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Abstract. We construct large families of two-dimensional travelling water waves propagating under
the influence of gravity in a flow of constant vorticity over a flat bed. A Riemann-Hilbert problem
approach is used to recast the governing equations as a one-dimensional elliptic pseudo-differential
equation with a scalar constraint. The structural properties of this formulation, which arises as the
Euler-Lagrange equation of an energy functional, enable us to develop a theory of analytic global
bifurcation.
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1. Introduction

We construct large families of two-dimensional periodic steady water waves propagating under the
influence of gravity at the surface of a layer of an incompressible, inviscid and homogeneous fluid with
a flat bed. In contrast to most previous mathematical studies, our waves can have internal stagnation
points and critical layers. They can also have overturning profiles, that is, profiles that are not graphs.
Such phenomena cannot occur for the much-studied irrotational flows. For an irrotational steady flow
the wave profile is necessarily the graph of a single-valued function [33, 39, 43, 44], and there are no
interior stagnation points or critical layers.

In this paper we construct families of water waves on flows with non-vanishing constant vorticity.
Vorticity is the hallmark of underlying non-uniform currents. Flows with constant vorticity are of
interest because of their analytic tractability, being representative of a wide range of physical scenarios.
For example, if the waves are long compared with the average water depth, then the existence of a
non-zero mean vorticity is more important than its specific distribution [21]. In particular, constant
vorticity gives a good description of tidal currents; that is, the alternating, horizontal movement of
water associated with the rise and fall of the tide, with positive/negative vorticity being appropriate
for the ebb and flood, respectively [10]. On areas of the continental shelf and in many coastal inlets
these are the most significant currents; the fact that they are the most regular and predictable currents
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adds to their appeal. The presence of an underlying non-uniform current gives rise to new dynamically
rich flow phenomena. In particular, critical layers have been observed in many numerical studies of
water flows with an underlying current of constant vorticity, a typical feature of the flow dynamics
being the ‘cat’s eye’ flow pattern of Thomson (Lord Kelvin) [38]. The analysis pursued for instance
in [9, 16] shows that no such patterns can occur in the flow beneath an irrotational periodic steady
water wave. General overviews of the wave-current interaction theory can be found in [10, 34] and
of the numerics in [21, 29, 30, 31, 50]. In the present setting, positive vorticity Υ > 0 characterizes
pure currents (ΥY + U0, 0) whose surface horizontal velocity exceeds the horizontal current velocity
U0 on the bed Y = 0. This is appropriate for the ebb current, while Υ < 0 captures flood currents
[10]. Note that tides refer to the vertical motion of water caused by the gravitational forces due to
the relative motions of Moon, Sun and Earth, whereas the tidal current flood/ebb is the horizontal
movement of water (mostly one-directional) associated with the rise and fall of the tide, respectively.
A spectacular example of tidal currents effects on sea waves is encountered at the Columbia River
entrance, where appreciable tidal currents make it one of the most hazardous navigational regions in
the world because the wave height can easily double in just a few hours cf. [27].

The waves investigated in the present paper are constructed by means of bifurcation from laminar
(flat) flows. Construction of small-amplitude waves via local bifurcation has already been accomplished
in [49, 18]. What is novel here is the construction of waves of large amplitude via global bifurcation.
Now, global bifurcation has also been carried out for general vorticity under the limitation that there
are no stagnation points or critical layers [15], that is, under the condition that ψY < 0, where the
vector (ψY ,−ψX) is the fluid velocity in the frame moving with the speed of the traveling wave. The
reason for this limitation in past studies is because they rely upon the semi-Lagrangian transformation
of Dubreil-Jacotin [23], which requires ψY < 0. The critical layers are comprised of the points where
ψY = 0, while the stagnation points are those at which both ψY = 0 and ψX = 0. On the other
hand, a vertical scaling transformation was used in [49] to construct waves of small amplitude with
critical layers. However, the intricate nature of the reformulated free-boundary problem precludes an
attempt to develop an effective global bifurcation approach from this perspective. While for waves
of small amplitude, the vertical scaling transformation induces tractable structural changes that can
be captured by linear theory, as soon as the waves cease to represent small perturbations of a flat
free surface, the inherent loss of structure cannot accommodate the pursuit of a physically tangible
analysis. Two of the present authors developed in [18] a new conformal transformation to make a
different construction of waves with critical layers. This transformation is further developed in the
present paper to construct waves of large amplitude. We also prove that they are critical points of a
natural functional derived from the energy.

We begin Section 2 by introducing the governing equations of water waves. Then, as presented in
[18], we use a conformal mapping from a fixed infinite strip in the plane onto the fluid domain with
its free boundary (see Figure 1). For the sake of completeness, some of the technical background for
the Hilbert transform on a strip is provided in Appendix A. By means of Riemann-Hilbert theory on
the strip, the problem is further transformed to an elliptic pseudo-differential equation (2.22a) on a
horizontal line, where the unknown is the surface profile expressed as a function v(x) of a conveniently
transformed version of the horizontal coordinate. The pseudo-differential equation is also coupled to
a scalar equation (2.22b) for the mass flux m. As distinguished from the formulation in [18], this new
formulation is crucial to our global bifurcation analysis in the subsequent sections. The equations
appear rather technical as they involve the Hilbert transform for a strip and several parameters.
Nevertheless, we show that the equations in the new formulation are precisely the Euler-Lagrange
equations of a certain functional Λ. As explained in Appendix B, the functional Λ comes naturally from

the physical energy E =

∫∫ {
1

2
|∇ψ|2 +Υψ +

Q

2
− gY

}
dY dX , where Υ is the vorticity (Υ = −γ

in some references), Q/2g is the total head, which is the greatest possible height of the wave, as
discussed further at the beginning of Section 2, and g is gravity. The formulation is new even for
irrotational flows of finite depth. It could be regarded as an analogue of Babenko’s formulation [2] for
the irrotational water-wave problem of infinite depth.



GLOBAL BIFURCATION OF STEADY GRAVITY WATER WAVES WITH CRITICAL LAYERS 3

In Section 3 we construct for every integer n ≥ 1 and both choices of sign ± a continuous solution
curve Kn,±. The solution curve Kn,± consists of triples (Q,m, v) belonging to a function space R ×
R × C2,α

per(R), where 0 < α < 1 is the Hölder space index. Each point on the curve Kn,± corresponds
to a water wave, with n = 1 standing for the bifurcation from the lowest eigenvalue and n ≥ 2 for the
higher modes. While local bifurcation from a simple eigenvalue is a well-known technique, most often
referred to by the names Crandall-Rabinowitz or Liapunov-Schmidt, we go beyond local bifurcation
and prove the existence of a global solution curve. We thus obtain the existence of solutions that are
not merely small perturbations of a laminar flow (with a flat free surface). We show that each curve
Kn,± has locally a real-analytic parametrization, by employing the “analytic theory of bifurcation”
due to Dancer, Buffoni and Toland [6]. The basic idea of continuation of the local bifurcation curve
originates with the work of Rabinowitz [32], who used Leray-Schauder degree to extend the local
bifurcation curve. Shortly thereafter Dancer [20] showed that analytic continuation can provide a
similar construction. The two approaches provide somewhat different sets of solutions. The main
advantage of the analytic theory is that it provides a continuous curve of solutions, whereas the degree-
theoretic approach only ensures the existence of a global continuum of solutions that might lose its
character as a curve beyond a small neighbourhood of the local bifurcation point. The constructed
solution curve has a locally analytic parametrization around each point, even as it passes through its
branch points. Theorem 3 provides three alternatives for how the curve “ends” in either direction.
One is that the curve is unbounded in R × R × C2,α

per(R). Another is that the solution curve Kn,±

approaches a wave of greatest height Q/2g. The third is that the curve is a closed loop that returns
to the original laminar flow.

Section 4 is a key part of the analysis. We eliminate the third alternative and replace it by the
alternative that the curve of solutions contains a wave for which the surface S intersects itself at a
point directly above the trough. This possibility is supported by numerical computations [21, 50].
Although the surface might overturn (that is, Y could be a multivalued function of X), we prove
that Y decreases from the crest to the trough. We prove in particular that a ‘loop’ could not occur
but that a limit of such monotone waves might have a surface that intersects itself. Moreover, the
self-intersection could happen only on the vertical line above the trough. These statements are proven
by an intricate series of arguments based on a maximum principle that keeps track of the possible
nodes of Y .

Section 5 highlights some more detailed features of the small-amplitude waves that illustrate the
profound effect of vorticity. In particular, there exist flows of which the streamlines are in the shape
of “cat’s eyes”. In Section 6 we mention some further results that will appear in a forthcoming
paper (most of these results were already announced in [35]), as well as some conjectures that gained
some reasonable degree of credence due to some partial analytical results and available numerical
simulations.

2. The free-boundary problem

The problem of periodic travelling gravity water waves in a flow of constant vorticity Υ over a flat
bed can be formulated as the free-boundary problem of finding

• A laterally unbounded domain Ω in (X, Y )-plane, whose boundary consists of the real axis

(2.1a) B := {(X, 0) : X ∈ R}

representing the flat impermeable water bed, and an a priori unknown curve with a parametric
representation

(2.1b) S := {(u(s), v(s)) : s ∈ R}

where

(2.1c) the map s 7→ (u(s)− s, v(s)) is periodic of period L,

representing the water’s free surface.
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Figure 1. The conformal parametrization of the fluid domain.

• A function ψ(X, Y ) that is L-periodic in X throughout Ω, representing the stream function
giving the velocity field (ψY ,−ψX) in a frame moving at the constant wave speed, which
satisfies the following equations and boundary conditions:

∆ψ = Υ in Ω ,(2.2a)

ψ = 0 on S ,(2.2b)

ψ = −m on B ,(2.2c)

|∇ψ|2 + 2gY = Q on S .(2.2d)

Here g is the gravitational constant of acceleration and the constant m is the relative mass flux. The
constant Q/2g is the total head, which is the greatest possible height of S. The notion of relative
mass flux captures the fact that in the moving frame the amount of water passing any vertical line is
constant throughout the fluid domain, since

∫ v(s)

0

ψY (X, Y ) dY = m, s ∈ R .

Neglecting friction and surface tension effects, the Bernoulli equation (2.2d) is a form of conservation
of energy; cf. the discussion in [10]. Note that all the terms in |∇ψ|2/2g + Y = Q/2g on S have the
dimension of length, the first being called the velocity head and representing the elevation needed for
the fluid to reach the velocity |∇ψ| during frictionless free fall, and the second term being the elevation
head. The level sets of ψ are the streamlines. A point where the gradient of ψ vanishes is called a
stagnation point. A critical layer is a curve along which ψY = 0. Such curves arise in the context of
flow-reversal, when a fluid region where the flow is oriented towards the propagation direction of the
wave is adjacent to a fluid region in which the flow is adverse to it.

For an integer p ≥ 0 and α ∈ (0, 1), we denote by Cp,α the space of functions whose partial
derivatives up to order p are Hölder continuous with exponent α over their domain of definition. By
Cp,α

loc we denote the set of functions of class Cp,α over any compact subset of their domain of definition.
Let Cp,α

L (R) be the space of functions of one real variable which are L-periodic and of class Cp,α.
Throughout this paper we are interested in solutions (Ω, ψ) of the water-wave problem (2.2) of class
C1,α for some α ∈ (0, 1), in the sense that S has a parametrization (2.1b) with u, v functions of class
C1,α, such that (2.1c) holds and

(2.3) u′(s)2 + v′(s)2 6= 0 for all s ∈ R,

while ψ ∈ C∞(Ω) ∩ C1,α(Ω).

2.1. The first reformulation via conformal mapping. In this subsection we present, following
[18], the reformulation of the free-boundary problem (2.2) as the quasilinear pseudodifferential equation
(2.18) for a periodic function of a single variable. This involves the periodic Dirichlet-Neumann
operator Gkh and the periodic Hilbert transform Ckh for a strip, for whose definition and detailed
properties we refer to Appendix A.
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For any d > 0, we denote by Rd the horizontal strip {(x, y) ∈ R2 : −d < y < 0}. We consider
functions of period L = 2π/k where k is the wave number. Given an L-periodic strip-like domain
Ω of class C1,α for some α ∈ (0, 1), having the real axis as its lower boundary, the considerations in
[18] show that there exists a unique constant h > 0, called the conformal mean depth of Ω, and a
conformal map U + iV from Rkh onto Ω with the following properties. It admits an extension as a
homeomorphism of class C1,α between the closures of these domains, such that

(2.4)





U(x+ 2π, y) = U(x, y) +
2π

k
for (x, y) ∈ Rkh,

V (x+ 2π, y) = V (x, y) for (x, y) ∈ Rkh,

V (x,−kh) = 0 for all x ∈ R

See Figure 1. Moreover, U, V ∈ C1,α(Rkh) and

(2.5) U2
x(x, 0) + V 2

x (x, 0) 6= 0 for all x ∈ R,

(2.6) the mapping x 7→ (U(x, 0), V (x, 0)) is injective on R,

(2.7) S = {(U(x, 0), V (x, 0)) : x ∈ R} is the upper boundary of Ω .

We define

(2.8) v(x) = V (x, 0) for all x ∈ R and h = [v],

where throughout this paper [f ] denotes the mean over one period of a 2π-periodic function f . Note
that V may be recovered uniquely from v as the solution of

∆V = 0 in Rkh,(2.9a)

V (x, 0) = v(x), x ∈ R,(2.9b)

V (x,−kh) = 0, x ∈ R .(2.9c)

Of course, U is a harmonic conjugate of −V on Rkh and, moreover, by (A.5) with d = kh, we have
that, up to an additive constant that can be neglected,

(2.10) U(x, 0) =
x

k
+
(
Ckh(v − h)

)
(x), x ∈ R .

Thus Ux(x, 0) = Vy(x, 0) =
1
k
+ Ckh(v

′).
Let Ω be any L-periodic strip-like domain of class C1,α, with the real axis as its lower boundary.

Classical elliptic theory ensures that (2.2a)–(2.2c) has a unique solution. Thus, one may regard (2.1)–
(2.2) as the problem of finding a domain Ω for which the corresponding solution of (2.2a)–(2.2c)
satisfies also (2.2d). In what follows, we aim to recast this problem in terms of the function v of one
variable defined above. If ψ is the unique solution of (2.2a)–(2.2c), we define ξ : Rkh → R by

(2.11) ξ(x, y) = ψ(U(x, y), V (x, y)), (x, y) ∈ Rkh ,

and ζ : Rkh → R by

(2.12) ζ = ξ + m−
Υ

2
V 2 .

Then we may recast (2.2a)–(2.2c) as

∆ζ = 0 in Rkh,(2.13a)

ζ(x, 0) = m −
Υ

2
v2(x) for all x ∈ R,(2.13b)

ζ(x,−kh) = 0 for all x ∈ R.(2.13c)

Moreover, by calculating |∇ξ|2 = (Q− 2gY )|∇V |2, we see that (2.2d) is satisfied if and only if

(2.14) (ζy + ΥV Vy)
2 = (Q− 2gV )(V 2

x + V 2
y ) at (x, 0) for all x ∈ R.
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From (2.13) and the definition (A.1) of the Dirichlet-Neumann operator Gkh we infer that

(2.15) ζy =
m

kh
−

Υ

2
Gkh(v

2) on y = 0,

while clearly

(2.16) Vy = Gkh(v) on y = 0 .

Therefore (2.14) may now be rewritten as

(2.17)
{m
kh

−Υ
(
Gkh(v

2/2)− vGkh(v)
)}2

= (Q− 2gv)
(
v′2 + Gkh(v)

2
)
,

where [v] = h. Equation (2.17) was first derived in [18], Υ = −γ, due to a change of sign of the
two-dimensional vorticity.

The above considerations show that the free-boundary problem (2.2) leads to the problem of finding
a positive number h and a function v ∈ C1,α

2π (R) which satisfy
{m
kh

−Υ
(
Gkh(v

2/2)− vGkh(v)
)}2

= (Q− 2gv)
(
v′2 + Gkh(v)

2
)
,(2.18a)

[v] = h,(2.18b)

v(x) > 0 for all x ∈ R,(2.18c)

the mapping x 7→
(x
k
+ Ckh(v − h)(x), v(x)

)
is injective on R,(2.18d)

v′(x)2 + Gkh(v)(x)
2 6= 0 for all x ∈ R .(2.18e)

Indeed, (2.18a) is precisely (2.17). The condition (2.18b) is just the definition of h, and (2.18c) is
ensured by the assumption that S lies in the upper half-plane. As for (2.18d) and (2.18e), they are
obtained from (2.6) and (2.5), respectively, in view of (2.16), (2.8), (2.10), and the Cauchy-Riemann
equations for the analytic function U + iV . Note also that the relations (2.15)-(2.16), in combination
with (A.4), may be written as

(2.19)





Vy =
1

k
+ Ckh(v

′),

ζy =
m

kh
−

Υ

2kh
[v2] − Υ Ckh(vv

′),

on y = 0 ,

since [v] = h. Thus (2.18a) may be equivalently rewritten as

(2.20)
{m
kh

−
Υ

2kh
[v2]−ΥCkh(vv

′) +Υv
(1
k
+ Ckh(v

′)
)}2

− (Q− 2gv)
{
(v′)2 +

(1
k
+ Ckh(v

′)
)2}

= 0.

Conversely, given a positive number h and a function v ∈ C1,α
2π satisfying (2.18) with k = 2π/L,

one can construct a solution of (2.2) by reversing the process which led from (2.2) to (2.18). Indeed,
let V be the unique solution of (2.9). If U : Rkh → R is a harmonic function such that U + iV is
holomorphic, then U, V ∈ C1,α(Rkh) cf. [18]. Condition (2.18b) ensures that the first two relations
in (2.4) hold. In combination with (2.18d) and (2.18c), we infer that the curve S defined by (2.7) is
non-self-intersecting and contained in the upper half-plane. The map U + iV is a conformal mapping
from Rkh onto an L-periodic strip-like domain Ω of conformal depth h. Moreover, cf. [18], this map
admits an extension as a homeomorphism between the closures of these domains, with {(x, 0) : x ∈ R}
being mapped onto S and {(x,−kh) : x ∈ R} being mapped onto B. Due to (2.18e), S is a C1,α curve.
If ζ is the unique solution of (2.13), then ζ ∈ C1,α(Rkh) ∩ C

∞(Rkh). Defining ξ by (2.12), and then
ψ by (2.11), we see that ψ ∈ C1,α(Ω) ∩ C∞(Ω) satisfies (2.2a)-(2.2c). Finally, since (2.18a) holds, we
obtain that ψ satisfies (2.2d).

