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Abstract. In this paper, we study the following discrete boundary value problem{
−∆(∆u(k − 1)) = λa(k)u(k)p + f(u(k)) for all k ∈ [1, T ],
u(0) = u(T + 1) = 0,

where f : [0,+∞) → R is a continuous function oscillating near the origin or at infinity.
By using direct variational methods, we prove that, when f oscillates near the origin, the
problem admits a sequence of non-negative, distinct solutions which converges to 0 if p > 1
and at least a finite number of solutions if 0 < p < 1. While, when f oscillates at infinity,
the converse holds true, that is, there is a sequence of non-negative, distinct solutions
which converges to +∞ if 0 < p 6 1 and at least a finite number of solutions if p > 1.

Dedicated with esteem to Professor Enzo L. Mitidieri on his 60th anniversary

1. Introduction and preliminaries results

The study of discrete boundary value problems has captured special attention in the last
decade. In this context we point out the results obtained in the papers of R. Agarwal,
K. Perera and D. O’Regan [1], A. Cabada, A. Iannizzotto and S. Tersian [2], P. Candito,
G. Molica Bisci [3], M. Mihăilescu, V. Rădulescu, S. Tersian [4], A. Iannizzotto and V.
Rădulescu [5]. In all these papers, variational methods are applied to boundary value
problems on “bounded” discrete intervals (that is, sets of the type {0, . . . , n}). Most results
combine minimization and versions of the minimax principle, which usually do not require
the Palais-Smale condition as the energy functional is defined on a finite-dimensional Banach
space.

The studies regarding such type of problems can be placed at the interface of certain
mathematical fields such as nonlinear partial differential equations and numerical analysis.

In many cases a problem in a continuous framework can be handled by using a suitable
method from discrete mathematics and conversely (see L. Lovász [6]). The modeling/ sim-
ulation of certain nonlinear problems from economics, biological, neural networks, optimal
control and others enforced in a natural manner the rapid development of the theory of
difference equations. For instance, we may consult the monographs of W.G. Kelley and
A.C. Peterson [7], V. Lakshmikantham and D. Trigiante [8].

This paper deals with the following problem{
−∆(∆u(k − 1)) = λa(k)u(k)p + f(u(k)) for all k ∈ [1, T ],
u(0) = u(T + 1) = 0,

(Pλ)

where T > 2 is an integer, [1, T ] is the discrete interval {1, . . . , T}, a ∈ l∞, f : [0,+∞)→ R
is a continuous nonlinearity, while p > 0 and λ are two real numbers. Moreover, the forward
difference operator is defined as

∆u(k − 1) = u(k)− u(k − 1) for all k ∈ [1, T ].

Key words and phrases. Difference equations, Discrete Laplacian, Oscillatory nonlinearities, Variational
methods.

2010 AMS Subject Classification: 39A14; 47J30.

1
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We would like to emphasize that problem (Pλ) is the discrete variant of the Laplacian
equation given in [9], that is, −∆u = λa(x)up + f(u) in Ω,

u > 0, u 6= 0 in Ω,
u = 0 on ∂Ω,

(1)

where Ω ⊂ RN (N > 3) is a smooth bounded domain with boundary ∂Ω, a ∈ L∞(Ω),
f : [0,∞) → R is a continuous function, p > 0 and λ ∈ R are some parameters. So, in [9]
the authors showed that the number of solutions of the problem (1) is influenced by the
competition between the power up and the oscillatory term f , namely, when there is an
oscillatory term near the origin the equation (1) admits infinitely many distinct solutions
if the power is convex, while it has a finite number of distinct solutions when the power is
concave. In the case of oscillations at infinity the converse result hold true.

Moreover, problem (1) was recently extend by G. Molica Bisci, V. Rădulescu, R. Servadei
in [10] to quasilinear equations of p-Laplacian type. More exactly, they studied the following
problem  −divA(x,∇u) = λβ(x)uq + f(u) in Ω,

u > 0, in Ω,
u = 0 on ∂Ω,

(2)

where Ω ⊂ RN , N > 3, is a bounded domain with smooth boundry ∂Ω, q > 0 and
λ ∈ R are parameters, while β ∈ L∞(Ω) and f : [0,∞) → R is a continuous function and
A : Ω× RN → RN is a function satisfying some general assumptions.

Motivated by the studies in [9] and [10], we focus in the present paper on the case of
nonlinear difference equations. Hence, the purpose of this work is to study the number and
behaviour of solutions to problem (Pλ), where f oscillates near the origin or at infinity.
Usually, equations involving oscillatory nonlinearities give infinitely many distinct solutions
(see, for instance, the papers [11], [12], [13]), but the presence of an additional term may
alter the situation.

Here, we are interested in finding weak solutions of the problem (Pλ). For this purpose,
we define the function space

H = {u : [0, T + 1]→ R such that u(0) = u(T + 1) = 0}.

Clearly, H is a T -dimensional Hilbert space (see [1]) with the inner product

〈u, v〉 =

T+1∑
k=1

∆u(k − 1)∆v(k − 1), ∀u, v ∈ H.

The associated norm is defined by

‖u‖ =

(
T+1∑
k=1

|∆u(k − 1)|2
) 1

2

.

We also put for every u ∈ H,

‖u‖∞ = max
k∈[1,T ]

|u(k)|.(3)

We point out that the space H is finite-dimensional. Hence, by classical results, the norm
‖ · ‖ and ‖ · ‖∞ are equivalent on H.

Moreover, we denote l∞ the set of all functions u : [1, T ]→ R such that

‖u‖∞ < +∞,

where ‖ · ‖∞ is given in (3).



DIFFERENCE EQUATIONS WITH OSCILLATORY NONLINEARITIES 3

Definition 1. We say that a function u ∈ H is a weak solution for the problem (Pλ) if

T+1∑
k=1

∆u(k − 1)∆v(k − 1) + λ

T∑
k=1

a(k)u(k)pv(k)−
T∑
k=1

f(u(k))v(k) = 0, for all v ∈ H.

The paper is organized as follows. In Section 2 we will state the main results of the paper
in the two different situations, when f oscillates near the origin or at infinity. In Section 3
we will consider an auxiliary problem and for it we will prove the existence of solutions by
using direct minimization methods. Finally, in Section 4 we will study the problem (Pλ) in
presence of an oscillation term near zero while Section 5 is devoted to the case of oscillation
at infinity.

2. Main results of the paper

In this section, we state our main results, treating separately the two cases, that is, when
f oscillates near the origin and at infinity, respectively.

Throughout this paper, we assume that f : [0,+∞)→ R is a continuous function and we
denote by F the function defined as

F (s) :=

s∫
0

f(t)dt, for any s ∈ (0,+∞).

• Oscillation near the origin.
In this framework we assume that the following conditions are satisfied

(f0
1 ) −∞ < lim inf

s→0+

F (s)
s2

; lim sup
s→0+

F (s)
s2

> 1
T ;

(f0
2 ) l0 := lim inf

s→0+

f(s)
s < 0.

Remark 1. As a consequence of assumptions (f0
1 ) and (f0

2 ) we have that

f(0) = 0.(4)

Indeed, arguing by contradiction, suppose that f(0) = l ∈ R \ {0}. Then, by the continuity
of f and (f0

2 ) we would get

lim
s→0+

f(s)

s
= −∞,

so that, by l’Hôspital’s rule we would deduce that

lim
s→0+

F (s)

s2
= lim

s→0+

f(s)

2s
= −∞,

which contradicts (f0
1 ). This obviously implies assertion (4).

We point out that hypotheses (f0
1 ) and (f0

2 ) imply an oscillatory behaviour of f near the
origin. Moreover, assumption (f0

1 ) allows us to deduce some information about the number
of solutions for problem (Pλ), while (f0

2 ) yields the existence of the solutions.
As a model for f we can take the continuous function f0 : [0,+∞)→ R such that

f0(s) =

{
0 if s = 0,
sα(γ + sin s−β) if s > 0,

(5)

where α, β and γ are such that 0 < α < 1 < α+ β and γ ∈ (0, 1). By direct calculations it
is easy to show that the function f0 defined above satisfies assumptions (f0

1 ) and (f0
2 ).

