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Abstract. In this paper we study time-periodic solutions to advection-diffusion equations of
a scalar quantity uw on a periodically moving n-dimensional hypersurface I'(t) C R™t1. We prove
existence and uniqueness of solutions in suitable Holder spaces.
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1. Introduction. In this paper we consider the advection and diffusion equation
(1.1) Ap(t)u—uvp(t) v —0%u=f

for a scalar quantity u : G; — R on the space-time hypersurface G; := Ute(o 7) I(t) x

{t} € R"*2, where I'(t) denotes a closed n-dimensional moving hypersurface I'(t) C
R"*!. Such equations arise in many applications such as processes on biological cell
surfaces, [6] and the transport of surfactants on fluid interfaces, [10]. The variational
Hilbert space theory for the initial value problem has been considered in [1].

Here the motion of the hypersurface is assumed to be periodic in time with period
T in the sense that I'(0) = ['(T). The velocity, v : G, — R"™1 of the moving
hypersurface I'(t) is given by v = vy +vp, where vy denotes the normal velocity of T'(t)
and vy is an advective velocity field tangential to I'(¢). The tangential gradient and
the Laplace-Beltrami operator on I'(t) are denoted by V) and Arp, respectively.
The material derivative 9®u is given by

(12) O®'u=u; +vn-Vu+uvp- Vp(t)u.
A solution u : Gy — R of the advection-diffusion equation (1.1) is called periodic if
(1.3) u(-,0) =u(-,T) on T(0).

The aim of this work is to establish the existence and uniqueness of periodic
solutions. Since the mass m(t) := fF(t) u(-,t)do(t) of a solution u of the advection-

diffusion equation (1.1) evolves according to

m'(t)=— | f(,t)do(t),

I'(t)

a necessary condition for u to be periodic is that

(1.4) /OT /m) Fdo(t)dt = 0.
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However, please note that neither f nor the velocity v is supposed to be periodic. That
is, in general limy~ o f(+,¢) # limy p f(,t) as well as limy o v(-, ) # limy ~p (-, 1).
Although we prove a slightly more general result, the main result of this paper is that
for each given mass mg € R there exists a unique periodic solution u € Hay4(G:) of
the advection-diffusion equation (1.1) with initial mass m(0) = mg. Here Hata(Gt)
denotes a suitable Holder space, which we introduce below.

Since for f = 0 the mass m(t) of a solution u is constant in time, v describes a
conservative scalar quantity in this case. In order to prove existence and uniqueness of
periodic solutions to the advection-diffusion equation (1.1) we have to look at slightly
more general linear parabolic partial differential equations on G;. In fact, we have to
consider advection-diffusion equations of the form

(1.5) Appyu —cu—0%u = f,

where ¢ : G; — R is a scalar function on the space-time hypersurface G; that is not
required to be periodic. Unfortunately, it turns out that the periodicity condition in
(1.3) is too restrictive in this case even if we assume (1.4), since in general the mass of a
solution w to the equation (1.5) cannot be periodic in time, that is m(0) # m(T). The
reason for this is the zero-order term in (1.5). For example, for f =0 and ¢ = V) -
v+a with a € (0,400) the mass decays exponentially, that is m(t) = m(0) exp(—at).
Hence, a periodic solution would have to satisfy m(0) = fr(o) u(+,0)do(0) = 0 in this
case, which is, however, a much too restrictive assumption for applications. Therefore,
we slightly relax the notion of periodicity to

1.6)  u(-0) _][m)) (-, 0)do(0) = u(-,T) —]{(0) (- T)do(0) on T(0),

where fr udo = \T1| fr udo denotes the mean value of u on I". Fortunately, for the
advection-diffusion equation (1.1) this condition is equivalent to the condition (1.3)
as long as the constraint (1.4) is satisfied.