Note that the velocity at the location (X, Y ) =
(
U(x, y), V (x, y)

)
∈ Ω, where (x, y) ∈ Rkh, is given

by

(2.21) (ψY , −ψX) =
(Vxζx + Vyζy

V 2
x + V 2

y

+ ΥV,
Vxζy − Vyζx
V 2
x + V 2

y

)
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in terms of ζ(x, y) and of the conformal map U + iV from Rkh to Ω. The formula (2.21) is obtained
by differentiating (2.11), solving the resulting linear system for ψX and ψY and taking (2.12) into
account.

2.2. The new reformulation of Riemann-Hilbert type. In the theory of irrotational waves of
infinite depth, it is known [36] that the equation analogous to (2.20) admits an equivalent reformula-
tion, via Riemann-Hilbert theory. We now derive a new reformulation in the present setting as well,
although the argument is more intricate and the new equation is coupled to a scalar constraint. The
new formulation is the system

Ckh
(
(Q− 2gv −Υ2v2) v′

)
+ (Q− 2gv −Υ2v2)

(1
k
+ Ckh(v

′)
)

(2.22a)

− 2Υ v
(m
kh

−
Υ

2kh
[v2]−Υ Ckh(vv

′)
)
−
Q− 2Υm− 2gh

k
+ 2g [v Ckh(v

′)] = 0 ,

[{m
kh

−
Υ

2kh
[v2]−ΥCkh(vv

′) + Υv
(1
k
+ Ckh(v

′)
)}2

]
(2.22b)

−

[
(Q− 2gv)

{
(v′)2 +

(1
k
+ Ckh(v

′)
)2}]

= 0 .

for unknowns (m,Q, v) ∈ R × R × C1,α
2π (R), Recall that m ∈ R is the relative mass flux, h = [v] > 0

is the conformal mean depth of the fluid domain Ω, k > 0 is the wave number corresponding to the
wave period L = 2π/k, and Q is the total head. The square bracket [ ] means the average over a
period, so (2.22b) is a scalar equation.

Theorem 1 (Equivalence of Formulations). Let (m,Q, v) ∈ R× R× C1,α
2π (R), with [v] = h.

(i) If (2.22) holds, then (2.20) holds.
(ii) If (2.20) holds and, in addition,

(2.23) V 2
x + V 2

y 6= 0 in Rkh,

where V is the solution of (2.9), then (2.22) holds.

Proof of Theorem 1. It is convenient to begin by introducing the following general notation. A 2π-
periodic function z + iw : R → C is said to belong to the class Ap,α

d for some integer p ≥ 0, α ∈ (0, 1)
and d > 0, if [w] = 0 and there exists a analytic function Z+iW : Rd → C such that Z,W ∈ Cp,α

2π (Rd),
W satisfies (A.2), and Z(x, 0) = z(x) for all x ∈ R. Then Ap,α

d is an algebra. Indeed, if Zj+ iWj ∈ Ap,α
d

for j = 1, 2, then the product Z+ iW = (Z1+ iW1)(Z2+ iW2) is harmonic due to the Cauchy-Riemann
equations and the fact that each component is harmonic. The Cauchy-Riemann equation Zx = Wy

implies that [W ] is independent of y. But [W (·,−d)] = 0 so it follows that [w] = 0 as well. Thus Ap,α
d

is an algebra. The discussion in Appendix A shows that

(2.24) z + iw ∈ Ap,α
d ⇔ z = [z] + Cd(w).

Now for any (m,Q, v) ∈ R × R × C1,α
2π (R) with [v] = h, let V be the solution of (2.9) and ζ the

solution of (2.13). In particular,

(2.25) ζx(x, 0) = −ΥV (x, 0)Vx(x, 0) for all x ∈ R

and ζy is given by (2.19). Also, recall from the previous section that (2.20) is merely (2.14). As a
consequence (2.22b) is equivalently expressed as

(2.26) [(Q− 2gV (·, 0))(V 2
x (·, 0) + V 2

y (·, 0))− (ζy(·, 0) + ΥV (·, 0)Vy(·, 0))
2] = 0.

Notice that

Vy(·, 0) + iVx(·, 0) ∈ A0,α
kh ,(2.27)

ζy(·, 0) + iζx(·, 0) ∈ A0,α
kh ,(2.28)

{ζ2y − ζ2x + 2iζyζx}
∣∣
(x, 0) ∈ A0,α

kh .(2.29)
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We now claim that (2.22a) may be expressed in an equivalent way as

(2.30)
(
x 7→ {(Q− 2gV −Υ2V 2)(Vy − iVx)− 2ΥζyV }

∣∣
(x, 0)

)
∈ A0,α

kh .

To justify this claim, let us consider the function in (2.30) in more detail. Its imaginary part is

(2.31) w = −(Q− 2gv −Υ2v2) v′ ,

which satisfies [w] = 0. Because of (2.19), its real part is

(2.32) z = (Q− 2gv −Υ2v2)
(1
k
+ Ckh(v

′)
)
− 2Υ v

(m
kh

−
Υ

2kh
[v2]−Υ Ckh(vv

′)
)
,

which has the average

[z] =
Q− 2gh− 2Υm

k
− 2g [v Ckh(v

′)]−Υ2 [v2 Ckh(v
′)] + 2Υ2 [v Ckh(vv

′)].

But f 7→ Ckh(f ′) being self-adjoint, we have

[v2 Ckh(v
′)] =

1

2π

∫ π

−π

v2 Ckh(v
′) dx =

1

2π

∫ π

−π

v Ckh
(
(v2)′

)
dx(2.33)

=
1

π

∫ π

−π

v Ckh(vv
′) dx = 2 [v Ckh(vv

′)]

so that

(2.34) [z] =
Q− 2gh− 2Υm

k
− 2g [v Ckh(v

′)].

According to (2.24), the statement (2.30) is equivalent to z = [z] + Cd(w). We express z by (2.32),
[z] by (2.34) and w by (2.31). Then all the terms in the equation that result from the equation
z = [z] + Cd(w) are compared with the terms in (2.22a). This leads to the conclusion that (2.30) is
equivalent to (2.22a), as we claimed.

(i) Suppose that (2.22a) and (2.22b) hold. Then, as we just pointed out, (2.30) and (2.26) hold.
Since A0,α

kh is an algebra, it follows from (2.30) and (2.27) by multiplying by Vy + iVx that

(2.35)
(
x 7→ {(Q− 2gV −Υ2V 2)(V 2

x + V 2
y )− 2ΥζyV (Vy + iVx)}

∣∣
(x, 0)

)
∈ A0,α

kh .

Upon using (2.25), this may be rewritten as

(2.36)
(
x 7→ {(Q− 2gV −Υ2V 2)(V 2

x + V 2
y )− 2ΥζyV Vy + 2iζxζy}

∣∣
(x, 0)

)
∈ A0,α

kh .

It now follows, taking (2.29) into account, that

(2.37)
(
x 7→ {(Q− 2gV −Υ2V 2)(V 2

x + V 2
y )− 2ΥζyV Vy − (ζ2y − ζ2x)}

∣∣
(x, 0)

)
∈ A0,α

kh .

Since this function is real, it follows from (2.24) that it must be a constant, a fact which may be
written, upon using also (2.25), as

(2.38) {(Q− 2gV )(V 2
x + V 2

y )− (ζy +ΥV Vy)
2}
∣∣
(x, 0) ≡ C0.

It now follows from (2.26) that C0 = 0, so that (2.14), and therefore (2.20) holds.
(ii) Conversely, suppose that (2.20) holds. Then (2.22b) is obtained by taking averages. Also (2.20)

is exactly the same as (2.38) with C0 = 0. This implies that (2.37) holds, then, in view of (2.29), that
(2.36) holds, and then, upon using (2.25), that (2.35) holds. It is a consequence of (2.23) that

(
x 7→ {Vy(x, 0) + iVx(x, 0)}

−1
)
∈ A0,α

kh .

Again using the fact that A0,α
kh is an algebra, we deduce from (2.35) that (2.30) holds, which means,

as proved earlier, that (2.22a) holds. �
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Remark 1. Let us make an observation about the statement (2.30), which is at the heart of the proof
of Theorem 1. If we denote, for all x ∈ R,

F (x) = Vy(x, 0) + iVx(x, 0),

G(x) = {(Q− 2gV −Υ2V 2)(Vy − iVx)− 2ΥζyV }
∣∣
(x, 0),

a(x) = Q− 2gV (x, 0)−Υ2V 2(x, 0),

b(x) = −2ΥV (x, 0)ζy(x, 0),

then F,G ∈ A0,α
kh , a, b are real-valued functions, and (2.30) takes the form aF + b = G, where F

denotes the complex conjugate of F . An equation of this form, but with a, b given, and F,G to be
determined, is called a Riemann-Hilbert problem. In our problem, however, a, b, F,G are coupled, and
in our proof of Theorem 1 we made no use of any general result of Riemann-Hilbert theory.

2.3. Variational structure of the new formulation. Given v ∈ C2,α
2π (R), we separate the average

h of v by setting

(2.39) v = w + h with [w] = 0 .

With this notation we introduce the functional

Λ(w, h) =

∫ π

−π

(
Qv − g v2 −

Υ2

3
v3
)(1

k
+ Ckh(v

′)
)
dx

+

∫ π

−π

(
m −

Υ

2
v2
)(m

kh
−

Υ

2kh
[v2] − Υ Ckh(vv

′)
)
dx ,(2.40)

of which the domain of definition is the space S of pairs (w, h) with h > 0 and w ∈ C2,α
2π,◦(R), where

the subscript ◦ indicates mean zero. Taking variations of Λ with respect to the function w and with
respect to the parameter h, we will obtain the reformulation of the governing equations (2.22). While
the particular form of the functional Λ in (2.40) may appear at this point unmotivated, the reason for
considering it is that, as we show in full detail in Appendix B.2, this form is obtained by transforming
via conformal mapping the natural energy associated to the flow in the physical plane. In this section
we content ourselves with merely deriving the equation for the critical points of the functional Λ.

Theorem 2. Any critical point of Λ in the space S satisfies the equation (2.22a) as well as the
constraint (2.22b).

Proof. We compute the first variation of Λ at v by considering in turn the variations of w and of h.
First, for ϕ smooth, 2π-periodic and with [ϕ] = 0, we compute from (2.40) the variation

δΛ

δw
(w, h)ϕ = lim

ε→0

Λ(w + εϕ, h)− Λ(w, h)

ε

with respect to w as

δΛ

δw
(w, h)ϕ =

∫ π

−π

(
Qv − g v2 −

Υ2

3
v3
)
Ckh(ϕ

′) dx+

∫ π

−π

(
Q − 2 g v − Υ2 v2

)
ϕ
(1
k
+ Ckh(v

′)
)
dx

+

∫ π

−π

(
m−

Υ

2
v2
)(

−
Υ

kh
[vϕ]−ΥCkh((vϕ)

′)
)
dx−Υ

∫ π

−π

vϕ
(m
kh

−
Υ

2kh
[v2] −ΥCkh(vv

′)
)
dx .

Using the fact that f 7→ Ckh(f ′) is self-adjoint, this may be written as

δΛ

δw
(w, h)ϕ =

∫ π

−π

Ckh
((
Q− 2gv −Υ2v2

)
v′
)
ϕdx+

∫ π

−π

(
Q− 2gv −Υ2v2

)(1
k
+ Ckh(v

′)
)
ϕdx

−
Υ

kh

(
m−

Υ

2
[v2]
) ∫ π

−π

vϕ dx + Υ2

∫ π

−π

v Ckh(vv
′)ϕdx

−Υ

∫ π

−π

v
(m
kh

−
Υ

2kh
[v2] − Υ Ckh(vv

′)
)
ϕdx .
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Therefore

(2.41)
δΛ

δw
(w, h)ϕ =

∫ π

−π

η ϕ dx,

where

η = Ckh
((
Q − 2gv − Υ2 v2

)
v′
)
+
(
Q − 2gv − Υ2 v2

)(1
k
+ Ckh(v

′)
)

− 2Υ v
(m
kh

−
Υ

2kh
[v2]−Υ Ckh(vv

′)
)
.(2.42)

Now, at a critical point v = w + h of Λ(w, h), we of course have
δΛ

δw
(w, h)ϕ = 0 for all smooth

2π-periodic functions ϕ with [ϕ] = 0, so that (2.41) implies that η is a constant.
Next, we compute the variation of Λ with respect to h. For this purpose, we notice that for any

function f ∈ C2,α
2π (R) we have

(2.43)
d

dh

(
Ckh (f

′)
)
= − k f ′′ − k C2

kh (f
′′) .

Indeed, writing

f(x) = [f ] +
∞∑

n=1

(
an cos(nx) + bn sin(nx)

)
,

we have

Ckh (f
′) =

∞∑

n=1

n coth(nkh)
(
an cos(nx) + bn sin(nx)

)
,

so that

d

dh

(
Ckh (f

′)
)
=

∞∑

n=1

kn2(1 − coth2(nkh))
(
an cos(nx) + bn sin(nx)

)
= − k f ′′ − k C2

kh (f
′′).

Expressing Λ explicitly in terms of w, the functional Λ(w, h) equals
∫ π

−π

(
Qw + Qh− g w2 − 2g w h − g h2 −

Υ2

3
w3 − Υ2w2 h − Υ2w h2 −

Υ2

3
h3
)(1

k
+ Ckh(w

′)
)
dx

+

∫ π

−π

(
m−

Υ

2
w2 − Υwh −

Υ

2
h2
)(m

kh
−

Υ

2kh
[w2] −

Υ h

2k
− Υ Ckh(ww

′) − Υ h Ckh(w
′)
)
dx

By (2.43) we now compute

δΛ

δh
(w, h) =

∫ π

−π

(Q− 2gv −Υ2v2)
(1
k
+ Ckh(v

′)
)
dx

+

∫ π

−π

(
Qv − g v2 −

Υ2

3
v3
)(

− k v′′ − k C2
kh(v

′′)
)
dx

− Υ

∫ π

−π

v
(m
kh

−
Υ

2kh
[v2] − Υ Ckh(vv

′)
)
dx(2.44)

+

∫ π

−π

(
m−

Υ

2
v2
){

−
m

kh2
+

Υ

2kh2
[v2] −

Υ

k
− Υ Ckh(v

′)

+ Υk (vv′)′ +Υk C2
kh

(
(vv′)′

)}
dx ,

since the terms ±Υhk(1+C2
kh)v

′′ have canceled each other. In the second and fourth integral in (2.44)
we integrate once by parts the terms involving v′′ and (vv′)′, and for the terms involving C2

kh(v
′′) and
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C2
kh

(
(vv′)′

)
we use the fact that f 7→ Ckh(f ′) is self-adjoint, to express (2.44) as

δΛ

δh
(w, h) =

∫ π

−π

(Q− 2gv −Υ2v2)
(1
k
+ Ckh(v

′)
)
dx + k

∫ π

−π

(Q− 2gv −Υ2v2) (v′)2 dx

− k

∫ π

−π

Ckh
(
(Q− 2gv −Υ2v2)v′

)
Ckh(v

′) dx

− Υ

∫ π

−π

v
(m
kh

−
Υ

2kh
[v2] − Υ Ckh(vv

′)
)
dx(2.45)

+

∫ π

−π

(
m−

Υ

2
v2
){

−
m

kh2
+

Υ

2kh2
[v2]−

Υ

k
−Υ Ckh(v

′)
}
dx

+ kΥ2

∫ π

−π

v2(v′)2 dx − kΥ2

∫ π

−π

(
Ckh(vv

′)
)2
dx .

We further use (2.42) to substitute the third integral in (2.45) by

− k

∫ π

−π

η Ckh(v
′) dx+ k

∫ π

−π

(Q− 2gv −Υ2v2)
(1
k
+ Ckh(v

′)
)
Ckh(v

′) dx

− 2 kΥ

∫ π

−π

v
{m
kh

−
Υ

2kh
[v2] − Υ Ckh(vv

′)
}
Ckh(v

′) dx.

Consequently (2.45) takes the form

δΛ

δh
(w, h) = −k

∫ π

−π

η Ckh(v
′) dx+ k

∫ π

−π

(Q− 2gv −Υ2v2)
{
(v′)2 +

(1
k
+ Ckh(v

′)
)2}

dx

− 2kΥ

∫ π

−π

v
{m
kh

−
Υ

2kh
[v2] − Υ Ckh(vv

′)
}
Ckh(v

′) dx

−Υ

∫ π

−π

v
(m
kh

−
Υ

2kh
[v2] − Υ Ckh(vv

′)
)
dx

+

∫ π

−π

(
m−

Υ

2
v2
){

−
m

kh2
+

Υ

2kh2
[v2] −

Υ

k

}
dx

+
Υ2

2

∫ π

−π

v2 Ckh(v
′) dx+ kΥ2

∫ π

−π

v2(v′)2 dx − kΥ2

∫ π

−π

(
Ckh(vv

′)
)2
dx.

One can easily check that the fifth integral term in the above expression is precisely

− k

∫ π

−π

{m
kh

−
Υ

2kh
[v2]
}2

dx − Υ

∫ π

−π

v
(m
kh

−
Υ

2kh
[v2]
)
dx

while the self-adjointness of f 7→ Ckh(f ′) yields

Υ2

2

∫ π

−π

v2 Ckh(v
′) dx = Υ2

∫ π

−π

v Ckh(vv
′) dx .

Since [Ckh(vv′)] = 0, we get

δΛ

δh
(w, h) = −k

∫ π

−π

η Ckh(v
′) dx + k

∫ π

−π

(Q− 2gv −Υ2v2)
{
(v′)2 +

(1
k
+ Ckh(v

′)
)2}

dx

− k

∫ π

−π

{m
kh

−
Υ

2kh
[v2] − Υ Ckh(vv

′)
}2

dx + kΥ2

∫ π

−π

v2(v′)2 dx

− 2kΥ

∫ π

−π

v
{m
kh

−
Υ

2kh
[v2] − Υ Ckh(vv

′)
}(1

k
+ Ckh(v

′)
)
dx .
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It follows that
δΛ

δh
(w, h) = −k

∫ π

−π

η Ckh(v
′) dx+ k

∫ π

−π

(Q− 2gv)
{
(v′)2 +

(1
k
+ Ckh(v

′)
)2}

dx(2.46)

− k

∫ π

−π

{m
kh

−
Υ

2kh
[v2] − Υ Ckh(vv

′) + Υ v
(1
k
+ Ckh(v

′)
)}2

dx ,

where η is given by (2.42).

