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Abstract. Let pn denote the largest possible cp-rank of an n × n

completely positive matrix. This matrix parameter has its signif-

icance both in theory and applications, as it sheds light on the

geometry and structure of the solution set of hard optimization

problems in their completely positive formulation. Known bounds

for pn are sn =
(
n+1

2

)
− 4, the current best upper bound, and

the Drew-Johnson-Loewy (DJL) lower bound dn =
⌊
n2

4

⌋
. The fa-

mous DJL conjecture (1994) states that pn = dn. Here we show

pn = n2

2 +O
(
n3/2

)
= 2dn +O

(
n3/2

)
, and construct counterexam-

ples to the DJL conjecture for all n ≥ 12 (for orders seven through

eleven counterexamples were already given in [3]).

1. Introduction: motivation, notations

1.1. Motivation: The cp-cone and copositive optimization. In this article

we consider completely positive matrices M and their cp-rank. An n×n matrix M is

said to be completely positive if there exists a nonnegative (not necessarily square)

matrix V such that M = VV> (> denotes transposition). This form of factorization

is more restrictive than the general question of nonnegative matrix factorization

where M could be rectangular; in fact, complete positivity of M implies positive-

semidefiniteness and nonnegativity of all entries of M. Typically, a completely

positive matrix M = VV> may have many such factorizations, and the cp-rank of
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M, cpr M, is the minimum number of columns in such a nonnegative factor V (for

completeness, we define cpr M = 0 if M is a square zero matrix and cpr M = ∞

if M is not completely positive). The set CPn of all completely positive n × n

matrices forms a proper cone (i.e., it is pointed, convex, and solid in the sense that

it has nonempty interior). With respect to the Frobenius inner product 〈A,B〉 :=

trace(AB), this cone is dual to the cone COPn of symmetric copositive matrices

of order n. An n × n matrix S is said to be copositive if x>Sx ≥ 0 for every

nonnegative vector x ∈ Rn.

Copositive and completely positive matrices are central in the rapidly evolving field

of copositive optimization which links discrete and continuous optimization, and has

numerous real-world applications. For recent surveys and structured bibliographies,

we refer to [4, 5, 6, 9], and for a fundamental text book to [2].

A conic optimization problem of the form

inf{〈C,X〉 : 〈Ai,X〉 = bi, i ∈ {1, . . . ,m} , X ∈ CPn} (1)

is called completely positive optimization problem, but sometimes also copositive

optimization problem, because the corresponding dual problem is given as

sup

{
m∑
i=1

biyi : y ∈ Rm, S = C−
m∑
i=1

yiAi ∈ COPn

}
. (2)

Both problems consist in optimizing a linear form over a feasible set which can be

described as the intersection of an affine subspace with one of the cones COPn or

CPn. Hence at least one optimal solution (if this exists at all) must be contained in

the boundary of these cones. Moreover, if strong duality for (1) and (2) holds, then

there exists a primal-dual optimal pair (X∗,S∗) ∈ CPn × COPn with 〈S∗,X∗〉 = 0

or S∗ ⊥ X∗, which relation can be exploited to obtain information about X∗ if we

have some knowledge on S∗.

As remarked above, the conic primal-dual pair (1) and (2) serves to reformulate NP-

hard optimization problems. Since everything else is linear, it is quite obvious that

this approach shifts the whole complexity of the hard optimization problem into the

(boundaries of the) cones CPn and COPn. These boundaries are much more com-

plex than the boundaries of the symmetric, self-dual cones used in polynomial-time

conic optimization (such as Linear or Semidefinite Optimization, or optimization

over the Minkowski cone). For instance, while the boundary of the semidefinite
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cone consists of matrices which are rank-deficient, the boundary of the completely

positive cone CPn also contains nonsingular matrices like the identity matrix, or

matrices with all entries strictly positive like the all-ones matrix. So, neither linear

constraints on the entries nor rank restrictions are sufficient to characterize or elu-

cidate geometric properties of completely positive matrices. Therefore, the cp-rank

was early recognized as a useful matrix parameter to shed more light upon the

structure and the properties of completely positive matrices, and consequently has

received considerable attention by researchers over the past decades.

Determining the maximum possible cp-rank of n× n completely positive matrices,

pn := max {cpr M : M ∈ CPn} ,

is still an open problem for general n. It is known [2, Theorem 3.3] that pn = n if

n ≤ 4, whereas this equality does no longer hold for n ≥ 5. Let dn :=
⌊
n2

4

⌋
and

sn :=
(
n+1

2

)
− 4. For n ≥ 5, it is known that

dn ≤ pn ≤ sn , (3)

and that dn = pn in case n = 5 [15]. It is still unknown whether d6 = p6 although

the bracket (3) was reduced in the recent paper [14] where also the upper bound

pn ≤ sn was established for the first time.

The famous Drew-Johnson-Loewy (DJL) conjecture [8] is by now twenty years old.

It states that dn = pn is true for all n ≥ 5, and some evidence in support of the DJL

conjecture is found in [1, 7, 8, 13], see also [2, Section 3.3]. In a recent paper [3]

it was shown that the DJL conjecture does not hold for orders n ranging between

seven and eleven by constructing examples which establish pn > dn.

1.2. Notations, terminology and paper structure. Some notation and termi-

nology: we abbreviate [r : s] = {r, r + 1, . . . , s} for integers r ≤ s. Let ei ∈ Rn

be the ith column vector of the n × n identity matrix In and ηηηn =
∑n
i=1 ei. By

En = ηηηnηηη
>
n we denote the n × n matrix of all ones. The nonnegative orthant is

denoted by Rn+ which contains the standard simplex

∆n :=
{
x ∈ Rn+ : ηηη>nx = 1

}
.
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The matrix Diag(y) is a diagonal matrix containing the entries of y on the diagonal.

The Kronecker product is denoted by ⊗, and

A⊕ B =

 A O

O> B


means the direct sum of two square matrices. For a given x ∈ Rk+, we define the

zero-norm ‖x‖0 as the number of positive entries xi > 0. Given a square matrix

S ∈ COPn, we will use the phrase “zero(es) of S” as an abbreviation of “zero(es)

x ∈ ∆n of the quadratic form x>Sx”; this terminology differs slightly from that

in [11] but is more convenient for our purposes.

The paper is organized as follows: In Section 2 we look at copositive matrices S

with finitely many (but many) zeroes. Such matrices S lie on the boundary of

the copositive cone, and elementary conic duality therefore tells us that there are

nontrivial completely positive matrices M such that M ⊥ S. There is a strong con-

nection between the zeroes of S and the cp-rank of M, which is established through

Lemma 2.2. Lemma 2.3 deals with cp-ranks of Khatri-Rao-like products (defined

in Subsection 2.2) of matrices, which are necessary to make assertions about cp-

ranks of high-order matrices. Combination of these auxiliary results culminates in

Theorem 2.2 and in Corollary 2.1, which refutes the DJL conjecture for n ≥ 7 and

shows that the largest possible cp-rank pn lies asymptotically much closer to the

upper bound sn than to the lower bound dn.

Section 3 improves the lower bound for pn in the following way: in Section 2 only

identity matrices are used as building blocks to construct matrices of higher order.