The study of time-periodic solutions to both linear and non-linear parabolic equa-
tions has a long history, see for example [12] and references therein, in particular [8],
[11] and [17], as well as [2] and [13]. However, we are not aware of any previous analytic
work that studies the periodic problem on moving hypersurfaces. Our methodology
reformulates the problem on a moving closed hypersurface to a problem on a fixed
hypersurface with time varying coefficients. In order to obtain some analytic results it
is then useful to relate the hypersurface equation to a Neumann type boundary prob-
lem on a flat domain, see the Appendix for further explanations. Observe that the
problem in our case is slightly more involved than the results on the oblique derivative
problems for flat domains in [12], since we cannot assume that the zero order term ¢
is non-negative. For example for the choice ¢ = V() - v this is certainly not true in
general. The fact that the zero-order term ¢ can be negative is indeed the reason, why
this paper is beyond the scope of previous works. Furthermore, the slightly weaker
periodicity condition (1.6), which ensures the existence of periodic solutions for any
initial mass m(0) = mg € R, does not seem to have been used in the literature so far.
Anyway, it is still possible to adopt the techniques used by Lieberman in [12] to our
problem. Therefore, our existence proof mainly relies on a simple fixed point iteration
and standard Fredholm theory.

Our work is partially motivated by numerical simulations of periodic solutions of
advection-diffusion equations on moving 2-dimensional surfaces for f = 0 performed
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in [7] using an evolving surface finite element method. The periodic solutions were
obtained by computing the initial value problem for arbitrary chosen initial conditions.
Indeed, the numerical solutions for different initial conditions with same initial mass
appear to converge very quickly to the same time-periodic solution. We would like to
emphasize that in this numerical work the formulation (1.1), which entirely avoids the
use of local coordinates and surface parametrisations, is very suitable for the evolving
surface finite element method.

This paper is organized as follows. First, we introduce the notation and the
parabolic Holder spaces on the space-time hypersurface G; as well as their associated
norms. Then we rewrite the advection-diffusion equation on the moving hypersurface
I'(t) as an advection-diffusion equation with time-dependent coefficients on a fixed
reference hypersurface M. This formulation is more amenable for our purposes, since
it can be easily related to a (non-degenerate) Neumann type boundary problem on a
flat domain. We derive this Neumann boundary problem in the Appendix. In Section
2, we summarize the results of this paper. This also serves as a reader’s guide to the
proof of the main result in Theorem 3.5. The detailed proofs of all results given in
Section 2 can be found in Section 3. In the Appendix, we discuss the technique to
extend a surface partial differential equation to a non-degenerate partial differential
equation on an extended neighbourhood. This result is used in Section 2 and 3 to
prove existence and uniqueness to the initial boundary value problem on hypersurfaces
without using any local parametrizations of the hypersurface.

2. Preliminaries. We make use of the convention to sum over repeated indices.

2.1. Hypersurfaces. Henceforward, we assume that I'(t) C R"*! is a family of
closed (that is compact and without boundary), orientable, connected, n-dimensional,
embedded hypersurfaces of class C!, with I € N, and that there is a closed, orientable,
connected, n-dimensional, embedded hypersurface M C R™*! of the same class and a
C!-embedding X : G — R™*2 from the closure of the cylinder G := M x (0,T) C R"*+2
onto R™"2 such that for any ¢ € [0, T] the map X (-, ¢) is a bijection from M onto I'(¢).
This implies that G; := ;¢ T'(t) x {t} C R"*+2 is an (n + 1)-dimensional space-
time hypersurface of class Ct. Here, C! refers to [-times continuously differentiable
functions, whose derivatives are Lipschitz. Note that we use the notation C*?! for
functions continuously differentiable in time and twice continuously differentiable in
space. We also assume that the motion of I'(¢) is periodic in time in the sense that
I'0) =T(T) and X(-,0) = X(-,T), respectively.

