

(n− 1) σ

R
+ λ σ2

)
.(3.5)

We determine the sign of k(R). In this we follow the proof of Lemma 3 in [6]. For
the sake of completeness we give the details.

Lemma 2 Let k(R) be given by (3.5) and let u(r) be the positive radial function in
the case λ = λ1 or λ = λ−1. Then we have

k(R) > 0 if λ = λ1

k(R) < 0 if λ = λ−1.

Proof In the radial case either eigenfunction satisfies the differentia equation

urr +
n− 1

r
ur + λ u(r) = 0 in (0, R), u′(R) = λ σ u(R).

We set z = ur
u and observe that

dz

dr
+ z2 +

n− 1

r
z + λ = 0 in (0, R).
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At the endpoint
dz

dr
(R) + λ2 σ2 +

(n− 1)

R
λ σ + λ = 0.

We know that z(0) = 0 and z(R) = λ σ. Note that

zr(0) = −λ.(3.6)

We distinguish two cases.

The case λ = λ1(BR).
In that case we have (also from (3.6))

z(0) = 0 , z(R) = λ1 σ < 0 , zr(0) = −λ1 < 0.(3.7)

Thus z(r) decreases near 0. We determine the sign of zr(R). If zr(R) ≥ 0 then
because of (3.7) there exists a number ρ ∈ (0, R) such that zr(ρ) = 0, z(ρ) < 0
and zrr(ρ) ≥ 0. From the equation we get zrr(ρ) = n−1

ρ2 z(ρ) < 0 which leads to a
contradiction. Consequently

zr(R) = −(λ2
1 σ

2 +
(n− 1)

R
λ1 σ + λ1) < 0.

This implies k(R) > 0 in the case λ = λ1(BR).

The case λ = λ−1(BR).
In that case we have (see also (3.6))

z(0) = 0 , z(R) = λ−1 σ > 0 , zr(0) = −λ−1 > 0.(3.8)

Thus z(r) increases near 0. We again determine the sign of zr(R). If zr(R) ≤ 0 then
because of (3.8) there exists a number ρ ∈ (0, R) such that zr(ρ) = 0, z(ρ) > 0 and
zrr(ρ) ≤ 0. From the equation we get zrr(ρ) = n−1

ρ2 z(ρ) > 0 which is contradictory.
Consequently

zr(R) = −(λ2
−1 σ

2 +
(n− 1)

R
λ−1 σ + λ−1) > 0.

This also implies k(R) < 0 in the case λ = λ−1(BR). �

To (3.4) we associate the quadratic form

Q(u′) :=

∫
BR

|∇u′|2 dx− λ
∫
BR

u′2 dx− λ σ
∫

∂BR

u′2 dS.

Computations as in [5] lead to the following formula for Ω = BR. These are the same
computations which lead to formula (2.8) in Chapter 2.

λ̈(0) = −λ2 σ u2(R) S̈(0) + λ F
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where

F = −2Q(u′)− 2 λ σ u(R) k(R)

∫
∂BR

(v · ν)2 dS.

In the remaining part of this chapter we will discuss the sign of λ̈(0).

We modify the approach in Chapter 2.2.1 and consider the following Steklov eigen-
value problem

∆φ+ λ φ = 0 in BR,(3.9)

∂νφ− λ σ φ = µ φ on ∂BR.

There exists an infinite number of eigenvalues

µ1 < µ2 ≤ µ3 ≤ ... lim
i→∞

µi =∞.

and a complete system of eigenfunctions {φi}i≥1. See also Chapter 7 in [5]. With
the same notation we have u′ =

∑∞
i=1 ci φi for the solution of (3.4) and we get

λ̈(0) = λ2 |σ| u2(R) S̈(0) + 2
∞∑
i=1

c2
i µ

2
i

(
λ2|σ| u(R)

k(R)
− λ

µi

)
.(3.10)

Let λ = λ1(BR). Then (3.10) is precisely the expression in [5] Chapter 7.2.2 subsec-
tion 2. where α > 0 is now replaced by λ1(BR) |σ| > 0. Thus we conclude

λ̈1(0) ≥ λ2
1 |σ| u2(R) S̈(0) > 0.(3.11)

This is a local version of (P5).

The case λ = λ−1(BR) < 0 is more involved. In that case F < 0 since k(R) < 0 by
Lemma 2. It is an open problem to show that also in this case λ̈−1(0) > 0 - at least
for σ close to σ0(BR) = −R

n . This conjecture is motivated by (P6).

4 Harmonic transplantation

The eigenvalues λ1 (resp. λ−1) have a variational characterization for σ 6= σ0(Ω) (see
[4]). Let

KΩ := {v ∈W 1,2(Ω) :

∫
Ω

|∇v|2 dx = 1 ,

∫
Ω

v dx+ σ

∫
∂Ω

v dS = 0}.(4.1)

Then for σ < σ0(Ω)

0 ≤ λ1(Ω) =
1

sup

{∫
Ω

v2 dx− |σ|
∫
∂Ω

v2 dS : v ∈ KΩ

}
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has a unique minimizer (of constant sign). The same holds in the case 0 > σ > σ0(Ω)
for

0 ≥ λ−1(Ω) =
1

inf

{∫
Ω

v2 dx− |σ|
∫
∂Ω

v2 dS : v ∈ KΩ

} .
We shortly review the method of harmonic transplantation which has been deviced
by Hersch[8], (cf. also [2]). In [6] it applied to some shape optimization problems
involving Robin eigenvalues. To this end we need the Green’s function with Dirichlet
boundary condition

GΩ(x, y) = γ(S(|x− y|)−H(x, y)),(4.2)

where

γ =

{
1

2π if n = 2
1

(n−2)|∂B1| if n > 2
and S(t) =

{
− ln(t) if n = 2

t2−n if n > 2.
(4.3)

For fixed y ∈ Ω the funcion H(·, y) is harmonic.