This is sufficient to prove the assertions of Section 2, but better results can be

obtained by using, as building blocks, matrices with cp-ranks that exceed their

orders. Some of these building-block-matrices are new in the literature, some of

them were already used in [3]. To further illustrate the advantage of the approach

in this article, an explicit construction of a matrix of order twelve with high cp-rank

is presented in an appendix. Note that in contrast to [3], for general order n, we

need not construct the matrices explicitly but rather can invoke the existence result

in Lemma 2.2.
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2. Main results

2.1. Rank, two-rank and cp-rank. Our method of finding matrices of high cp-

rank builds upon two observations: (1) For certain matrices M ∈ CPn, only multi-

ples of vectors from a finite set {u1, . . . ,uk} may appear as columns of a factor V

in any factorization M = VV> =
∑k
i=1 yiuiu

>
i , where y = [y1, . . . , yk]> ∈ Rk+. This

property is shared by all matrices in a certain convex subcone of CPn determined

by the set {u1, . . . ,uk}. (2) This subcone contains matrices with cp-rank bounded

below by a number computable from the set {u1, . . . ,uk}; so the cp-rank will be

high if this number is large.

This argument is made precise in the following results, starting from the observa-

tion in a more general context, that a convex cone spanned by some finite set of

vectors of rank r always contains a vector which is not a positive linear combination

of less than r vectors from this finite set; a converse of Caratheodory’s theorem in

some sense.

Lemma 2.1. Let V be a real vector space, let {vi : i ∈ [1 : k]} ⊆ V be a set of

vectors of rank r, and define for y ∈ Rk+

Py :=

{
x ∈ Rk+ :

k∑
i=1

xivi =

k∑
i=1

yivi

}
.

Then there exists y ∈ Rk+ such that

min
x∈Py

‖x‖0 = r .

Proof. First we show that minx∈Py ‖x‖0 ≤ r for all y ∈ Rn+ (this is basically

Caratheodory’s theorem, we include the short argument for the readers’ conve-

nience). To this end, choose an x ∈ Py with m = ‖x‖0 minimal over Py. We

assume without loss of generality xi > 0 for all i ≤ m. If m > r would hold, then

there were µi ∈ R with
m∑
i=1

µivi = o with some µi > 0. Further without loss of

generality we assume (for some s ∈ [1 :m]) that µi ≤ 0 for i < s while µi > 0 and

xi

µi
≥ xm

µm
> 0 for all i ∈ [s :m]. Define zi := xi − xm

µm
µi ≥ 0 for all i ∈ [1 :m] and

zi := 0 for i > m, so that ‖z‖0 ≤ m − 1 (as also zm = 0). But straightforward

calculations show
∑
i zivi =

∑
i xivi, so z ∈ Py, in contradiction to the assump-

tions. Next we use the fact that a vector space over an infinite scalar field is never

the union of a finite number of proper subspaces, see [10, p.211]. Define the cone
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C :=
{∑m

i=1 yivi : y ∈ Rm+
}
⊆ V and observe that the linear subspace L = C − C

is r-dimensional. If we had min
x∈Py

‖x‖0 < r for all y ∈ Rm+ , then C (and thus also L)

would have to be a subset of

U :=
⋃

I⊆[1:m]
|I|≤r−1

{
m∑
i=1

xivi : x ∈ Rm, xi = 0 for all i ∈ [1 :m] \ I

}
,

which is impossible, since U is a union of finitely many proper subspaces of L (of

dimension at most r − 1). �

For a matrix A = [a1, . . . ,ak]> we let A〈2〉 := [a1 ⊗ a1, . . . ,ak ⊗ ak]>, and define

the two-rank of A as

rank(2) A := rankA〈2〉 .

For illustration, denote by Bi = eie
>
i ∈ Rn×n. Then I

〈2〉
n = [B1| · · · |Bn]. Note that

always rank(2) A ≥ rankA with equality if rankA = k, i.e., if A itself has full row

rank, then also A〈2〉 has (the same) full row rank. Furthermore we note for later

use the trivial relations rank(2) (αA) = rank(2) A if α > 0,

rank(2)

[
A

B

]
≥ rank(2) B ,

and a slightly less trivial one: rank(2) [A|B] ≥ rank(2) B.

Lemma 2.2. Let U = [u1, . . . ,uk]> ∈ Rk×n+ , where {u1, . . . ,uk} are all the zeroes

of some copositive matrix S ∈ COPn.

Then there exists a diagonal matrix D = Diag(y) with y ∈ Rk+ such that the com-

pletely positive matrix M = U>DU satisfies cpr M = rank(2) U.

Proof. Consider any M = U>Diag(y)U. We observe that 〈M,S〉 = 0, i.e., that

M ⊥ S holds. Therefore by [3, Lemma 2.1] we conclude that any cp-factorization

of M is of the form

M = U>Diag(x)U =

k∑
i=1

xiuiu
>
i

with some x ∈ Rk+. For any x corresponding to a minimal cp-factorization of M

we then have cpr M = ‖x‖0. Since the rank of the set {uiu>i : i ∈ [1 : k]} equals

rank(2) U, as is seen by identifying uiu
>
i with ui ⊗ ui = vec(uiu

>
i ), we can invoke

Lemma 2.1 to obtain the desired conclusion. �
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2.2. Direct sums and Khatri-Rao-like products. For matrices U ∈ Rk×n and

V ∈ R`×m we construct the following k` × (n + m)-matrix, denoted as U⊗⊕V =

[U⊗ ηηη`|ηηηk ⊗ V]; recall that ηηηd denotes the all ones vector in Rd. Note that both

U⊗V and U〈2〉⊗⊕V〈2〉 are, up to permutations of columns, submatrices of (U⊗⊕V)〈2〉,

and all these matrices have the same number k` of rows. Further note that using

the Khatri-Rao product ?, see. e.g. [12], we can write

U⊗⊕V = [U|ηηηk] ? [ηηη`|V] and (U〈2〉)> = [u1|u2| · · · |uk] ? [u1|u2| · · · |uk] .

Recall that a matrix A ∈ Rk×n+ is row-stochastic if Aηηηn = ηηηk holds.

Lemma 2.3. Let α > 0 and β > 0 and consider two row-stochastic matrices

U ∈ Rk×n and V ∈ R`×m. Then for the k`× (n+m)-matrix W = (αU)⊗⊕ (βV) and

the (k + `)× (n+m)-matrix W̃ = U⊕ V we have

(a) rankW = rankU + rankV − 1 and 1
α+βW is row-stochastic,

(b) rank(2) W ≥ rankU rankV + rank(2) U− rankU + rank(2) V − rankV,

(c) rank W̃ = rankU + rankV, rank(2) W̃ = rank(2) U + rank(2) V

and W̃ is row-stochastic.

(d) If the rows of U (resp. V) are all the zeroes of some SU ∈ COPn (resp. SV ∈

COPm), then there are copositive matrices
{
S, S̃
}
⊂ COPn+m such that the

rows of 1
α+βW are all the zeroes of S and the rows of W̃ are all the zeroes

of S̃.

Proof. It is clear that 1
α+βW is row-stochastic. Let rU := rankU and rV := rankV.

Since the rank of the first n (resp. last m) columns of W is rU (resp. rV), rankW

can be smaller than rU + rV only if some nonzero linear combination of the first n

columns of W equals some linear combination of the last m columns of W.

So assume that there are x ∈ Rn and y ∈ Rm, such that (U⊗ηηη`)x = (U⊗ηηη`)(x⊗1) =

Ux⊗ηηη` and (ηηηk⊗V)y = (ηηηk⊗V)(1⊗y) = ηηηk⊗Vy are both equal to w ∈ Rk` \{o}.