At a critical point v = w + h of Λ(w, h) we also have
δΛ

δh
(w, h) = 0. We have already shown that

η is a constant. The exact value of the constant is computed by taking averages in (2.42). Using
the identity (2.33), we obtain precisely (2.22a). Due to the fact that [Ckh(v′)] = 0, the condition
δΛ

δh
(w, h) = 0 is easily seen to be equivalent to (2.22b). This completes the proof of Theorem 2. �

Remark 2. Let us now discuss the special case Υ = 0 (irrotational flow). For k = 1 and w = v − h
(2.22a) reduces to

(2.47) µ Ch(w
′) = w + w Ch(w

′) + Ch(ww
′) − [w Ch(w

′)]

with µ =
Q− 2gh

g
. Note that for Υ = 0 the constant m disappears from (2.22a). In this case, the

constraint (2.22b) merely specifies the value of m. Setting

β = [w Chw
′], ṽ = w − β,

we transform (2.47) into

(2.48) µ̃ Ch(ṽ
′) = ṽ + ṽ Ch(ṽ

′) + Ch(ṽṽ
′)

with µ̃ = µ− 2β. We contrast this formula with the formula for irrotational steady waves in water of
infinite depth, mentioned in the introduction, namely,

(2.49) µ̃ C(ṽ′) = ṽ + ṽ C(ṽ′) + C(ṽṽ′),

where C is the standard Hilbert transform and µ̃ > 0 is a constant (see [3, Equation (1.8)]). Note the
direct analogy between (2.48) and (2.49).

3. Existence theory

A powerful approach for establishing the existence of travelling water waves relies on bifurcation
theory, tailored for the study in-the-large of parameter-dependent families of solutions. The existence
of waves of small amplitude is addressed by means of local bifurcation theory: identifying suitable
parameters that, by crossing through certain thresholds, lead to sudden changes of the corresponding
flat-surface flows into genuine waves. Global bifurcation theory uses topological methods to show that
these families of perturbations of simple solutions belong to connected sets of solutions of global extent.
Since global bifurcation is not a perturbative approach, exploiting instead the topological structure
of the solution set, this global continuum provides wave patterns that are not small disturbances of
flows with a flat-free surface.

In this section we study the existence of solutions (m,Q, v) of (2.22) in the space R×R×C2,α
2π,e(R)

and such that [v] = h, where

C2,α
2π,e(R) = {f ∈ C2,α

2π (R) : f(x) = f(−x) for all x ∈ R},

for some constant α ∈ (0, 1). Our construction provides parameterized families of solutions, which
when the parameter is 0 satisfy v ≡ h. The requirement that v is an even function reflects the fact that
the corresponding wave profile is symmetric about the crest located at x = 0. Symmetric travelling
periodic waves are ubiquitous in nature (see e.g. the photographs in [10]). Moreover, in the absence
of stagnation points in the flow and for surface waves that are represented by graphs of functions, one
can show that a wave profile that is monotonic between crests and troughs has to be symmetric cf.
[12, 11]. In view of Theorem 1, any solution of (2.22) satisfies also (2.18a)-(2.18b); whether or not it
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will give rise to solutions of the free-boundary problem (2.1)-(2.2) depends on whether or not it also
satisfies conditions (2.18c)-(2.18e). The existence of solutions of (2.22) will be provided in Subsection
3.1, while in Subsection 3.2 we study to what extent they satisfy (2.18c)-(2.18e), as well as proving
further qualitative properties, such as strict monotonicity between any crest and trough.

A construction of solutions of (2.20) by means of local bifurcation theory has been carried out in [18].
However, the applicability of global bifurcation theory requires certain compactness of the nonlinear
operators in question, which do not seem to be available for the equation (2.20). Thus, the use of the
system (2.22) seems essential for the global theory that we develop in what follows.

Note first that (2.22) has a family of trivial solutions, for which v ≡ h, while Q and m are related
by

(3.1) Q = 2gh+
(m
h

+
Υh

2

)2
,

where m ∈ R is arbitrary. This family represents a curve

Ktriv :=

{(
m, 2gh+

(m
h

+
Υh

2

)2
, h

)
: m ∈ R

}

in the space R×R×C2,α
2π,e(R). These solutions correspond to laminar flows in the fluid domain bounded

below by the rigid bed B and above by the free surface Y = h, with stream function

ψ(X, Y ) =
Υ

2
Y 2 +

(
m

h
−

Υh

2

)
Y −m, X ∈ R, 0 ≤ Y ≤ h,

velocity field

(3.2) (ψY ,−ψX) =
(
ΥY +

m

h
−

Υh

2
, 0
)
, X ∈ R, 0 ≤ Y ≤ h,

and period L = 2π/k.

Theorem 3 (Global Bifurcation). Let h, k > 0 and Υ ∈ R be given. For each n ∈ N, let

(3.3) m∗
n,± = −

Υh2

2
+

Υh tanh(nkh)

2nk
± h

√
γ2 tanh2(nkh)

4n2k2
+ g

tanh(nkh)

nk

and

(3.4) Q∗
n,± = 2gh+

(m∗
n,±

h
+

Υh

2

)2
.

First, for any m ∈ R with m 6∈ {m∗
n,± : n ∈ N}, there exists a neighbourhood in R × R× C2,α

2π,e(R) of
the point (m,Q, h) on Ktriv, where Q is related to m by (3.1), in which the only solutions of (2.22)
are those on Ktriv. Secondly, consider the points m∗

n,±. For each integer n ≥ 1 and each choice of sign

in ±, there exists in the space R× R× C2,α
2π,e(R) a continuous curve

(3.5) Kn,± = {(m(s), Q(s), vs) : s ∈ R}

of solutions of (2.22) such that the following properties hold.

(i) (m(0), Q(0), v0) = (m∗
n,±, Q

∗
n,±, h), where m

∗
n,± and Q∗

n,± are given by (3.3) and (3.4);

(ii) vs(x) = h+ s cos(nx) + o(s) in C2,α
2π,e(R), 0 < |s| < ε, for some ε > 0 sufficiently small;

(iii) {(m,Q, v) ∈ Wn,± : v 6≡ h, (2.22) holds} = {(m(s), Q(s), vs) : 0 < |s| < ε}, for some

neighbourhood Wn,± of (m∗
n,±, Q

∗
n,±, h) in R× R× C2,α

2π,e(R) and ε > 0 sufficiently small;
(iv) Q(s)− 2gvs(x) > 0 for all s, x ∈ R;
(v) Kn,± has a real-analytic reparametrization locally around each of its points;
(vi) One of the following alternatives occurs:

(α) either

(3.6) min

{
1

1 + ||(m(s), Q(s), vs)||R×R×C2,α
2π,e

,min
x∈R

{Q(s)− 2gvs(x)}

}
→ 0 as s→ ±∞;
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(β) or there exists T > 0 such that (m(s+T ), Q(s+T ), vs+T ) = (m(s), Q(s), vs) for all s ∈ R.

Moreover, for each integer n ≥ 1 and each choice of sign in ±, such a curve of solutions of (2.22)
with the properties (i)-(vi) is unique (up to reparametrization).

In this theorem, (i) states where the curve begins, (ii) and (iii) describe the local behavior of the
curve, and (iv)-(vi) describe the global behavior. The alternative (α) means that either the curve is
unbounded in the function space or it approaches a wave of greatest height, while the alternative (β)
is that the curve forms a loop.

Our main tool in the proof of Theorem 3 is the following version of the global bifurcation theorem
for real-analytic operators due to Dancer [20] and improved by Buffoni and Toland [6, Theorem 9.1.1].
That result is however slightly inaccurate as stated there, and here we provide a corrected version,
slightly modified to better suit our purposes. For a linear operator L between two Banach spaces, let
us denote by N (L) its null space and by R(L) its range.

Theorem 4 (Analytic Bifurcation Theory). Let X and Y be Banach spaces, O be an open subset of
X and F : O → Y be a real-analytic function. Suppose that

(H1) (λ, 0) ∈ O and F (λ, 0) = 0 for all λ ∈ R;
(H2) for some λ∗ ∈ R, N (∂uF (λ

∗, 0)) and Y/R(∂uF (λ
∗, 0)) are one-dimensional, with the nullspace

generated by u∗, and the transversality condition ∂2λ,uF (λ
∗, 0) (1, u∗) 6∈ R(∂uF (λ

∗, 0)) holds;
(H3) ∂uF (λ, u) is a Fredholm operator of index zero whenever F (λ, u) = 0 with (λ, u) ∈ O;
(H4) for some sequence (Qj)j∈N of bounded closed subsets of O with O = ∪j∈NQj, the set {(λ, u) ∈

O : F (λ, u) = 0} ∩ Qj is compact for each j ∈ N.

Then there exists in O a continuous curve K = {(λ(s), u(s)) : s ∈ R} of solutions to F (λ, u) = 0 such
that:

(C1) (λ(0), u(0)) = (λ∗, 0);
(C2) u(s) = su∗ + o(s) in X, |s| < ε as s→ 0;
(C3) {(λ, u) ∈ W : u 6= 0, F (λ, u) = 0} = {(λ(s), u(s)) : 0 < |s| < ε}, for some neighbourhood W

of (λ∗, 0) and ε > 0 sufficiently small;
(C4) K has a real-analytic parametrization locally around each of its points;
(C5) One of the following alternatives occurs:

(α) for every j ∈ N, there exists sj > 0 such that (λ(s), u(s)) 6∈ Qj for all s ∈ R with |s| > sj;
(β) there exists T > 0 such that (λ(s+ T ), u(s+ T )) = (λ(s), u(s)) for all s ∈ R.

Moreover, such a curve of solutions to F (λ, u) = 0 having the properties (C1)− (C5) is unique (up to
reparametrization).

Remark 3. The local version of Theorem 4, in which assumptions (H1) − (H2) imply the existence
of a real-analytic local bifurcating curve Kloc = {(λ(s), u(s)) : s ∈ (−ε, ε)} of solutions to F (λ, u) = 0
with the properties (C1)− (C3) is the real-analytic version of the standard Crandall-Rabinowitz local
bifurcation theorem [19]. The curve K exhausts all possibilities of adding real-analytic arcs to the
local bifurcation curve Kloc in such a way that K has a real-analytic parametrization around each of
its points (see Figure 2), but is not necessarily a maximal connected subset of the solution set.

Remark 4. We now discuss how Theorem 4 relates to [6, Theorem 9.1.1]. In [6], assumption (H4)
is replaced by the slightly stronger assumption that all bounded and closed subsets (in R × X) of
{(λ, u) ∈ O : F (λ, u) = 0} are compact. In [6] it is proven that there does not exist any sequence
sk → ∞ such that the sequence (λ(sk), u(sk))k≥1 is both bounded and bounded away from the boundary
of O. However, [6] incorrectly claims the strictly stronger statement that

(C5) (α′) either ||(λ(s), u(s))||R×X → ∞ as s→ ∞, or dist((λ(s), u(s)), ∂O) → 0 as s→ ∞.

The correct conclusion for [6, Theorem 9.1.1] may be restated in the following way:
As s→ ∞, (λ(s), u(s)) eventually leaves every bounded closed subset B of O.

Indeed, it suffices to notice that the intersection of B with {(λ, u) ∈ O : F (λ, u) = 0} is compact.
Thus our slightly weaker assumption (H4) suffices to reach the correct conclusion by means of exactly
the same arguments as in the proof of [6, Theorem 9.1.1].
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1

R

X

B
1

B−1

C

C−2

C−1

C
2

B0

Figure 2. The global bifurcation curve K ⊂ R × X consists of distinguished real-analytic
open arcs Cj that end in the branch points Bj−1 and Bj if j > 0, or in the branch points Bj

and Bj+1 if j < 0, with B0 = (λ∗, 0) and C1 ∪ {B0} ∪ C−1 being the local bifurcation curve
Kloc. A point on Cj corresponds to a non-singular solution (near which the implicit function
theorem applies), while each Bi arises as the unique intersection point of the closures of a finite
even number of open one-dimensional real-analytic varieties. A distinguished arc Cj can be
uniquely continued across Bj by choosing an outgoing branch Cj+1 if j > 0, or Cj−1 if j < 0,
so that each curve Cj ∪ {Bj} ∪ Cj+1 if j > 0, or Cj ∪ {Bj} ∪ Cj−1 if j < 0, admits a local
uniformizing real-analytic parametrization near Bj .

For the purpose of applying Theorem 4 to problem (2.22), it is necessary to make some simple
changes of variables. Since one must necessarily have [v] = h, it is natural to work with the function

(3.7) w = v − h,

for which [w] = 0. Then w satisfies

2(Q− 2gh) Ckh(w
′)− 2g

(
Ckh(ww

′) + w Ckh(w
′)
)
−Υ2

(
Ckh(w

2w′) + w2 Ckh(w
′)− 2w Ckh(ww

′)
)

(3.8a)

+
Υ2

kh
w[w2]−

Υ2

k
w2 +

Υ2

k
[w2] + 2g [w Ckh(w

′)]−
2g

k
w −

2Υ

k

(m
h

+
Υh

2

)
w = 0 ,

and [{
1

k

(
m

h
+

Υh

2

)
−Υ

(
[w2]

2kh
−
w

k
+ Ckh(ww

′)− wCkh(w
′)

)}2
]
=(3.8b)

=

[
(Q− 2gh− 2gw)

{
w′2 +

(
1

k
+ Ckh(w

′)

)2
}]

.

We observe that, although Q and m are related by (3.1) for trivial solutions, this need not be the case
in general. This observation suggests the introduction of a new parameter

(3.9) µ := Q− 2gh−
(m
h

+
Υh

2

)2
.

Note also that, for the laminar flows given by (3.2), the horizontal velocity at the free surface is m
h
+Υh

2
.

Since this expression occurs naturally in (3.8), while also in fluid dynamics literature it is customary
to identify the laminar flows at which nonlinear small-amplitude waves bifurcate using the speed of
their particles at the free surface (rather than the value of their flux), we introduce another parameter

(3.10) λ =
m

h
+

Υh

2
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The change of parameters (m,Q) 7→ (λ, µ) given by (3.9)-(3.10) is a bijection from R2 onto itself.
In terms of the new parameters, the system (3.8) may be written as

(3.11) F (λ, (µ, w)) = 0,

where F : R×X → Y , with

(3.12) X = R× C2,α
2π,◦,e(R), Y = C1,α

2π,◦,e(R)× R,

where the subscripts indicate period 2π, zero average and evenness, respectively, and where F =
(F1, F2) is given by

F1(λ, (µ, w)) = 2(µ+ λ2) Ckh(w
′)− 2g

{
Ckh(ww

′) + w Ckh(w
′)
}

−Υ2
{
Ckh(w

2w′) + w2 Ckh(w
′)− 2w Ckh(ww

′)
}

(3.13a)

+
Υ2

kh
w[w2]−

Υ2

k
w2 +

Υ2

k
[w2] + 2g [w Ckh(w

′)]−
2g

k
w −

2λΥ

k
w ,

and

F2(λ, (µ, w)) = Υ2
[{

Ckh(ww
′)− w Ckh(w

′)−
1

k
w +

[w2]

2kh

}2]
+

2(2g + λΥ)

k

[
w Ckh(w

′)
]
+ 2g [w(w′)2]

+ 2g
[
w
(
Ckh(w

′)
)2]

−
λΥ

k2h
[w2]− (µ+ λ2)

([(
Ckh(w

′)
)2]

+
[
(w′)2

])
−

µ

k2
.(3.13b)

Proof of Theorem 3. We are going to apply Theorem 4 in the setting (3.11)-(3.13), and then we shall
transfer in a rather straightforward manner the results obtained for (3.13) to the corresponding results
for (2.22). It is obvious that the mapping F is real-analytic on R×X . Let

(3.14) O := {(λ, (µ, w)) ∈ R×X : µ+ λ2 − 2gw(x) > 0 for all x ∈ R},

which is an open set in R×X . We now check the validity of the assumptions (H1)− (H4).
It is obvious that (H1) holds. As for (H2), we easily compute

(3.15) ∂(µ,w) F (λ, (0, 0)) (ν, ϕ) =

(
2 λ2 Ckh(ϕ

′)−
2g

k
ϕ−

2λΥ

k
ϕ,−

ν

k2

)
, (ν, ϕ) ∈ X.

Expanding the function ϕ, which is even, has period 2π, and has zero average, in the series ϕ(x) =
∞∑

n=1

an cos nx, we obtain the representation

(3.16)

∂(µ,w) F (λ, (0, 0)) (ν, ϕ) =

(
∞∑

n=1

an

{
2λ2 n coth(nkh)−

2g

k
−

2λΥ

k

}
cos(nx),−

ν

k2

)
, (ν, ϕ) ∈ X.

It follows from (3.16) that the bounded linear operator ∂(µ,w) F (λ, (0, 0)) : X → Y is invertible
whenever λ is not a solution of

(3.17) λ2nk coth(nkh) = g +Υλ,

for any integer n ≥ 1. Hence by the Implicit Function Theorem these points are not bifurcation points.
The solutions of (3.17) are, for any integer n ≥ 1, given by

(3.18) λ∗n,± =
Υ tanh(nkh)

2nk
±

√
Υ2 tanh2(nkh)

4n2k2
+ g

tanh(nkh)

nk
.

Observe that all of these values are distinct and none of them vanishes. We claim that (H2) holds
for every λ∗ ∈ {λ∗n,± : n ∈ N}. Indeed, consider any such λ∗. It follows easily from (3.16) that
N (∂(µ,w)F (λ

∗, (0, 0))) is one-dimensional and generated by (0, w∗) ∈ X , where w∗(x) = cos(nx) for
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all x ∈ R, while R(∂(µ,w)F (λ
∗, (0, 0))) is the closed subspace of Y formed by the elements (f, c) ∈ Y

where c ∈ R is arbitrary and f satisfies
∫ π

−π

f(x) cos(nx) dx = 0.

From (3.15), we now compute

∂2λ,(µ,w) F (λ
∗, (0, 0)) (1, (0, w∗)) =

(
4λ∗n coth(nkh)−

2Υ

k

)
w∗ 6∈ R(∂(µ,w)F (λ

∗, (0, 0)))

since, using (3.17), we have

4λ∗n coth(nkh)−
2Υ

k
= 2λ∗

(
n coth(nkh) +

g

k(λ∗)2

)
6= 0.

