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Asstract. Let p, denote the largest possible cp-rank of an n x n
completely positive matrix. This matrix parameter has its signif-
icance both in theory and applications, as it sheds light on the
geometry and structure of the solution set of hard optimization

problems in their completely positive formulation. Known bounds

n+1
2

the Drew-Johnson-Loewy (DJL) lower bound d,, = L%J The fa-

for p, are s, = ( ) — 4, the current best upper bound, and
mous DJL conjecture (1994) states that p, = d,. Here we show
Pn = "72 + 0(n%?) = 2d, + O(n3/?), and construct counterexam-
ples to the DJL conjecture for all n > 12 (for orders seven through

eleven counterexamples were already given in [3]).

1. INTRODUCTION: MOTIVATION, NOTATIONS

1.1. Motivation: The cp-cone and copositive optimization. In this article
we consider completely positive matrices M and their cp-rank. An n xn matrix M is
said to be completely positive if there exists a nonnegative (not necessarily square)
matrix V such that M = VVT (T denotes transposition). This form of factorization
is more restrictive than the general question of nonnegative matrix factorization
where M could be rectangular; in fact, complete positivity of M implies positive-
semidefiniteness and nonnegativity of all entries of M. Typically, a completely

positive matrix M = VVT may have many such factorizations, and the cp-rank of
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M, cpr M, is the minimum number of columns in such a nonnegative factor V (for
completeness, we define cpr M = 0 if M is a square zero matrix and cpr M = oo
if M is not completely positive). The set CP,, of all completely positive n x n
matrices forms a proper cone (i.e., it is pointed, convex, and solid in the sense that
it has nonempty interior). With respect to the Frobenius inner product (A,B) :=
trace(AB), this cone is dual to the cone COP,, of symmetric copositive matrices
of order n. An n x n matrix S is said to be copositive if x"Sx > 0 for every
nonnegative vector x € R".

Copositive and completely positive matrices are central in the rapidly evolving field
of copositive optimization which links discrete and continuous optimization, and has
numerous real-world applications. For recent surveys and structured bibliographies,
we refer to [4, 5, 6, 9], and for a fundamental text book to [2].

A conic optimization problem of the form
inf{(C,X) : (A;,X) =b;, i€ {1,...,m}, Xe€CP,} (1)

is called completely positive optimization problem, but sometimes also copositive
optimization problem, because the corresponding dual problem is given as
m m
sup{Zbiyi:yeRm7S:C—ZyiAi€COPn}. (2)
i=1 i=1
Both problems consist in optimizing a linear form over a feasible set which can be
described as the intersection of an affine subspace with one of the cones COP,, or
CP,,. Hence at least one optimal solution (if this exists at all) must be contained in
the boundary of these cones. Moreover, if strong duality for (1) and (2) holds, then
there exists a primal-dual optimal pair (X*,S*) € CP,, x COP,, with (S*,X*) =0
or S* L X*, which relation can be exploited to obtain information about X* if we
have some knowledge on S*.
As remarked above, the conic primal-dual pair (1) and (2) serves to reformulate NP-
hard optimization problems. Since everything else is linear, it is quite obvious that
this approach shifts the whole complexity of the hard optimization problem into the
(boundaries of the) cones CP,, and COP,,. These boundaries are much more com-
plex than the boundaries of the symmetric, self-dual cones used in polynomial-time
conic optimization (such as Linear or Semidefinite Optimization, or optimization

over the Minkowski cone). For instance, while the boundary of the semidefinite
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cone consists of matrices which are rank-deficient, the boundary of the completely
positive cone CP,, also contains nonsingular matrices like the identity matrix, or
matrices with all entries strictly positive like the all-ones matrix. So, neither linear
constraints on the entries nor rank restrictions are sufficient to characterize or elu-
cidate geometric properties of completely positive matrices. Therefore, the cp-rank
was early recognized as a useful matrix parameter to shed more light upon the
structure and the properties of completely positive matrices, and consequently has
received considerable attention by researchers over the past decades.

Determining the maximum possible cp-rank of n x n completely positive matrices,
pn = max {cpr M: M € CP,},

is still an open problem for general n. It is known [2, Theorem 3.3] that p, = n if
n < 4, whereas this equality does no longer hold for n > 5. Let d, := L";J and

Sp 1= (”erl) —4. For n > 5, it is known that

and that d,, = p,, in case n = 5 [15]. It is still unknown whether dg = pg although
the bracket (3) was reduced in the recent paper [14] where also the upper bound
pn < S, was established for the first time.

The famous Drew-Johnson-Loewy (DJL) conjecture [8] is by now twenty years old.
It states that d,, = p,, is true for all n > 5, and some evidence in support of the DJL
conjecture is found in [1, 7, 8, 13], see also [2, Section 3.3]. In a recent paper [3]
it was shown that the DJL conjecture does not hold for orders n ranging between

seven and eleven by constructing examples which establish p,, > d,,.

1.2. Notations, terminology and paper structure. Some notation and termi-
nology: we abbreviate [r:s] = {r,r +1,...,s} for integers r < s. Let e; € R"
be the ith column vector of the n x n identity matrix |, and 9,, = > ..., €;. By
E, = n.n, we denote the n x n matrix of all ones. The nonnegative orthant is

denoted by R} which contains the standard simplex

A, ={xeRl:plx=1}.
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The matrix Diag(y) is a diagonal matrix containing the entries of y on the diagonal.
The Kronecker product is denoted by ®, and
)
o" B

A@B=

means the direct sum of two square matrices. For a given x € R¥ | we define the
zero-norm ||x||o as the number of positive entries x; > 0. Given a square matrix
S € COP,,, we will use the phrase “zero(es) of S” as an abbreviation of “zero(es)
x € A, of the quadratic form x'Sx”; this terminology differs slightly from that
in [11] but is more convenient for our purposes.

The paper is organized as follows: In Section 2 we look at copositive matrices S
with finitely many (but many) zeroes. Such matrices S lie on the boundary of
the copositive cone, and elementary conic duality therefore tells us that there are
nontrivial completely positive matrices M such that M 1 S. There is a strong con-
nection between the zeroes of S and the cp-rank of M, which is established through
Lemma 2.2. Lemma 2.3 deals with cp-ranks of Khatri-Rao-like products (defined
in Subsection 2.2) of matrices, which are necessary to make assertions about cp-
ranks of high-order matrices. Combination of these auxiliary results culminates in
Theorem 2.2 and in Corollary 2.1, which refutes the DJL conjecture for n > 7 and
shows that the largest possible cp-rank p, lies asymptotically much closer to the
upper bound s,, than to the lower bound d,,.