From w = Ux ⊗ ηηη` we deduce that wi = wj if d i`e = d j` e, and from w = ηηηk ⊗ Vy

we deduce wi = wj if i ≡ j mod `, and the only nonzero vectors satisfying both

conditions are of the form w = cηηηk` with c 6= 0. Therefore rankW = rU + rV − 1,

which concludes the proof of (a).

Next we denote ρU = rank(2) U and ρV = rank(2) V, and assume that the rows

of U and V are arranged in a way such that the matrices Ũ = U[1:rU]×[1:n], Ṽ =
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V[1:rV]×[1:m], Û = U[rU+1:ρU]×[1:n] and V̂ = V[rV+1:ρV]×[1:m] satisfy

rank Ũ = rU, rank Ṽ = rV, rank(2)

[
Ũ

Û

]
= ρU, rank(2)

[
Ṽ

V̂

]
= ρV.

Moreover let u1 = e>1 U and v1 = e>1 V be the first rows of U and V. Now consider

the following (rUrV + ρU − rU + ρV − rV)× (n+m)-submatrix of W:

W =

 Ũ⊗ ηηηrV ηηηrU ⊗ Ṽ

u1 ⊗ ηηηρV−rV V̂

Û ηηηρU−rU ⊗ v1

 =

 Ũ⊗⊕ Ṽ

u1⊗⊕ V̂

Û⊗⊕v1

 .
Noting that Ũ⊗ Ṽ is a submatrix of (Ũ⊗⊕ Ṽ)〈2〉, where the latter has rUrV rows, we

deduce rank (Ũ⊗⊕ Ṽ)〈2〉 = rUrV from

rUrV = rank Ũ rank Ṽ = rank (Ũ⊗ Ṽ) ≤ rank (Ũ⊗⊕ Ṽ)〈2〉 ≤ rUrV.

Next consider the submatrix

 Ũ〈2〉⊗⊕ Ṽ〈2〉

u
〈2〉
1 ⊗⊕ V̂〈2〉

Û〈2〉⊗⊕v
〈2〉
1

 of W〈2〉=

 (Ũ⊗⊕ Ṽ)〈2〉

(u1⊗⊕ V̂)〈2〉

(Û⊗⊕v1)〈2〉

. If for x ∈

RrUrV , y ∈ RρV−rV , z ∈ RρU−rU we have o = [x>,y>, z>]W〈2〉, then also

o = x>(Ũ〈2〉⊗⊕ Ṽ〈2〉) + y>(u
〈2〉
1 ⊗⊕ V̂〈2〉) + z>(Û〈2〉⊗⊕v

〈2〉
1 )

= x>(Ũ〈2〉⊗⊕ Ṽ〈2〉) + (y>ηηηρV−rVu
〈2〉
1 )⊗⊕(y>V̂〈2〉) + (z>Û〈2〉)⊗⊕(z>ηηηρU−rUv

〈2〉
1 )

must hold. Therefore y>V̂〈2〉 belongs to the row space of Ṽ〈2〉, and z>Û〈2〉 belongs to

the row space of Ũ〈2〉, implying y = o and z = o, because, by assumption, the rows

of both

[
Ũ〈2〉

Û〈2〉

]
and

[
Ṽ〈2〉

V̂〈2〉

]
are linearly independent. Then by linear independence

of the first rUrV rows of W〈2〉 also x = o must hold. Thus rank(2) W ≥ rank(2) W =

rUrV + ρU − rU + ρV − rV, which completes the proof of (b).

For the proof of (c) we use that for any matrices A,B we have rank (A ⊕ B) =

rankA+ rankB, and that the matrix (A⊕B)〈2〉 and its submatrix A〈2〉⊕B〈2〉 have

the same rank. Furthermore W̃ηηηn+m = ηηηk+` is easily checked.

Finally, for the proof of (d) we define matrices

S :=

[
SU + β

αEn −ηηηnηηη>m
−ηηηmηηη>n SV + α

βEm

]
, and S̃ :=

[
SU ηηηnηηη

>
m

ηηηmηηη
>
n SV

]
.

Take any z = [λx>, (1− λ)y>]> with (x,y) ∈ ∆n ×∆m and 0 ≤ λ ≤ 1. Then

z>Sz = λ2x>SU x + (1− λ)2y>SV y +
(α+ β)2

αβ

(
λ− α

α+ β

)2

≥ 0 ,
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with equality if and only if λ = α
α+β , and x> (resp. y>) is one of the rows of U

(resp. V), i.e. if and only if z> is one of the rows of 1
α+βW.

Furthermore, with z as above, we have

z>S̃z = λ2x>SU x + (1− λ)2y>SV y + 2λ(1− λ) ≥ 0 ,

with equality if and only if λ ∈ {0, 1}, and, depending on the value of λ, either x>

is one of the rows of U or y> is one of the rows of V, i.e. if and only if z> is one of

the rows of W̃. �

2.3. Zeroes and characteristic triples. We now define the set Z as follows:

denote by R all row-stochastic matrices and let

R0 := {U ∈ R : the rows of U are all the zeroes of some copositive matrix}

as well as Z := {αU : α > 0 , U ∈ R0}.

The matrices in Z are exactly those that are needed for applications of Lemma 2.2.

Moreover, with Lemma 2.3 we have a means of constructing new elements1 of

Z from known ones: {U,V} ⊂ Z ⇒ U⊗⊕V ∈ Z. For our purpose of showing the

existence of matrices of large cp-rank, only certain characteristics of a matrix U ∈ Z

are important: (a) the number of columns of U (say n); (b) the rankU (say r); and

(c) an integer lower bound ρ for rank(2) U (where we require ρ ≥ rankU); these

three integers we collect in a characteristic triple

c = (π1(c), π2(c), π3(c)) := (n, r, ρ) .

Some U ∈ Z may have more than one characteristic triple, namely if and only if

rankU < rank(2) U. By abuse of notation, we define a binary operation on any two

characteristic triples,

(n1, r1, ρ1)⊗⊕(n2, r2, ρ2) := (n1 + n2, r1 + r2 − 1, r1r2 + ρ1 − r1 + ρ2 − r2) ; (4)

note that 1 ≤ r1 + r2 − 1 ≤ r1r2 + ρ1 − r1 + ρ2 − r2 if both 1 ≤ r1 ≤ ρ1 and 1 ≤

r2 ≤ ρ2 holds. The operation ⊗⊕ obviously obeys the commutative and (only a little

1There is also another closure property which we won’t use: If P and D are a permutation

matrix and a positive diagonal matrix of suitable orders, then U ∈ Z ⇒ PUD ∈ Z.
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less obvious) the associative law.2 Clearly also the binary operation (n1, r1, ρ1) ⊕

(n2, r2, ρ2) := (n1 + n2, r1 + r2, ρ1 + ρ2) is associative and commutative. It follows

from Lemma 2.3 that if c, c′ are characteristic triples of U,V ∈ Z, then c⊗⊕c′ is a

characteristic triple of U⊗⊕V and c⊕ c′ is a characteristic triple of U⊕ V.

Our strategy is to fix a subset U ⊆ Z together with a set C of characteristic triples,

containing one characteristic triple for each U ∈ U , and construct the ⊗⊕ -semigroups

generated by U and C. From the latter, we fix the first component π1(c) = n, the

column number of some U ∈ U accordingly picked, and search a triple c ∈ C with

a large third component π3(c) ≤ rank(2) U. There are no limitations on the second

component π2(c) = rankU, and typically the chosen U will not have full column

rank.

We start considering semigroups generated by a single U ∈ Z, and therefore define

U⊗⊕1 = U and inductively U⊗⊕(n+1) = U⊗⊕U⊗⊕n for n ≥ 1. Similarly we define c⊗⊕n,

where c is a characteristic triple.