Definition 1 The harmonic radius at a point y ∈ Ω is given by

r(y) =

{
e−H(y,y) if n = 2,

H(y, y)−
1

n−2 if n > 2.

The harmonic radius vanishes on the boundary ∂Ω and takes its maximum rΩ at the
harmonic center yh. It satisfies the isoperimetric inequality [8],[2]

|BrΩ | ≤ |Ω|.(4.4)

Note that GBR
(x, 0) is a monotone function in r = |x|. Consider any radial function

φ : BrΩ → R thus φ(x) = φ(r). Then there exists a function ω : R→ R such that

φ(x) = ω(GBrΩ
(x, 0)).

To φ(x) we associate the transplanted function U : Ω → R defined by U(x) =
ω(GΩ(x, yh)). Then for any positive function f(s), the following inequalities hold
true ∫

Ω
|∇U |2 dx =

∫
BrΩ

|∇φ|2 dx(4.5) ∫
Ω
f(U) dx ≥

∫
BrΩ

f(φ) dx.(4.6) ∫
Ω
f(U) dx ≤ γn

∫
BrΩ

f(φ) dx,(4.7)

where

γ =

(
|Ω|
|BrΩ |

) 1
n

.

For a proof see [8] or [2] and in particular [6] for a proof of (4.7). The following
observation will be useful in the sequel.
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Remark 5 Since U is constant on ∂Ω (U = U(∂Ω)) and since φ is radial we deduce∫
∂Ω

U2 dS = U2(∂Ω) |∂Ω| = φ2(rΩ) |∂BrΩ |
|∂Ω|
|∂BrΩ |

=
|∂Ω|
|∂BrΩ |

∫
∂BrΩ

φ2 dS.

Let u be a positive radial eigenfunction of λ1(BR). Then U ∈ KΩ since u ∈ KBrΩ

and (4.5) holds.

The case σ < σ0 < 0. By the variational characterization we observe that

0 ≤ λ1(Ω) =: λσ1 (Ω) ≤ 1∫
Ω

U2 dx− |σ|
∫
∂Ω

U2 dS
.

We use (4.6) for the first integral in the denominator and Remark 5 for the second.

0 ≤ λσ1 (Ω) ≤ 1∫
BrΩ

u2 dx− |σ| |∂Ω|
|∂BrΩ

|
∫

∂BrΩ

u2 dS
.

Set

σ′ = σ
|∂Ω|
|∂BrΩ |

Then we have

0 ≤ λσ1 (Ω) ≤ λσ′1 (BrΩ).

Alternatively we may write

1∫
BrΩ

u2 dx− |σ| |∂Ω|
|∂BrΩ

|
∫

∂BrΩ

u2 dS

=
1∫

BrΩ

u2 dx− |σ|
∫

∂BrΩ

u2 dS

1−

|σ|
∫

∂BrΩ

u2 dS∫
BrΩ

u2 dx− |σ|
∫

∂BrΩ

u2 dS

(
|∂Ω|
|∂BrΩ |

− 1

)
−1

Thus

0 ≤ λσ1 (Ω) ≤ λσ1 (BrΩ)

1−

|σ|
∫

∂BrΩ

u2 dS

λσ1 (BrΩ)

(
|∂Ω|
|∂BrΩ |

− 1

)
−1

︸ ︷︷ ︸
=:A(Ω,σ)

.(4.8)

Note that the multiplicative term on the right hand side is close to one if the isoperi-
metric defect |∂Ω|

|∂BrΩ
| − 1 is small. In fact for Ω = BR we have rΩ = R and thus

A(BR, σ) = 1.
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The case σ0 < σ < 0. Again by the variational characterization we have

0 ≥ λ−1(Ω) ≥ 1∫
Ω

U2 dx− |σ|
∫
∂Ω

U2 dS
.

We apply (4.7) to the first integral in the denominator and again Remark 5 to the
second.

0 ≥ λ−1(Ω) ≥ 1

γn
∫
BrΩ

u2 dx− |σ| |∂Ω|
|∂BrΩ

|
∫
∂Ω

u2 dS

≥ 1

γn
∫
BrΩ

u2 dx− |σ| γn
∫
∂Ω

u2 dS
.

The last inequality holds since the isoperimetric inequality

|∂Ω|
|∂BrΩ |

≥ |Ω|
|BrΩ |

= γn

was applied. Thus

0 ≥ λ−1(Ω) ≥ 1

γn
λ−1(BrΩ)

We may rewrite this as

|Ω| λ−1(Ω) ≥ |BrΩ | λ−1(BrΩ).

This proves the following theorem.

Theorem 3 Let Ω be any domain for which the trace operator W 1,2(Ω) → L2(∂Ω)
is well defined. Let λ±1(Ω) be the first positive (negative) eigenvalue of (3.1) and let
rΩ be the harmonic radius of Ω. Then the following optimality result holds.

1) In the case σ < σ0(Ω) < 0 we have 0 ≤ λ1(Ω) ≤ A(Ω, σ)λ1(BrΩ), where the
factor A is given in (4.8) and A = 1 for the ball.

2) In the case σ0(Ω) < σ < 0 we have 0 ≥ |Ω| λ−1(Ω) ≥ |BrΩ | λ−1(BrΩ).

Remark 6 It is interesting to compare 1) in Theorem 3 with (P5). We get the
following two sided bounds.
If BR is a ball of equal volume with Ω and if σ < σ0(BR) < 0 then

λ1(BR) ≤ λ1(Ω) ≤ A(Ω, σ)λ1(BrΩ).

Equality holds for the ball.
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