In this case our main results are the following.

Theorem 2. Let a ∈ l∞, λ ∈ R and p > 1. Assume that f ∈ C([0,+∞);R) satisfies
conditions (f0

1 ) and (f0
2 ). If either

(i) p = 1, l0 ∈ (−∞, 0) and λa(k) < λ0 for all k ∈ [1, T ] and some λ0 ∈ (0,−l0) or
(ii) p = 1, l0 = −∞ and λ ∈ R is arbitrary or
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(iii) p > 1 and λ ∈ R is arbitrary,

then there exists a sequence {ui}i in H of non-negative, distinct weak solutions of problem
(Pλ) such that

lim
i→+∞

‖ui‖ = lim
i→+∞

‖ui‖∞ = 0.(6)

Theorem 3. Let a ∈ l∞, λ ∈ R and 0 < p < 1. Assume that f ∈ C([0,+∞);R) satisfies
conditions (f0

1 ) and (f0
2 ). Then, for every n ∈ N, there exists Λn > 0 such that problem

(Pλ) has at least n distinct weak solutions u1,λ, . . . , un,λ ∈ H such that

‖ui,λ‖ <
1

i
and ‖ui,λ‖∞ <

1

i
, for any i = 1, . . . , n,(7)

provided λ ∈ [−Λn,Λn].

• Oscillation at infinity.
In this framework we assume that the following assumptions are fulfilled

(f∞1 ) −∞ < lim inf
s→+∞

F (s)
s2

; lim sup
s→+∞

F (s)
s2

> 1
T ;

(f∞2 ) l∞ := lim inf
s→+∞

f(s)
s < 0.

Here, we point out that assumptions (f∞1 ) and (f∞2 ) imply an oscillatory behaviour of f
at infinity. As in the case of the oscillations near the origin, here assumption (f∞2 ) is used
in order to prove the existence of solutions for problem (Pλ), while (f∞1 ) guarantees that
these solutions are infinitely many, when 0 < p 6 1, and at least a finite number, if p > 1.

Also, we can construct a prototype for f taking the continuous function f∞ : [0,+∞)→ R
such that

f∞(s) = sα(γ + sinsβ),(8)

where α, β, γ are such that 1 < α, |α − β| < 1, and γ ∈ (0, 1). Also in this case, direct
calculations show that the function f∞ defined in (8) satisfies assumptions (f∞1 ) and (f∞2 ).

In this setting a perfect counterpart of Theorem 2 and Theorem 3 are given as follows.

Theorem 4. Let a ∈ l∞, λ ∈ R and 0 < p 6 1. Assume that f ∈ C([0,+∞);R) satisfies
conditions (f∞1 ) and (f∞2 ) with f(0) = 0. If either

(i) p = 1, l∞ ∈ (−∞, 0) and λa(k) < λ∞ for all k ∈ [1, T ] and some λ∞ ∈ (0,−l∞) or
(ii) p = 1, l∞ = −∞ and λ ∈ R is arbitrary or
(iii) 0 < p < 1 and λ ∈ R is arbitrary,

then there exists a sequence {ui}i in H of non-negative, distinct weak solutions of problem
(Pλ) such that

lim
i→+∞

‖ui‖ = lim
i→+∞

‖ui‖∞ = +∞.(9)

Theorem 5. Let a ∈ l∞, λ ∈ R and p > 1. Assume that f ∈ C([0,+∞);R) satisfies
conditions (f∞1 ) and (f∞2 ), with f(0) = 0. Then, for every n ∈ N, there exists Λn > 0 such
that problem (Pλ) has at least n distinct weak solutions u1,λ, . . . , un,λ ∈ H such that

‖ui,λ‖ > i− 1 and ‖ui,λ‖∞ > i− 1, for any i = 1, . . . , n,(10)

provided λ ∈ [−Λn,Λn].

In all these situations, when there is an oscillation near zero or at infinity, and for any
value of p, the idea is to prove the existence of solutions for problem (Pλ) using variational
methods. More exactly, first of all, we will consider an auxiliary problem and, under suitable
assumptions on the data, we will prove the existence of solutions for this equation studying
the energy functional associated with it and proving that this functional admits a minimum,
using the direct methods of the calculus of variations and then, we will apply this result to
problem (Pλ) in order to get Theorems 2, 3, 4 and 5.
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3. A key problem

In this section we consider the problem{
−∆(∆u(k − 1)) + c(k)u(k) = g(k, u(k)), k ∈ [1, T ],
u(0) = u(T + 1) = 0 .

(P cg )

Here, we assume that c : [1, T ]→ R is such that

c ∈ l∞; min
k∈[1,T ]

c(k) > 0,(11)

while g : [1, T ]× [0,+∞)→ R is a Carathéodory function satisfying the following conditions

g(k, 0) = 0 for every k ∈ [1, T ];(12)

there exists Mg > 0 such that |g(k, s)| 6Mg for every k ∈ [1, T ] and all s > 0;(13)

there exist δ and η, with 0 < δ < η such that

g(k, s) 6 0 for every k ∈ [1, T ] and all s ∈ [δ, η].(14)

In the sequel we extend the function g by taking g(k, s) = 0 for every k ∈ [1, T ] and s 6 0.

Definition 6. By a weak solution for problem (P cg ) we understand a function u ∈ H such
that

T+1∑
k=1

∆u(k − 1)∆v(k − 1) +
T∑
k=1

c(k)u(k)v(k)−
T∑
k=1

g(k, u(k))v(k) = 0, for every v ∈ H.

Let Ec,g : H → R be the energy functional associated to problem (P cg ) defined by

Ec,g(u) =
1

2
‖u‖2 +

1

2

T∑
k=1

c(k)u(k)2 −
T∑
k=1

G(k, u(k)), u ∈ H,(15)

where G(k, s) :=
s∫
0

g(k, t)dt for any s ∈ R and k ∈ [1, T ].

Standard arguments assure that Ec,g is well-defined, it belongs to C1(H;R) and

〈E′c,g(u), v〉 = −
T+1∑
k=1

∆(∆u(k − 1))v(k) +

T∑
k=1

c(k)u(k)v(k)−
T∑
k=1

g(k, u(k))v(k)

= 〈u, v〉+
T∑
k=1

c(k)u(k)v(k)−
T∑
k=1

g(k, u(k))v(k), ∀u, v ∈ H.

Thus, the weak solutions of (P cg ) coincide with the critical points of Ec,g.
Finally, we introduce the set W η defined as follows

W η := {u ∈ H : ‖u‖∞ 6 η},
where η is a positive parameter given in (14).

Since g(k, 0) = 0 for every k ∈ [1, T ] by (12), then u ≡ 0 is clearly a weak solution of
problem (P cg ). In the sequel, under some general assumptions, we prove the existence of a
non-negative weak solution for problem (P cg ).

Thus, the main result of this section is the following.

Theorem 7. Assume that c : [1, T ] → R is a function verifying (11) and that g : [1, T ] ×
[0,+∞)→ R is a Carathéodory function satisfying (12), (13) and (14). Then

(a) the functional Ec,g is bounded from below on W η attaining its infimum at some
ũ ∈W η;

(b) ũ(k) ∈ [0, δ] for every k ∈ [1, T ], where δ is the positive parameter given in (14);
(c) ũ is a non-negative weak solution of problem (P cg ).
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Proof. (a) Since the norms ‖ · ‖∞ and ‖ · ‖ are equivalent in the finite-dimensional space H,
the set W η is compact in H. Combining this fact with the continuity of Ec.g, we infer that

Ec,g

∣∣∣
W η

attains its infimum at ũ ∈W η.

(b) Let δ be as in assumption (14) and let M the following set

M := {k ∈ [1, T ] : ũ(k) /∈ [0, δ]}.