Theorem 2.1. Let U ∈ Z, and (n, r, ρ) be (one of) its characteristic triple(s).

Then for any i ∈ N there is a matrix M ∈ CPni satisfying

cpr M ≥ 1
2 (r − 1)2i(i− 1) + (ρ− 1)i+ 1 .

Proof. The result follows from

(n, r, ρ)⊗⊕ i = (ni, (r − 1)i+ 1, 1
2 (r − 1)2i(i− 1) + (ρ− 1)i+ 1) ,

which is easily proved by induction, using (4). �

For any n ≥ 1 we have In ∈ Z, since the rows of In are the only zeroes of the copos-

itive matrix En − In. The (unique) characteristic triple of In is (n, n, n). Putting

U = In in Theorem 2.1, we see rank(2) I⊗⊕ in ≥ ρi,n where

ρi,n := 1
2 (n− 1)2i(i− 1) + (n− 1)i+ 1 = (ni)2

2 − ni(i+ n
2 ) + 2ni+ i(i−3)

2 + 1 . (5)

Next, counterexamples to the DJL-conjecture for infinitely many n, and in partic-

ular for n = 12, are presented.

2The binary operation ⊗⊕ on the set Z is associative but not commutative, but there are

always permutation matrices P1,P2 such that B⊗⊕A = P1(A⊗⊕B)P2. Clearly, row and column

permutations of U do neither affect rankU nor rank(2) U.
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Example 2.1. (p12 ≥ 37 > 36 = d12) We have rank(2) I⊗⊕3
4 ≥ 37 by (5); more

precisely, we have (4, 4, 4)⊗⊕3 = (12, 10, 37) and thus there is a completely posi-

tive matrix of order 12, rank 10 and cp-rank at least 37, which may be written as

(I⊗⊕3
4 )>Diag(x)(I⊗⊕3

4 ) for some x ∈ R64
+ . An explicit construction will be given in

Appendix A.

Similarly we obtain p4i ≥ ρi,4 = 9
32 (4i)2 − 3

8 (4i) + 1 > b 1
4 (4i)2c = d4i for i ≥ 3 and

p3n ≥ ρ3,n = 1
3 (3n)2 − 3n+ 1 > b 1

4 (3n)2c = d3n for n ≥ 4.

We continue this argument and maximize, for fixed N := ni, the second term in

formula (5) for ρi,n, namely −ni(i+ n
2 ), with the result n∗ =

√
2N, i∗ =

√
N
2 , and

ρi∗,n∗ =
N2

2
−N
√

2N +
9

4
N − 3

4

√
2N + 1 (6)

which yields good lower bounds for the cp-rank if both i∗ and n∗ are integers, i.e.,

if n = 2m (and N = 2m2) for m ∈ N. We will re-encounter the three leading terms

of (6) in the estimate (10) of Corollary 2.1 below; for an improvement see (12) in

Section 3.

Still better lower bounds could probably be obtained by considering products of pos-

sibly different characteristic triples (just before we only considered powers of a single

characteristic triple). Let S be the semigroup generated by the set of characteristic

triples {(i, i, i) : i ∈ N}. So any c ∈ S is a finite ⊗⊕ -product of these (i, i, i), allowing

repetition of factors, and π1(c) − π2(c) + 1 is the number of factors, counted with

multiplicity. The factorization need however not be unique, as is seen from the ex-

ample (12, 10, 30) = (1, 1, 1)⊗⊕(5, 5, 5)⊗⊕(6, 6, 6) = (2, 2, 2)⊗⊕(3, 3, 3)⊗⊕(7, 7, 7). The

best lower bound for pn that we can get from S is then

bn := max {π3(c) : π1(c) = n, c ∈ S}. (7)

Lemma 2.4. The maximum bn is for some j ≥ 1 attained at a characteristic triple

c of the form c = (i1, i1, i1)⊗⊕ · · · ⊗⊕ (ij , ij , ij), where i1 ≤ · · · ≤ ij and ij − i1 ≤ 1.

Proof. There is nothing to show if j = 1. So assume j = 2. If we had i2−i1 > 1, then

c̃ := (i1+1, i1+1, i1+1)⊗⊕(i2−1, i2−1, i2−1) fulfils π1(c) = π1(c̃), π2(c) = π2(c̃), and

π3(c) = i1i2 < (i1+1)(i2−1) = π3(c̃) in contrast to the maximality of π3(c). If j > 2

then for some characteristic triple c′ we have c = (i1, i1, i1)⊗⊕(ij , ij , ij)⊗⊕c′, which, in

case of ij−i1 > 1 we compare with c̃ := (i1+1, i1+1, i1+1)⊗⊕(i2−1, i2−1, i2−1)⊗⊕c′,
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obtaining as above π1(c) = π1(c̃), π2(c) = π2(c̃), and π3(c) < π3(c̃) in contrast to

the maximality of π3(c). Here we used the following property: if c′, γ = (n, r, ρ) and

γ̃ = (n, r, ρ̃) are characteristic triples with ρ̃ > ρ, then π3(γ̃⊗⊕c′) > π3(γ⊗⊕c′). �

We remark that the characteristic triples that maximize (7) are in general not

uniquely determined by Lemma 2.4. For example, b37 = 442 is attained twice, at

(7, 7, 7)⊗⊕3⊗⊕(8, 8, 8)⊗⊕2 =(37, 33, 442) and at (9, 9, 9)⊗⊕3⊗⊕(10, 10, 10)=(37, 34, 442).

2.4. New bounds for the cp-rank. In the following theorem we provide precise

asymptotic estimates for bn as defined in (7).

Theorem 2.2. For n ≥ 5, we have

−
√

2n+
1

16
≤ bn −

n2

2
+ n
√

2n− 9

4
n ≤ −5

8

√
2n+

3

2
. (8)

Moreover bn ≤ cpr M for some M ∈ CPn of the form M = U>DU, where D is a

nonnegative diagonal matrix and U ∈ Z is a binary matrix, i.e., has all entries in

{0, 1}.

Proof. From Lemma 2.4 we know that bn = π3(c) for some characteristic triple

c ∈ S of the form

c = (n, n− k + 1, ρm,k,i) = (m,m,m)⊗⊕ i⊗⊕(m+ 1,m+ 1,m+ 1)⊗⊕k−i,

where m ≥ 1, k ≥ 1, 1 ≤ i ≤ k and n = mi + (m + 1)(k − i) = mk + k − i. Then

the binary matrix U := I⊗⊕ im ⊗⊕ I⊗⊕k−im+1 ∈ Z satisfies rank(2) U ≥ bn, and by Lemma 2.2

there is a nonnegative diagonal matrix D such that we have bn ≤ cpr U>DU, which

settles the second assertion of the theorem. We now turn to the asserted inequalities.

Putting r1 = (m−1)i+ 1, r2 = m(k− i) + 1, ρ1 = ρi,m and ρ2 = ρk−i,m+1 from (5)

yields

ρm,k,i = r1r2 + ρ1 − r1 + ρ2 − r2

= (i(m−1)+1)((k−i)m+1) + 1
2 (m−1)2i(i−1) + 1

2m
2(k−i)(k−i−1)

=
1

2
(n− k)2 +

3

2
(n− k)−mn+

1

2
m(m+ 1)k + 1 =: fn(m, k).