Section 3 improves the lower bound for p,, in the following way: in Section 2 only
identity matrices are used as building blocks to construct matrices of higher order.
This is sufficient to prove the assertions of Section 2, but better results can be
obtained by using, as building blocks, matrices with cp-ranks that exceed their
orders. Some of these building-block-matrices are new in the literature, some of
them were already used in [3]. To further illustrate the advantage of the approach
in this article, an explicit construction of a matrix of order twelve with high cp-rank
is presented in an appendix. Note that in contrast to [3], for general order n, we
need not construct the matrices explicitly but rather can invoke the existence result

in Lemma 2.2.
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2. MAIN RESULTS

2.1. Rank, two-rank and cp-rank. Our method of finding matrices of high cp-
rank builds upon two observations: (1) For certain matrices M € CP,,, only multi-
ples of vectors from a finite set {uy,...,u;} may appear as columns of a factor V
in any factorization M = VVT = Zle yiusu, , wherey = [y1,...,yx] € RY. This
property is shared by all matrices in a certain convex subcone of CP,, determined
by the set {uy,...,u;}. (2) This subcone contains matrices with cp-rank bounded
below by a number computable from the set {uy,...,ux}; so the cp-rank will be
high if this number is large.

This argument is made precise in the following results, starting from the observa-
tion in a more general context, that a convex cone spanned by some finite set of
vectors of rank r always contains a vector which is not a positive linear combination
of less than r vectors from this finite set; a converse of Caratheodory’s theorem in

some sense.

Lemma 2.1. Let V be a real vector space, let {v; : i € [1:k]} CV be a set of

vectors of rank r, and define fory € R’j_

k k
Py, = {x S le_ : invi = Zyivi} .
i=1 i=1
Then there exists y € Ri such that
min Ixllo = 7.

Proof. First we show that minyep, [|x[lo < » for all y € R’} (this is basically
Caratheodory’s theorem, we include the short argument for the readers’ conve-
nience). To this end, choose an x € Py with m = ||x||o minimal over P,. We
assume without loss of generality x; > 0 for all i < m. If m > r would hold, then
there were p; € R with i w;v; = o with some p; > 0. Further without loss of
generality we assume (fO;:slome s € [1:m]) that p; <0 for ¢ < s while p; > 0 and
% > Z—: > 0 for all i € [s:m]. Define z; := z; — %ui >0 for all i € [1:m] and
z; := 0 for ¢ > m, so that ||z]lo < m — 1 (as also z, = 0). But straightforward
calculations show ZZ ZiV; = Ez ;V;, s0 z € Py, in contradiction to the assump-

tions. Next we use the fact that a vector space over an infinite scalar field is never

the union of a finite number of proper subspaces, see [10, p.211]. Define the cone
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C:={X" yvi:y € R?} CV and observe that the linear subspace L = C'— C

is r-dimensional. If we had mirgl |x||o < 7 for all y € R, then C (and thus also L)
xeby

would have to be a subset of

m
U := U {invi:xeRm, a:i:OforalliE[1:771]\[}7

IC[1:m] (=1
f<r—1

which is impossible, since U is a union of finitely many proper subspaces of L (of

dimension at most r — 1). O

For a matrix A = [a,...,a;]" we let A = [a; ® a;,...,a; @ ay] ", and define

)

the two-rank of A as

rank® A := rank A .

For illustration, denote by B; = e;e] € R"*™. Then 112 = [B1]---|By]. Note that
always rank® A > rank A with equality if rank A = k, i.e., if A itself has full row
rank, then also A® has (the same) full row rank. Furthermore we note for later

use the trivial relations rank® (aA) = rank® A if a > 0,
rank(? {g] > rank® B,
and a slightly less trivial one: rank(® [A|B] > rank® B.

Lemma 2.2. Let U= [uy,...,u;]' € Rixn, where {uy,...,u;} are all the zeroes
of some copositive matriz S € COP,,.

Then there exists a diagonal matriz D = Diag(y) with y € Ri such that the com-
pletely positive matric M = UTDU satisfies cpr M = rank® U.

Proof. Consider any M = U Diag(y)U. We observe that (M,S) = 0, i.e., that
M L S holds. Therefore by [3, Lemma 2.1] we conclude that any cp-factorization
of M is of the form

k
M = U " Diag(x)U = inuiu:
i=1

with some x € R’i. For any x corresponding to a minimal cp-factorization of M
we then have cpr M = |x||o. Since the rank of the set {w;u; : i € [1:k]} equals
rank® U, as is seen by identifying uwu! with u; ® u; = vec(u;u, ), we can invoke

Lemma 2.1 to obtain the desired conclusion. O
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2.2. Direct sums and Khatri-Rao-like products. For matrices U € R**" and
V € R”™ we construct the following k¢ x (n + m)-matrix, denoted as U®V =
[U ®@ne|ni @ V]; recall that ng denotes the all ones vector in R?. Note that both
UV and U @V are, up to permutations of columns, submatrices of (U @V)<2>
and all these matrices have the same number k¢ of rows. Further note that using

the Khatri-Rao product *, see. e.g. [12], we can write
UeV = (U] [me[V] and  (UP)T = [uifug] - [ug] x [ fus| - Juy]
Recall that a matrix A € R’f" is row-stochastic if An, = n;, holds.

Lemma 2.3. Let « > 0 and 8 > 0 and consider two row-stochastic matrices
U € REX™ and V € R*™. Then for the kf x (n+m)-matriz W = (aU)® (3V) and
the (k + €) x (n 4 m)-matrizc W = U & V we have

(

(a) rankW = rankU + rankV — 1 and #QW is row-stochastic,

(b) rank® W > rank U rankV + rank'® U — rankVU + rank® V — rankV,

(¢) rankW = rankVU + rankV, rank® W = rank® U + rank® v
and W is row-stochastic.

(d) If the rows of U (resp. V) are all the zeroes of some Sy € COP,, (resp. Sy €
COP,,), then there are copositive matrices {S:S'} C COPpym such that the
rows of a%hBW are all the zeroes of S and the rows 0fV~V are all the zeroes

ofg.

Proof. Tt is clear that ﬁw is row-stochastic. Let ry := rank U and ry := rank V.
Since the rank of the first n (resp. last m) columns of W is ry (resp. ry), rank W
can be smaller than ry + ry only if some nonzero linear combination of the first n
columns of W equals some linear combination of the last m columns of W.

So assume that there are x € R™ and y € R™, such that (Un,)x = (Udn,)(x®1) =
Ux®n, and (@ V)y = (0 ®@V)(1®y) = n; ®Vy are both equal to w € R¥\ {o}.
From w = Ux ® 1, we deduce that w; = w; if [{] = [%1, and from w = 7, ® Vy
we deduce w; = w; if i = 7 mod ¢, and the only nonzero vectors satisfying both
conditions are of the form w = ¢y with ¢ # 0. Therefore rankW = ry +ry — 1,
which concludes the proof of (a).