Hence, arguing by contradiction, we suppose that M 6= ∅.
Define the truncation function γ : R→ R by

γ(s) := min{s+, δ},

where s+ = max{s, 0}. Now, set w := γ ◦ ũ, that is

w(k) =

 δ if ũ(k) > δ,
ũ(k) if 0 6 ũ(k) 6 δ,
0 if ũ(k) < 0,

for every k ∈ [1, T ].
Since γ(0) = 0, we have w(0) = w(T + 1) = 0, so w ∈ H. Besides, 0 6 w(k) 6 δ for every

k ∈ [1, T ]. By assumption (14) we know that δ < η, and so w ∈W η .
We introduce the sets

M− := {k ∈M : ũ(k) < 0} and M+ := {k ∈M : ũ(k) > δ}.

Thus, M = M− ∪M+ and we have that

w(k) =

 ũ(k) for all k ∈ [1, T ] \M,
0 for all k ∈M−,
δ for all k ∈M+.

Moreover, we have

Ec,g(w)− Ec,g(ũ) =
1

2

(
‖w‖2 − ‖ũ‖2

)
+

1

2

T∑
k=1

c(k)[(w(k))2 − (ũ(k))2]

−
T∑
k=1

[G(k,w(k))−G(k, ũ(k))]

=:
1

2
J1 +

1

2
J2 − J3.(16)

Since γ is a Lipschitz function with Lipschitz constant 1, and w = γ ◦ ũ, we have

J1 = ‖w‖2 − ‖ũ‖2 =

T+1∑
k=1

[|∆w(k − 1)|2 − |∆ũ(k − 1)|2]

=
T+1∑
k=1

[
|w(k)− w(k − 1)|2 − |ũ(k)− ũ(k − 1)|2

]
6 0.(17)

Since min
k∈[1,T ]

c(k) > 0 by (11), one has

J2 =

T∑
k=1

c(k)[(w(k))2 − (ũ(k))2] =
∑
k∈M

c(k)[(w(k))2 − (ũ(k))2]

= −
∑
k∈M−

c(k)(ũ(k))2 +
∑
k∈M+

c(k)[δ2 − (ũ(k))2]

6 0.(18)
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Next, we estimate J3. Due to the fact that g(k, s) = 0 for all s 6 0 and for every k ∈ [1, T ],
we have ∑

k∈M−

[G(k,w(k))−G(k, ũ(k))] = 0.(19)

Moreover, by the mean value theorem, for every k ∈M+, there exists θ(k) ∈ [δ, ũ(k)] ⊂ [δ, η]
such that

G(k,w(k))−G(k, ũ(k)) = G(k, δ)−G(k, ũ(k)) = g(k, θ(k))(δ − ũ(k)).

Thus, taking into account hypothesis (14) and definition of M+, we have∑
k∈M+

[G(k,w(k))−G(k, ũ(k))] > 0.(20)

Hence, by (19) and (20), we obtain

J3 =
∑
k∈M

[G(k,w(k))−G(k, ũ(k))] =
∑
k∈M+

[G(k,w(k))−G(k, ũ(k))]

> 0.(21)

Combining relations (17), (18), (21) with (16), we get

Ec,g(w)− Ec,g(ũ) 6 0.(22)

On the other hand, since w ∈W η, it is easy to see that

Ec,g(w) > Ec,g(ũ) = inf
u∈W η

Ec,g(u).

By this and (22) we get that every term in Ec,g(w)− Ec,g(ũ) should be zero.
In particular, from J2 and due to (11), we have∑

k∈M−

c(k)(ũ(k))2 =
∑
k∈M+

c(k)[δ2 − (ũ(k))2] = 0,

which imply that ũ(k) =

{
0 for every k ∈M−,
δ for every k ∈M+.

Due to the definition of the sets M− and M+, we must have M− = M+ = ∅, which
contradicts M− ∪M+ = M 6= ∅.

(c) Let us fix v ∈ H arbitrarily and let

ε0 :=
η − δ
‖v‖∞ + 1

> 0,

where δ and η are given as in (14). Moreover, let I : [−ε0, ε0]→ R be the function defined
as

I(ε) := Ec,g(ũ+ εv).

First of all, thanks to (b), for any ε ∈ [−ε0, ε0] we have

|ũ(k) + εv(k)| 6 |ũ(k)|+ ε|v(k)|

6 ũ(k) +
η − δ
‖v‖∞ + 1

‖v‖∞

6 δ + η − δ = η,

for every k ∈ [1, T ]. Thus, ũ+ εv ∈W η.
Consequently, due to (a), we have I(ε) > I(0) for every ε ∈ [−ε0, ε0], that is, 0 is an

interior minimum point for I. Then, since I is differentiable at 0, it is easy to see that

I ′(0) = 0 and 〈E′c,g(ũ), v〉 = 0.

Taking into account that v ∈ H is arbitrary and using the definition of Ec,g, we obtain that
ũ is a weak solution of problem (P cg ). Moreover, due to (b), ũ is non-negative in [1, T ].

�



8 M. MĂLIN AND V. RĂDULESCU

We note that, Theorem 7 does not guarantee that the solution ũ of problem (P cg ) is not the
trivial one. In spite of this, by Theorem 7 we will derive the existence of non-trivial solutions
for the original problem (Pλ), provided the nonlinear term f is chosen appropriately.

Finally, we define the truncation function τη : [0,+∞)→ R as follows

τη(s) := min{η, s} for every s > 0,(23)

where η is the positive constant given in assumption (14). Note that τη is a continuous
function in [0,+∞).

4. Oscillation near the origin

In this section we study problem (Pλ) in the case when the nonlinear term f oscillates
near the origin.

In order to prove Theorem 2 and Theorem 3, we consider again the problem from the
previous section, that is{

−∆(∆u(k − 1)) + c(k)u(k) = g(k, u(k)), k ∈ [1, T ],
u(0) = u(T + 1) = 0 ,

(P cg )

where c : [1, T ] → R fulfills (11) and g : [1, T ] × [0,+∞) → R is a Carathéodory function
which satisfies the following assumptions

g(k, 0) = 0 for all k ∈ [1, T ], and

there exists s > 0 and M > 0 such that max
s∈[0,s]

|g(k, s)| 6M for all k ∈ [1, T ];(24)

there exist two sequences {δi}i and {ηi}i with 0 < ηi+1 < δi < ηi such that

lim
i→+∞

ηi = 0 and g(k, s) 6 0 for every k ∈ [1, T ] and all s ∈ [δi, ηi], i ∈ N;(25)

−∞ < lim inf
s→0+

G(k, s)

s2
and lim sup

s→0+

G(k, s)

s2
>

1

T
uniformly for all k ∈ [1, T ],(26)

where G(k, s) =

s∫
0

g(k, t)dt.

In the sequel, we will prove Theorem 2. The strategy will consists in applying Theorem 7
with a suitable choice of the functions c and g.

4.1. Proof of Theorem 2. First of all, we show that, under suitable assumptions, problem
(Pλ) has infinitely many distinct weak solutions, provided p > 1. We will consider separately
the case when p = 1 and the one when p > 1 and in both the situations the strategy will
consist in using Theorem 7.

We start by proving assertion (i). In this setting we suppose that p = 1 and l0 ∈ (−∞, 0).
Let λ ∈ R be such that λa(k) < λ0 for all k ∈ [1, T ] and some 0 < λ0 < −l0.

Let us choose λ0 ∈ (λ0,−l0) and let

c(k) := λ0 − λa(k) and g(k, s) := f(s) + λ0s for all (k, s) ∈ [1, T ]× [0,+∞).(27)

The first step consist in proving that the functions c and g given in (27) satisfy the assump-
tions (11), (24), (25) and (26).

First of all, note that c ∈ l∞ thanks to the fact that a ∈ l∞ and

min
k∈[1,T ]

c(k) > λ0 − λ0 > 0,

which obviously implies (11). By (4) we know that f(0) = 0. Thus, using the regularity of
f , it is easy to see that g is a continuous function in [1, T ]× [0,+∞) and g(k, 0) = 0 for all
k ∈ [1, T ]. Also, the continuity of s 7→ g(·, s) and Weierstrass theorem yield (24).
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Moreover, since for any k ∈ [1, T ] and s > 0 we have

G(k, s)

s2
=
λ0

2
+
F (s)

s2
,

hypothesis (f0
1 ) immediately implies (26).