Denoting X̂n := {(m, k, i) ∈ [1,∞[3: i ≤ k,mk+ k− i = n} and Xn := X̂n ∩N3 we

note that

bn = max
(m,k,i)∈Xn

fn(m, k) ≤ max
(m,k,i)∈X̂n

fn(m, k) ≤ max
k∈[1,n]

(
max

m∈[ nk−1,nk ]
fn(m, k)

)
.
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For fixed k, fn(m, k) is a convex function of m, and

fn

(n
k
, k
)

= fn

(n
k
− 1, k

)
=
n2

2
− nk +

k2

2
+ 2n− 3k

2
− n2

2k
+ 1 := gn(k) ,

therefore bn ≤ maxk∈[1,n] gn(k). We collect some facts about gn, assuming n ≥ 5.

From g′n(k) = k− n− 3
2 + n2

2k2 , g′′n(k) = 1− n2

k3 and g′′′n (k) = 3n2

k4 we deduce that gn

is strictly concave on [1, n
2
3 ] and strictly convex on [n

2
3 , n], and that g′n is strictly

convex on [1, n] with g′n(1) = n2−1
2 − n > 0 and g′n(n) = −1 < 0 so that there is

only one zero of g′n in [1, n] which is the only maximizer of gn on [1, n], and this

maximizer must lie in the interval An := [zn + 1
4 −

1
zn
, zn + 1

4 ], where zn =
√

n
2 .

Indeed,

g′n

(
zn +

1

4

)
=

1

2

n2

z2
n

(
1 +

1

4zn

)−2

− n+ zn −
5

4
∈
[
−9

8
,−7

8

]
,

where for the latter inclusion we used (1 − y)2 ≤ (1 + y)−2 ≤ 1 − 2y + 3y2 for

y ∈ [0, 1]; we need y = 1
4zn

. So we have shown g′n(supAn) < 0. Furthermore, for

k ∈ An we have

g′′n(k) ≤ 1−n2

(
zn +

1

4

)−3

= 1−4zn

(
1 +

1

4zn

)−3

≤ 1−4zn

(
1− 3

4zn

)
= 4−4zn ,

and by the mean value theorem for some k ∈ An

g′n

(
zn +

1

4
− 1

zn

)
= g′n

(
zn +

1

4

)
− 1

zn
g′′n(k) ≥ −9

8
+ 4− 4

zn
≥ 1

3
.

We conclude g′n(supAn) < 0 < g′n(inf An) so that An must contain the minimizer

of gn. Now zn + 1
4 < n

2
3 for n ≥ 5, and by concavity of gn on [1, n

2
3 ] we get

max
k∈[1,n]

gn(k) = max
k∈An

gn(k) ≤ gn
(
zn +

1

4

)
+

9

8zn

=
n2

2
− n

(
zn +

1

4

)
+

(zn+ 1
4 )2

2
+ 2n−

3(zn+ 1
4 )

2
− n2

2(zn+ 1
4 )

+ 1 +
9

8zn

≤ n2

2
− 2nzn +

9

4
n− 5

4
zn +

3

2
,

where we used n2

2

(
zn + 1

4

)−1
= nzn

(
1 + 1

4zn

)−1

≥ nzn
(

1− 1
4zn

)
= nzn − n

4 , and

21
32 + 9

8zn
≤ 3

2 for n ≥ 5. This proves the rightmost inequality in (8).

Turning now to the left inequality in (8), we note that for any (m, k, i) ∈ Xn we

have bn ≥ fn(m, k). The preceding calculations suggest to choose

kn :=zn+αn ∈
[
zn−

1

4
, zn+

3

4

]
∩ N , mn :=

n

zn
+ βn ∈

]
n

kn
−1,

n

kn

]
∩ N
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and in := mnkn + kn − n ∈ [1 : kn]. Clearly αn ∈
[
− 1

4 ,
3
4

]
, and because we have∣∣∣ nkn − n

zn

∣∣∣ = 2|αn| zn
zn+αn

≤ 3
2 for (αn, zn) ∈

[
− 1

4 ,
3
4

]
× [1,∞[ , we get βn ∈

[
− 5

2 ,
3
2

]
.

We obtain

fn(mn, kn) =
n2

2
− nkn − nmn +

1

2
m2
nkn +

1

2
k2
n +

3n

2
+

1

2
mnkn −

3

2
kn + 1

=
n2

2
− 2nzn +

9

4
n+ γnzn + δn

≥ n2

2
− 2nzn +

9

4
n− 2zn +

1

16
,

where we used

γn =
1

2
(βn + 2αn)(βn + 2αn + 1) + αn(1− 2αn)− 3

2
≥ −1

8
− 3

8
− 3

2
= −2

and, discussing behaviour for (αn, βn) ∈
[
− 1

4 ,
3
4

]
×
[
− 5

2 ,
3
2

]
,

δn =
1

2
αnβn(βn + 1) +

1

2
α2
n −

3

2
αn + 1 ≥ 1

16
.

The proof is now complete. �

Remark 2.1. For later reference we add that max(m,k,i)∈Xn
fn(m, k) is attained

only in points (m∗, k∗, i∗) satisfying

k∗ ≤ zn +
3

2
.

To see this, let k > zn + 3
2 . Then, by straightforward but tedious calculations, we

get fn(m, k) ≤ gn(k) < gn(zn + 3
2 ) ≤ n2

2 − 2nzn + 9
4n − 2zn + 1

16 ≤ bn, therefore

fn(m, k) can not be maximal.

Corollary 2.1. The DJL-conjecture is false for n ≥ 7. Asymptotically, pn is much

closer to the upper bound sn =
(
n+1

2

)
− 4 than to the DJL lower bound dn =

⌊
n2

4

⌋
:

pn =
n2

2
+O

(
n3/2

)
and thus lim

n→∞
sn − pn
pn − dn

= 0 . (9)

Proof. For n ∈ [7 :11] counterexamples were given in [3], and for n = 12 we gave a

counterexample in Example 2.1. Furthermore, we derive from (8)

n2

2
+O

(
n3/2

)
= sn ≥ pn ≥ bn ≥

n2

2
− (n+ 1)

√
2n+

9

4
n+

1

16
> dn , (10)

where the latter inequality holds for n ≥ 13 (again checked straightforwardly),

showing the existence of counterexamples also for n ≥ 13. Now (9) follows imme-

diately. �



NEW LOWER BOUNDS AND ASYMPTOTICS FOR THE CP-RANK 15

3. Improvement of lower bounds

3.1. Semigroups of characteristic triples. Up to now, we have used in our

construction a very simple matrix sequence I := (In)n∈N. This was sufficient to

disprove the DJL conjecture for large n and establishing the asymptotics in (9).

Note that bn is a lower bound for the cp-rank of matrices from a subset of CPn,

namely for completely positive n×n-matrices that have a representation as U>DU,

where D is a nonnegative diagonal matrix and U ∈ Z is a binary matrix. No longer

insisting on matrices in that subset, we will be able to further increase our lower

bounds for pn. So our strategy is to replace I by another sequence J = (Jn)n∈N of

not necessarily binary matrices, where we assume that Jn is of order n, all Jn have

full column rank, and that we know the exact values of ρJn := rank(2) Jn, not just

lower bounds, with ρJn > n for at least one n. Then we let SJ be the semigroup

generated by the set of characteristic triples {(n, n, ρJn ) : n ∈ N}, and define

bJn := max
{
π3(c) : π1(c) = n, c ∈ SJ

}
. (11)

We recall that SI = S and bIn = bn from (7) in this notation, and of course ρIn = n.