Next we denote py = rank® U and pv = rank® V, and assume that the rows

of U and V are arranged in a way such that the matrices U= Uiy x[in)s V =
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V[l:rv]x[l:m]a U = U[TU+1:pU]><[1:n] and \7 = V[rv+l:pv]><[l:m] SatiSfy
~ ~ U Vv
rank U = ry, rankV = ry, rank® {g] = pu, rank? [\7] = pv-

Moreover let u; = e/ U and v; = e] V be the first rows of U and V. Now consider

the following (ryry + py — ru + pv — rv) X (n + m)-submatrix of W:

U@, My ®V UeV
W = u; ®’I7pvfrv V = up @V
U Noy—ry @ V1 Udvy

Noting that U®V is a submatrix of (G®\~/)<2>, where the latter has ryry rows, we
deduce rank (U® V)@ = ryry from

ryry = rank Urank V = rank (U ® V) < rank (U@ V) < ryry.

U gve (UeVv)®
Next consider the submatrix u§2> @V | of W2 = (g @\A/)<2> . If for x €
U@ gvi® (Uevy)@

R™™V, y € RV™™V, z € RV we have o = [xT’yT,zT}W@), then also

o=x (UPeaV?) 4+ y—l—(u§2> @V®@) 427 (UP ®v§2>)

~

_ XT(D(2> @\7<2>) + (yTan_Tvuf))@(yT\A/@)) + (ZTU<2>)®(ZTWU—T-UV§2>)

must hold. Therefore yT\A/<2> belongs to the row space of \7<2>, andz' U@ belongs to
the row space of G<2>,~implying y = o and z = o, because, by assumption, the rows
of both {giz] and [%g;} are linearly independent. Then by linear independence
of the first ryry rows of W2 also x = o must hold. Thus rank® W > rank® W =
ryrv + pu — ry + pv — rv, which completes the proof of (b).

For the proof of (c) we use that for any matrices A,B we have rank (A @ B) =
rank A + rank B, and that the matrix (A @ B)(? and its submatrix A‘? @ B have
the same rank. Furthermore Wnn+m = Nk+¢ is easily checked.

Finally, for the proof of (d) we define matrices

Su+Z2E, —nun) ~ S any
S .= vt o n Zm , and S:= UT Ml
—Nmfl,  Sv+ 3Em Ml SV

Take any z = [Ax ", (1 — Ay "]T with (x,y) € A, x A, and 0 < XA < 1. Then

Te, _ 32,7 2T (a+5)? o 2>
z Sz=X\x Syx+(1—-XN)%y Svy+ o A P >0,
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with equality if and only if A = 3¢5, and xT (resp. y ") is one of the rows of U
(resp. V), i.e. if and only if z" is one of the rows of OZ%_BW

Furthermore, with z as above, we have
z'Sz=Ax"Sux+ (1 - A2y Syy+2A1—A) >0,

with equality if and only if A € {0,1}, and, depending on the value of A, either x "
is one of the rows of U or y ' is one of the rows of V, i.e. if and only if z" is one of

the rows of W. O

2.3. Zeroes and characteristic triples. We now define the set Z as follows:

denote by R all row-stochastic matrices and let
Ro :={U € R : the rows of U are all the zeroes of some copositive matrix}

as well as Z:={aU:a >0, U e Ry}

The matrices in Z are exactly those that are needed for applications of Lemma 2.2.
Moreover, with Lemma 2.3 we have a means of constructing new elements! of
Z from known ones: {U,V} C Z = U®V € Z. For our purpose of showing the
existence of matrices of large cp-rank, only certain characteristics of a matrix U € Z
are important: (a) the number of columns of U (say n); (b) the rank U (say r); and
(c) an integer lower bound p for rank® U (where we require p > rank U); these

three integers we collect in a characteristic triple

¢ = (m(e), ma(e), ms(c)) = (n,7,p) .-

Some U € Z may have more than one characteristic triple, namely if and only if
rank U < rank® U. By abuse of notation, we define a binary operation on any two

characteristic triples,
(n1,71, 1) @ (n2, 72, p2) := (N1 +n2,71 +72 — Lrira + p1 —7r1+p2 —72);  (4)

note that 1 <ry +ro —1<rro+p1 —711+p2—rgifboth1 <r; <p;and 1<

r9 < po holds. The operation @ obviously obeys the commutative and (only a little

IThere is also another closure property which we won’t use: If P and D are a permutation

matrix and a positive diagonal matrix of suitable orders, then U € Z = PUD € Z.
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less obvious) the associative law.? Clearly also the binary operation (ny,71,p1) @
(no,ra, p2) := (n1 + na,r1 + r2, p1 + p2) is associative and commutative. It follows
from Lemma 2.3 that if ¢, ¢’ are characteristic triples of U,V € Z, then c®c’ is a
characteristic triple of U®V and ¢ & ¢’ is a characteristic triple of U & V.

Our strategy is to fix a subset U C Z together with a set C' of characteristic triples,
containing one characteristic triple for each U € U, and construct the ®-semigroups
generated by U and C. From the latter, we fix the first component 71 (c) = n, the
column number of some U € U accordingly picked, and search a triple ¢ € C with
a large third component m3(c) < rank® U. There are no limitations on the second
component 7o(c) = rank U, and typically the chosen U will not have full column
rank.

We start considering semigroups generated by a single U € Z, and therefore define
U®! = U and inductively U®(**t1) = U@ U®" for n > 1. Similarly we define ¢®",

where c is a characteristic triple.

Theorem 2.1. Let U € Z, and (n,r,p) be (one of) its characteristic triple(s).
Then for any i € N there is a matriz M € CP,; satisfying

ecprM>L(r— 1% — 1)+ (p—1)i+1.
Proof. The result follows from
(n,r,p)® = (ni,(r—1)i+ 1, (r—1)%@G@ - 1)+ (p—1)i+1),
which is easily proved by induction, using (4). |

For any n > 1 we have |, € Z| since the rows of |,, are the only zeroes of the copos-
itive matrix E,, — l,,. The (unique) characteristic triple of I,, is (n,n,n). Putting

U = I, in Theorem 2.1, we see rank?) 1% > p,; ,, where
] 1 71 2.0 i . - (nz)2 _ vy n . i(i73)
Pim =5 —1)%G—1)+(n—-1)i+1="F=—ni(i+35)+2ni+ -5~ +1. (5)

Next, counterexamples to the DJL-conjecture for infinitely many n, and in partic-

ular for n = 12, are presented.