Next, we show that g satisfies (25). At this purpose, note that, by (f0
2 ), we get that there

exists a sequence {si}i ⊂ (0, 1) converging to 0 as i→ +∞ such that

lim
i→+∞

f(si)

si
= l0.

Since λ0 < −l0 by assumption, there exists ε > 0 such that λ0 + ε < −l0. By this and the
above relation we get that, for i large enough, say i > i∗ ∈ N,

f(si) < −λ0si.(28)

Thus, we have

g(k, si) = f(si) + λ0si < −λ0si + λ0si = 0.

Consequently, by using the continuity of f , there exists a neighborhood of si, say (δi, ηi)
and we may choose two sequences {δi}i, {ηi}i ⊂ (0, 1) such that 0 < ηi+1 < δi < si < ηi,
lim

i→+∞
ηi = 0 and g(k, s) = λ0s+ f(s) 6 0 for any k ∈ [1, T ] and all s ∈ [δi, ηi] and i > i∗.

In this way, hypothesis (25) is verified for g on every interval [δi, ηi], i ∈ N.
In the sequel, since ηi → 0 as i → +∞, by (25), without any loss of generality, we may

assume that

0 < δi < ηi < s,(29)

for i sufficiently large, where s > 0 is given by (24).
For every i ∈ N, let gi : [1, T ]× [0,+∞)→ R be the truncation function defined by

gi(k, s) := g(k, τηi(s)) and Gi(k, s) :=

s∫
0

gi(k, t)dt,(30)

for every k ∈ [1, T ] and s > 0, where τηi is the function defined in (23) with η = ηi.
Let Ei : H → R be the energy functional associated with problem (P cgi), that is Ei :=

Ec,gi , where Ec,gi is the functional given in (15) with g = gi.
We note that the function gi verifies all the assumptions of Theorem 7 for i ∈ N large

enough with [δi, ηi]. Indeed, thanks to the regularity of g, the continuity of τη and the fact
that g(k, 0) = 0 for all k ∈ [1, T ], the function gi is Carathéodory and such that gi(k, 0) = 0
for every k ∈ [1, T ]. Moreover, by (24), (29) and (30), gi satisfies (12) and (13). Finally,
condition (14) is satisfied thanks to (25).

Hence, as a consequence of Theorem 7, for every i ∈ N, there exists ui ∈W ηi such that

min
u∈W ηi

Ei(u) = Ei(ui);(31)

ui(k) ∈ [0, δi] for every k ∈ [1, T ];(32)

ui is a non-negative weak solution of (P cgi).(33)

Using the definition of τη, relation (30) and the fact that

0 6 ui(k) 6 δi < ηi for every k ∈ [1, T ],

we have

gi(k, ui(k)) = g(k, τηi(ui(k))) = g(k, ui(k)) for every k ∈ [1, T ].

Thus, by the above relation and (33), ui is a non-negative weak solution not only for (P cgi)
but also for problem (P cg ).
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In the sequel, we prove that there are infinitely many distinct elements in the sequence
{ui}i. In order to see this, the first step consists in proving that

Ei(ui) < 0 for i ∈ N large enough and(34)

lim
i→+∞

Ei(ui) = 0.(35)

Due to (f0
1 ) and (27), we have that

lim sup
s→0+

G(k, s)

s2
=

λ0

2
+ lim sup

s→0+

F (s)

s2

>
λ0

2
+

1

T
.

In particular, there exists a sequence {s̃i}i, with

0 < s̃i 6 δi for all i ∈ N and(36)

G(k, s̃i) >

(
1

T
+
λ0

2

)
s̃2
i .(37)

Now, let us fix i ∈ N sufficiently large and let us define the function wi ∈ H by

wi(k) := s̃i for every k ∈ [1, T ].

Then ‖wi‖∞ = s̃i 6 δi < ηi < 1 by (25) and (36). Hence, wi ∈ W ηi . This yields that for
every k ∈ [1, T ], we have

Gi(k,wi(k)) = Gi(k, s̃i) =

s̃i∫
0

gi(k, t)dt

=

s̃i∫
0

g(k, τηi(t))dt =

s̃i∫
0

g(k, t)dt

= G(k, s̃i).(38)

By this and taking into account (11), (27), (37), (38), for i sufficiently large we have

Ei(wi) =
1

2

T+1∑
k=1

|∆wi(k − 1)|2 +
1

2

T∑
k=1

c(k)(wi(k))2 −
T∑
k=1

Gi(k,wi(k))

< (s̃i)
2 +

1

2
λ0T (s̃i)

2 − TG(k, s̃i)

< (s̃i)
2 +

1

2
λ0T (s̃i)

2 − T
(

1

T
+
λ0

2

)
(s̃i)

2

= (s̃i)
2 +

1

2
λ0T (s̃i)

2 − (s̃i)
2 − T λ0

2
(s̃i)

2

= 0.

Consequently, using also (31) for i sufficiently large, the above estimation and wi ∈W s̃i ⊂
W ηi show that

Ei(ui) = min
u∈W ηi

Ei(u) 6 Ei(wi) < 0,(39)

which proves in particular (34).
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In the sequel, we will prove (35). For every i ∈ N sufficiently large, by using the definition
of Gi, the mean value theorem, (24), (25), (29), (30) and (32), we have

Ei(ui) =
1

2

T+1∑
k=1

|∆ui(k − 1)|2 +
1

2

T∑
k=1

c(k)(ui(k))2 −
T∑
k=1

Gi(k, ui(k))

> −
T∑
k=1

Gi(k, ui(k)) = −
T∑
k=1

G(k, ui(k))

= −
T∑
k=1

ui(k)∫
0

g(k, s)ds

> −
T∑
k=1

max
s∈[0,s]

|g(k, s)|ui(k)

> −δiT max
s∈[0,s]

|g(·, s)|

> −δiTM.

Since lim
i→+∞

δi = 0, the above estimate and (39) leads to (35).

Finally, it is easy to see that relation (6) is an immediate consequence of (32) combined
with lim

i→+∞
δi = 0, and to the fact that norms ‖ · ‖∞ and ‖ · ‖ are equivalent.

Thus, we get the existence of infinitely many distinct nontrivial non-negative solutions
{ui}i for problem (P cg ) satisfying condition (6). Due to the choice of c and g in (27) and
taking into account that p = 1, it is easy to see that ui is a weak solution of problem (Pλ)
and this ends the proof of assertion (i) in Theorem 2 in the case p = 1.

Now, let us consider assertion (ii). At this purpose, let p = 1, l0 = −∞ and λ ∈ R be
arbitrary fixed. In this setting we choose λ0 ∈ (λ0,−l0) and

c(k) := λ0 and g(k, s) = f(s) + (λa(k) + λ0)s for all (k, s) ∈ [1, T ]× [0,+∞).

This case can be dealt with in a similar way as (i), using relation

f(si) < −(|λ| · ‖a‖∞ + λ0)si,

instead of f(si) < −λ0si, for i large enough, and taking into account that for every k ∈ [1, T ]
and s > 0 one has

g(k, s) = f(s) + (λa(k) + λ0)s 6 f(s) + (|λ| · ‖a‖∞ + λ0)s.

Now, let us prove assertion (iii). At this purpose, let p > 1 and λ ∈ R be arbitrary fixed.
Let us also fix a number λ0 ∈ (0,−l0) and choose

c(k) := λ0 and g(k, s) := λa(k)sp + λ0s+ f(s) for all (k, s) ∈ [1, T ]× [0,+∞).(40)

Also in this setting our aim is to prove that c and g given in (40) satisfy the conditions (11),
(24), (25) and (26).

Clearly, (11) is satisfied and also thanks to (f0
1 ), (f0

2 ) we have g(k, 0) = 0 for all k ∈ [1, T ].
Moreover, since a ∈ l∞ the continuity of s 7→ g(·, s) and the Weierstrass theorem yield that
(24) holds true.