Further, for all such J , from considering π2(c⊗⊕c′), we deduce that any c ∈ SJ is

⊗⊕ -irreducible if and only if π1(c) = π2(c). In other words, (n, n, ρ) ∈ SJ if and only

if ρ = ρJn . Clearly we may again infer that there is M = U>DU ∈ CPn satisfying

cpr M ≥ bJn , where D is a nonnegative diagonal matrix and U is an element of the

subsemigroup of (Z, ⊗⊕) generated by J . Such U can be found as follows: take some

maximizing characteristic triple c ∈ SJ satisfying π1(c) = n and π3(c) = bJn (there

may be more than one maximizing characteristic triple); use some factorization of

c as a product of generators (again there may be more than one such factorization),

say c = c1⊗⊕ · · · ⊗⊕ck, for some k ∈ N; and define U := Jπ1(c1)⊗⊕ · · · ⊗⊕Jπ1(ck).

The next result is about the increase bJn −bn of the lower bound that we may expect

in the case that we have certain bounds for ρJn .

Lemma 3.1. Assume that for some α, β > 0 we have (α+1)n−β ≤ ρJn ≤ (α+1)n

for n ∈ N. Then bJn satisfies

αn− β
(√

n

2
+

3

2

)
≤ bJn − bn ≤ αn,

with bn as defined in (7).
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Proof. We are going to show by induction on k that

a) for each c = (n, n+ 1− k, ρ) ∈ SJ there is c′ = (n, n+ 1− k, ρ′) ∈ S satisfying

ρ ≤ ρ′ + αn,

b) for each c′ = (n, n+ 1− k, ρ′) ∈ S there is c = (n, n+ 1− k, ρ) ∈ SJ satisfying

ρ′ + αn− βk ≤ ρ.

Both assertions are true for k = 1, with ρ = ρJn and ρ′ = n. Next we assume a)

proved up to k, and we use that c = (n, n− k, ρ) ∈ SJ has for some i ∈ [1 : n− 1]

a representation c = (i, i, ρJi )⊗⊕ c̄, where c̄ = (n − i, n − i − k + 1, ρ̄) ∈ SJ . By

assumption, there is c̄′ = (n− i, n− i− k + 1, ρ̄′) ∈ S such that

ρ̄ ≤ ρ̄′ + α(n− i),

and then c′ := (i, i, i)⊗⊕ c̄′ = (n, n− k, ρ′) ∈ S satisfies

ρ− ρ′ = ρJi − i+ ρ̄− ρ̄′ ≤ αi+ α(n− i) = αn.

Next, assuming b) proved up to k, we use that c′ = (n, n− k, ρ′) ∈ S has for some

i ∈ [1 : n−1] a representation c′ = (i, i, i)⊗⊕ c̄′, where c̄′ = (n−i, n−i−k+1, ρ̄′) ∈ S.

By assumption, there is c̄ = (n− i, n− i− k + 1, ρ̄) ∈ SJ such that

ρ̄′ + α(n− i)− βk ≤ ρ̄,

and then c′ := (i, i, ρJi )⊗⊕ c̄ = (n, n− k, ρ) ∈ SJ satisfies

ρ− ρ′ = ρJi − i+ ρ̄− ρ̄′ ≥ αi− β + α(n− i)− βk = αn− β(k + 1).

Now we use a) to obtain

bJn = max
r,ρ

{
ρ : (n, r, ρ) ∈ SJ

}
≤ max

r,ρ′
{ρ′ + αn : (n, r, ρ′) ∈ S} = bn + αn

and, using b) and Remark 2.1,

bn + αn− β
(√

n

2
+

3

2

)
≤ max

k,ρ′
{ρ′ + αn− βk : (n, n+ 1− k, ρ′) ∈ S}

≤ max
k,ρ

{
ρ : (n, n+ 1− k, ρ) ∈ SJ

}
= bJn .

Hence the results. �
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So by this method we always obtain an improvement which increases linearly in n,

but we cannot hope for much more. The next theorem makes this more precise,

and also provides a construction principle for such an improving sequence J :

Theorem 3.1. Suppose we choose J = (Jn)n∈N as follows:

• Fix n0 ∈ N and select Jn ∈ Z with full column rank (and ρJn = rank(2) Jn)

for all n ∈ [1 :n0], with ρJk > k for at least one k ∈ [1 :n0].

• Let k0 := min
{
n ∈ [1 :n0] :

ρJn
n ≥

ρJ`
` for all ` ∈ [1 :n0]

}
.

• Write any n > n0 as n = ak0 + b, where n0 − k0 < b ≤ n0. Abbreviating

q � A := A⊕ A⊕ · · · ⊕ A

for q such ⊕-operands A, define Jn = (a� Jk0)⊕ Jb ∈ Z, which is a matrix

of full column rank by Lemma 2.3, and let ρJn = rank(2) Jn = aρJk0 + ρJb .

Then bJn − bn = αn+O(
√
n) for some α > 0 and thus

n2

2
+
n

2
− 4 ≥ pn ≥

n2

2
−
√

2n3/2 + γn+O(
√
n) (12)

for some γ > 9
4 depending on the first n0 matrices Jn, n ∈ [1 :n0].

Proof. With α′ :=
ρJk0

k0
> 1 we have ρJn ≤ α′n for n ∈ [1 : n0] by the definition of

α′, and ρJn = aρJk0 + ρJb ≤ aα′k0 + α′b = α′(ak0 + b) = α′n also for n > n0.

With β := max
{
α′n − ρJn : n ∈ [1 : n0]

}
≥ α′ − 1 > 0 we have ρJn ≥ α′n − β for

n ∈ [1 :n0], and ρJn = aρJk0 + ρJb ≥ aα′k0 + α′b − β = α′n − β also for n > n0. So

the hypothesis of Lemma 3.1 is fulfilled with α := α′ − 1 and β, and the results

follow. �

3.2. New building blocks and better bounds. The following example shows

the construction of a particular sequence J = (Jn)n∈N, and reports on the lower

bounds bJn obtained from this sequence.

Example 3.1. We let n0 = 26. The construction of Jn for n ∈ [1 : n0] will be

divided into 3 steps, and Jn for n > n0 will be constructed in a fourth step.

Step 1: We start with elementary building blocks Jn := In for n ∈ [1 : 5], and we

add four more building blocks Jn ∈ Z satisfying rank(2) Jn > n. These we get by

looking for copositive matrices having many zeroes, in particular we employ, using
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Table 1. Matrices Jn from Example 3.1. See text.

n Jn ρJn n Jn ρJn n Jn ρJn

k ∈ [1 :5] Ik k
9 J9 26 14 J14 80

10 J9 ⊕ J1 27 15 J15 95

6 J6 8 11 J11 32 26 J14 ⊕ J12 130

7 J7 14 12 J12 50 k + 15,

k∈N\{11}
Jk ⊕ J15 ρJk + 95

8 J8 18 13 J13 65

the notation C(a) with a ∈ Rn from [3],

S7 = C([−153, 127,−27,−27, 127,−153, 162]>) ,

S9 = C([−1056, 959,−484, 231, 231,−484, 959,−1056, 1089]>) ,

S11 = C([32, 18, 4,−24,−31,−31,−24, 4, 18, 32, 32]>) , and

S15 = C([a, a, b, a, c, b, a, a, b, c, a, b, a, a, d]>) , where [a, b, c, d] = [−2609, 1803, 4009, 7318] .