This shows that (H2) holds for every λ
∗ ∈ {λ∗n,± : n ∈ N}.

To check the validity of (H3)-(H4), we rewrite F1 in (3.13a) in the following form

F1(λ, (µ, w)) = 2(µ+ λ2 − 2gw) Ckh(w
′)− 2g

{
Ckh(ww

′)− w Ckh(w
′)
}

−Υ2
{
Ckh(w

2w′) + w2 Ckh(w
′)− 2w Ckh(ww

′)
}

+
Υ2

kh
w[w2]−

Υ2

k
w2 +

Υ2

k
[w2] + 2g [w Ckh(w

′)]−
2g

k
w −

2λΥ

k
w(3.19)

= 2(µ+ λ2 − 2gw) Ckh(w
′) + J(λ, w),

where we have slightly rearranged the first four terms, and left the others unchanged. Here

J(λ, w) = J1(w) + J2(w) + J3(λ, w),

with

J1(w) = − 2g
{
Ckh(ww

′)− w Ckh(w
′)
}
,

J2(w) = −Υ2
{
Ckh(w

2w′) + w2 Ckh(w
′)− 2w Ckh(ww

′)
}
,

and J3(λ, w) gathers all the remaining terms in (3.19). Since J2 may also be rewritten as

J2(w) = −Υ2
{
Ckh(w(ww

′))− w Ckh(ww
′) + w(w Ckh(w

′)− Ckh(ww
′))
}
,

it is a consequence of Lemma 5 that the continuous nonlinear mappings J1, J2 : C2,α
2π,◦(R) → C1,α

2π (R)

map bounded sets of C2,α
2π,◦(R) into bounded sets of C

2,α/2
2π (R), and thus into relatively compact subsets

of C1,α
2π (R). We also rewrite (3.13b) as

(3.20) F1(λ, (µ, w)) = −
µ

k2
+K(λ, (µ, w)).

It then follows that the nonlinear mapping from X into Y

(3.21) (λ, (µ, w)) 7→ (J(λ, w), K(λ, (µ, w))

maps bounded sets of X into bounded sets of C
2,α/2
2π × R, and thus into relatively compact subsets of

Y , and is therefore a nonlinear compact operator. It then follows (see [6, Lemma 3.1.12]) that any of
its partial derivatives is a linear compact operator. Note that, for any (λ, ν, w) ∈ O, one may write

∂(µ,w)F1(λ, (µ, w))(ν, ϕ) = 2(µ+ λ2 − 2gw) Ckh(ϕ
′)− 4g Ckh(w

′)ϕ

+2 Ckh(w
′)ν + ∂(µ,w)J(λ, (µ, w))(ν, ϕ),

∂(µ,w)F2(λ, (µ, w))(ν, ϕ) = −
ν

k2
+ ∂(µ,w)K(λ, (µ, w))(ν, ϕ).
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Since the condition µ+λ2− 2gw(x) > 0, guaranteed by the definition of O, ensures that the bounded
linear operator from X to Y given by

(ν, ϕ) 7→
(
2(µ+ λ2 − 2gw) Ckh(ϕ

′),−
ν

k2

)

is invertible, it follows that ∂(µ,w)F : X → Y is the sum of an invertible linear operator and a compact
linear operator. It is therefore a Fredholm operator of index zero (see [6, Theorem 2.7.6]). Thus
assumption (H3) is indeed satisfied.

We now verify assumption (H4) for the sequence (Qj)j≥1 given by

(3.22)
Qj =

{
(λ, (µ, w)) ∈ O : ||(λ, (µ, w))|| ≤ j ,

µ+ λ2 − 2gw(x) ≥
1

j
for all x ∈ R

}
.

It is obvious that each Qj is bounded and closed and that ∪j∈JQj = O. Let j ∈ N be arbitrary and
consider (λ, (µ, w)) ∈ Qj such that F (λ, (µ, w)) = 0. Then we have in particular that

2(µ+ λ2 − 2gw) Ckh(w
′) + J(λ, w) = 0,

in the notation defined earlier in the proof. Since µ+ λ2 − 2gw ≥ 1/j > 0, one may invert the linear
operator w 7→ Ckh(w′) in this equation to get

w = −(Ckh∂x)
−1

(
1

µ+ λ2 − 2gw
J(λ, w)

)
.

Combining the bounds ensured by the definition of Qj with the commutator estimates satisfied by J1
and J2 that we have used above, we obtain an uniform upper bound for w in the space C

3,α/2
2π (R). This

implies that {(λ, (µ, w)) ∈ O : F (λ, (µ, w)) = 0} ∩Qj is bounded in R×R×C
3,α/2
2π (R), and therefore

compact in R×X . Thus assumption (H4) is satisfied by the sequence of sets given by (3.22).
We have thus checked that the assumptions (H1)–(H4) are satisfied in the setting (3.11)-(3.13). In

view of the definition of the set O in (3.14), the relation between (λ, µ, w) and (m,Q, v) expressed by
(3.7), (3.9) and (3.10), and the definition of the sets Qj in (3.22), the conclusion of Theorem 4 can be
rephrased in a straightforward way to yield the result claimed by Theorem 3.

�

4. Nodal analysis

The wave profiles corresponding to points lying on the solution curves Kn,± present certain quali-

tative features. Firstly, they are symmetric since the function space in Theorem 3 is C2,α
2π,e(R). Fur-

thermore, along any wave except the bifurcating laminar flow, the elevation of the surface wave is
strictly decreasing between the wave crest and a successive wave trough. For waves that are close
to the bifurcating laminar flow, this is a direct consequence of local bifurcation, while away from the
bifurcating flow with a flat free surface this will be proved in what follows by means of a continuation
argument.

Lemma 1 (Periodicity and Symmetry). Let h, k > 0 and Υ ∈ R be given. For each integer n ≥ 1
and both choices of sign ±, denote by

(4.1) Kn,± = {(m(s), Q(s), vs) : s ∈ R}

the continuous curve of solutions of (2.22) in the space R× R× C2,α
2π,e(R) given by Theorem 3. Then

the following additional properties hold:

(i) vs is periodic of period 2π/n, for each s ∈ R ;
(ii) m(−s) = m(s), Q(−s) = Q(s), and v−s(x) = vs(x+ π) for all x ∈ R, for each s ∈ R.
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Proof. (i) Fix some integer n ≥ 2, arbitrary. Consider again equations (3.11)–(3.13), but this time in

the setting of even functions of period 2π/n, that is, with the spaces X and Y being replaced by X̃

and Ỹ given by

(4.2) X̃ = R× C2,α
2π/n,◦,e(R), Ỹ = C1,α

2π/n,◦,e(R)× R,

where the notation has the obvious meaning. Then it is immediate to check that Theorem 4 is
applicable in the new setting, and global real-analytic bifurcation takes place exactly from the local
bifurcation points (λ∗np,±)p≥1 given by (3.18). This leads to the existence of global bifurcation curves

K̃p,± for each p ≥ 1 of solutions to (2.22) with the properties as in Theorem 3. Since X̃ ⊂ X and

Ỹ ⊂ Y , it follows that K̃1,± are curves of solutions of (2.22) in the space X too, with properties
analogous to (i)-(v) as satisfied by Kn,±. The uniqueness claim in Theorem 3 then ensures that

K̃1,± = Kn,±, up to reparametrization. It therefore follows that Kn,± ⊂ X̃ , which is the required
result.

(ii) Fix some integer n ≥ 1, arbitrary. It is easy to check that

R ∋ s 7→ (m(−s), Q(−s), v−s(·+ π))

is a curve of solutions of (2.22) satisfying the properties (i)-(v) in Theorem 3. The required result is
a consequence of the uniqueness claim in Theorem 3. �

For simplicity, we will concentrate in what follows on discussing qualitative properties of the solutions
on the curves K1,±. Similar properties (with obvious modifications) may be proven for solutions on
the curves Kn,± for any integer n ≥ 2 if one works in the space of functions of period 2π/n (this choice
is justified by Lemma 1(i)). Also denoting, for both choices of sign ± and for n = 1,

(4.3) K1,± = K<
± ∪ {(m∗

1,±, Q
∗
1,±, h)} ∪ K>

±,

where

(4.4) K<
± := {(m(s), Q(s), vs) : s ∈ (−∞, 0)} and K>

± := {(m(s), Q(s), vs) : s ∈ (0,∞)},

it suffices, because of Lemma 1(ii), to study the properties of the solutions on K>
±.

For any function v ∈ C2,α
2π,e with [v] = h, we consider in Rkh the functions U and V as defined in

Section 2. Then the evenness of v implies that

(4.5) x 7→ V (x, y) is an even function, for each y ∈ [−kh, 0]

and that the arbitrary additive constant in the definition of U may be chosen so that

(4.6) x 7→ U(x, y) is an odd function, for each y ∈ [−kh, 0].

This ensures that (2.10) holds. It follows in particular that

(4.7) U(0, y) = 0 for all y ∈ [−kh, 0],

and as a consequence of (2.4) that

(4.8) U(mπ, y) =
mπ

k
for all y ∈ [−kh, 0] and m ∈ Z.

Lemma 2 (Injectivity). If

(4.9) Vx(x, 0) 6= 0 for all x ∈ (0, π),

then the injectivity condition (2.6) is valid if and only if

(4.10) 0 < U(x, 0) <
π

k
for all x ∈ (0, π).
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Proof. Suppose first that (2.6) holds. If U(x0, 0) = 0 for some x0 ∈ (0, π), then (U(x0, 0), V (x0, 0)) =
(0, V (x0, 0)) = (U(−x0, 0), V (−x0, 0)), which contradicts (2.6). If U(x0, 0) = π/k for some x0 ∈ (0, π),
then, because of (4.5),(4.6) and (2.4), (U(x0, 0), V (x0, 0)) = (−U(x0, 0) +

2π
k
, V (x0, 0)) = (−U(x0 −

2π, 0), V (−x0, 0)) = (U(2π − x0, 0), V (2π − x0, 0)), which also contradicts (2.6). Hence 0 6= U(x, 0) 6=
π/k for all x ∈ (0, π). Furthermore, from (2.10), we have

∫ π

0

U(x, 0) dx =
1

k

π2

2
,

from which it follows that (4.10) is valid.
For the converse, suppose that (U(x1, 0), V (x1, 0)) = (U(x2, 0), V (x2, 0)) for some pair of real num-

bers x1 6= x2. Since V (·, 0) is even and has period 2π, we have

x2 = −x1 + 2πm for some integer m,

due to the assumption (4.9). Then the oddness of U(·, 0) together with (2.4) give us U(x1, 0) =
U(x2, 0) = −U(x1 − 2πm, 0) = −U(x1, 0) + 2πm/k. Thus U(x1, 0) = mπ/k. Writing x1 = nπ+ x0 for
some n ∈ Z and x+ 0 ∈ [0, π), we have

mπ

k
= U(nπ + x0, 0) = U(x0, 0) +

nπ

k
.

By (4.10), m = n and U(x0, 0) = 0, so that x0 = 0. Thus x1 = mπ and x2 = −x1 + 2πm = x1, a
contradiction. �

We shall see in Lemma 3 below that (4.9) and (4.10) are satisfied by the solutions on the bifurcation
curve K1,± that are close enough to the trivial solution v ≡ h. Of course, in order for v to give rise to
a water wave it is also necessary that

(4.11) V (x, 0) > 0 for all x ∈ R.

The discussion above leads us to consider the following seven properties of a function v:

(4.12) v(x) > 0 for all x ∈ R,

(4.13) v 6≡ h,

(4.14) v′(x) < 0 for all x ∈ (0, π) ,

(4.15) v′′(0) < 0, v′′ (π) > 0,

(4.16) 0 <
x

k
+ Ckh(v − h)(x) <

π

k
for all x ∈ (0, π) ,

(4.17)
1

k
+ Ckh(v

′)(0) > 0,
1

k
+ Ckh(v

′) (π) > 0,

(4.18) ±

(
m

kh
−

Υ

2kh
[v2]−ΥCkh(vv

′) + Υv
(1
k
+ Ckh(v

′)
))

> 0 for all x ∈ R.

Equation (2.20) implies that (4.18) is equivalent to Q− 2gv 6= 0 and (v′)2+ ( 1
k
+ Ckhv′)2 6= 0. Because

of Lemma 2 and the discussion in Section 2, any solution in K>
± that satisfies (4.12)-(4.18) corresponds

to a water wave.
We will study to what extent these properties are satisfied along K>

±. To that aim, it is convenient
to define the sets

(4.19) V± := {(m,Q, v) ∈ R× R× C2,α
2π,e(R) : (4.12)− (4.18) hold}

the choice of sign in V± being the same as that in (4.18). Note that V± are open sets in R×R×C2,α
2π,e(R).

The next lemma deals with solutions on K>
± which are close to the trivial one.
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Lemma 3 (Local Properties). For either choice of sign in ±, let K>
± = {(m(s), Q(s), vs) : s ∈ (0,∞)}

be the curve of solutions of (2.22) given by (4.4). Then there exists ε > 0 sufficiently small such that

(4.20) {(m(s), Q(s), vs) : s ∈ (0, ε)} ⊂ V± for all s ∈ (0, ε).

Proof. Since the set of (m, v) defined by the conditions (4.12), (4.16), (4.17), and (4.18) is open
R× C2,α

2π,e(R), and the mapping s 7→ (m(s), vs) is continuous from R into R× C2,α
2π,e(R), the fact that

those conditions are satisfied at s = 0 implies that they are satisfied on (−ε1, ε1), for some ε1 > 0
sufficiently small. Similarly, since the set

Y := {u ∈ C2,α
2π,e(R) : u 6≡ 0, u′(x) < 0 for all x ∈ (0, π), u′′(0) < 0, u′′(π) > 0}

is open in C2,α
2π,e(R) and the mapping

s 7→ us :=

{
(vs − h) /s for s 6= 0,
(x 7→ cosx) for s = 0,

is continuous from R into C2,α
2π,e(R), the fact that u0 ∈ Y implies that us ∈ Y for all s ∈ (−ε2, ε2),

for some ε2 > 0 sufficiently small; it follows that vs satisfies (4.13)–(4.15) for all s ∈ (0, ε2). Setting
ε := min{ε1, ε2} yields the required result.

�

Fix some ε > 0 given by Lemma 3, and let us define K>
±,loc := {(m(s), Q(s), vs) : s ∈ (0, ε)}. By

reparametrizing K<
±,loc such that Proposition 1(ii) holds, let us define also K<

±,loc := {(m(s), Q(s), vs) :
s ∈ (−ε, 0)}. The main result of this subsection is the following theorem.

Theorem 5 (Global Continuation). For either choice of sign ±, let K>
± = {(m(s), Q(s), vs) : s ∈

(0,∞)} be the curve of solution of (2.22) given by (4.4). Then one of the following alternatives
occurs:

(A1) K>
± ⊂ V±, in which case alternative (α) in Theorem 3 occurs;

(A2) there exists s∗ ∈ (0,∞) such that {(m(s), Q(s), vs) : s ∈ (0, s∗)} ⊂ V±, while (m(s∗), Q(s∗), vs∗)
satisfies (4.12), (4.13), (4.14), (4.15), (4.17) and (4.18), while instead of (4.16) it satisfies

0 <
x

k
+ Ckh(v − h)(x) ≤

π

k
for all x ∈ (0, π) ,(4.21a)

x0
k

+ Ckh(v − h)(x0) =
π

k
for some x0 ∈ (0, π).(4.21b)

Remark 5. (i) Roughly speaking, alternative (A1) means that all the solutions on K>
± correspond to

physical water waves that are symmetric and whose vertical coordinate strictly decreases between each
of its consecutive global maxima and minima, which are unique per minimal period. However, since we
make no claim that the horizontal coordinate is strictly monotone, such waves could have overhanging
profiles. The existence of overhanging waves is strongly suggested by numerical simulations and
remains an important open problem. More generally, the behaviour of the solutions on K>

± as s→ ∞
remains another important open problem.

(ii) Alternative (A2) means that solutions on K>
± that correspond to physical water waves with

qualitative properties as described above do exist until a limiting configuration with a profile that self-
intersects on the line strictly above the trough is reached at s = s∗. Indeed, recall that u(x) = U(x, 0).
By (2.10), (4.21b) and (4.8), u(x0) = x0/k + Chk(v − h)(x0) = π/k = u(π). This implies that
the physical point (u(x0), v(x0)) ∈ S lies directly above the trough (which is at (u(π), v(π))). By
(2.4) and (4.6), u(2π − x0) = u(−x0) + 2π/k = 2π/k − u(x0) = u(x0), while (2.4) and (4.5) yield
v(2π − x0) = v(−x0) = v(x0). Thus the curve S intersects itself at the physical point (u(x0), v(x0)),
which lies directly above the trough.

Proof of Theorem 5. Fix a choice of sign in ±. In what follows we choose the + sign merely for
definiteness. All the arguments below can be straightforwardly adapted to the choice of the − sign.
For convenience, define I = {s ∈ (0,∞) : (m(s), Q(s), vs) ∈ V+}. Since V+ is an open set in
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Figure 3. The possibility of a loop is eliminated by a nodal pattern analysis.

R×R×C2,α
2π,e(R), it follows that I is an open subinterval of (0,∞). In case I equals all of (0,∞), the

definition of V+ implies K>
+ ⊂ V+, so that (β) in Theorem 3 is excluded and therefore (α) is valid.

Hence we are left with the case that the open interval I is not the whole of (0,∞). With ε > 0 given
by Lemma 3, we have (0, ε) ⊂ I. Let s∗ be the upper end-point of the largest interval that contains
(0, ε) and is contained in I. Then (0, s∗) ⊂ I and s∗ /∈ I. In what follows we shall investigate the
properties of the solution (m(s∗), Q(s∗), vs∗).