Furthermore, since p > 1 and

G(k, s)

s2
= λ

a(k)

p+ 1
sp−1 +

λ0

2
+
F (s)

s2
, for all k ∈ [1, T ] and s ∈ (0,+∞),

hypothesis (f0
1 ) implies (26).

In the sequel, note that for all k ∈ [1, T ] and every s ∈ [0,+∞), we have

g(k, s) 6 |λ| · ‖a‖∞sp + λ0s+ f(s).(41)
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As a consequence of this and of (f0
2 ) we get

lim inf
s→0+

g(k, s)

s
6 lim inf

s→0+

(
|λ| · ‖a‖∞sp−1 + λ0 +

f(s)

s

)
(42)

= λ0 + l0

< 0,

for all k ∈ [1, T ], thanks to the choice of p.
In particular, there exists a sequence {si}i ⊂ (0, 1) converging to 0 as i→ +∞ such that

g(k, si) < 0 for i ∈ N large enough and for all k ∈ [1, T ]. Thus, by using the continuity of
s 7→ g(·, s), there exist two sequences {δi}i, {ηi}i ⊂ (0, 1) such that 0 < ηi+1 < δi < si < ηi,
lim

i→+∞
ηi = 0 and g(k, s) 6 0, for every k ∈ [1, T ] and all s ∈ [δi, ηi] and i ∈ N large enough.

Summarizing what proved above, we get that hypothesis (25) hold true.
Finally, an argument analogous to that used in (i) proves that problem (P cg ) is equivalent

to problem (Pλ) through the choice (40) and so, we get the existence of infinitely many
distinct nontrivial solutions {ui}i for problem (Pλ) satisfying (6). This concludes the proof
of Theorem 2. �

4.2. Proof of Theorem 3. First of all, we point out that here we will proceed as in the
proof of Theorem 2 and the strategy will consist in applying Theorem 7 to problem (P cg )
with a suitable choices of c and g.

At this purpose, let λ0 ∈ (0,−l0), where l0 < 0 is given in assumption (f0
2 ) and let us

choose

c(k) := λ0 and g(k, s, λ) := λa(k)sp + λ0s+ f(s),(43)

for all (k, s) ∈ [1, T ] × [0,+∞), λ ∈ R. Note that for all k ∈ [1, T ] and every s ∈ [0,+∞),
we have

g(k, s, λ) 6 |λ| · ‖a‖∞sp + λ0s+ f(s).

Next, on account of (f0
2 ), there exists a sequence {si}i ⊂ (0, 1) converging to 0 as i→ +∞

such that
f(si) < −λ0si, for i ∈ N large enough.

Consequently, we have
g(k, si, 0) = λ0si + f(si) < 0,

for i ∈ N large enough and for all k ∈ [1, T ]. Thus, due to the continuity of s 7→ g(·, s, ·) we
get that there exist three sequences {δi}i, {ηi}i, {λi}i ⊂ (0, 1) such that,

0 < ηi+1 < δi < si < ηi < 1, lim
i→+∞

ηi = 0,(44)

and for i ∈ N large enough,

g(k, s, λ) 6 0, for all k ∈ [1, T ], λ ∈ [−λi, λi] and s ∈ [δi, ηi].(45)

For any i ∈ N and λ ∈ [−λi, λi], let gi : [1, T ] × [0,+∞) × [−λi, λi] → R be the function
defined by

gi(k, s, λ) := g(k, τηi(s), λ)(46)

and

Gi(k, s, λ) :=

s∫
0

gi(k, t, λ)dt,

for all k ∈ [1, T ] and s > 0.
In the sequel, let us prove that c given in (43) and gi satisfy all the assumptions of

Theorem 7. Due to relation (4), it is easy to see that gi satisfies condition (12). Also, the
assumption (11) is trivially verified.

Moreover, the regularity of g and the continuity of τη show that gi is a Carathéodory
function. Also, thanks to (46), (23), the continuity of s 7→ g(·, s, ·) and the Weierstrass
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theorem give that gi satisfies (13). Finally, (45) and (46) yield (14) for i large enough.
Hence, gi satisfies all the assumptions of Theorem 7 for i large.

Next, for any i ∈ N, let Ei,λ : H → R be the energy functional associated with the
problem (P cgi(·,·,λ)), that is

Ei,λ := Ec,gi(·,·,λ),(47)

where Ec,gi(·,·,λ) is the functional given in (15) with g = gi(·, ·, λ). So, Theorem 7 allows us
to deduce that, for i ∈ N sufficiently large and λ ∈ [−λi, λi], there exists ui,λ ∈ W ηi such
that

min
u∈W ηi

Ei,λ(u) = Ei,λ(ui,λ),(48)

ui,λ(k) ∈ [0, δi] for all k ∈ [1, T ](49)

and

ui,λ is a non-negative weak solution of (P cgi(·,·,λ)).(50)

Since for i sufficiently large

0 6 ui,λ(k) 6 δi < ηi,(51)

for all k ∈ [1, T ] by (44) and (49), we get

gi(k, ui,λ(k), λ) = g(k, ui,λ(k), λ).

Thus, using (43) we obviously have that ui,λ is a non-negative weak solution of (Pλ), pro-
vided i is large and |λ| 6 λi.

In the sequel, we will prove that for any n ∈ N problem (Pλ) admits at least n distinct
solutions, for suitable values of λ. At this purpose, first of all note that, due to the choices
of c and gi and (51), the functional Ei,λ is given by

Ei,λ(u) =
1

2
‖u‖2 − λ

T∑
k=1

a(k)
|u(k)|p+1

p+ 1
−

T∑
k=1

F (u(k))

= Ei,0(u)− λ
T∑
k=1

a(k)
|u(k)|p+1

p+ 1
, for any u ∈ H.(52)

Next, for λ = 0, the function gi(·, ·, λ) = gi(·, ·, 0) verifies the hypotheses (11), (24), (25)
and (26). More precisely, gi(·, ·, 0) is exactly the function appearing in (30) and Ei := Ei,0
is the energy functional associated with problem (P cgi(·,·,0)). Thus, besides (48)-(50), the

elements ui := ui,0 also verify

Ei(ui) = min
u∈W ηi

Ei(u) 6 Ei(wi) < 0 for all i ∈ N,(53)

where wi ∈W ηi is given in the proof of Theorem 2, see for instance (39).
In the sequel, let {θi}i be an increasing sequence with negative terms such that lim

i→+∞
θi =

0. On account of (53), up to a subsequence, we may assume that

θi−1 < Ei(ui) 6 Ei(wi) < θi,(54)

for i > i∗, with i∗ ∈ N.
Now, for any i > i∗ let

λ′i :=
(p+ 1)(Ei(ui)− θi−1)

(‖a‖∞ + 1)T
and λ

′′
i :=

(p+ 1)(θi − Ei(wi))
(‖a‖∞ + 1)T

.(55)

Note that λ′i and λ
′′
i are strictly positive, due to (54) and they are independent of λ.

Now, for any fixed n ∈ N, let

Λn := min{λi∗+1, . . . , λi∗+n, λ
′
i∗+1, . . . , λ

′
i∗+n, λ

′′
i∗+1, . . . , λ

′′
i∗+n}.
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On account of (54), Λn > 0 and it is independent of λ. Moreover, if |λ| 6 Λn, then |λ| 6 λi
for any i = i∗ + 1, . . . , i∗ + n. Consequently, for any λ ∈ R with |λ| 6 Λn, we have that

ui,λ is a non-negative weak solution of problem (Pλ)

for any i = i∗ + 1, . . . , i∗ + n.
In the sequel, we will show that these solutions are distinct. At this purpose, note that

ui,λ ∈W ηi by (51) and so for any λ ∈ R with |λ| 6 Λn we have

Ei(ui) = min
u∈W ηi

Ei(u) 6 Ei(ui,λ).(56)

Thus, by (52) and (56), for any λ with |λ| 6 Λn we get

Ei,λ(ui,λ) = Ei(ui,λ)− λ

p+ 1

T∑
k=1

a(k)|ui,λ(k)|p+1

> Ei(ui)−
|λ|
p+ 1

‖a‖∞ηp+1
i T

> Ei(ui)−
Λn
p+ 1

‖a‖∞T(57)

> Ei(ui)−
λ′i

p+ 1
‖a‖∞T

> θi−1,

for any i = i∗ + 1, . . . , i∗ + n, due to (44), (51), the choice of Λn and the definition of λ′i.
On the other hand, by (52), (53) and using the fact that ‖wi‖∞ = s̃i 6 δi < ηi < 1 (see

the proof of Theorem 2), for any λ with |λ| 6 Λn we deduce that

Ei,λ(ui,λ) = min
u∈W ηi

Ei,λ(u)

6 Ei,λ(wi)

= Ei(wi)−
λ

p+ 1

T∑
k=1

a(k)|wi(k)|p+1

6 Ei(wi) +
|λ|
p+ 1

‖a‖∞T

6 Ei(wi) +
Λn
p+ 1

‖a‖∞T(58)

6 Ei(wi) +
λ
′′
i

p+ 1
‖a‖∞T

< θi,

for any i = i∗ + 1, . . . , i∗ + n, again thanks to the choice of Λn and the definition of λ
′′
i .