Let the rows of J7 ∈ R14×7 (resp. J9 ∈ R27×9, J11 ∈ R33×11, J15 ∈ R360×15) be the

zeroes of S7, (resp. S9, S11, S15). Those matrices all have full column rank and

satisfy rank(2) J7 = 14, rank(2) J9 = 26, rank(2) J11 = 32 and rank(2) J15 = 95.

Step 2: Now we delete some rows to close the gaps in column numbers, i.e.,

consider n ∈ {6, 8, 12, 13, 14}. Generally speaking, if U ∈ Rk×n collects in its rows

all the zeroes of S ∈ Rn×n, we define for a subset N ⊆ [1 : n] the complement

N ′ = [1 : n] \ N and put K := {` ∈ [1 : k] : u`,i = 0 for all i ∈ N}. Finally,

we abbreviate by ΦN (U) := UK×N ′ , so that the rows of ΦN (U) are the zeroes of

the matrix SN ′×N ′ . The motivation is that if U has full rank and large two-rank,

then in lucky cases the same will be true for ΦN (U) for small sets N . Indeed,

J6 := Φ{1}(J7) ∈ R8×6, J8 := Φ{1}(J9) ∈ R18×8, J12 := Φ{1,2,3}(J15) ∈ R60×12,

J13 := Φ{1,2}(J15) ∈ R108×13 and J14 := Φ{1}(J15) ∈ R192×14 have all full column

rank and satisfy rank(2) J6 = 8, rank(2) J8 = 18, rank(2) J12 = 50, rank(2) J13 = 65

and rank(2) J14 = 80.

Step 3: We further define J10 := J9 ⊕ J1 ∈ R28×10, satisfying rank J10 = 10 and

rank(2) J10 = 27. For n ∈ [16 :25] we define Jn := Jn−15 ⊕ J15, and, deviating from

the latter pattern, we finally let J26 := J12 ⊕ J14, because rank(2) J12 + rank(2) J14 =

130 > 127 = rank(2) J11 + rank(2) J15, and this completes the construction of Jn
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Table 2. Several bounds for pn, where bJn is a lower bound for

rank(2) Un; see text.

n dn bn bJn Un sn n dn bn bJn Un sn

6 9 9 9 J3⊗⊕J3 17 40 400 526 664 J⊗⊕2
13 ⊗⊕J14 816

7 12 12 14 J7 24 45 506 681 871 J⊗⊕3
15 1031

8 16 16 18 J8 32 50 625 856 1043 J5⊗⊕J⊗⊕3
15 1271

9 20 20 26 J9 41 55 756 1051 1277 J13⊗⊕J⊗⊕3
14 1536

10 25 25 28 J3⊗⊕J7 51 60 900 1270 1553 J⊗⊕4
15 1826

11 30 30 35 J2⊗⊕J9 62 65 1056 1510 1781 J5⊗⊕J⊗⊕4
15 2141

12 36 37 50 J12 74 70 1225 1771 2086 J⊗⊕5
14 2481

13 42 44 65 J13 87 80 1600 2357 2726 J⊗⊕5
16 3236

14 49 52 80 J14 101 90 2025 3036 3505 J⊗⊕6
15 4091

15 56 61 95 J15 116 100 2500 3800 4290 J⊗⊕5
14 ⊗⊕J⊗⊕2

15 5046

16 64 70 96 J16 132 120 3600 5601 6241 J⊗⊕8
15 7256

17 72 80 110 J2⊗⊕J15 149 140 4900 7758 8478 J⊗⊕4
15 ⊗⊕J⊗⊕5

16 9866

18 81 91 125 J3⊗⊕J15 167 160 6400 10285 11076 J⊗⊕10
16 12876

19 90 102 140 J4⊗⊕J15 186 180 8100 13176 14065 J⊗⊕12
15 16286

20 100 114 155 J5⊗⊕J15 206 200 10000 16436 17366 J⊗⊕8
15 ⊗⊕J⊗⊕5

16 20096

21 110 127 172 J6⊗⊕J15 227 250 15625 26203 27261 J18⊗⊕J22⊗⊕J⊗⊕7
30 31371

22 121 140 192 J7⊗⊕J15 249 300 22500 38305 39736 J⊗⊕10
30 45146

23 132 155 210 J8⊗⊕J15 272 350 30625 52754 54495 J20⊗⊕J⊗⊕11
30 61421

24 144 171 232 J9⊗⊕J15 296 400 40000 69562 71591 J⊗⊕3
30 ⊗⊕J⊗⊕10

31 80196

25 156 187 247 J10⊗⊕J15 321 450 50625 88741 91141 J⊗⊕15
30 101471

26 169 204 273 J13⊗⊕J13 347 500 62500 110291 112860 J20⊗⊕J⊗⊕16
30 125246

27 182 222 300 J13⊗⊕J14 374 550 75625 134221 137061 J⊗⊕8
30 ⊗⊕J⊗⊕10

31 151521

28 196 241 328 J14⊗⊕J14 402 600 90000 160534 163571 J⊗⊕20
30 180296

29 210 260 356 J14⊗⊕J15 431 650 105625 189249 192390 J30⊗⊕J⊗⊕20
31 211571

30 225 280 385 J15⊗⊕J15 461 700 122500 220357 223592 J⊗⊕17
32 ⊗⊕J⊗⊕2

33 ⊗⊕J⊗⊕2
45 245346

31 240 301 400 J15⊗⊕J16 492 734 134689 242873 246353 J32⊗⊕J33⊗⊕J39⊗⊕J⊗⊕14
45 269741

32 256 323 416 J⊗⊕2
16 524 800 160000 289771 293751 J35⊗⊕J⊗⊕17

45 320396

33 272 345 443 J3⊗⊕J⊗⊕2
15 557 850 180625 328085 332428 J⊗⊕5

44 ⊗⊕J⊗⊕14
45 361671

34 289 368 472 J4⊗⊕J⊗⊕2
15 591 900 202500 368803 373521 J⊗⊕20

45 405446

35 306 392 501 J5⊗⊕J⊗⊕2
15 626 1000 250000 457489 462760 J⊗⊕12

45 ⊗⊕J⊗⊕10
46 500496

and ρJn := rank(2) Jn for n ∈ [1 : 26]. We remark that the matrices Ji, i ∈ [7 : 11]

have also been used in the paper [3] to provide the first counterexamples to the DJL

conjecture.
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Step 4: We compute k0 := min
{
n ∈ [1 :26] :

ρJn
n ≥

ρJ`
` for all ` ∈ [1 :26]

}
= 15.

Any n > 26 is now written as n = 15a+ b, where 11 < b ≤ 26, and accordingly we

define Jn = a�J15⊕Jb ∈ Z, and let ρJn = rank(2) Jn = 95a+ρJb . This completes the

construction of the full sequence J , a summary of which can be found in Table 1.

We note without proof that the sequence (ρJn )n∈N satisfies ρJn ≥ ρJi + ρJn−i for any

i, n ∈ N such that i < n, and so our construction can be seen as picking from the

semigroup with binary operation ⊕ generated by {Jn : n ∈ [1 : 26]} for each column

dimension one of the matrices of highest two-rank.

The values of bJn for some n ∈ [1 :1000], together with other bounds and matrices Un

achieving rank(2) Un ≥ bJn are given in Table 2. The data for all other n ∈ [36 :999]

are available from the authors upon request. See also Figure 1. The matrices Un

listed in Table 2 have been obtained as outlined in the beginning of this section,

and are therefore in general not unique. For instance, we could also have chosen

U11 = J4⊗⊕J7, because (2, 2, 2)⊗⊕ (9, 9, 26) = (4, 4, 4)⊗⊕ (7, 7, 14) = (11, 10, 35). Note

that bJ10 = 28 and bJ11 = 35 provide better lower bounds for p10 and p11 than 27 and

32, the ones given in [3]. As may be seen from the right half of Table 2, the structure

of maximizers of (11) is more complicated than the structure of maximizers of (7).