We first claim that necessarily vs∗ 6≡ h. Suppose on the contrary that vs∗ ≡ h. Then the point
(m(s∗), Q(s∗), h) belongs to Ktriv and is a limit of a sequence of nontrivial solutions. It follows
from Theorem 3 that necessarily there exists an integer n ≥ 1 and a choice of sign in ± such that
m(s∗) = m∗

n,± and Q(s∗) = Q∗
n,±, where m

∗
n,± and Q∗

n,± are given by (3.3) and (3.4). At this point
note that it is a consequence of Theorem 3(iv) and the periodicity in Lemma 1(i) that, for any
n ≥ 2, all nontrivial solutions in a neighbourhood of (m∗

n,±, Q
∗
n,±, h) are periodic of period 2π/n. By

(4.14), v′s∗ ≤ 0 for 0 ≤ x ≤ π. Thus n = 1. It follows that either (m(s∗), Q(s∗) = (m∗
1,+, Q

∗
1,+)

or (m(s∗), Q(s∗) = (m∗
1,−, Q

∗
1,−). However the possibility that (m(s∗), Q(s∗) = (m∗

1,−, Q
∗
1,−) is ruled

out by the fact proved in Lemma 3 that all nontrivial solutions in a neighbourhood of (m∗
1,−, Q

∗
1,−, h)

satisfy (4.18) with the minus sign, combined with the fact that all solutions on K>
+ satisfy (4.18) with

the plus sign. Thus the only remaining possibility is that (m(s∗), Q(s∗) = (m∗
1,+, Q

∗
1,+).

Now all the nontrivial solutions in a neighbourhood of (m∗
1,+, Q

∗
1,+, h) belong to K>

+ ∪ K<
+. By

the evenness and periodicity, the solutions on K<
+,loc satisfy the opposite of (4.14), so that K<

+ is
excluded. Hence there exists δ1, δ2 > 0 sufficiently small such that {(m(s), Q(s), vs) : s ∈ (0, δ1)} =
{(m(s), Q(s), vs) : s ∈ (s∗ − δ2, s

∗)}. However, this possibility is ruled out by (C4) in Theorem 4, that
is, by the construction of the real-analytic global bifurcation curve in [6]; see Figure 3. We have thus
proven that vs∗ ≡ h is not possible, which proves the claim.

For notational simplicity, throughout the remainder of the proof we shall denote (m(s∗), Q(s∗), vs∗)
by (m,Q, v). This is a limit of solutions satisfying (4.12) to (4.18). The definition of I implies that

(4.22) v(x) ≥ 0 for all x ∈ R, and is even of period 2π,

(4.23) v′(x) ≤ 0 for all x ∈ [0, π], so that v′ ≥ 0 in [π, 2π],

(4.24) 0 ≤
x

k
+ Ckh(v − h)(x) ≤

π

k
for all x ∈ [0, π],
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Figure 4. The rectangular domainR, the conformal image of which is the fluid domain
between the wave crest and a successive wave trough.

(4.25) +

(
m

kh
−

Υ

2kh
[v2]−ΥCkh(vv

′) + Υv
(1
k
+ Ckh(v

′)
))

≥ 0 for all x ∈ R.

By (2.10), (4.24) may be rewritten as

(4.26) 0 = U(0, 0) ≤ U(x, 0) ≤ U(π, 0) = π/k for all x ∈ [0, π].

Also, by (2.19) with ζ defined as in Section 2, (4.25) may be rewritten as

(4.27) ζy(x, 0) + ΥV (x, 0)Vy(x, 0) ≥ 0 for all x ∈ R.

By Theorem 1, v also satisfies (2.20), which is the same as (2.14).
We are now going to show that (m,Q, v) satisfies the remaining properties claimed in the statement

of alternative (A2) of Theorem 5. The proof will be based on sharp forms of maximum principles in
the infinite strip Rkh, as well as in the rectangular domain

(4.28) R := {(x, y) : 0 < x < π, −kh < y < 0},

whose boundary ∂R is the union of the four line segments

∂Rt = {(x, 0) : 0 ≤ x ≤ π}, ∂Rb = {(x,−kh) : 0 ≤ x ≤ π},

∂Rl = {(0, y) : −kh ≤ y ≤ 0}, ∂Rr = {(0, y) : −kh ≤ y ≤ 0},

see Figure 4.
Suppose on the contrary that (4.12) fails. Then (4.22) and (4.23) imply that v(π) = 0. Since then

the harmonic function V in Rkh has a global minimum in Rkh at (π, 0), by the Hopf boundary-point
lemma, Vy(π, 0) < 0. On the other hand, it is a consequence of (4.26) and the Cauchy-Riemann
equations that Vy(π, 0) = Ux(π, 0) ≥ 0, which is a contradiction. It follows that (4.12) does hold.

We now prove the strict inequality (4.18) with the + sign; that is,

(4.29) ζy +ΥV Vy

∣∣∣
y=0

= +

(
m

kh
−

Υ

2kh
[v2]−ΥCkh(vv

′) + Υv
(1
k
+ Ckh(v

′)
))

> 0 for all x ∈ R.

Recalling from Theorem 3(i) that

(4.30) Q− 2gv(x) > 0 for all x ∈ R,

and taking (2.14) into account, the validity of (4.29) is equivalent to

(ζy + ΥV Vy)
2 = (Q− 2gV )(V 2

x + V 2
y ) > 0 for y = 0

or equivalently

(4.31) v′(x)2 +

(
1

k
+ Ckh(v

′)(x)

)2

> 0 for all x ∈ R,

or also equivalently

(4.32) V 2
x (x, 0) + V 2

y (x, 0) > 0 for all x ∈ R.
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We will prove (4.32) by contradiction. Suppose that there exists a point x0 ∈ R such that V 2
x (x0, 0)+

V 2
y (x0, 0) = 0. It follows from (2.14) that ζy(x0, 0) + ΥV (x0, 0)Vy(x0, 0) = 0. Combined with (4.27),

this ensures that ζy + γV Vy = O((x− x0)
2) as x→ x0 at y = 0. By (2.14) it implies that V 2

x + V 2
y =

O((x−x0)
4) as x→ x0 at y = 0. Examining the second derivative of the expression in the right-hand

side of (2.14), we see that

(4.33) Vxx(x0, 0) = Vxy(x0, 0) = 0.

Because of the evenness and periodicity of v, we may assume with no loss of generality that 0 ≤ x0 ≤ π.
If x0 = 0, it follows from (4.23) that the harmonic function V in Rkh has at (0, 0) a global maximum

in Rkh. By the Hopf boundary-point lemma, Vy(0, 0) > 0. Hence

(4.34)
1

k
+ Ckh(v

′)(0) = Vy(0, 0) > 0,

a contradiction. So x0 6= 0. Now suppose 0 < x0 < π. The harmonic function Vx has its global
maximum in R at (x0, 0) because Vx = 0 on three sides (by oddness and the bottom boundary
condition) while Vx ≤ 0 on the top ∂Rt by (4.23). By the Hopf boundary-point lemma, Vxy(x0, 0) > 0,
which contradicts (4.33).

It remains to consider the case x0 = π. Since x 7→ V (x, y) is even about π, for each y ∈ [−kh, 0], it
follows that

(4.35) Vxxx(π, 0) = Vxyy(π, 0) = 0.

Now the harmonic function Vx in the rectangle R = {(x, y) : 0 < x < π, −kh < y < 0} has
its global maximum in R at (π, 0). It follows from the Serrin corner-point lemma, by taking into
account (4.33) and (4.35), that Vxxy(π, 0) < 0. By the Cauchy-Riemann equations, Uxxx(π, 0) < 0.
Similarly, we also deduce that Ux(π, 0) = Uxx(π, 0) = 0, since Vy(π, 0) = 0 by assumption and
Vxy(π, 0) = 0 by (4.33). These properties of the derivatives of the function U(·, 0) at (π, 0) imply that
U(x, 0)− U(π, 0) = 1

6
Uxxx(π, 0)(x− π)3 +O(x− π)4 > 0 as xր π. This contradicts (4.26).

Thus x0 does not exist and (4.32) is true. Since Vx(π, 0) = 0, we must have Vy(π, 0) 6= 0. It is a
consequence of (4.26) and the Cauchy-Riemann equations that Vy(π, 0) = Ux(π, 0) ≥ 0. It follows that

(4.36)
1

k
+ Ckh(v

′)(π) = Vy(π, 0) > 0.

We have therefore proved not only (4.18), but also (4.17) and (4.31). It remains to prove (4.14), (4.15)
and (4.21).

Recall at this point that the solution (m,Q, v) that we are discussing (more precisely, (m(s∗), Q(s∗), vs∗))
is the limit in R × R × C2,α

2π,e(R) of a sequence (mj , Qj, vj) := (m(sj), Q(sj), vsj) where sj ∈ I for all

j ∈ N and sj ր s∗ as j → ∞. For each j ∈ N, let V j and U j be the associated harmonic functions in
Rkh. The definition of I means that, for each j ∈ N, we have that (mj, Qj , vj) ∈ V+, which implies
by Lemma 2 that the mapping x 7→ (U j(x, 0), V j(x, 0)) is injective on R. As noted in [44],[18], a
suitable application of the Darboux–Picard Theorem [7, Corollary 9.16, p. 3] yields that U j + iV j is
a conformal mapping between the strip Rkh and the domain Ω whose boundary consists of the curve

Sj := {(U j(x, 0), V j(x, 0)) : x ∈ R}

and the real axis B, that extends continuously from Rkh to Ω.
As a consequence,

(V j
x )

2 + (V j
y )

2 > 0 in Rkh ∪ {(x,−kh) : x ∈ R}.

On {(x,−kh) : x ∈ R} we have that V j = V j
x = 0 and V j

y 6= 0. Using the maximum principle and the
fact that U + iV is not constant, we may pass to the limit as j → ∞ to obtain

V 2
x + V 2

y > 0 in Rkh ∪ {(x,−kh) : x ∈ R}.

By taking (4.32) into account, we therefore deduce that

(4.37) V 2
x + V 2

y > 0 in Rkh.
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At this point we state the following lemma, whose proof is somewhat technical. In order not to
disrupt the flow of the argument, we choose to take its validity for granted for the moment, and defer
proving it until after the proof of Theorem 5.

Lemma 4. Let (m,Q, v) ∈ R × R × C3
2π,e(R), with [v] = h and v 6≡ h, be a solution of (2.22) which

satisfies (4.30), (4.37), and (4.23). Then v also satisfies (4.14) and (4.15).

It has been noted in the proof of Theorem 3 that any solution v of class C2,α is necessarily of class
C3, so that Lemma 4 is applicable. As a consequence of Lemma 4, our solution (m,Q, v), which is
in fact (m(s∗), Q(s∗), vs∗), satisfies (4.14) and (4.15). It finally remains to prove (4.21). Recall that
(4.24) is valid. Suppose first for a contradiction that (4.21a) fails, so that there exists x0 ∈ (0, π) such
that

0 =
x0
k

+ Ckh(v − h)(x0) = U(x0, 0).

Then the harmonic function U in R has at (x0, 0) a global minimum in R. Hence it follows from
the Hopf lemma that Uy(x0, 0) < 0. By the Cauchy-Riemann equations, Vx(x0, 0) > 0, which con-
tradicts (4.23). This proves that (4.21a) is valid. On the other hand, (4.21b) must necessarily be
true, since otherwise, taking into account everything we have proved so far, it would follow that
(m(s∗), Q(s∗), vs∗) ∈ V+, a contradiction to the definition of s∗. This completes the proof of Theorem
5, modulo Lemma 4. �

Proof of Lemma 4. By Theorem 1, equation (2.20) is also satisfied. Let ζ be the solution of (2.13) and
V the solution of (2.9). Then (2.14) also holds due to the discussion after (2.20). The assumptions
(4.30) and (4.37) ensure that

(4.38) ζy = −ΥV Vy ± (Q− 2gV )1/2(V 2
x + V 2

y )
1/2 at (x, 0) for all x ∈ R,

the choice of sign in the ± above being the same for all x ∈ R. The required result will be obtained
by applying maximum principle-type arguments to the function f : Rkh → R given by

(4.39) f =
Vxζy − Vyζx
V 2
x + V 2

y

.

(The choice of f is motivated by the formula (2.21) for the horizontal velocity of the fluid in a steady
water wave. However, here we are not assuming (2.6), so that our solution need not correspond to a
water wave.) It is easy to see that f is a harmonic function in Rkh because it is the imaginary part of
g/h, where g = −(ζy + iζx) and h = Vy + iVx. Note that f = 0 on ∂Rl ∪ ∂Rb ∪ ∂Rr, while

(4.40) f =
Vx(ζy +ΥV Vy)

V 2
x + V 2

y

= ±
Vx(Q− 2gV )1/2

(V 2
x + V 2

y )
1/2

on ∂Rt,

as a consequence of (2.25) and then (4.38). Therefore, in view of the assumptions (4.30) and (4.37),
f has a constant sign on ∂Rt (depending on the choice of sign in ±), and f 6≡ 0 on ∂Rt. By the
maximum principle it follows that f has a strict sign in R.

We will first prove that v′(x) < 0 for all x ∈ (0, π). Suppose on the contrary that v′(x0) = 0 for
some x0 ∈ (0, π). Since x0 is a global maximum for v on (0, π), it follows that v′′(x0) = 0. Also, it
follows from (4.40) that f(x0, 0) = 0, and thus the harmonic function f in R has at (x0, 0) a global
extremum in R ∪ ∂R. It follows from the Hopf boundary-point lemma that fy(x0, 0) 6= 0. We shall
now prove, by direct calculation, that fy(x0, 0) = 0, thus obtaining a contradiction. To simplify the
following calculations, it is convenient to write f = p/q, where p = Vxζy − Vyζx, q = V 2

x + V 2
y . Then,

at every point in Rkh we have

(4.41) fy =
pyq − pqy

q2
.

This implies in particular that, at the point (x0, 0), at which p = 0, Vx = 0, and Vxx = 0, we have

(4.42) fy =
py
q

=
Vxyζy − Vyζxy

V 2
y

.
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We now differentiate equation (4.38) with respect to x to obtain

(4.43) ζxy = −Υ(VxVy + V Vxy)±

(
−gVx(V 2

x + V 2
y )

1/2

(Q− 2gV )1/2
+

(Q− 2gV )1/2(VxVxx + VyVxy)

(V 2
x + V 2

y )
1/2

)

at (x, 0) for all x ∈ R. It follows from (4.38) and (4.43) that, at the point (x0, 0), at which Vx = 0 and
Vxx = 0, we have

ζy = −ΥV Vy ± (Q− 2gV )1/2|Vy|,(4.44)

ζxy = −ΥV Vxy ±
(Q− 2gV )1/2VyVxy

|Vy|
,(4.45)

from which one can see that Vxyζy = Vyζxy and therefore, by (4.42), that fy = 0, thus obtaining a
contradiction. This proves that indeed v′(x) < 0 for all x ∈ (0, π).

We will now prove that v′′(0) < 0 and v′′(π) > 0. Since v′(0) = v′(π) = 0 and v′ ≤ 0 on [0, π], it
follows that v′′(0) ≤ 0 and v′′(π) ≥ 0, so we just need to prove that the two inequalities are strict.
Suppose on the contrary that v′′(x0) = 0 for some x0 ∈ {0, π}. Then Vx = 0 and Vxx = 0 at (x0, 0).
Since the harmonic function f in R has at (x0, 0) a global extremum in R ∪ ∂R, the Serrin corner-
point lemma [10] ensures that not all first and second order derivatives of f can vanish at (x0, 0). We
now show however by direct calculation that under the present assumptions all first and second order
derivatives of f do vanish at (x0, 0), which will constitute a contradiction. Indeed, because f = 0 on
∂Rl ∪∂Rr , it follows that fy = 0 and fyy = 0 and also that fxx = 0 on ∂Rl ∪∂Rr since f is harmonic.
Thus we can see from (4.40) that each term in the expression for the derivative with respect to x of f
at (x0, 0) contains as a factor either Vx or Vxx, so that fx(x0, 0) = 0. It thus remains to examine the
mixed derivative fxy(x0, 0). To accomplish this task, we calculate from (4.41) that at every point in
Rkh we have

(4.46) fxy = fyx =
(pxyq + pyqx − pxqy − pqxy)q

2 − (pyq − pqy)2qqx
q4

.

This implies in particular that at the point (x0, 0), at which ζx = Vx = ζxy = Vxy = Vxx = Vyy = p =
px = py = 0, we have

(4.47) fxy =
pxy
q
.

It is easy to see, when calculating pxy by differentiation in the formula p = Vxζy − Vyζx, that at the
point (x0, 0) six out the eight terms are zero and we are left with

(4.48) pxy = Vxxyζy − Vyζxxy.

We now calculate ζxxy(x0, 0) by differentiating with respect to x in (4.43) and, taking into account
that at (x0, 0) we have Vx = Vxx = Vxy = 0, we obtain

(4.49) ζxxy = −ΥV Vxxy ±
(Q− 2gV )1/2VyVxxy

|Vy|
.

Because (4.44) is also valid at (x0, 0), we see that Vxxyζy = Vyζxxy. Therefore by (4.47) and (4.48) we
have fxy(x0, 0) = 0. Thus all first and second derivatives of f vanish at (x0, 0), a contradiction. As
explained earlier, this implies that indeed v′′(0) < 0 and v′′(π) > 0.

�

5. The flow beneath a wave of small amplitude

In this section we point out some features of the small amplitude waves whose existence was es-
tablished in Section 3. As before, we only discuss the bifurcation from the lowest eigenvalue so that
throughout this section n = 1. For simplicity, we refrain from using the subscript “1” when referring
to λ∗1,± or to K1,±.
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By restricting the local bifurcation curve to a sufficiently small neighborhood of (λ∗±, 0) ∈ R × X ,
the condition v′ 6= 0 in (0, π) will hold everywhere on it, except for the bifurcating laminar flow (with
a flat surface profile) corresponding to s = 0. For s 6= 0 the wave profiles S obtained thereby are
graphs that are strictly monotone between crests and troughs and are symmetric about the crest line.
For s > 0 the crest is located at x = 0, while for s < 0 the trough is at x = 0. As for the velocity
field in the fluid, for a given fluid domain Ω beneath the surface S and above the flat bed Y = 0,
the boundary-value problem (2.2a)-(2.2b)-(2.2c) with L-periodicity in the X-variable has a unique
solution. The symmetry of S implies that the stream function ψ is even in the X-variable.

Recall that by a critical point we mean a point where ψY = 0, while a critical line is a curve of
critical points, and by a stagnation point we mean a point where ψX = ψY = 0. We will state the
results for the local bifurcating curve K−,loc, corresponding to the choice of the minus sign in (3.18),
the case of K+,loc being obtained by interchanging ± in K± and in the sign of Υ.