In conclusion, by (57), (58) and the properties of {θi}i, we deduce that for every i =
i∗ + 1, . . . , i∗ + n and λ ∈ [−Λn,Λn], we have

θi−1 < Ei,λ(ui,λ) < θi < 0,(59)

which yields that

E1,λ(u1,λ) < . . . < En,λ(un,λ) < 0.

But ui,λ ∈ W η1 for every i = i∗ + 1, . . . , i∗ + n, so Ei,λ(ui,λ) = E1,λ(ui,λ), see relation (46).
Therefore, from above, we obtain that for every λ ∈ [−Λn,Λn],

E1,λ(u1,λ) < . . . < E1,λ(un,λ) < 0 = E1,λ(0).

These inequalities show that the elements u1,λ, . . . , un,λ are all distinct and non-trivial,
provided λ ∈ [−Λn,Λn].
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Finally, it remains to prove conclusion (7). For this, by (44), (51), (52), (59) and the
continuity of f we have that

1

2
‖ui,λ‖2 = Ei,λ(ui,λ) +

λ

p+ 1

T∑
k=1

a(k)|ui,λ(k)|p+1 +
T∑
k=1

F (ui,λ(k))

< θi +
|λ|
p+ 1

‖a‖∞δp+1
i T +

T∑
k=1

δi∫
0

|f(s)|ds

<
Λn
p+ 1

‖a‖∞δiT + T max
s∈[0,1]

|f(s)|δi,

for any i = i∗ + 1, . . . , i∗ + n and |λ| 6 Λn. Hence, we obtain

‖ui,λ‖ 6 c̃δ
1/2
i ,

where c̃ = 2−1

(
Λn
p+1‖a‖∞T + T max

s∈[0,1]
|f(s)|

)
> 0.

Since δi → 0 as i→ +∞, without loss of generality, we may assume that

δi 6 min{c̃−2, 1} 1

i2
,(60)

which gives that

‖ui,λ‖ 6
1

i
,

for any i = i∗ + 1, . . . , i∗ + n, provided |λ| 6 Λn.
In conclusion, by (51) and (60) we obtain that

‖ui,λ‖∞ 6
1

i2
<

1

i
,

for any i = i∗ + 1, . . . , i∗ + n, with |λ| 6 Λn.
This concludes the proof of Theorem 3. �

5. Oscillation at infinity

This section is devoted to the study of problem (Pλ) in the case when f oscillates at
infinity.

In order to prove Theorem 4 and Theorem 5, we will proceed in a similar way as in the
previous section. However, for completeness, we give all the details.

We consider again the problem (P cg ), where the Carathéodory function g : [1, T ] ×
[0,+∞)→ R fulfills the following assumptions

g(k, 0) = 0 for all k ∈ [1, T ], and

for any s > 0, there exists M > 0 such that max
t∈[0,s]

|g(k, t)| 6M for all k ∈ [1, T ];(61)

there exist two sequences {δi}i and {ηi}i with 0 < δi < ηi < δi+1 such that

lim
i→+∞

δi = +∞ and g(k, s) 6 0 for every k ∈ [1, T ] and for all s ∈ [δi, ηi], i ∈ N;(62)

−∞ < lim inf
s→+∞

G(k, s)

s2
and lim sup

s→+∞

G(k, s)

s2
>

1

T
uniformly for all k ∈ [1, T ],(63)

where G(k, s) =

s∫
0

g(k, t)dt.

In the sequel, we will prove Theorem 4. Here, the strategy is similar to that of Theorem 2
and the idea consists in applying Theorem 7 to problem (P cg ) with a suitable choice for the
functions c and g appearing in the equation.
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5.1. Proof of Theorem 4. Let us start proving assertion (i). In this case when p = 1 and
l∞ ∈ (−∞, 0), we fix λ ∈ R such that λa(k) < λ∞ for all k ∈ [1, T ] and some 0 < λ∞ < −l∞.

Let us choose λ∞ ∈ (λ∞,−l∞) and let

c(k) := λ∞ − λa(k) and g(k, s) := f(s) + λ∞s for all (k, s) ∈ [1, T ]× [0,+∞).(64)

Firstly, we show that the functions c and g given in (64) satisfy the assumptions (11), (61),
(62) and (63).

It is clear that min
k∈[1,T ]

c(k) > λ∞ − λ∞ > 0 and c ∈ l∞ thanks to the fact that a ∈ l∞, so

(11) is satisfied.
Since f(0) = 0 by assumption and using the regularity of f , it is easy to see that g is a

continuous function in [1, T ]× [0,+∞) and g(k, 0) = 0 for all k ∈ [1, T ]. Also, the continuity
of s 7→ g(·, s) and the Weierstrass theorem yield (61).

Note that
G(k, s)

s2
=
λ∞
2

+
F (s)

s2
, for any k ∈ [1, T ] and s > 0.

Thus, hypothesis (f∞1 ) implies (63).

In the sequel, since l∞ < −λ∞ and using (f∞2 ), there exists a sequence {si}i ⊂ (0,+∞)
converging to +∞ as i→ +∞ such that

f(si) < −λ∞si for all i ∈ N large enough.

Thus, we have
g(k, si) = f(si) + λ∞si < 0.

Consequently, by using the continuity of f , we may fix two sequences {δi}i, {ηi}i ⊂ (0,+∞)
such that 0 < δi < si < ηi < δi+1, lim

i→+∞
δi = +∞ and g(k, s) = λ∞s + f(s) 6 0 for any

k ∈ [1, T ] and all s ∈ [δi, ηi] and i > i∗, i∗ ∈ N.
Therefore, hypothesis (62) is also fulfilled for g on every interval [δi, ηi], i ∈ N.
For any i ∈ N, we consider again the truncation function gi : [1, T ]× [0,+∞)→ R by

gi(k, s) := g(k, τηi(s)) and Gi(k, s) :=

s∫
0

hi(k, t)dt,(65)

for every k ∈ [1, T ] and s > 0, where τηi is the function defined in (23) with η = ηi.
Let Ei : H → R be the energy functional associated with problem (P cgi), that is Ei :=

Ec,gi , where Ec,gi is the functional given in (15) with g = gi.
Taking into account hypotheses (61) and (62), it is easily seen that the function gi fulfills

all the assumptions of Theorem 7 for any i ∈ N. Thus, for every i ∈ N, there exists ui ∈W ηi

such that

min
u∈W ηi

Ei(u) = Ei(ui);(66)

ui(k) ∈ [0, δi] for every k ∈ [1, T ];(67)

ui is a non-negative weak solution of (P cgi).(68)

Arguing as in the proof of Theorem 2 and taking into account the definition of gi, (62) and
(67), it is easily seen that

gi(k, ui(k)) = g(k, τηi(ui(k))) = g(k, ui(k)) for every k ∈ [1, T ].

Thus, by the above relation and (68), ui is also a non-negative weak solution for the problem
(P cg ).