2The binary operation @ on the set Z is associative but not commutative, but there are
always permutation matrices P1, P2 such that B&@A = P1(A®B)P2. Clearly, row and column

permutations of U do neither affect rank U nor rank® U.
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Example 2.1. (p12 > 37 > 36 = di2) We have rank® If93 > 37 by (5); more
precisely, we have (4,4,4)®3 = (12,10,37) and thus there is a completely posi-
tive matriz of order 12, rank 10 and cp-rank at least 37, which may be written as
(123) TDiag(x)(123) for some x € RS, An explicit construction will be given in
Appendiz A.

Similarly we obtain pa; > pia = 55(41)? — 3(4i) + 1> [(40)%] = dy; fori >3 and

32
P3n = p3a = 3(3n)* = 3n+1> |1(3n)?] =ds, forn > 4.

We continue this argument and maximize, for fixed N := ni, the second term in

formula (5) for p; ,, namely —ni(i 4 5), with the result n* = V2N,i* = JvE

5, and

N2 9 3
pire = = = NV2ZN + TN = 2VaN +1 (6)

which yields good lower bounds for the cp-rank if both ¢* and n* are integers, i.e.,
if n = 2m (and N = 2m?) for m € N. We will re-encounter the three leading terms
of (6) in the estimate (10) of Corollary 2.1 below; for an improvement see (12) in
Section 3.

Still better lower bounds could probably be obtained by considering products of pos-
sibly different characteristic triples (just before we only considered powers of a single
characteristic triple). Let .S be the semigroup generated by the set of characteristic
triples {(4,4,4) : « € N}. So any ¢ € S is a finite ®-product of these (i,%,), allowing
repetition of factors, and 71 (c) — ma(c) + 1 is the number of factors, counted with
multiplicity. The factorization need however not be unique, as is seen from the ex-
ample (12,10,30) = (1,1,1)®(5,5,5) ®(6,6,6) = (2,2,2)®(3,3,3)®(7,7,7). The

best lower bound for p,, that we can get from S is then
by, == max {m3(c) : m1(c) =n, c € S}. (7)

Lemma 2.4. The mazximum b, is for some j > 1 attained at a characteristic triple

¢ of the form ¢ = (i1,11,01)® - - ® (i5,15,1;), where iy < --- < i; and i; —i; < 1.

Proof. There is nothing to show if j = 1. So assume j = 2. If we had io—i; > 1, then
¢:= (i1+1,41+1,i1+1) @ (ia—1,i5—1,io—1) fulfils m1 (¢) = m1(¢), ma(c) = m2(€), and
m3(c) = d1i2 < (i1+1)(i2—1) = 73(¢) in contrast to the maximality of 75(c). If j > 2
then for some characteristic triple ¢’ we have ¢ = (i1, 41,%1) ® (¢;,%;,%;) ®¢, which, in

case of i;—i; > 1 we compare with é := (i1+1,41+1,91+1)® (ia—1,90—1,90—1) &/,
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obtaining as above 71(c) = m1(¢), ma(c) = m2(¢), and mw3(c) < 73(¢) in contrast to
the maximality of m3(c). Here we used the following property: if ¢/, v = (n,r, p) and

4 = (n,r, p) are characteristic triples with g > p, then m3(y®¢’) > m3(y®<). O

We remark that the characteristic triples that maximize (7) are in general not
uniquely determined by Lemma 2.4. For example, b3y = 442 is attained twice, at

(7,7, 7)®3®(8,8,8)®2=(37,33,442) and at (9,9,9)®3® (10, 10,10) = (37, 34, 442).

2.4. New bounds for the cp-rank. In the following theorem we provide precise

asymptotic estimates for b, as defined in (7).

Theorem 2.2. Forn > 5, we have
1 2 9 5 3
—\/2n—|—1—6gbn—%—i—n\ﬂn—zng—g\/?n—i—g. (8)

Moreover b, < cpr M for some M € CP,, of the form M = UTDU, where D is a

nonnegative diagonal matriz and U € Z is a binary matriz, i.e., has all entries in
{0,1}.

Proof. From Lemma 2.4 we know that b, = m3(c) for some characteristic triple

c € S of the form
c=(nn—k+1pmp) = (mym,m)® @ (m+1m+1,m+ 1)

where m > 1, k> 1,1 <i<kand n=mi+ (m+1)(k—i) =mk+k —1i. Then
the binary matrix U := I;%i%I;?j_]f_I' € Z satisfies rank® U > b,,, and by Lemma 2.2
there is a nonnegative diagonal matrix D such that we have b, < cpr UTDU, which
settles the second assertion of the theorem. We now turn to the asserted inequalities.
Putting 7y = (m—1)i+1, ro = m(k—14)+1, p1 = pim and pa = pg—i m+1 from (5)
yields

Pmki =T1T2 +p1 — 71+ p2 — T2
= (i(m—1)+1)((k—i)m+1) + 2 (m—1)%i(i—1) + im?(k—i)(k—i—1)
= %(n — k) + %(n —k)—mn+ %m(m +Dk+1=: f,(m,k).

Denoting )A(n = {(m,k,i) € 1,003 i < k,mk+k—i=n}and X,, := )A(” NN3 we
note that

b, = max fo(m,k)< max fp(m,k) < max < max  fn(m, k))

(m,k,i)eX, (m,k,i)eX, T ke[l,n] \me[R-1,%
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For fixed k, f,(m,k) is a convex function of m, and

(k) = (B tk) = ke ),

therefore b,, < maxge1 n) gn(k). We collect some facts about g,,, assuming n > 5.
From g}, (k) =k—n—3+ %, gr(k)=1- 2—32, and g}/ (k) = ?’g—f we deduce that g,

is strictly concave on [1,n%] and strictly convex on [ng,n], and that g/, is strictly

convex on [1,n] with ¢/, (1) = ”2;1 —n >0 and g, (n) = —1 < 0 so that there is
only one zero of g/, in [1,n] which is the only maximizer of g, on [1,n], and this
maximizer must lie in the interval A, := [z, + % - L o+ i], where z, = \/g

Indeed,

(o N LN 5 [ 9T
I\ Ty) T 222 4z, Ty 8 8"

where for the latter inclusion we used (1 —y)? < (1+y)~2 < 1 — 2y + 3y? for

y € [0,1]; we need y = +—. So we have shown ¢/, (sup A,,) < 0. Furthermore, for

Adzy "

k € A,, we have

. ) 0\ 1\ * 3
gn(k) <1l-n Zn+1 =1-4z, 1+4— <1—4z, 1—4 =44z, ,

Zn Zn

and by the mean value theorem for some k € A,
1 1 1 1 9 4 1
’ St —) =g o) =g (k) >~ 44— — >
gn(z +3 Zn) gn(z +4) (k) 2 —g+d=— >3
We conclude g/, (sup 4,,) < 0 < ¢/, (inf A,) so that A, must contain the minimizer

of gn. Now 2, + 1 < n3 for n > 5, and by concavity of g, on [1,n3] we get

1 9
Jmax gn(k) = max gn(k) < g ( +4>+8zn
n? 1 (Zn+i)2 3(zn+l) n2 9
- ) IR DAY P i) _ 14+ —
2 "<Z"+4>+ 3 2 et D) T8,
_n? om0 5,3
— = 2Nz, +-n— -2, + -,
=7 171 2