Theorem 6 (The local curve K−,loc). (i) A laminar flow on K− that is a bifurcation point admits
critical points if and only if Υ < 0 and

(5.50)
tanh(kh)

kh
≤

Υ2h

g +Υ2h
.

If they exists, all critical points are located on a unique horizontal line beneath the flat free surface.
(ii) If either Υ > 0, or Υ < 0 is such that (5.50) fails, then the flows on the local bifurcating

curve K−,loc that are sufficiently close to the bifurcating laminar flow present no critical points and the
streamlines foliate the fluid domain (see Figure 5).

(iii) If Υ < 0 and if the laminar flow at the bifurcation point has a critical line strictly above the
flat bed, then the nearby waves on K−,loc have a cat’s eye structure with critical points (see Figure 6).

(iv) If Υ < 0 and if the flat bed is itself a critical line of the laminar flow at the bifurcation point,
then the nearby waves on K−,loc have an isolated region of flow reversal near the bed, delimited by a
critical layer (see Figure 7).

Proof. (i) The stream function ψ(X, Y ) of the laminar flow corresponding to the bifurcation point
(λ∗−; µ = 0, w = 0) solves (2.2) with ψX = 0 and m = m∗

− = λ∗−h− Υh2/2 throughout Ω = {(X, Y ) :
0 ≤ Y ≤ h}. We have explicitly

(5.51) ψ(X, Y ) =
Υ

2
Y 2 + (λ∗− −Υh) Y − λ∗−h +

Υh2

2
, 0 ≤ Y ≤ h ,

the corresponding velocity field being

(5.52) (ψY , −ψX) = (ΥY + λ∗− −Υh, 0), 0 ≤ Y ≤ h .

Since λ∗− < 0 by (3.18), there are no critical points in the irrotational case Υ = 0. On the other hand,
for Υ 6= 0, it is easily seen that critical points exist in the bifurcating laminar flow corresponding to
λ∗− if and only if

(5.53) h ≥
λ∗−
Υ

≥ 0 .

Whenever (5.53) is satisfied, critical points lie on the critical line

(5.54) Y = h−
λ∗−
Υ

that is located beneath the flat free surface Y = h, since λ∗− < 0. Straightforward manipulations
starting from (3.18) show that (5.53) is satisfied if and only if Υ < 0 and (5.50) holds.

If Υ < 0, we remark that since the function s 7→ tanh(s)/s is a strictly decreasing bijection from
(0,∞) onto (0, 1), critical layers in the bifurcating laminar flow occur if and only if k exceeds a certain
critical value; since L = 2π

k
, this means that critical layers occur whenever the wavelength is sufficiently

small.
(ii) If Υ > 0, then (5.52) shows that the maximum of ψY throughout the laminar flow at the

bifurcation point is attained at the flat free surface Y = h, where ψY (h) = λ∗− < 0, so that ψY < 0
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Figure 5. Streamlines of a flow of constant vorticity Υ, in the absence of critical points:
On the top left laminar flows for Υ > 0, on the top right laminar flows for Υ < 0, and
below nearby waves of small amplitude, lying in function space on the local bifurcation
curve. In both settings the horizontal fluid velocity is negative throughout the flow.

throughout the flow. If Υ < 0 is such that (5.50) fails, then (5.52) with the choice λ∗− shows that
the maximum of ψY throughout the laminar flow at the bifurcation point is attained on the flat bed
Y = 0, with the inequality opposite to (5.50) ensuring that ψY < 0 there. Consequently, we have again
that ψY < 0 throughout the laminar flow at the bifurcation point. Using (2.21), we infer that this
inequality will persists along the curve K− of non-trivial solutions, provided that these are sufficiently
close to the bifurcating laminar flow. All these waves will therefore not present critical points in the
flow, with the streamlines in this case providing a foliation of the fluid domain. Typical streamline
patterns for the laminar flows with bifurcation parameter λ∗− are depicted in Figure 5.

On the other hand, for a bifurcating laminar flow with critical points in the case Υ < 0, the
streamline pattern for a wave corresponding to a non-trivial solution on K−,loc is in marked contrast
to that familiar from flows without critical points. Indeed, the previous considerations show that the
bifurcation parameter is λ∗− < 0. Moreover, from (5.52) we get that the horizontal fluid velocity ψY of
this laminar flow takes on the value ψY (h) = λ∗− < 0 at the surface Y = h, with ψY (0) = λ∗−−Υh ≥ 0
on the bed Y = 0, the latter inequality being a restatement of (5.53).

In the specific scenario (iii) the stream function ψ of the laminar bifurcating flow is such that
ψY Y < 0 throughout the fluid, with ψY < 0 near the surface and ψY > 0 near the bed. All these
inequalities will persist for the stream functions associated to the flows along the curve K− of non-trivial
solutions, provided that these flows are sufficiently close to the bifurcating laminar flow. Let Y = η(X)
be the free surface of such a flow, with the wave crest located at X = 0 and the wave troughs at X =
±L/2. At every fixed X , the corresponding real-analytic stream function ψ is such that the function
Y 7→ ψ(X, Y ) is strictly concave on [0, η(X)], with ψY (X, 0) > 0 and ψY (X, η(X)) < 0. Consequently,
there is a unique maximum point Y0(X) ∈ (0, η(X)) of this function, with ψY (X, Y0(X)) = 0, and
ψY (X, Y ) > 0 for 0 ≤ Y < Y0(X), while ψY (X, Y ) < 0 for Y ∈ (Y0(X), η(X)]. Since ψY Y < 0
throughout the flow, the implicit function theorem [6] ensures that the critical layer {(X, Y ) ∈ Ω :
ψY (X, Y ) = 0} coincides with the graph of the real-analytic map X 7→ Y0(X).

On the other hand, by (2.2b) we have ψ(X, η(X)) = 0 for all X ∈ R. Differentiating this relation
with respect to X and taking into account the fact that ψY (X, η(X)) < 0 while η′(X) < 0 for
X ∈ (0, L/2) in view of (4.14), we deduce that ψX(X, η(X)) < 0 for all X ∈ (0, L/2). The boundary
condition (2.2c) and the fact that ψ is even and L-periodic in the X-variable yield ψX(0, Y ) = 0 for
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Figure 6. Flows with constant vorticity Υ < 0, with critical points above the flat bed:
On top, for a laminar flow the horizontal critical layer consists of stagnation points that
mark the flow reversal, while below, for a nearby wave of small amplitude (lying in
function space on the local bifurcation curve) only the points of the critical layer that
are beneath the crest or the trough are stagnation points. In the moving frame the
stagnation point beneath the crest is surrounded by closed streamlines (Kelvin’s ‘cat’s
eye’ flow pattern). The critical layer, depicted by the dashed curve, delimits an upper
region of negative horizontal fluid velocity, and beneath it the flow direction is reversed.

Y ∈ [0, η(0)], ψX(X, 0) = 0 for X ∈ [0, L/2], and ψX(L/2, Y ) = 0 for Y ∈ [0, η(L/2)]. Applying the
strong maximum principle to the harmonic function ψX in the domain

Ω+ = {(X, Y ) : 0 < X < L/2, 0 < Y < η(X)},

we conclude that ψX(X, Y ) < 0 in Ω+. The fact that ψ is even in the X-variable yields ψX(X, Y ) > 0
in

Ω− = {(X, Y ) : −L/2 < X < 0, 0 < Y < η(X)}.

These considerations show that the only stagnation points of this flow are the points on the critical
layer that lie beneath the wave troughs and crests.

To describe qualitatively the streamline pattern of the flow, notice first that ∂X ψ(X, Y0(X)) =
ψX(X, Y0(X)) is positive in Ω− and negative in Ω+. Consequently the quantity M(X) = ψ(X, Y0(X)),
representing the maximum of the function Y 7→ ψ(X, Y ) on [0, η(X)], attained uniquely on the critical
layer, is strictly increasing as X runs from −L/2 to 0 and strictly decreasing as X runs from 0 to L/2.
Set M− =M(−L/2) =M(L/2) and M+ =M(0). We know that ψY < 0 in the region

Ω+ = {(X, Y ) : −L/2 < X < L/2, Y0(X) < Y < η(X)}

above the critical layer, while ψY > 0 in the region

Ω− = {(X, Y ) : −L/2 < X < L/2, 0 < Y < Y0(X)}

beneath the critical layer. Since max {0,−m} < M− < M(X) = M(−X) < M+ for every X ∈
(−L/2, 0), the implicit function theorem yields that in Ω+

− := Ω− ∩Ω+ the level set [ψ =M−] consists
of the graph of a smooth strictly increasing curve C+, joining the points (−L/2, Y0(−L/2)) and
(0, Y+), where Y+ ∈ (Y0(0), η(0)) is the unique solution to ψ(0, Y ) =M− in this interval. Similarly, in
Ω−

− := Ω− ∩ Ω− the level set [ψ =M−] consists of the graph of a smooth strictly decreasing curve C−

that joins (−L/2, Y0(−L/2)) to (0, Y−), where Y0 ∈ (0, Y0(0)) is the unique solution to ψ(0, Y ) =M−
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X A B

C

 = L/2X = 0X = − L/2

Figure 7. Flows with constant vorticity Υ < 0, admitting in the moving frame stag-
nation points on the flat bed: On top, a laminar flow for which all points on the bed are
stagnation points, and below, a nearby wave of small amplitude (lying in function space
on the local bifurcation curve) presents in a periodicity window only three stagnation
points (identified as A, B, C in the figure), connected by the critical layer curve (de-
picted by the bold dashed curve) that encloses a near-bed region of flow-reversal. The
stagnation point located beneath the wave crest is surrounded by closed streamlines.

in this interval. The level set [ψ = M−] in Ω+ is the mirror image of the union of these two curves.
In the closure of Ω− ∪ Ω+, the level set [ψ = M+] consists of the stagnation point (0, Y0(0)), while
each level set [ψ = γ] with γ ∈ (M−,M+) is a closed curve encircling (0, Y0(0)). For γ ∈ (0,M−), the
implicit function theorem yields that the level set [ψ = γ] in Ω+

− is the graph of a strictly increasing
function, located between C+ and the free surface, [ψ = γ] in Ω−

− is the graph of a strictly decreasing
function, located between C− and the flat bed, while [ψ = γ] in Ω+ is the mirror image of the union
of these two curves. The cat’s eye type flow pattern depicted in Figure 6 emerges.

(iv) We now consider the case Υ < 0 in which the critical points of the bifurcating laminar flow
(with a flat free surface) are confined to the flat bed, that is, λ∗− − Υh = 0. The proof of Theorem 3
shows that along the solution curve K− the non-trivial solutions sufficiently close to the bifurcating
laminar flow correspond to vs(x) = h + s cos(x) + o(s) in C2,α

2π,e(R) and m(s) = m∗
− + o(s) for s > 0

small enough, where m∗
− = Υh2/2 due to (3.18), (3.3) and λ∗− = Υh. From (A.3) we deduce that

us(x) =
x

k
+ s coth(kh) sin(x) + o(s) in C2,α

2π (R).

The corresponding solution of (2.9) is given by

(5.55) V s(x, y) =
y + kh

k
+ s cos(x)

sinh(y + kh)

sinh(kh)
+ o(s) in C2,α(Rkh),

so that, in view of (2.10), the harmonic conjugate of −V s on Rkh is

Us(x, y) =
x

k
+ s sin(x)

cosh(y + kh)

sinh(kh)
+ o(s) in C2,α(Rkh).
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Furthermore, we have that the solution to (2.13) is given by

(5.56) ζs(x, y) = −Υ sh cos(x)
sinh(y + kh)

sinh(kh)
+ o(s) in C2,α(Rkh).

For s > 0 small enough, the expansion

(u′s(x), v
′
s(x)) =

(
1

k
+ s coth(kh) cos(x) + o(s), − s sin(x) + o(s)

)

in C1,α
2π (R) ensures that the free surface is the graph of a function Y = ηs(X) with η′s(X) < 0

for X ∈ (0, L/2). Throughout the bifurcating laminar flow we have that ψY Y = Υ < 0, while
ψY (h) = λ∗− < 0, so that for nearby waves we will have ψs

Y Y < 0 throughout the flow and ψs
Y < 0

near the free surface Y = ηs(X). Recalling that η′s(X) < 0 for X ∈ (0, L/2), by differentiating the
relation ψs(X, ηs(X)) = 0, valid due to (2.2b), we deduce that ψs

X(X, ηs(X)) < 0 for X ∈ (0, L/2).
On the other hand, ψs

X(X, 0) = 0 for all X ∈ R due to (2.2c), while the symmetry properties ensure
ψs
X(0, Y ) = 0 for 0 ≤ Y ≤ ηs(0) and ψ

s
X(L/2, Y ) = 0 for 0 ≤ Y ≤ ηs(L/2). The function ψs

X being
harmonic in the domain {(X, Y ) : 0 < X < L/2, 0 < Y < ηs(X)} by (2.2a), the maximum principle
permits us to deduce that ψs

X(X, Y ) < 0 throughout the domain, while Hopf’s maximum principle
yields

(5.57) ψs
XY (X, 0) < 0 , X ∈ (0, L/2) .

To elucidate the behaviour of ψs
Y in the closure of the domain {(X, Y ) : −L/2 < X < L/2, 0 < Y <

ηs(X)}, note that (2.21) yields

(5.58) ψs
Y (U

s(x,−kh), 0) = −
Υ skh cos(x)

sinh(kh)
+ o(s) in C1,α

2π (R),

since V s(x,−kh) = 0 by (2.9c), while by (5.55) and (5.56),

V s
Y (x,−kh) =

1

k
+ s

cos(x)

sinh(kh)
+ o(s) in C1,α

2π (R),

and

ζsY (x,−kh) = −Υ sh
cos(x)

sinh(kh)
+ o(s) in C1,α

2π (R).

For x = 0 and x = ±π in (5.58) we get ψs
Y (0, 0) > 0 and ψs

Y (±L/2, 0) < 0, respectively. Taking into
account (5.57) and the fact that X 7→ ψs(X, 0) is even, we deduce the existence of some X0 ∈ (0, L/2)
with ψs

Y (±X0, 0) = 0 and ψs
Y (X, 0) > 0 for X ∈ (−X0, X0), ψ

s
Y (X, 0) < 0 for X ∈ [−L/2,−X0) ∪

(X0, L/2]. Denote the points (−X0, 0) and (X0, 0) by A and B, respectively. Along the vertical
segment {(X, Y ) : 0 ≤ Y ≤ ηs(X)} we know that ψs

Y Y (X, Y ) < 0, with ψs
Y (X, ηs(X)) < 0. Thus

ψs
Y (X, Y ) < 0 for all X ∈ [−L/2,−X0] ∪ [X0, L/2] and Y ∈ (0, ηs(X)]. On the other hand, for

every X ∈ (−X0, X0) there exists a unique Y s
0 (X) ∈ (0, ηs(X)) such that ψs

Y (X, Y
s
0 (X)) = 0, with

ψs
Y (X, Y ) < 0 for Y ∈ (Y s

0 (X), ηs(X)] and ψs
Y (X, Y ) > 0 for Y ∈ [0, Y s

0 (X)). Denote the stagnation
point (0, Y s

0 (0)) by C. The curve X 7→ Y s
0 (X) with X ∈ [−X0, X0] is the critical layer and A, B, C

are the stagnation points of the flow in the closure of the domain {(X, Y ) : −L/2 < X < L/2, 0 <
Y < ηs(X)}. Recall from (2.2) that ψs(X, ηs(X)) = 0 while ψs(X, 0) = −m(s) > 0. For a fixed
X ∈ [−L/2, −X0] ∪ [X0, L/2], the function Y 7→ ψs(X, Y ) is strictly decreasing on [0, ηs(X)], while
for X ∈ (−X0, X0), the function Y 7→ ψs(X, Y ) attains its maximum Ms(X) > −m(s) on [0, ηs(X)]
at y = Y s

0 (X), being strictly monotone on either side of Y s
0 (X). These considerations suffice to infer

the full qualitative flow pattern – see Figure 7. In particular, the stagnation point C is surrounded by
closed streamlines. �



32 ADRIAN CONSTANTIN, WALTER STRAUSS AND EUGEN VARVARUCA

Figure 8. Waves with stagnation points and corners of 120◦ at their crests: overhang-
ing profiles (on the right) and profiles that are graphs (on the left).

Figure 9. Overhanging wave with self-intersections on the trough line.

6. Further results and conjectures

In a sequel to this paper, we will prove the following results:

• If K becomes unbounded in R× R× C2,α
2π (R), then v′ is unbounded in L2

2π(R);
• For all waves in K, the free surface S is a real-analytic curve.

Furthermore, we have a conjecture about the furthest boundary of the global curve K that is more
specific than Theorem 5. Our conjecture is that at this boundary we reach

• either a wave with a stagnation point and a corner of 120◦ at its crest whose surface may be
overhanging or a graph (see Figure 8)

• or a wave that has no stagnation point but its surface is overhanging with self-intersections on
the trough line (see Figure 9).

This conjecture is supported by some analysis and by the numerical simulations in [21,49].
It would also be interesting to extend our analysis in Section 5 of the nature of a flow beneath the

wave profile from the case of small-amplitude waves to larger waves.

Appendix A. The periodic Hilbert transform Cd on a strip

We discuss the conjugation and Dirichlet-Neumann operators acting on periodic functions on a
strip. The Dirichlet-Neumann operator Gd for the strip Rd is defined by

(A.1)
(
Gd(w)

)
(x) =Wy(x, 0), w ∈ Cp,α

2π (R) with p ≥ 1 an integer,

where W ∈ Cp,α
2π (Rd) is the unique solution to the boundary-value problem

(A.2)





∆W = 0 in Rd,

W (x, 0) = w(x), x ∈ R,

W (x,−d) = 0, x ∈ R .
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Gd is a bounded linear operator from Cp,α
2π (R) to Cp−1,α

2π (R), given by

(
Gd(w)

)
(x) =

[w]

d
+

∞∑

n=1

nan coth(nd) cos(nx) +
∞∑

n=1

nbn coth(nd) sin(nx)

where w ∈ Cp,α
2π (R) has the Fourier series expansion

w(x) = [w] +

∞∑

n=1

an cos(nx) +

∞∑

n=1

bn sin(nx).