2.2. Tangential gradient and material derivative. Let ' C R"*! be an
arbitrary hypersurface. The tangent space to A at the point x € N is the linear
space

TN = {1 e R" | 3y € C'((—€,€), R"), v((—€,€)) C N, 7(0) = 2,7/ (0) =7},

see [5]. For a function f on an arbitrary hypersurface A/ differentiable at = € N, we
define the tangential gradient of f at x € N by

Vnf(@) =V f(z)—v(z)v(z) V(@)= P@)Vf(),

where f denotes a differentiable extension of f to an open neighbourhood U C Rrtl
of x, such that fixrnu = fianu, see [5] for more details. Here, - denotes the Euclidean
scalar product in the ambient space, v(z) is a unit normal of A" at x and P(z) =
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1 — v(xz) @ v(x) is the projection onto the tangent space of N at x. The components
of the tangential gradient are denoted by

D,f
: = Vnf.
Qn-‘rlf

For a twice continuously differentiable function f on N we have the commutator rule
(21) QaQﬁ‘f - QﬁQaf = (Hﬁn’/a - Homyﬁ)ana

where H := Vv denotes the (extended) Weingarten map on A. The Laplace-
Beltrami operator on N is defined by

Anf:=Vn-Vnf.

These definitions can be easily generalized to moving hypersurfaces I'(t), as well
as to the space-derivatives on the space-time hypersurfaces G and G;. Since G is a
cylinder the definition of the time-derivative of a function f on G is obvious. On
the space-time hypersurface G; we define the material derivative 9°f of a function
f:G, — Rby

O°f:=(foX)oX L
Since the velocity v of I'(t) is given by
vi=X,0 XL

this definition is consistent with formula (1.2).

2.3. Holder spaces. For a function f : G — R we define the norm

|f|0,g = sup ‘f(xat”v
(z,t)EG

and we say that f is Holder continuous in G with exponent « € (0, 1] if the semi-norm

f 1’,t - f Y,S
Hog(f):= sup sup 7@, t) = I (3‘
(z.)€G (y,5)e\{(z,t)} (@) — (Y, 5)]

1
is finite. Here |(z,t)| := max{|z|,|t|2} with |z| := (ZZE xi)z is the parabolic

distance in R™*2. Furthermore, we define the norms

|fla.g == flo.g + Hag(f),
|flitag = Iflog + {(firag +VMmSflags
| fla4a.g = |flo.g + [Vmflog + (Vmfhivag + Vi flag + | flag

where

(f)14a,g == sup sup |f(z,t) — f(x,5)]
“ o 1+a .
(z,1)€G (z,5)€0\{(z,t)} It — 5|5
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For k = 0,1, 2, we introduce the following Holder spaces on G

Hira(G) ={f:G = R||flitrag < o0}.

Obvious modifications of the above definitions lead to the definition of | - |g4a,m for
k=0,1,2. For a function f on G the following inequality holds

|f('7t)|k+a,./\/l < |f|k+a,g, YVt € [O,T],Va € (0, 1],]€ =0,1,2.

Let the hypersurfaces M and I'(t) as well as the embedding X be of class C%, then
the norm | - |x4a,g, on the linear space Hy4a(Gi) :={f: G = R | foX € Hi1a(G)}
is defined by

|f|k+a,gt = ‘f OX|k+a,g for k=0,1,2.

Henceforward, d denotes the oriented distance function to M C R™*! see for
example [3]. There exists 6 > 0 such that the decomposition

z = a(z) + d(z)v(a(x)),
with a(z) € M is unique for all x € N, where
(2.2) Ns = {z e R"™ | |d(z)| < 6}

Please note, that for a C'-hypersurface, [ > 2, the oriented distance function d is also
of class C', whereas the projection a : N5 — M is of class C'~!. The oriented distance
function d is also Lipschitz continuous on Ny and so is the projection a, provided that
the width ¢ is chosen sufficiently small and [ > 2. This can be seen as follows

la(z) — a(y)| <[z —y[ +[d(z) — d(y)| + [d(y)[[v(a(z)) = v(aly))|
< Cle = y| + cdla(z) — a(y)].
The extensions of the unit normal v, of the projection P and of the Weingarten
map H on M to the neighbourhood Ny are defined by v(z) := Vd(z) = v(a(x)),
P(z) := 1 — v(z) ® v(x) and by H(x) := V2d(z). For a function f on M we define
the lift to N by f'(z) := f(a(x)). A direct calculation yields