2 -1 -1
where we used - (zn + %) =nz, (1 + é) > nzy, (1 — 4;"> =nz, — 7, and
% + é < % for n > 5. This proves the rightmost inequality in (8).
Turning now to the left inequality in (8), we note that for any (m,k,i) € X,, we
have b, > f,(m, k). The preceding calculations suggest to choose

1 3 n n n
kn:: n n n— SycAnT ) n = n 771a7
Zn+a e{z 4z+4}ﬁN m ZnJrﬂ E]kzn kn}ﬂN
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and i, = mpk, + k, —n € [1:k,]. Clearly «, € [—i, %], and because we have
== | =20anl A < 3 for (an, 2n) € [—3,3] x [1,00[, we get B, € [-3, 3].
We obtain
n? 1 1 3n 1 3
n n kn = 5 - kn - n a 2kn 7k2 o a nkn - 7k'n 1
fr(mp, k) 5 " nm+2mn +2n+2+2m > +
2
9
= % —2nzn—|—1n+7nzn+5n
2 9 1
> %—2nzn—l—1n—2zn+1—6,
where we used
1 3 1 3 3
n — S \Pn 2n n 2n 1 n1_2n_72 ______ =-2
T = 5 (B +200) (B + 200 + 1)+ (1 = 20,) =5 > —5 — = —
and, discussing behaviour for (o, 5,) € [—%, ﬂ X [—g, %},
1 1 3 1
5n = §an/8n(5n + 1) + iai - §Qn +1> E .
The proof is now complete. O

Remark 2.1. For later reference we add that max, )ex, fn(m, k) is attained
only in points (m*, k*,i*) satisfying
. 3
k < Zn + 5

To see this, let k > z, + % Then, by straightforward but tedious calculations, we
get fn(m, k) < gn(k) < gn(zn + %) < %2 —2nz, + %n — 2z, + % < by, therefore

fu(m, k) can not be mazimal.

Corollary 2.1. The DJL-conjecture is false for n > 7. Asymptotically, p, is much

2

closer to the upper bound s, = (”;1) — 4 than to the DJL lower bound d,, = LTLTJ :

2 _
Pn = n (’)(n3/2) and thus  lim > —Pn — g, 9)

2 n—00 Pn — dp

Proof. For n € [7:11] counterexamples were given in [3], and for n = 12 we gave a

counterexample in Example 2.1. Furthermore, we derive from (8)

n? 3/2 n? 9 1

?—l—O(n ):snananzg—(n+1)\/2n+1n+1—6>dn, (10)
where the latter inequality holds for n > 13 (again checked straightforwardly),
showing the existence of counterexamples also for n > 13. Now (9) follows imme-

diately. (I
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3. IMPROVEMENT OF LOWER BOUNDS

3.1. Semigroups of characteristic triples. Up to now, we have used in our
construction a very simple matrix sequence Z := (l,,)nen. This was sufficient to
disprove the DJL conjecture for large n and establishing the asymptotics in (9).
Note that b, is a lower bound for the cp-rank of matrices from a subset of CP,,,
namely for completely positive n x n-matrices that have a representation as U™ DU,
where D is a nonnegative diagonal matrix and U € Z is a binary matrix. No longer
insisting on matrices in that subset, we will be able to further increase our lower
bounds for p,. So our strategy is to replace Z by another sequence J = (J,,)nen of
not necessarily binary matrices, where we assume that J,, is of order n, all J,, have
full column rank, and that we know the exact values of p := rank(® Jy, not just
lower bounds, with p/ > n for at least one n. Then we let S be the semigroup

generated by the set of characteristic triples {(n,n, p7) : n € N}, and define
b = max {m3(c) : m(c) =n, c€ SJ}. (11)

We recall that S7 = S and bZ = b,, from (7) in this notation, and of course pZ = n.
Further, for all such 7, from considering 72 (c®c’), we deduce that any ¢ € S7 is
@®-irreducible if and only if 7 (c¢) = ma(c). In other words, (n,n,p) € S7 if and only
if p = p7. Clearly we may again infer that there is M = UTDU € CP,, satisfying
cpr M > b7 where D is a nonnegative diagonal matrix and U is an element of the
subsemigroup of (£, ®) generated by J. Such U can be found as follows: take some
maximizing characteristic triple ¢ € S satisfying m(c) = n and m3(c) = b7 (there
may be more than one maximizing characteristic triple); use some factorization of
c as a product of generators (again there may be more than one such factorization),
say c=c1@® -+ @cy, for some k € N; and define U :=J (c))® - @I (cp)-

The next result is about the increase b —b,, of the lower bound that we may expect

in the case that we have certain bounds for p.

Lemma 3.1. Assume that for some a, 8 > 0 we have (a+1)n—B < pJ < (a+1)n

for n € N. Then b7 satisfies

omﬂ< ;LJr;)gbgbngom,

with by, as defined in (7).
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Proof. We are going to show by induction on k that
a) for each ¢ = (n,n+1—k, p) € S7 there is ¢ = (n,n+ 1 —k,p’) € S satisfying

p<p +an,
b) for each ¢ = (n,n+1—k,p’) € S there is ¢ = (n,n + 1 — k, p) € S7 satisfying
P+ an — Bk < p.

Both assertions are true for k = 1, with p = p7 and p’ = n. Next we assume a)
proved up to k, and we use that ¢ = (n,n — k, p) € S7 has for some i € [1:n — 1]
a representation ¢ = (i,i,py )®¢, where ¢ = (n —i,n —i —k+1,p) € S7. By
assumption, there is @ = (n —i,n—i —k+ 1,p') € S such that
p<p +an—i),
and then ¢ := (i,4,9)®¢ = (n,n — k, p’) € S satisfies
/

p—p =pf —i+p—p <aitaln—i)=an.

Next, assuming b) proved up to k, we use that ¢ = (n,n — k, p’) € S has for some
i € [1: n—1] arepresentation ¢’ = (i,4,7)®¢, where ¢ = (n—i,n—i—k+1,p') € S.