The conjugation operator Cd is defined as

(A.3)
(
Cd(w)

)
(x) =

∞∑

n=1

an coth(nd) sin(nx) −
∞∑

n=1

bn coth(nd) cos(nx) ,

for 2π-periodic functions w ∈ Cp,α
2π,◦(R) of zero mean, [w] = 0, having the Fourier series expansion

w(x) =

∞∑

n=1

an cos(nx) +

∞∑

n=1

bn sin(nx) .

For any integer p ≥ 0 and any α ∈ (0, 1), the operator Cd is a bounded invertible operator from the
class Cp,α

2π,◦(R) into itself. The two operators are related by means of the identity

(A.4) Gd(w) =
[w]

d
+
(
Cd(w − [w])

)′
=

[w]

d
+ Cd(w

′), w ∈ Cp,α
2π (R),

that holds for all integers p ≥ 1. Given W as in (A.2), let Z ∈ Cp,α
2π (Rd) be the harmonic function in

Rd, uniquely determined up to a constant, such that Z + iW is holomorphic in Rd. Then Z(x, y) =
[w]

d
x + Z0(x, y) throughout Rd, for a harmonic function (x, y) 7→ Z0(x, y) that is 2π-periodic in the

x-variable (see [18]). The function Z0 being unique up to an additive constant, we normalize it by
requiring that x 7→ Z0(x, 0) has zero mean over one period. Then x 7→ Z0(x, y) has zero mean for
every y ∈ [−d, 0]. The restriction of this particular harmonic conjugate of W to y = 0 is given by

(A.5) Z(x, 0) =
[w]

d
x+ Cd(w − [w]), x ∈ R .

Let L2
2π,◦(R) be the space of 2π-periodic locally square integrable functions of one real variable, with

zero mean over one period. The operator Cd can be extended by complex-linearity to complex-valued
functions in L2

2π,◦(R), being characterized by its action on the trigonometric system {eint}n∈Z\{0} as

(A.6) Cd(e
int) = −i coth(nd) eint, n ∈ Z \ {0}.

It is a skew-adjoint operator. Let C denote the standard periodic Hilbert transform [6, 41], defined by

(A.7) C(eint) = −i sgn(n) eint, n ∈ Z \ {0} .

It is well-known that C has a pointwise almost everywhere representation as a singular integral

(A.8)
(
C(w)

)
(t) =

1

2π
PV

∫ π

−π

cot

(
t− s

2

)
w(s) ds,

where PV denotes a principal value integral [37], which is instrumental in the investigation of the
structural properties of the operator C. Writing

(A.9) Cd = C +Kd,

we see that the operator Kd corresponds to the Fourier multiplier operator on L2
2π,◦(R) given by

(A.10)
{
w =

∑

n∈Z\{0}

cn e
int
}
7→
{ ∑

n∈Z\{0}

−i sgn(n) λn cn e
int
}
,
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y = − 2 d

− 1 1

u  (t)

u  (t)+ 

−

U + i V

0

 Φz =      (   )ξ

ξ= x+iy

U + i V

u  (x)+ 

u  (x)−

y = 0

Figure 10. The correspondence between boundary values of harmonic functions on a strip
and on the unit disk.

with λn =
2

e2|n|d − 1
for |n| ≥ 1. Since

∑

n∈Z\{0}

|n|2pλ2n < ∞ for every integer p ≥ 0, the function

κd ∈ L2
2π,◦(R) given by

(A.11) κd(t) =
∑

n∈Z\{0}

−i sgn(n) λn e
int =

∞∑

n=1

2λn sin(nt), t ∈ R,

is of class C∞ (see [24]). From (A.10) we infer that Kd(w) is the convolution of w with this smooth
function κd, that is,

(A.12)
(
Kd(w)

)
(t) =

1

2π

∫ π

−π

κd(t− s)w(s) ds, t ∈ R.

This representation is useful in establishing the following commutator estimate (see [18] for the proof).

Lemma 5. If f ∈ Cj,α
2π,◦(R) and g ∈ Cj−1,α

2π,◦ (R) with j ∈ N and α ∈ (0, 1), then
(
f Cd(g)− Cd(fg)

)
∈

Cj,δ
2π (R) for all δ ∈ (0, α) (with the inequality δ < α being sharp), and there exists a constant C =

C(j, α, δ) such that
||f Cd(g)− Cd(fg)||j,δ ≤ C||f ||j,α||g||j−1,α.

In order to complete the description of the periodic Hilbert transform in a strip, we now derive the
analogue of the fundamental formula (A.8).

Lemma 6. For any w ∈ C1,α
2π,◦(R), we have

(A.13)
(
Cd(w)

)
(x) =

1

2d
PV

∫

R

{
tanh

(πs
2d

)
+ coth

(π(x− s)

2d

)}
w(s) ds

and also

(A.14)
(
Cd(w)

)
(x) =

1

2πd

∫ π

−π

(
πgd(s) + 2s

)
w(s) ds+

1

2d
PV

∫ π

−π

βd(x− s) w(s) ds

for some 2π-periodic functions gd and βd, where gd is continuous on R and βd is continuous on R\2πZ,

while s 7→ β(s)− coth
(π(s− 2πk)

2d

)
is continuous at s = 2πk with k ∈ Z.

We do not pursue the quest of providing an explicit formula for gd and βd since the intricacy
of the hypergeometric point evaluations available for gd(0) and βd(0) is indicative of the level of
complexity involved [22]. To illustrate the usefulness of the representation (A.14), note that term
by term differentiation of their series representations from above yield that g and β are decreasing,
respectively increasing, on (−π, π). This information is not immediately obtained from (A.11).

Proof. Given d > 0, the function φ(ξ) =
e

π
2d

(ξ+id) − 1

e
π
2d

(ξ+id) + 1
= tanh

( π
4d

(ξ + id)
)
with ξ = x + iy maps

the horizontal strip R2d conformally onto the unit disc D = {z ∈ C : |z| < 1}; see Figure 10. Let
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(Ũ + iṼ )(ξ) be a bounded holomorphic function in R2d, admitting a C1,α
loc (R2d) extension, and denote

by ũ±+ i ṽ± the boundary values on the horizontal lines y = 0 and y = −2d, respectively. For z = φ(ξ)
with ξ ∈ R2d, let (U + iV )(z) = (Ũ + iṼ )(ξ) be the corresponding holomorphic function in D, whose
boundary values at z = eit on the upper/lower semicircles that make up the boundary of D we denote
by u±(t) + iv±(t).

Now the bounded holomorphic function U + iV in D can be represented by Poisson’s formula

(A.15) U(z) + iV (z) =
1

2π

∫ π

0

eit + z

eit − z
u+(t) dt+

1

2π

∫ 0

−π

eit + z

eit − z
u−(t) dt, z ∈ D .

For t ∈ (0, π), if eit = φ(s) with s ∈ R, then

eit = tanh
( π
4d

(s+ id)
)
=

sinh
(

π
2d
s
)
+ i

cosh
(

π
2d
s
)

yields cos(t) = tanh
(

π
2d
s
)
and sin(t) =

1

cosh
(

π
2d
s
) , so that t = 2 arctan

(
e−

π
2d

s
)
. On the other hand,

for t ∈ (−π, 0), if eit = φ(s− 2id) with s ∈ R, then

eit = tanh
( π
4d

(s− id)
)
=

sinh
(

π
2d
s
)
− i

cosh
(

π
2d
s
)

yields cos(t) = tanh
(

π
2d
s
)
and sin(t) = −

1

cosh
(

π
2d
s
) , so that t = − 2 arctan

(
e−

π
2d

s
)
. Thus the change

of variables t = 2 arctan
(
e−

π
2d

s
)
for t ∈ (0, π) and t = − 2 arctan

(
e−

π
2d

s
)
for t ∈ (−π, 0) transforms

(A.15) into

U(z) + iV (z) =
1

4d

∫

R

tanh
(

π
4d
(s+ id)

)
+ tanh

(
π
4d
(x+ iy + id)

)

tanh
(

π
4d
(s+ id)

)
− tanh

(
π
4d
(x+ iy + id)

) 1

cosh
(

π
4d
s
) ũ+(s) ds

+
1

4d

∫

R

tanh
(

π
4d
(s− id)

)
+ tanh

(
π
4d
(x+ iy + id)

)

tanh
(

π
4d
(s− id)

)
− tanh

(
π
4d
(x+ iy + id)

) 1

cosh
(

π
4d
s
) ũ−(s) ds(A.16)

=
1

4d

∫

R

sinh
(

π
4d
(s+ x+ 2id+ iy)

)

sinh
(

π
4d
(s− x− iy)

) 1

cosh
(

π
2d
s
) ũ+(s) ds

+
1

4d

∫

R

sinh
(

π
4d
(s+ x+ iy)

)

sinh
(

π
4d
(s− x− 2id− iy)

) 1

cosh
(

π
2d
s
) ũ−(s) ds

for z = φ(x+ iy) ∈ D with (x, y) ∈ R2d. Note that






sinh(a+ ib) = sinh(a) cos(b) + i cosh(a) sin(b), cosh(a+ ib) = cosh(a) cos(b) + i sinh(a) sin(b) ,

cosh(2a) = 2 cosh2(a)− 1 = 2 sinh2(a) + 1, cos(2a) = 2 cos2(a)− 1 = 1− 2 sin2(a) ,

2 sinh(ξ1) sinh(ξ2) = cosh(ξ1 + ξ2) − cosh(ξ1 − ξ2) ,
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for a, b ∈ R and ξ1, ξ2 ∈ C, respectively. Using these identities, we get

sinh
(

π
4d
(s+ x+ 2id+ iy)

)

sinh
(

π
4d
(s− x− iy)

) =
sinh

(
π
4d
(s+ x+ 2id+ iy)

)
sinh

(
π
4d
(s− x+ iy)

)

sinh2
(

π
4d
(s− x)

)
cos2

(
π
4d
y
)
+ cosh2

(
π
4d
(s− x)

)
sin2

(
π
4d
y
)

=
2
{
cosh

(
π
2d
(s+ id+ iy)

)
− cosh

(
π
2d
(x+ id)

)}

{
cosh

(
π
2d
(s− x)

)
− 1
}{

cos
(

π
2d
y
)
+ 1
}
+
{
cosh

(
π
2d
(s− x)

)
+ 1
}{

1− cos
(

π
2d
y
)}

=
cosh

(
π
2d
(s+ id+ iy)

)
− cosh

(
π
2d
(x+ id)

)

cosh
(

π
2d
(s− x)

)
− cos

(
π
2d
y
) =

cosh
(

π
2d
s
)
cos
(

π
2d
(y + d)

)
− cosh

(
π
2d
x
)
cos
(

π
2d
d
)

cosh
(

π
2d
(s− x)

)
− cos

(
π
2d
y
)(A.17)

+ i
sinh

(
π
2d
s
)
sin
(

π
2d
(y + d)

)
− sinh

(
π
2d
x
)
sin
(

π
2d
d
)

cosh
(

π
2d
(s− x)

)
− cos

(
π
2d
y
)

= −
cosh

(
π
2d
s
)
sin
(

π
2d
y
)
− i
{
sinh

(
π
2d
s
)
cos
(

π
2d
y
)
− sinh

(
π
2d
x
)}

cosh
(

π
2d
(x− s)

)
− cos

(
π
2d
y
) .

Similarly, we get
(A.18)

sinh
(

π
4d
(s+ x+ iy)

)

sinh
(

π
4d
(s− x− 2id− iy)

) = −
cosh

(
π
2d
s
)
sin
(

π
2d
y
)
− i
{
sinh

(
π
2d
s
)
cos
(

π
2d
y
)
+ sinh

(
π
2d
x
)}

cosh
(

π
2d
(x− s)

)
+ cos

(
π
2d
y
) .

Taking (A.17) and (A.18) into account, from (A.16) we deduce that for z = φ(x + iy) ∈ D with
x+ iy ∈ R2d, we can express U(z) + iV (z) as

−
1

4d

∫

R

sin
(

π
2d
y
)

cosh
(

π
2d
(x− s)

)
− cos

(
π
2d
y
) ũ+(s) ds+

i

4d

∫

R

tanh
(

π
2d
s
)
cos
(

π
2d
y
)
−

sinh( π
2d

x)

cosh( π
2d

s)

cosh
(

π
2d
(x− s)

)
− cos

(
π
2d
y
) ũ+(s) ds(A.19)

−
1

4d

∫

R

sin
(

π
2d
y
)

cosh
(

π
2d
(x− s)

)
+ cos

(
π
2d
y
) ũ−(s) ds+

i

4d

∫

R

tanh
(

π
2d
s
)
cos
(

π
2d
y
)
+

sinh( π
2d

x)

cosh( π
2d

s)

cosh
(

π
2d
(x− s)

)
+ cos

(
π
2d
y
) ũ−(s) ds .

As y ↑ 0 the imaginary part of (A.19) tends to

ṽ+(x) =
1

4d
PV

∫

R

tanh
(

π
2d
s
)
−

sinh( π
2d

x)

cosh( π
2d

s)

cosh
(

π
2d
(x− s)

)
− 1

ũ+(s) ds+
1

4d

∫

R

tanh
(

π
2d
s
)
+

sinh( π
2d

x)

cosh( π
2d

s)

cosh
(

π
2d
(x− s)

)
+ 1

ũ−(s) ds ,

the principal value integral being due to the singularity at x = s. Since

tanh
( π
2d
s
)
∓

sinh( π
2d
x)

cosh( π
2d
s)

= ∓
{
tanh

( π
2d
s
) {

cosh
( π
2d

(x− s)
)
∓ 1
}
∓ sinh

( π
2d

(x− s)
)}

,

we deduce that

ṽ+(x) = −
1

4d
PV

∫

R

{
tanh

( π
2d
s
)
+

sinh( π
2d
(x− s))

cosh
(

π
2d
(x− s)

)
− 1

}
ũ+(s) ds

+
1

4d

∫

R

{
tanh

( π
2d
s
)
+

sinh( π
2d
(x− s))

cosh
(

π
2d
(x− s)

)
+ 1

}
ũ−(s) ds

= −
1

4d
PV

∫

R

{
tanh

( π
2d
s
)
+ coth

( π
4d

(x− s)
)}

ũ+(s) ds

+
1

4d

∫

R

{
tanh

( π
2d
s
)
+ tanh

( π
4d

(x− s)
)}

ũ−(s) ds .
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Application of the same argument to the bounded holomorphic function i(Ũ + iṼ ) = −Ṽ + iŨ leads
to the representation

ũ+(x) =
1

4d
PV

∫

R

{
tanh

( π
2d
s
)
+ coth

( π
4d

(x− s)
)}

ṽ+(s) ds(A.20)

−
1

4d

∫

R

{
tanh

( π
2d
s
)
+ tanh

( π
4d

(x− s)
)}

ṽ−(s) ds .

Consider now a holomorphic function Ũ + iṼ in R2d, admitting a C1,α
loc (R2d) extension, for which Ṽ

is 2π-periodic in the x-variable throughout R2d. In contrast to Ṽ , the harmonic conjugate Ũ of −Ṽ
need not be in general 2π-periodic in the x-variable. Indeed, using the Cauchy-Riemann equations
and the 2π-periodicity of Ṽ in the x-variable, we see that the function (x, y) 7→ Ũ(x+2π, y)− Ũ(x, y)
equals to a constant K throughout R2d. Since the expression

d

dy

∫ π

−π

Ṽ (τ, y) dτ =

∫ π

−π

Ṽy(τ, y) dτ =

∫ π

−π

Ũx(τ, y) dτ = Ũ(π, y)− Ũ(−π, y), −2d < y < 0,

is independent of y, integration on [−2d, 0] yields K =
2π

2d
([ṽ+]− [ṽ−]), where [·] denotes the average

of a 2π-periodic function. Consequently, one may write

(A.21) Ũ(x, y) + iṼ (x, y) =
[ṽ+]− [ṽ−]

2d
(x+ iy) + i[ṽ+] + Ũ0(x, y) + iṼ0(x, y), (x, y) ∈ R2d ,

for some holomorphic function Ũ0(x, y) + iṼ0(x, y) that is 2π-periodic in the x-variable, and therefore
bounded.

The previous considerations made to justify (A.20) are therefore applicable to Ũ0(x, y) + iṼ0(x, y),

and lead to the following representation of the boundary values ũ+ on y = 0 of Ũ in terms of the
boundary values ṽ± of Ṽ on y = 0 and y = −2d:

ũ+(x) =
[ṽ+]− [ṽ−]

2d
x+

1

4d
PV

∫

R

{
tanh

( π
2d
s
)
+ coth

( π
4d

(x− s)
)}

(ṽ+(s)− [ṽ+]) ds

−
1

4d

∫

R

{
tanh

( π
2d
s
)
+ tanh

( π
4d

(x− s)
)}

(ṽ−(s)− [ṽ−]) ds.(A.22)

Let us now assume that Ũ + iṼ is analytic in the strip Rd and has for some α ∈ (0, 1) a C1,α
loc

extension to Rd, with Ṽ = 0 on y = −d. The reflection principle [7] permits the analytic continuation
of Ũ + iṼ to R2d by setting

(Ũ + iṼ )(x+ iy) = (Ũ + iṼ )(x− 2id− iy), x ∈ R, −2d < y < −d .

In this case ṽ−(x) = − ṽ+(x), so that (A.22) takes the form

ũ+(x) =
[ṽ+]

d
x+

1

4d
PV

∫

R

{
2 tanh

( π
2d
s
)
+ tanh

( π
4d

(x− s)
)
+ coth

( π
4d

(x− s)
)}

(ṽ+(s)− [ṽ+]) ds

=
[ṽ+]

d
x+

1

2d
PV

∫

R

{
tanh

( π
2d
s
)
+ coth

( π
2d

(x− s)
)}

(ṽ+(s)− [ṽ+]) ds .

Comparing this with (A.5) we obtain, for w ∈ C1,α
2π,◦(R), the explicit representation (A.13) for Cd(w).