In the sequel, we need to show that there are infinitely many distinct elements in the
sequence {ui}i. To this end, first of all we claim that, up to a subsequence,

lim
i→+∞

Ei(ui) = −∞.(69)
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Indeed, due to (f∞1 ) and (64), we have that

lim sup
s→+∞

G(k, s)

s2
=

λ∞
2

+ lim sup
s→+∞

F (s)

s2

>
λ∞
2

+
1

T
.

In particular, for a small ε∞ > 0, there exists a sequence {s̃i}i, tending to +∞ such that

G(k, s̃i) >

(
1

T
+
λ∞
2

+ ε∞

)
s̃2
i .(70)

Since δi ↗ +∞ by (62), we can choose a subsequence of {δi}i still denoted by {δi}i such
that

0 < s̃i 6 δi for all i ∈ N.(71)

Let i ∈ N be fixed and let us define the function wi ∈ H by

wi(k) = s̃i for every k ∈ [1, T ].

Then ‖wi‖∞ = s̃i 6 δi < ηi by (62) and (71). Hence, wi ∈ W ηi . This yields that for every
k ∈ [1, T ], we have

Gi(k,wi(k)) = Gi(k, s̃i) =

s̃i∫
0

gi(k, t)dt

=

s̃i∫
0

g(k, τηi(t))dt =

s̃i∫
0

g(k, t)dt

= G(k, s̃i).(72)

Then, by using (11), (64), (70) and (72), for i sufficiently large we have

Ei(wi) =
1

2

T+1∑
k=1

|∆wi(k − 1)|2 +
1

2

T∑
k=1

c(k)(wi(k))2 −
T∑
k=1

Gi(k,wi(k))

< (s̃i)
2 +

1

2
λ∞T (s̃i)

2 − TG(k, s̃i)

< (s̃i)
2 +

1

2
λ∞T (s̃i)

2 − T
(

1

T
+
λ∞
2

+ ε∞

)
(s̃i)

2

= −Tε∞(s̃i)
2.

By construction, we know that wi ∈W s̃i ⊂W ηi .
Consequently, by the above relations and (66), we have

Ei(ui) = min
u∈W ηi

Ei(u) 6 Ei(wi) < −Tε∞(s̃i)
2 for all i ∈ N.(73)

Since lim
i→+∞

s̃i = +∞, by relation (73) it easily follows claim (69).

As a consequence of (69) we get that the sequence {ui}i has infinitely many distinct
elements (and, in particular, ui 6= 0 in [1, T ], being Ei(0) = 0). Indeed, let us assume that
in the sequence {ui}i there is only a finite number of elements, say {u1, . . . , un} for some
n ∈ N. Consequently, due to (65), the sequence {Ei(ui)}i reduces to at most the finite set
{E1(u1), . . . , En(un)} which contradicts relation (69). Hence problem (P cg ) admits infinitely
many distinct weak solutions.

It remains to prove (9). Since the norms ‖ · ‖∞ and ‖ · ‖ are equivalent, it is enough to
prove that lim

i→+∞
‖ui‖∞ = +∞. Arguing by contradiction, we assume that for a subsequence
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of {ui}i, still denoted by {ui}i, there exists a constant C > 0 such that

‖ui‖∞ 6 C for all i ∈ N.

Therefore, we have

Ei(ui) =
1

2

T+1∑
k=1

|∆ui(k − 1)|2 +
1

2

T∑
k=1

c(k)(ui(k))2 −
T∑
k=1

Gi(k, ui(k))

> −
T∑
k=1

Gi(k, ui(k)) = −
T∑
k=1

G(k, ui(k))

= −
T∑
k=1

ui(k)∫
0

g(k, s)ds

> −
T∑
k=1

max
s∈[0,C]

|g(k, s)|ui(k)

> −δiT max
s∈[0,C]

|g(·, s)|.

Since lim
i→+∞

δi = +∞, by (62) the above inequality contradicts relation (69).

Thus, we get the existence of infinitely many distinct nontrivial non-negative solutions
{ui}i for problem (P cg ) satisfying condition (9).

Due to the choice of c and g in (64) and taking into account that p = 1, it is easy to see
that (P cg ) is equivalent to problem (Pλ). So, ui is a weak solution of problem (Pλ) which
concludes the proof of assertion (i).

Now, let us consider assertion (ii). In this case when p = 1 and l∞ = −∞, we take λ ∈ R
be arbitrary fixed, λ∞ ∈ (0,−l∞) and

c(k) := λ∞ and g(k, s) = f(s) + (λa(k) + λ∞)s for all (k, s) ∈ [1, T ]× [0,+∞).(74)

In this setting the arguments are the same of the ones used in the previous case.
Now, let us prove assertion (iii). In this case when 0 < p < 1, let λ ∈ R be arbitrary

fixed and we choose λ∞ ∈ (0,−l∞) and

c(k) := λ∞ and g(k, s) := λa(k)sp + λ∞s+ f(s) for all (k, s) ∈ [1, T ]× [0,+∞).(75)

Also in this setting our aim is to prove that c and g given in (75) satisfy the conditions (11),
(61), (62) and (63).

Hypothesis (11) is clearly satisfied. By assumption we know that f(0) = 0 and thus
g(k, 0) = 0 for all k ∈ [1, T ]. Due to the fact that a ∈ l∞, the continuity of s 7→ g(·, s) and
the Weierstrass theorem yield that (61) hold too.

Furthermore, since p < 1 and

G(k, s)

s2
= λ

a(k)

p+ 1
sp−1 +

λ∞
2

+
F (s)

s2
, for all k ∈ [1, T ] and s ∈ (0,+∞),

hypothesis (f∞1 ) implies (63).
Next, for all k ∈ [1, T ] and every s ∈ [0,+∞), we have

g(k, s) 6 |λ| · ‖a‖∞sp + λ∞s+ f(s).(76)

Due to (f∞2 ) and (76) we have

lim inf
s→+∞

h(k, s)

s
6 lim inf

s→+∞

(
|λ| · ‖a‖∞sp−1 + λ∞ +

f(s)

s

)
(77)

= λ∞ + l∞

< 0,
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for all k ∈ [1, T ], thanks to the choice of p, i.e. p < 1.
Therefore, we can fix a sequence {si}i ⊂ (0,+∞) converging to +∞ as i → +∞ such

that g(k, si) < 0 for all i ∈ N large enough and for every k ∈ [1, T ]. Thus, by using
the continuity of s 7→ h(·, s), there exist two sequences {δi}i, {ηi}i ⊂ (0,+∞) such that
0 < δi < si < ηi < δi+1, lim

i→+∞
δi = +∞ and g(k, s) 6 0, for every k ∈ [1, T ] and all

s ∈ [δi, ηi] and i ∈ N large enough. Thus, hypothesis (62) hold true.
Finally, arguing as in the proof of assertion (i) we observe that problem (P cg ) is equivalent

to problem (Pλ) through the choice (75). This ends the proof of Theorem 4. �

5.2. Proof of Theorem 5. Here, we point out that we will use an argument analogous
to that used in Theorem 3, so the strategy will consist in applying Theorem 7 to problem
(P cg ) with a suitable choices of c and g.

At this purpose, let λ∞ ∈ (0,−l∞), where l∞ < 0 is given in assumption (f∞2 ) and let us
choose

c(k) := λ∞ and g(k, s, λ) := λa(k)sp + λ∞s+ f(s),(78)

for all (k, s) ∈ [1, T ] × [0,+∞), λ ∈ R. Note that for all k ∈ [1, T ] and every s ∈ [0,+∞),
we have

g(k, s, λ) 6 |λ| · ‖a‖∞sp + λ∞s+ f(s).

In the sequel, since l∞ < −λ∞ and using (f∞2 ), there exists a sequence {si}i ⊂ (0,+∞)
converging to +∞ as i→ +∞ such that

f(si) < −λ∞si, for i ∈ N large enough.