By assumption, there is ¢ = (n —i,n —i — k +1,p) € S7 such that
P +a(n—i)— Bk < p,
and then ¢ := (i,i,p )®¢ = (n,n — k,p) € S7 satisfies
p—p =pf —itp—p >ai—B+an—i)—pk=an—Bk+1).
Now we use a) to obtain
b/ :n;’zzx{p: (n,r,p) €57} < rg%/x{p’+an :(n,r,p') €S} =b,+an

and, using b) and Remark 2.1,

3
bn—l—an—ﬁ( Z+2>

IN

rgax{p’—f—an—ﬁk:(mn—i—l—k,p') € S}
4

IN

) _ IV T
Irkli)x{p.(n,n+1 k.p)e ST} =by.

Hence the results. O
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So by this method we always obtain an improvement which increases linearly in n,
but we cannot hope for much more. The next theorem makes this more precise,

and also provides a construction principle for such an improving sequence J:

Theorem 3.1. Suppose we choose J = (Jn)nen as follows:

e Fizng € N and select J,, € Z with full column rank (and p? = rank? Jn)
for all n € [Ling), with p{ >k for at least one k € [1:ng).
o Let ko := min {n € [1:ng] : % > % for all ¢ € [1:n0]},

o Write any n > ng as n = akg + b, where ng — kg < b < ng. Abbreviating
qOA=APAD---®A

for q such @-operands A, define J,, = (a © Jg,) ® Jp € Z, which is a matrix
of full column rank by Lemma 2.8, and let py = rank™ J,, = a,o‘,zo + ,0;)7.

Then b — b, = an + O(y/n) for some a > 0 and thus
2

n n n? 3/2
74»57422)”2?*\/571 +n + O(vn) (12)

for some v > % depending on the first ng matrices J,,, n € [1:ing].

Proof. With o := %> 1 we have p/ < o'n for n € [1:ng] by the definition of
o, and py = apkj0 +pf < ad’ko + ’b = o/(aky +b) = a'n also for n > ng.
With 3 := max{a/n — p7 :n € [1:ng]} >’ —1>0 we have pJ > o/n — f3 for
n € [1:ngl, and py = ap;zo +py > aad'ky +a'b— B = a'n — B also for n > ng. So
the hypothesis of Lemma 3.1 is fulfilled with a := o/ — 1 and 3, and the results
follow. (]

3.2. New building blocks and better bounds. The following example shows
the construction of a particular sequence J = (J,)nen, and reports on the lower

bounds b7 obtained from this sequence.

Example 3.1. We let ng = 26. The construction of J,, for n € [1:mng] will be
divided into 8 steps, and J,, for n > ng will be constructed in a fourth step.

Step 1: We start with elementary building blocks J,, :=1,, for n € [1:5], and we
add four more building blocks J,, € Z satisfying rank™® J,, > n. These we get by

looking for copositive matrices having many zeroes, in particular we employ, using
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TABLE 1. Matrices J,, from Example 3.1. See text.

n Jn P;Z n Jn /)737 n Jn p'r{

9 Jo |26 14 Jia 80

k€ [1:5] I k

10 | Jo® Jq | 27 15 Jis 95
6 J 8 11 Ji1 32 26 Ji4 @ J1o 130
7 J7 14 12 Jio 50 k 4+ 15,

Je @ J1s p‘k,7 + 95

8 Js 18 13 Jis 65 || keN\{11}

the notation C(a) with a € R™ from [3],

S; = C([-153,127, —27, —27,127, —153,162] ) ,

So = C([~1056, 959, —484, 231, 231, —484, 959, —1056, 1089] ) ,
Si1 = C([32,18,4, —24, —31, —31,-24,4,18,32,32] 1), and

Si5 = C([a, a,b,a,c,b,a,a,b, c,a,b,a,a,d]T)7 where [a, b, ¢, d] = [—2609, 1803, 4009, 7318] .

Let the rows of J; € RMX7T (resp. Jo € R?2™9 J;; € R33*1 )15 € R369X15) pe the
zeroes of Sz, (resp. So, S11, S15). Those matrices all have full column rank and
satisfy rank® J; =14, rank?) Jg = 26, rank? Ji1 =32 and rank® Jis = 95.

Step 2: Now we delete some rows to close the gaps in column numbers, i.e.,
consider n € {6,8,12,13,14}. Generally speaking, if U € RF*™ collects in its rows
all the zeroes of S € R™™, we define for a subset N C [1:n] the complement
N =1:n)\N and put K := {{ € [L:k] : upy; = Oforalli € N}. Finally,
we abbreviate by ®n(U) := Ugxnr, so that the rows of ®n(U) are the zeroes of
the matrix Sy xn/- The motivation is that if U has full rank and large two-rank,
then in lucky cases the same will be true for ®n(U) for small sets N. Indeed,
Jo = ®p1y(Jr) € R3C, Jg := ®yp3(Jo) € R*2, Jpp := By 55y(J15) € ROOXIZ
Jiz i= P10 (d1s5) € R108X13 gnd Jiy = Pr13(J1s) € R192X14 have all full column
rank and satisfy rank® Jg =8, rank® Jg = 18, rank® Ji1s = 50, rank® Ji3 = 65
and rank'® J14 = 80.

Step 3: We further define Jig := Jo ® J1 € R?8*10_ satisfying rankJio = 10 and
rank® J10 = 27. Forn € [16:25] we define Jp, := Jn—15 ® J15, and, deviating from
the latter pattern, we finally let Jog 1= J12 @ J14, because rank® Jio+ rank'® Jiu =

130 > 127 = rank™ Ji; + rank® Ji5, and this completes the construction of J,
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TABLE 2. Several bounds for p,, where b is a lower bound for

rank® U,.; see text.