Now since w ∈ C1,α
2π,◦(R) is 2π-periodic, we can expand (A.13) as

(A.23)
(
Cd(w)

)
(x) =

1

2d
PV

∫ π

−π

∑

k∈Z

{
tanh

(π(s+ 2πk)

2d

)
+ coth

(π(x− s− 2πk)

2d

)}
w(s) ds .
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Define the functions g and β by

g(s) =
∑

k∈Z

{
tanh

(π(s+ 2πk)

2d

)
− sgn(k)

}
, s ∈ R,

β(s) =
∑

k∈Z

{
coth

(π(s− 2πk)

2d

)
+ sgn(k)

}
, s ∈ R \ 2πZ,

where sgn(k) = 1 for k > 0, sgn(k) = −1 for k < 0 and sgn(0) = 0. The estimates
∣∣∣ tanh

(π(s+ 2πk)

2d

)
− sgn(k)

∣∣∣ =
2

1 + esgn(k)
π
d
(s+2πk)

≤
2

1 + e
π
d
(2π|k|−|s|)

, k ∈ Z, s ∈ R,

∣∣∣ coth
(π(s− 2πk)

2d

)
+ sgn(k)

∣∣∣ =
2

e
π
d
|2πk+s| − 1

≤
2

e
π
d
(2π|k|−|s|) − 1

, k ∈ Z, s ∈ R \ 2πZ,

ensure the continuity of g on R and of β on R \ 2πZ. The nature of the singularities of β at points of
2πZ is plain. For s ∈ R \ 2πZ we have

2 =
∑

k∈Z

{
sgn(k + 1)− sgn(k)

}
= g(s+ 2π)− g(s) = −

(
β(s+ 2π)− β(s)

)
.

Finally defining βd(s) = β(s) + s/π and gd(s) = g(s) − s/π, both of which are 2π-periodic, we obtain

(A.24)
∑

k∈Z

{
tanh

(π(s+ 2πk)

2d

)
+ coth

(π(x− s− 2πk)

2d

)}
=

2s− x

π
+ gd(s) + βd(x− s) .

Substitution of (A.24) into (A.23) yields (A.14). �

Appendix B. Some variational considerations

We present two new variational formulations of travelling periodic gravity water waves with constant
non-zero vorticity over a flat bed. We make no assumptions on the shape of the wave profile, thus
allowing profiles that are not graphs.

The much-studied irrotational flows (that is, flows without vorticity) are models for swell entering
a region of still water, in which case there is no current, or else models for swell entering a region with
currents that are uniform with depth. The earliest variational formulation dates back to Friedrichs
[25]. It was followed by the work of Luke [28], Zakharov [51], Babenko [2] and others, all of which
expressed the Lagrangian in terms of a velocity potential. See [14] for further references.

While there is no velocity potential in the presence of vorticity, there is a stream function. The
first formulation, valid for general vorticity distributions, recasts the water waves as extremals of a
suitably defined Lagrangian functional that is roughly the total energy of the wave. Lagrangians
of a similar type, expressed in terms of a hodograph transform involving the stream function, were
considered in [14] under the assumption that there are no stagnation points in the flow and that
the free surface is the graph of a function (no overturning). A related approach was pursued in the
paper [8], which considers a water wave beneath an elastic sheet obtained by minimization in a class
of rearrangements. The novelty of our formulation is that it allows rotational waves, overturning
free surface profiles, stagnation points and critical layers in the flow. Another advantage is that the
Lagrangian is expressed directly in terms of the physical variables instead of depending on a specific
choice of coordinates. A key aspect of our formulation is that the Lagrangian involves a variable
domain of integration. Although we are not aware of an earlier deduction of this formulation in this
generality, we refer to it as “the standard variational formulation” due to its rather classical form.

The second variational formulation is specific to waves with constant vorticity and it turns out to be
more useful than the first formulation because it involves just a single function of a single variable. Its
essential advantage is that it reduces the governing equations to one pseudo-differential equation for
a function of one variable, namely, the elevation of the free surface when the fluid domain is regarded
as the conformal image of a strip. Somewhat unexpectedly, this equation for the elevation is coupled
to a scalar constraint. The corresponding Lagrangian is essentially obtained by composing the first
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Lagrangian, suitably restricted, with a conformal mapping from a strip. This formulation is new
even for irrotational flows of finite depth. As mentioned in the introduction, it could be regarded as
an analogue of Babenko’s formulation [2] for the irrotational water-wave problem of infinite depth,
which has turned out to be instrumental in the recent theory of global and subharmonic bifurcation
in the irrotational infinite-depth case [3, 4, 5, 36]. Our formulation opens up the possibility of similar
investigations for waves of finite depth with constant non-zero vorticity, in which case numerical studies
[21, 50] indicate that a much richer picture is expected to emerge.

B.1. The standard variational formulation. In this section we construct a functional on a certain
function space, critical points of which are solutions of the travelling water-wave problem (2.1)–(2.2).
Since we are dealing with a free-boundary problem, in which the domain Ω is unknown, the function
space, to be denoted by A, will consists of pairs (Ω, ψ), where ψ is a function on Ω. Some of the
conditions expressed by (2.1)–(2.2) will be required to hold for every element of A, while the remaining
ones will emerge from the condition of criticality.

A domain Ω contained in the upper half of the (X, Y ) plane is called an L-periodic strip-like
domain if its boundary consists of the real axis B and a curve S described in parametric form by
(2.1b) such that (2.1c) holds. We consider the space A of pairs (Ω, ψ), where Ω is an L-periodic strip-
like domain of class C2,α, and ψ ∈ C2,α

L (R2; R) satisfying (2.2b)–(2.2c). The subscript “L” is used to
indicate periodicity in the X-variable, with period L > 0, while α ∈ (0, 1) is a Hölder exponent. The
behaviour of ψ outside a neighbourhood of Ω is of no importance. The only restriction we impose
on the geometry of the free surface S is the requirement that the curve is not self-intersecting. No
restrictions are imposed on the pattern of the streamlines so that we can handle overhanging profiles
and critical layers.

For any pair (Ω, ψ) in A, the periodicity in the X-variable permits us to restrict ourselves to a cell
Ω† bounded below by the real axis B, above by the free surface S and laterally by two vertical lines
situated at horizontal distance L. For definiteness, and to ensure that Ω† is a connected set, one may
choose one of the vertical lines in the definition of Ω† (and hence the other one too) so as to pass
through the lowest point of S. Consider on the space A the functional

(B.1) L(Ω, ψ) =

∫∫

Ω†

{
|∇ψ|2 + 2Υψ − 2gY + Q

}
dX ,

where X = (X, Y ).

Theorem 7. Any critical point (Ω, ψ) of the functional L over the space A is a solution to the
governing equations (2.1)–(2.2).

Proof. We only need to show that a critical point (Ω, ψ) of L on A satisfies (2.2a) and (2.2d). We first
investigate, for a fixed domain Ω the rate of change of L with respect to variations of the dependent
variable ψ which do not change the boundary values on S and B. For smooth functions ϕ : Ω → R

that are L-periodic in the horizontal variable and vanish in a neighbourhood of S and of B, the first
variation δL(Ω, ψ, ϕ) of L at (Ω, ψ) in direction of ϕ is defined by

δL(Ω, ψ, ϕ) :=
d

dε
L(Ω, ψ + εϕ)

∣∣∣
ε=0

cf. Section 2.1 in [26]. A weak extremal ψ of L is a solution of the Euler-Lagrange equation
δL(Ω, ψ, ϕ) = 0 for all ϕ of the type described above, and a straight-forward computation shows
that the weak extremals ψ ∈ C2,α

L (Ω; R) are precisely the solutions to the Euler-Lagrange equation

(B.2) ∆ψ = Υ in Ω .

We now consider variations X 7→ Dε(X) of the independent variables X, allowing modifications of
the domain Ω, but such that the modified domains are still L-periodic strip-like domains. This leads to
the notion of strong inner extremals that will not only satisfy an equation of Euler-Lagrange-type but
also a free boundary condition, cf. Section 3.2 of [26]. Given a vector field f of class C2,α

L (R2; R2), the
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support of which is contained in the upper half-plane {X : Y > 0}, consider the parameter-dependent
family of mappings Dε : R

2 → R2 defined by

Dε(X) := X + ε f(X).

Let Ωε = Dε(Ω). For |ε| < ε0 with ε0 > 0 sufficiently small, Dε is a diffeomorphism from Ω onto Ωε.
For a given ψ ∈ C2,α

L (Ω; R) we can now define a strong inner variation in the direction of f by

ψε(X) = ψ(D−1
ε (X)) for X ∈ Ωε and ε ∈ (−ε0, ε0) .

Note that, for any ε ∈ (−ε0, ε0), the pair (Ωε, ψε) still belongs to A. Correspondingly, the expression

∂L(Ω, ψ, f) :=
d

dε

∫∫

(Ωε)†
F
(
X, ψε(X), ∇ψε(X)

)
dX
∣∣∣
ε=0

where

(B.3) F (X, Y, z, p1, p2) = p21 + p22 + 2Υz − 2gY +Q,

is the integrand in the functional L, is called the inner variation of the functional L at ψ in the
direction of the vector field f. A mapping ψ ∈ C2,α

L (Ω,R) is said to be a strong inner extremal of L if

∂L(Ω, ψ, f) = 0 holds for all such vector fields f. Also, a mapping ψ ∈ C2,α
L (Ω,R) is said to be an inner

extremal of L if ∂F(Ω, ψ, f) = 0 holds for the subclass of vector fields f that vanish in a neighbourhood
of S and of B. Any inner extremal ψ ∈ C2,α

L (Ω; R) will satisfy the Noether equation

(B.4) (∆ψ −Υ)∇ψ = 0 in Ω ,

cf. Section 3.1 and Proposition 1, Section 3.2 in [26]. Note the equivalence of (B.2) and (B.4) if
stagnation points do not occur. However, in our setting stagnation points are permissible.

Moreover, a strong inner extremal satisfies (B.4) as well as the boundary conditions

(B.5)





ν1

(
p1
∂F

∂p1
− F

)
+ ν2 p1

∂F

∂p2
= 0,

ν1 p2
∂F

∂p1
+ ν2

(
p2
∂F

∂p2
− F

)
= 0,

on S ,

where ν = (ν1, ν2) is the outer unit normal to S and F is defined in (B.3). The condition ψ = 0 on
S, which must hold since (Ω, ψ) ∈ A, ensures that ν is collinear with ∇Xψ at all points X ∈ S where
∇Xψ(X) 6= (0, 0). At every such point, a mere substitution into (B.5) in combination with (2.2b) leads
us to (2.2d). On the other hand, at points X ∈ S where ∇Xψ(X) = (0, 0), inspection of (B.5) yields
F = 0, which in this case is the same as (2.2d). This completes the proof of Theorem 7. �

Remark 6. While Theorem 7 is specifically formulated for flows with constant vorticity, there is a
counterpart for travelling waves on flows with general vorticity distributions, in which case equation
(2.2a) is replaced by

∆ψ = Υ(ψ),

where now Υ is an arbitrary function of one variable. In this case, we would work on the same space
A, but with the functional L in (B.1) replaced by

L(Ω, ψ) =

∫∫

Ω†

{
|∇ψ|2 + 2Ξ(ψ) − 2gY + Q

}
dX ,

and, correspondingly, the integrand F in (B.3) being replaced by

F (X, Y, z, p1, p2) = p21 + p22 + 2Ξ(z) − 2gY +Q ,

where Ξ(z) =

∫ z

0

Υ(s) ds. Even discontinuous vorticity functions Υ are permissible if one lowers

the regularity requirements and uses a suitable weak formulation (see [17, 48]). The setting of weak
solutions is well-suited for the use of geometric methods to investigate the behaviour of the surface
wave profile near stagnation points cf. [46, 47]. Note that in [14], an equivalent form of the functional
L, expressed in terms of a hodograph transform that involves the stream function, was considered
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under the restrictive assumptions that there are no stagnation points in the flow and that the free
surface is the graph of a function. The present setting accommodates overhanging free surface profiles
as well as stagnation points in the flow.

B.2. An alternative convenient variational formulation. Since one of the great advantages
of Lagrangian dynamics is the freedom it allows in the choice of coordinates and since variational
formulations involving as few dependent and independent variables as possible are preferable, we
will express the functional L in terms of the function v, introduced in Section 2.1. In terms of v, the
governing equations (2.1)–(2.2) were reformulated in Section 2.2 as a single pseudodifferential equation
(2.22a) coupled with the scalar constraint (2.22b). We will show that the functional Λ introduced in
the variational formulation of the equations (2.22a)-(2.22b) of Section 2.2, which were discussed in
Section 2.3, corresponds to an energy-type functional in the physical variables.

In the notation of the previous subsection, with Ω an arbitrary 2π/k-periodic strip-like domain,
let us express L(Ω, ψΩ) in terms of the corresponding function v, where (Ω, ψΩ) ∈ A and ψΩ is the
unique solution of (2.2a)-(2.2c). We would like to emphasize that, throughout the rest of this section,
we always deal with pairs (Ω, ψΩ), rather than with arbitrary elements (Ω, ψ) of A. However, for
notational convenience we often use the notation ψ instead of ψΩ. In what follows, we will prove the
formula

L(Ω, ψΩ) =

∫ π

−π

(
Qv − g v2 −

Υ2

3
v3
)(1

k
+ Ckh(v

′)
)
dx

+

∫ π

−π

(
m −

Υ

2
v2
)(m

kh
−

Υ

2kh
[v2] − Υ Ckh(vv

′)
)
dx ,(B.6)

which is the same as Λ(w, h) in (2.40). In order to do so, it is convenient to choose Ω† so that one of
its lateral boundaries passes through a lowest point (trough) of S, and we denote by S† and B† the
top and bottom boundaries of Ω†. It is also convenient to choose the conformal mapping U + iV so
that S† is the image of the horizontal line segment {(x, 0) : x ∈ [−π, π]. Then B† will be the conformal
image of a segment {(x,−kh) : x ∈ [β−π, β+π]}, for some β ∈ R. Firstly, denoting by ν the outward
unit normal at the boundary ∂Ω of Ω, Green’s formula yields∫∫

Ω†

|∇ψ|2 dX = −Υ

∫∫

Ω†

ψ dX − m

∫

B†

∂ψ

∂ν
dσ

by periodicity in the X-variable and by taking (2.2a), (2.2b) and (2.2c) into account. The outer normal
on B is ν = (0,−1), so that

∂ψ

∂ν
(X, 0) = −ψY (X, 0) on B.

Recall that the conformal mapping is X = U(x, y), Y = V (x, y). Since ψX(X, 0) = 0 by (2.2c), from
(2.11) we infer that

ξy(x,−kh) = ψY (X, 0)Ux(x,−kh)

as Vy = Ux by the Cauchy-Riemann equations. Therefore, using the periodicity of ξ,
∫

B†

∂ψ

∂ν
dσ = −

∫ β+π

β−π

ξy(x,−kh) dx = −

∫ π

−π

ξy(x,−kh) dx,

so that

(B.7)

∫∫

Ω†

|∇ψ|2 dX = −Υ

∫∫

Ω†

ψ dX+m

∫ π

−π

ξy(x,−kh) dx .

Similarly,
∫∫

Ω†

ψ dX =

∫∫

Ω†

(
∆
Y 2

2

)
ψ dX =

∫∫

Ω†

Y 2

2
∆ψ dX+

∫

∂Ω†

ψ
∂

∂ν

(Y 2

2

)
dσ −

∫

∂Ω†

Y 2

2

∂ψ

∂ν
dσ

=
Υ

2

∫∫

Ω†

Y 2 dX −

∫

S†

Y 2

2

∂ψ

∂ν
dσ.
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But ν =
(−Vx, Ux)√
U2
x + V 2

x

is the outer normal on S, so that on S we have

∂ψ

∂ν
= (ψX , ψY ) · ν =

ψXUy + ψY Vy√
U2
x + V 2

x

∣∣∣
(x,0)

=
ξy√

U2
x + V 2

x

∣∣∣
(x,0)

in view of (2.11) and the Cauchy-Riemann equations Ux = Vy, Uy = −Vx. Hence
∫

S†

Y 2

2

∂ψ

∂ν
dσ =

∫ π

−π

ξy√
U2
x + V 2

x

V 2

2

√
U2
x + V 2

x

∣∣∣
(x,0)

dx =

∫ π

−π

V 2

2
ξy

∣∣∣
(x,0)

dx

as dσ =
√
U2
x + V 2

x

∣∣∣
(x,0)

dx. Moreover, using the Cauchy-Riemann equations for U+iV , the divergence

theorem, the periodicity in the X-variable and the fact that V (x,−kh) = 0 from (2.4), we get
∫∫

Ω†

Y 2 dX =

∫∫

Ω†

∇X ·
(
0,
Y 3

3

)
dX =

1

3

∫ π

−π

V 3(x, 0) Vy(x, 0) dx =
1

3

∫ π

−π

V 3(x, 0)Ux(x, 0) dx.

Combining the last four displayed equations, we obtain

(B.8)

∫∫

Ω†

ψ dX =
Υ

6

∫ π

−π

V 3(x, 0)Ux(x, 0) dx −
1

2

∫ π

−π

V 2(x, 0) ξy(x, 0) dx .

Proceeding as above, we also get
∫∫

Ω†

1 dX =

∫ π

−π

V (x, 0)Ux(x, 0) dx ,

∫∫

Ω†

Y dX =
1

2

∫ π

−π

V 2(x, 0)Ux(x, 0) dx .

Substituting the last three equations and (B.7) into (B.1) yields

L(Ω, ψΩ) = m

∫ π

−π

ξy(x,−kh) dx −
Υ

2

∫ π

−π

V 2(x, 0) ξy(x, 0) dx

+

∫ π

−π

{
Υ2

6
V 3(x, 0)− g V 2(x, 0) + QV (x, 0)

}
Ux(x, 0) dx .

Using (2.12) to express

ξy = Υ V Vy + ζy = ΥV Ux + ζy

and using V = 0 on y = −hk, we get

L(Ω, ψΩ) = m

∫ π

−π

ζy(x,−kh) dx −
Υ

2

∫ π

−π

V 2(x, 0) ζy(x, 0) dx

+

∫ π

−π

{
−
Υ2

3
V 3(x, 0)− g V 2(x, 0) + QV (x, 0)

}
Ux(x, 0) dx .

However, the harmonicity (2.13a) of ζ in the strip Rkh yields
∫ π

−π

ζy(x,−kh) dx =

∫ π

−π

ζy(x, 0) dx,

so that

L(Ω, ψΩ) =

∫ π

−π

{
QV (x, 0) − g V 2(x, 0) −

Υ2

3
V 3(x, 0)

}
Ux(x, 0) dx

+

∫ π

−π

{
m −

Υ

2
V 2(x, 0)

}
ζy(x, 0) dx.

Using the relations (2.19) and the fact that Ux(x, 0) = Vy(x, 0) =
1
k
+ Ckh(v

′), we obtain (B.6), which
is precisely the functional Λ(w, h) introduced in Section 2.3.
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