(2.3) V= (1 — dH)(Tanf),
(Vamf) = (L —dH) 'V
compare to [4]. The definitions of the norms | - |54q,g; and of the spaces Hiiaq(Gs)

for k = 0,1,2 on the cylinder Gs := N5 x (0,T) are obvious. In order to prove the
norm equivalence

1
Ck,a

| Flitag < 1 tags < Cralflitag

for functions f: G — R, we need the following statement.
LEMMA 2.1. For functions f,g: G — R the following inequalities hold

Haog(f9) < Hag(f)lglog + |flo.gHac(9),
1f9lag < |flaglglog + [flo.glglag,
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Analogue estimates hold for the norms | - |k+a.g; on Gs.
Proof. The first inequality easily follows from the definition of the Holder coeffi-
cient. The second inequality is then a direct result. O
LEMMA 2.2. For M of class C§ there exist constants Cr,a > 0 such that

(2.5) | flitag < 1f ktags < Cralflitag,

Cka

)

for k=0,1,2 and «a € (0, 1].
Proof. Since the lifted function f'! is constant in the normal direction, we obtain

1o = 1/'l0.6s-

For the Hélder coefficient it is obvious that H, g(f) < Ha,g, (f'). Furthermore, since
the projection a is Lipschitz-continuous on Ny for § > 0 sufficiently small, it follows
that

1 l
e |fla,t) — fiy, s)]
()= S e =)

(z,1)#(y,9)
[(a(z), 1) — (aly), s)|” |f(a(x),t) — f(aly)

< sup sup ’
(z,t),(y,8)EGs |(5E>t) - (yas)‘a (z,t),(y,8)EGs |(a(x),t)
(z,t)#(y,s) (@,t)#(y,s)

< CH,g(f).

This already establishes |f|a.g < |f'la.gs < C|fla.g- From Lemma 2.1 and formulas
(2.3) and (2.4) we then obtain
[flitag = |flog + (Mivag + [Vaflag < I Nogs + (Frvags + (Vmf) |ags
< |fl|0,g5 + <fl>1+a,ga + |A_1Vfl|a’g5
< C(|fl|0’g5 + <fl>1+oc,g5 + |Vfl|a,g5)

and conversely,

[ ivags = [ Flogs + (F)1vags + 1V ags = 10,65 + (I rrags + ATV rf)!
< C(f'o.65 + (14,5 + 1(Vaf) as)
< C(flog + (fM11a6 +IVMFlag)
where A := 1 — dH. Similarly, the result for £k = 2 can be deduced from
(V2 Dap = AasApy (DsD ) + VaAp, (D, f)
(Vi ap = (ATH(ATHIVV, !+ (AT V(AT f

a,Gs

which follows from formulas (2.3) and (2.4). For |- |214,¢ We then obtain

[fl2ta.g = |flog + Vatflog + (Vafiras + Viiflag + | filag
< C(If'o.g5 + (VM) No.gs + (VM) )11a.6s + (V) Nags + 1fHlags)
< C(f'Nogs + 1A'V o.gs + (A V110,65
+ (AT ATV ) g,
+(ATH*Vs(AV ) ags + [ filags)
< C(IMogs + 1V Mo.gs + (V) 1vags + IV aigs + [V ogs + |Filags)-
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Since Ha.g;(VfY) < C(IV?fYags + (V) 14a.05), We can conclude that |flata.g <
C|fY24a.g5- The opposite direction follows in the same way. O
LEMMA 2.3. The spaces Hy1a(G), with k € {0,1,2} and o € (0,1], are Banach
spaces.
Proof. The statement follows directly from the equivalence (2.5) and the fact that
the spaces Hy4a,65, K = 0,1, 2, are Banach spaces. O
LEMMA 2.4. Let o € (0,1). For each € > 0 there is a constant C(e) such that