n|dn | bn | b7 Un sn || n dn bn b7 Un Sn

6191 9|9 | Js®@ |17 40 | 400 526 664 IE2@Jis 816

712 (12|14 Jr 24 || 45 | 506 681 871 TN 1031
8|16 | 16 | 18 Js 32 || 50 | 625 856 | 1043 s®IE? 1271
9|20 20|26 J 41 || 55 | 756 | 1051 | 1277 Jis@)E? 1536
10|25 | 25|28 | Js®Jr | 51| 60 | 900 | 1270 | 1553 181 1826
11|30 |30 | 35 | Jo®Jo | 62 || 65 | 1056 | 1510 | 1781 ®l8t 2141
12| 36 | 87 | 50 Ji2 74 || 70 | 1225 | 1771 | 2086 JEP 2481
13| 42 [ 44 | 65 | Jis 87 || 80 | 1600 | 2357 | 2726 NN 3236
14| 49 | 52 | 80 | Jia |101| 90 | 2025 | 3036 | 3505 180 4091
15| 56 | 61 | 95 Jis  |116|| 100 | 2500 | 3800 | 4290 185182 5046
16| 64 | 70 | 96 | Jis |132]| 120 | 3600 | 5601 | 6241 88 7256
17| 72 | 80 | 110 | Jo@J15 | 149 || 140 | 4900 | 7758 | 8478 1840188 9866
18| 81 | 91 [125| J3@J15 | 167 | 160 | 6400 | 10285 | 11076 Jg 12876
19| 90 [102|140 | J4®J15 | 186 || 180 | 8100 | 13176 | 14065 Jj@12 16286
20( 100|114 [ 155 | J5@J15 | 206 || 200 | 10000 | 16436 | 17366 BEA: NEAS 20096
21(110 (127|172 | Je®J15 | 227 || 250 | 15625 | 26203 | 27261 Jis®J22 @IS 31371
22121 (140|192 | J7@J15 |249|| 300 | 22500 | 38305 | 39736 Jgro 45146
23| 132|155 | 210 | Js@J15 | 272 || 350 | 30625 | 52754 | 54495 Jao@IHH 61421
24 (144 171|232 | Jo@J15 | 296 || 400 | 40000 | 69562 | 71591 J&3 91810 80196
25| 156 | 187 | 247 | J1o ®J15 | 321 || 450 | 50625 | 88741 | 91141 g 101471
26 169 | 204 | 273 | J13®J13 | 347 || 500 | 62500 |110291 | 112860 Jao @I 125246
27182 (222|300 | J13®J14 | 374|| 550 | 75625 |134221 | 137061 188810 151521
28| 196 | 241 | 328 | J14 ®J14 | 402 || 600 | 90000 |160534 |163571 1820 180296
29 (210|260 | 356 | J14 ®J15 | 431 || 650 | 105625 | 189249 | 192390 Jso®J5° 211571
30| 225|280 | 385 | J15®J15 | 461 || 700 |122500 | 220357 [ 223592 | I @I @IE> | 245346
31240 | 301 [ 400 | J15®J16 | 492 || 734 | 134689 | 242873 | 246353 | J32 @ J33 @ J30 @I | 269741
32256 (323|416 | J®2 |524 | 800 | 160000 | 289771 | 293751 Jas @87 320396
33 (272|345 | 443 | J5®J&> | 557 || 850 | 180625 | 328085 | 332428 NIAR-N) A 361671
34289 (368|472 | Js®J&? | 591 || 900 |202500 | 368803 | 373521 3§20 405446
35 (306 | 392 | 501 | Js ®J&2 | 626 || 1000 | 250000 | 457489 | 462760 1812 810 500496

and p = rank™ J,, for n € [1:26]. We remark that the matrices J;,i € [7:11]
have also been used in the paper [3] to provide the first counterexamples to the DJL

conjecture.
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Step 4: We compute ko := min {n € [1:26] : pZL > % for all £ € [1:26]} = 15.
Any n > 26 is now written as n = 15a + b, where 11 < b < 26, and accordingly we
define J, = a®J15®Jp € Z, and let pnj = rank® J, = 95a—|—p;)7. This completes the
construction of the full sequence J, a summary of which can be found in Table 1.
We note without proof that the sequence (p3 )nen satisfies pJ > pf + P;Z—i for any
i,m € N such that i < n, and so our construction can be seen as picking from the
semigroup with binary operation & generated by {J, : n € [1:26]} for each column
dimension one of the matrices of highest two-rank.

The values of b7 for some n € [1:1000], together with other bounds and matrices U,,
achieving rank™ U,, > b7 are given in Table 2. The data for all other n € [36:999)
are available from the authors upon request. See also Figure 1. The matrices Uy,
listed in Table 2 have been obtained as outlined in the beginning of this section,
and are therefore in general not unique. For instance, we could also have chosen
U1 = Ja®J7, because (2,2,2)(9,9,26) = (4,4,4)®(7,7,14) = (11,10, 35). Note
that b‘170 =28 and b11 =35 provide better lower bounds for p1g and p11 than 27 and
32, the ones given in [3]. As may be seen from the right half of Table 2, the structure
of mazimizers of (11) is more complicated than the structure of mazximizers of (7).
Indeed, there is no simple analogue of Lemma 2.4, since a mazimizing characteristic
triple from SY may need more than 2 different generators in any of its factoriza-
tions. In the range [1:1000] we found that at most 4 different generators always
suffice, and that 4 are necessary in 4 cases, the smallest of them being n = 734.
In order to get a grip on the asymptotic behavior of (b7 )nen we compute o :=
p”’ —1=13 and B:=max{(a+1)n—pJ :n e [1:26]} = 11(a+1) — pf; = 1.
Then (a+1)n— B < p < (a+ 1)n holds for n € N, and combining Theorem 2.2,
Lemma 3.1 and Theorem 3.1, we get

119 903 om

4. CONCLUSIONS

Summarizing our findings regarding the DJL conjecture: it is true for n = 5 [15];
it is false for n > 7 (see [3] for n < 11); and it is still unresolved for n = 6, despite

recent efforts to reduce the gap between the bounds for pg [14]; see also [11].
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FIGURE 1. Three lower bounds on p,, compared to the best known

upper bound s,

APPENDIX A. CONSTRUCTING A 12 X 12-MATRIX OF CP-RANK 37.

Here we explicitly construct a matrix M € CP;12 with cpr M = 37, as announced
Uo

U

in Example 2.1 Let the matrix U= | )” | € R64%12 he a rearrangement of the

1
2
Us

rows of | 3 (which are binary vectors with exactly one unit entry in each of the
three four-entry blocks), satisfying U; € R¥*12 where (ko, ..., k3) = (27,27,9,1),

and U;(e; + e5 + eg) = iny, for i € [0: 3]. Define the completely positive matrix

F91 0 0 0 10 24 24 24 19 24 24 24
0420 0246 6 6 24 6 6 6
000420216 6 6246 6 6
000 04221 6 6 6 24 6 6 6
1024242491 0 0 0 19 24 24 24
B 1246 6 6 0420 0246 6 6
M:=6U[Us +6U;Us+UfUs= | 50 6 6 6 0 042 0 24 6 6 6 |
246 6 6 0 0 0 4224 6 6 6
10 24 24 24 19 24 24 24 91 0 0 0
206 6 6 246 6 6 0 42 0 0
206 6 6 246 6 6 0 0 42 0
1246 6 6 246 6 6 0 0 0 42
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(observe M = I3 ® A + (E3 — I3) ® B where A and B are the upper-left and upper-
right corner 4 x 4 blocks) and let K,, = {(r,s) € [1:12]? : r < 5, M,.s = m} for
m € {6,19,24}. Clearly we have |[Kg| = 27 and |Kq4| = 18. Furthermore consider,
by analogy of the construction in Lemma 2.3, the copositive matrix