Indeed, there is no simple analogue of Lemma 2.4, since a maximizing characteristic

triple from SJ may need more than 2 different generators in any of its factoriza-

tions. In the range [1 : 1000] we found that at most 4 different generators always

suffice, and that 4 are necessary in 4 cases, the smallest of them being n = 734.

In order to get a grip on the asymptotic behavior of (bJn )n∈N we compute α :=

ρJ15
15 − 1 = 16

3 and β := max
{

(α+ 1)n− ρJn : n ∈ [1 :26]
}

= 11(α+ 1)− ρJ11 = 113
3 .

Then (α+ 1)n− β ≤ ρJn ≤ (α+ 1)n holds for n ∈ N, and combining Theorem 2.2,

Lemma 3.1 and Theorem 3.1, we get

−119

6

√
2n− 903

16
≤ bJn −

n2

2
+ n
√

2n− 91

12
n ≤ −5

8

√
2n+

3

2
.

4. Conclusions

Summarizing our findings regarding the DJL conjecture: it is true for n = 5 [15];

it is false for n ≥ 7 (see [3] for n ≤ 11); and it is still unresolved for n = 6, despite

recent efforts to reduce the gap between the bounds for p6 [14]; see also [11].
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Appendix A. Constructing a 12× 12-matrix of cp-rank 37.

Here we explicitly construct a matrix M ∈ CP12 with cpr M = 37, as announced

in Example 2.1. Let the matrix U =

 U0

U1

U2

U3

 ∈ R64×12 be a rearrangement of the

rows of I⊗⊕3
4 (which are binary vectors with exactly one unit entry in each of the

three four-entry blocks), satisfying Ui ∈ Rki×12, where (k0, . . . , k3) = (27, 27, 9, 1),

and Ui(e1 + e5 + e9) = iηηηki for i ∈ [0 : 3]. Define the completely positive matrix

M := 6U>1 U1 + 6U>2 U2 + U>3 U3 =



91 0 0 0 19 24 24 24 19 24 24 24
0 42 0 0 24 6 6 6 24 6 6 6
0 0 42 0 24 6 6 6 24 6 6 6
0 0 0 42 24 6 6 6 24 6 6 6
19 24 24 24 91 0 0 0 19 24 24 24
24 6 6 6 0 42 0 0 24 6 6 6
24 6 6 6 0 0 42 0 24 6 6 6
24 6 6 6 0 0 0 42 24 6 6 6
19 24 24 24 19 24 24 24 91 0 0 0
24 6 6 6 24 6 6 6 0 42 0 0
24 6 6 6 24 6 6 6 0 0 42 0
24 6 6 6 24 6 6 6 0 0 0 42


,
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(observe M = I3 ⊗ A + (E3 − I3) ⊗ B where A and B are the upper-left and upper-

right corner 4 × 4 blocks) and let Km = {(r, s) ∈ [1 : 12]2 : r < s,Mrs = m} for

m ∈ {6, 19, 24}. Clearly we have |K6| = 27 and |K24| = 18. Furthermore consider,

by analogy of the construction in Lemma 2.3, the copositive matrix

S =

[
3E4 − I4 −E4 −E4

−E4 3E4 − I4 −E4

−E4 −E4 3E4 − I4

]
= I3⊗(3E4−I4)−(E3−I3)⊗E4 = 4I3⊗E4−I12−E12

which has exactly the rows of 1
3U as zeroes (indeed, Su = ηηη12 − u for the rows

u> of U). Therefore 〈M,S〉 = 0. Further, form the (not copositive) 4 × 4 matrix

C = 1
22

 5 −6 −6 −6
−6 5 5 5
−6 5 5 5
−6 5 5 5

 and S̄ = S+E3⊗C. By computing all stationary points

for the problem min
u∈∆12

u>S̄u, it is straightforwardly checked that also S̄ is copositive.

We further note 〈M, S̄〉 = 0+3〈A,C〉+6〈B,C〉 = 261
22 and u>S̄u = 45

22 for any row u>

of U0. Now consider any cp-factorization M = U>Diag(x)U =
∑64
i=1 xiuiu

>
i with

x ∈ R64
+ and denote M123 := M−

∑27
i=1 xiuiu

>
i . As also M123 is completely positive,

we have 〈M123, S̄〉 ≥ 0 and thus
∑27
i=1 xi ≤

261
45 < 6, so we have (M123)rs > 0 for all

(r, s) ∈ K6. Now, for any (r, s) ∈ K6, there is exactly one row u> of

[
U1

U2

U3

]
satisfying

urus > 0 (which must be a row of U1, e.g. (e1 + e6 + e10)> for (6, 10) ∈ K6). This

row u> moreover satisfies uρuσ = 0 for every (ρ, σ) ∈ K6 \ {(r, s)}. As |K6| = 27,

the number of rows in U1, we conclude that 0 < xi ≤ 6 must hold for all i ∈ [28 : 54],

with xi < 6 for some i ∈ [28 : 54], if xi > 0 for some i ∈ [1 : 27]. Further, consider

any (r, s) ∈ K24. First we note (u64u
>
64)rs = 0 because K24 ∩ {1, 5, 9}2 = ∅.

Moreover, by a similar reasoning also(
27∑
i=1

xiuiu
>
i

)
rs

= 0 .

Further, there are exactly three rows u> of U1 such that urus > 0 (in case (r, s) =

(1, 6), these are (e1 + e6 + e10)>, (e1 + e6 + e11)> and (e1 + e6 + e12)>) so that we

arrive by above observations at(
54∑
i=28

xiuiu
>
i

)
rs

≤ 3 · 6 = 18 .

Next denote M23 := M123 −
∑54
i=28 xiuiu

>
i ; then (M23)rs ≥ 24 − 18 = 6 > 0 for

any (r, s) ∈ K24. But for all (r, s) ∈ K24 there is exactly one row u> of

[
U2

U3

]
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satisfying urus > 0 (which then must be a row of U2). This row u> also satisfies

uρuσ > 0 for exactly one other (ρ, σ) ∈ K24 \ {(r, s)}, e.g., u = e1 + e5 + e10 for

{(1, 10), (5, 10)} ⊂ K24. We thus conclude that xi ≥ 6 must hold for all i ∈ [55 : 63].

However, if now xi = 0 for all i ∈ [1 : 27], we derive xi = 6 for all i ∈ [28 : 54] from

the considerations on K6 and hence (M23)rs = 24−18 = 6 with equality in this case,

which in turn implies xi = 6 for all i ∈ [55 : 63]. But then x64 = 19− 3 · 6 = 1 > 0

must hold. Indeed, for any (r, s) ∈ K19, there are exactly three rows u of U2 such

that urus > 0 (in case (r, s) = (1, 5), these are (e1 + e5 + e10)>, (e1 + e5 + e11)>

and (e1 + e5 + e12)>), and obviously, no row u> of

[
U0

U1

]
can satisfy urus > 0.

Summarizing, we have xi > 0 for all i ∈ [28 : 63], and xi > 0 for at least one

i ∈ [1 : 27] ∪ {64}, which means cpr M ≥ 37. From the definition of M we see that

cpr M ≤ 37, so we finally conclude cpr M = 37.
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