Thus, we have
g(k, si, 0) = λ∞si + f(si) < 0,

for i ∈ N large enough and for all k ∈ [1, T ]. Due to the continuity of s 7→ g(·, s, ·) we can
fix three sequences {δi}i, {ηi}i ⊂ (0,+∞), {λi}i ⊂ (0, 1) such that

0 < δi < si < ηi < δi+1, lim
i→+∞

δi = +∞,(79)

and for i ∈ N large enough,

g(k, s, λ) 6 0, for all k ∈ [1, T ], λ ∈ [−λi, λi] and s ∈ [δi, ηi].(80)

Without any loss of generality, we may assume that

δi > i, i ∈ N.(81)

For any i ∈ N and λ ∈ [−λi, λi], let gi : [1, T ] × [0,+∞) × [−λi, λi] → R be the function
defined by

gi(k, s, λ) := g(k, τηi(s), λ)(82)

and

Gi(k, s, λ) :=

s∫
0

gi(k, t, λ)dt,

for all k ∈ [1, T ] and s > 0.
Let Ei,λ : H → R be the energy functional associated with the problem (P cgi(·,·,λ)), which

is the same as in the proof of Theorem 3 (see relation (47)).
Note that for every i ∈ N and λ ∈ [−λi, λi] the functions c given in (78) and gi fulfills all

the hypotheses of Theorem 7, the arguments being the same as in the proof of Theorem 3.
Consequently, applying Theorem 7 we get that, for i ∈ N sufficiently large and λ ∈

[−λi, λi], there exists ui,λ ∈W ηi such that

min
u∈W ηi

Ei,λ(u) = Ei,λ(ui,λ),(83)

ui,λ(k) ∈ [0, δi] for all k ∈ [1, T ](84)
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and

ui,λ is a non-negative weak solution of (P cgi(·,·,λ)).(85)

Now, by (79) and (84) for i sufficiently large and for all k ∈ [1, T ], we have

0 6 ui,λ(k) 6 δi < ηi,(86)

and thus

gi(k, ui,λ(k), λ) = g(k, ui,λ(k), λ).(87)

On account of the definition of the functions gi and c, and relations (85) and (87), ui,λ is
also a non-negative weak solution of problem (Pλ), provided i is large and |λ| 6 λi.

It remains to prove that for any n ∈ N problem (Pλ) admits at least n distinct solutions,
for suitable values of λ. At this purpose, thanks to the choices of c and gi and (86), the
functional Ei,λ is given by

Ei,λ(u) =
1

2
‖u‖2 − λ

T∑
k=1

a(k)
|u(k)|p+1

p+ 1
−

T∑
k=1

F (u(k))

= Ei,0(u)− λ
T∑
k=1

a(k)
|u(k)|p+1

p+ 1
, for any u ∈ H.(88)

Note that, for λ = 0, the function gi(·, ·, λ) = gi(·, ·, 0) verifies the hypotheses (11), (61),
(62) and (63). In fact, gi(·, ·, 0) is the function appearing in (65) and Ei := Ei,0 is the energy
functional associated with the problem (P cgi(·,·,0)). Denoting ui := ui,0, up to a subsequence

we also have

Ei(ui) = min
u∈W ηi

Ei(u) 6 Ei(wi) for all i ∈ N,(89)

lim
i→+∞

Ei(ui) = −∞,(90)

where wi ∈W ηi appear in the proof of Theorem 4, see relations (69) and (73), respectively.
Let us fix a sequence {θi}i with negative terms such that lim

i→+∞
θi = −∞. Due to (89)

and (90), up to a subsequence, we may assume that

θi < Ei(ui) 6 Ei(wi) < θi−1,(91)

for i > i∗, with i∗ ∈ N.
For any i > i∗ let

λ′i :=
(p+ 1)(Ei(ui)− θi)
(‖a‖∞ + 1)Tδp+1

i

and λ
′′
i :=

(p+ 1)(θi−1 − Ei(wi))
(‖a‖∞ + 1)Tδp+1

i

.(92)

Note that λ′i and λ
′′
i are strictly positive, due to (91) and they are independent of λ.

Now, fix n ∈ N and let

Λn := min{λi∗+1, . . . , λi∗+n, λ
′
i∗+1, . . . , λ

′
i∗+n, λ

′′
i∗+1, . . . , λ

′′
i∗+n}.

On account of (91), Λn > 0 and it is independent of λ. Moreover, if |λ| 6 Λn, then |λ| 6 λi
for any i = i∗ + 1, . . . , i∗ + n. Thus, for any λ ∈ R with |λ| 6 Λn, we have that

ui,λ is a non-negative weak solution of problem (Pλ)

for any i = i∗ + 1, . . . , i∗ + n.
Next, we will show that these solutions are distinct. At this purpose, note that ui,λ ∈W ηi

by (86) and so for any λ ∈ R with |λ| 6 Λn we have

Ei(ui) = min
u∈W ηi

Ei(u) 6 Ei(ui,λ).(93)
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Thus, by (88) and (93), for any λ with |λ| 6 Λn we have

Ei,λ(ui,λ) = Ei(ui,λ)− λ

p+ 1

T∑
k=1

a(k)|ui,λ(k)|p+1

> Ei(ui)−
|λ|
p+ 1

‖a‖∞δp+1
i T

> Ei(ui)−
Λn
p+ 1

‖a‖∞δp+1
i T(94)

> Ei(ui)−
λ′i

p+ 1
‖a‖∞δp+1

i T

> θi,

for any i = i∗ + 1, . . . , i∗ + n, thanks to (86), the choice of Λn and the definition of λ′i.
On the other hand, by (88), (89) and using the fact that ‖wi‖∞ = s̃i 6 δi (see the proof of

Theorem 4) and the definition of λ
′′
i , for any λ with |λ| 6 Λn and for any i = i∗+1, . . . , i∗+n

we deduce that

Ei,λ(ui,λ) = min
u∈W ηi

Ei,λ(u)

6 Ei,λ(wi)

= Ei(wi)−
λ

p+ 1

T∑
k=1

a(k)|wi(k)|p+1

6 Ei(wi) +
|λ|
p+ 1

‖a‖∞δp+1
i T

6 Ei(wi) +
Λn
p+ 1

‖a‖∞δp+1
i T(95)

6 Ei(wi) +
λ
′′
i

p+ 1
‖a‖∞δp+1

i T

< θi−1.

Consequently, for every i = i∗ + 1, . . . , i∗ + n and λ ∈ [−Λn,Λn], by (94) and (95) and
the properties of {θi}i, we have

θi < Ei,λ(ui,λ) < θi−1 < 0,(96)

and therefore

En,λ(un,λ) < . . . < E1,λ(u1,λ) < 0.(97)

Note that ui,λ ∈W ηn for every i = i∗ + 1, . . . , i∗ + n, so Ei,λ(ui,λ) = En,λ(ui,λ), see relation
(82). From above, for every λ ∈ [−Λn,Λn], we have

En,λ(un,λ) < . . . < En,λ(u1,λ) < 0 = En,λ(0).

In particular, the solutions u1,λ, . . . , un,λ are all distinct and non-trivial, whenever λ ∈
[−Λn,Λn].

Finally, it remains to prove conclusion (10). For this, we assume that n > 2 and fix
λ ∈ [−Λn,Λn]. We prove that

‖ui,λ‖∞ > δi−1 for all i ∈ {2, . . . , n}.(98)

Let us assume that there exists an element i0 ∈ {2, . . . , n} such that ‖ui0,λ‖∞ 6 δi0−1. Since
δi0−1 < ηi0−1, then ui0,λ ∈W ηi0−1 . Thus, on account of (83) and (82), we have

Ei0−1,λ(ui0−1,λ) = min
u∈W ηi0−1

Ei0−1,λ 6 Ei0−1,λ(ui0,λ) = Ei0,λ(ui0,λ),

which contradicts (97). Therefore, (98) hold true.
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Thus, from (81) we have ‖ui,λ‖∞ > i − 1 for all i ∈ {1, . . . , n}. This ends the proof of
Theorem 5. �
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[4] M. Mihăilescu, V. Rădulescu, S. Tersian, Eigenvalue problems for anisotropic discrete boundary
value problems, J. Difference Equ. Appl. 15 (2009), 557-567.
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