3E4 — Iy —E4 —E4
S= —E4 3Es— 1y —E4 = |3®(3E4—|4)—(E3—|3)®E4 =4l3®E4—112—E12
—E4 —E4 3E4—14

which has exactly the rows of %U as zeroes (indeed, Su = 112 — u for the rows

u' of U). Therefore (M,S) = 0. Further, form the (not copositive) 4 x 4 matrix

5 —6 —6 —6
1| -6 5 5 5 c . . .
C=5 6 5 5 & and S = S+E3®C. By computing all stationary points
-6 5 5 5
for the problem rélin u' Su, it is straightforwardly checked that also S is copositive.
u 12

We further note (M, S) = 0+3(A,C)+6(B,C) = 2 and u'Su = 22 for any row u '
of Up. Now consider any cp-factorization M = UTDiag( U = Z:Zzllaczulu—r with
X € Ri‘l and denote M3 := M — Zz 1 Tiuu; . As also Myg3 is completely positive,

we have (M123,S) > 0 and thus Zi:l z; < 2L < 6, so we have (Mi23),5 > 0 for all
Uy

(r,5) € Kg. Now, for any (r, s) € Kg, there is exactly one row u' of lU2‘| satisfying
Us

uyus > 0 (which must be a row of Uy, e.g. (e; +eg+ejg) ' for (6,10) € Kg). This

row u' moreover satisfies u,u, = 0 for every (p,0) € K¢\ {(r,s)}. As |Kq| = 27,

the number of rows in Uy, we conclude that 0 < z; < 6 must hold for all ¢ € [28 : 54],

with z; < 6 for some i € [28 : 54], if x; > 0 for some ¢ € [1 : 27]. Further, consider

any (r,s) € Kaq. First we note (ugsudy)rs = 0 because Kay N {1, 5,9}2 =

Moreover, by a similar reasoning also

27
E xiuiu;r =0.
i=1 rs

Further, there are exactly three rows u' of U; such that u,us > 0 (in case (r,s) =
(1,6), these are (e; +eg+eio)', (e +es+ej1) and (e; +eg+ej2)') so that we
arrive by above observations at
54
(Z xiuiuj> <3-6=18.
i=28 s
Next denote Mg3 := Myg3 — Zf og Till; u; then (Mg3).s > 24 — 18 = 6 > 0 for

any (r,s) € Kos. But for all (r,s) € Kos there is exactly one row u' of [8?]
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satisfying u,us > 0 (which then must be a row of Uy). This row u' also satisfies
upuy > 0 for exactly one other (p,0) € Koa \ {(7,5)}, e.g., u=e1 + e5 + ey for
{(1,10), (5,10)} C Ka4. We thus conclude that 2; > 6 must hold for all i € [55 : 63].
However, if now x; = 0 for all ¢ € [1 : 27], we derive z; = 6 for all i € [28 : 54] from
the considerations on g and hence (Mag),s = 24— 18 = 6 with equality in this case,
which in turn implies 2; = 6 for all ¢ € [55: 63]. But then 264 =19-3-6=1>0
must hold. Indeed, for any (r,s) € K19, there are exactly three rows u of Uy such
that u,us > 0 (in case (r,s) = (1,5), these are (e; +e5 +e10)", (e; +es +eyq)’
and (e; + e5 + ej2) '), and obviously, no row u' of [Hﬂ can satisfy u,us > 0.
Summarizing, we have x; > 0 for all ¢ € [28 : 63], and z; > 0 for at least one
i €[1:27] U {64}, which means cpr M > 37. From the definition of M we see that

cpr M < 37, so we finally conclude cpr M = 37.

REFERENCES

[1] Abraham Berman and Naomi Shaked-Monderer. Remarks on completely positive ma-
trices. Linear and Multilinear Algebra, 44:149-163, 1998.

[2] Abraham Berman and Naomi Shaked-Monderer. Completely positive matrices. World
Scientific Publishing Co. Inc., River Edge, NJ, 2003.

[3] Immanuel M. Bomze, Werner Schachinger and Reinhard Ullrich. From seven to eleven:
completely positive matrices with high cp-rank. Isaac Newton Institute Preprint Series
NI14007-POP, University of Cambridge UK, submitted, 2014.

[4] Immanuel M. Bomze. Copositive optimization — recent developments and applications.
European J. Oper. Res., 216:509-520, 2012.

[5] Immanuel M. Bomze, Werner Schachinger, and Gabriele Uchida. Think
co(mpletely )positive | — matrix properties, examples and a clustered bibliography on
copositive optimization. J. Global Optim., 52:423-445, 2012.

[6

Samuel Burer. Copositive programming. In Miguel F. Anjos and Jean Bernard
Lasserre, editors, Handbook of Semidefinite, Cone and Polynomial Optimization: The-
ory, Algorithms, Software and Applications, International Series in Operations Re-

search and Management Science, pages 201-218. Springer, New York, 2012.

=

John H. Drew and Charles R. Johnson. The no long odd cycle theorem for completely
positive matrices. In Random discrete structures, volume 76 of IMA Vol. Math. Appl.,
pages 103-115. 1996.



24 I. M. BOMZE, W. SCHACHINGER, AND R. ULLRICH

[8] John H. Drew, Charles R. Johnson, and Raphael Loewy. Completely positive matrices
associated with M-matrices. Linear Multilinear Algebra, 37(4):303-310, 1994.

[9] Mirjam Diir. Copositive programming — a survey. In Moritz Diehl, Francois Glineur,
Elias Jarlebring, and Wim Michiels, editors, Recent Advances in Optimization and its
Applications in Engineering, pages 3-20. Springer, Berlin Heidelberg New York, 2010.

[10] Paul R. Halmos. Linear algebra problem book, The Dolciani Mathematical Exposi-
tions, 16. Mathematical Association of America, Washington, DC, 1995.

[11] Roland Hildebrand. Minimal zeros of copositive matrices. Preprint,
http://arxiv.org/abs/1401.0134, 2014.

[12] Shuangzhe Liu. Matrix results on the Khatri-Rao and Tracy-Singh products. Linear
Algebra Appl., 289:267-277, 1999.

[13] Raphael Loewy and Bit-Shun Tam. CP rank of completely positive matrices of order 5.
Linear Algebra Appl., 363:161-176, 2003.

[14] Naomi Shaked-Monderer, Abraham Berman, Immanuel M. Bomze, Florian Jarre,
and Werner Schachinger. New results on the cp rank and related properties of
co(mpletely )positive matrices. Linear Multilinear Algebra, to appear. Also available
at: arxiv.org/abs/1305.0737, 2013.

[15] Naomi Shaked-Monderer, Immanuel M. Bomze, Florian Jarre, and Werner
Schachinger. On the cp-rank and minimal cp factorizations of a completely positive

matrix. STAM J. Matriz Anal. Appl., 34(2):355-368, 2013.