(2.6) fla.g < € | fl24a.g + C(O)Iflog, Vf € Haral9),

where the constant ¢ does not depend on €.
Proof. Without loss of generality we can assume that € < min{%, 1}. In case that
|(z,t) — (y,s)| > €, we directly obtain

F,t) = f.9)] _ 2flog
@D~ el ~ e

For |(z,t) — (y,s)| < €, we have
A1)+ (1= N)(y9) €N x 0,7], WA < [0,1],
and there is some (£, x) = M\*(z,t) + (1 — X*)(y, s) with A* € [0, 1] such that

(@) = fly. )| = £ (@) = fly.9)| = [VFEX) - (@ —y) + FEX(E—3)]
< V£ ogslz =yl + | fHlo.gslt — |
<V o5l =yl + | filo.gs It — 5|2
< (V£ o.gs + o6 (@, ) — (y,5)]
<[ e () — (3. 5)]
< A flasagl(z,t) = (y, )],

where we have used (2.5) in the last step. Hence, we obtain

[f(z,t) = f(y, )]

|(!L‘ t) — (y S)‘O‘ < C|f|2+a,g|(l’,t) - (y’5)|17a < Celia|f|2+a,g'

O

2.4. Reformulation on a stationary hypersurface. In Lemma 2.5 of this
subsection we reformulate the equation on the moving space-time hypersurface G; to
the fixed space-time cylinder G. In order to do this we introduce a time-dependent,
symmetric and positive definite map G : G — R("+Dx(+1) defined by

(2.7) G = (Gag)a’gzl ,,,,, nt1  With Gag =D X ‘QﬁX + valg.

Since X is time-periodic, we have G(0) = G(T). We write G*# for the components
of the inverse G~'. We explain in subsection 2.4.1 below how this method can be
expanded to arbitrary inner products on the tangent space T, M, or more precisely
to arbitrary Riemannian metrics on M.
This definition (2.7) is motivated by the following observations. For a € M the
map G = (VmX)TVuX)(a) : Tu,M — T, M is a bijective linear map on T, M,
7



because X is an embedding. By adding a term (v ® v)(a) to G in the definition of
G(a) this map G is extended to a bijective map on R,

Henceforward, the volume form do(t) on I'(¢) is given by the n-dimensional Haus-
dorff measure, whereas the volume form do(t) on M is the corresponding volume form
weighted by the density \/det G(t). That is do(t) := /det G(t)do, where do is the
volume form on M induced by the n-dimensional Hausdorff measure. We also use the
notation dog instead of do(0). Because of the periodicity we have doy = do(T"). From
Jacobi’s formula we immediately obtain that 4 /det G(t) = 3/det G(t)G*’Gyap(t)
and hence

(2.8) - [ Tty = [ i)+ 56 Gua T )dott)

Below, it will become clear, how this formula is related to the transport formula on
the moving hypersurface I'(¢), see [5],

d L]
@9 [ seode) = [ 50+ (Tre o) 0do(0),
T(t) T(t)
LEMMA 2.5. Let c € R. Suppose ¢, f : G — R and ?,f: G — R are such that

c=coX and f = foX. Then a function u € Ha1(Gt) is a solution of

Ar(t)u — U — 8.114 = f in gt7

][ u(+,0)do(0) = ¢,

T(0)

u(-,o>=u<-,T>—<][ u<~,T>da<o>—c> on T(0),
r'(0)

if and only if t=uo X € Haro(G) is a solution of

Ag(t)ﬂ—?ﬂ—ﬂt:f in G,

][ u(+,0)dog = ¢,
M
u(-,0) =u(-,T) — (]Z u(-,T)dog — c> on M,
M
where the linear elliptic operator Ay is given by

- wfm ~ 1 -
(2.10) Ayt = Do (G Dglt) + 5 Par GG DyGan D, i

Proof. From the definition of the material derivative we have @; = (0°u) o X.
Now, let D/ u, « = 1,...,n + 1, denote the components of the tangential gradient
Vru. Then we have

(2.11) Dy = DX, (Dyu) o X.
The projection P’ onto the tangent space of I'(t) satisfies
(2.12) Pl oX=G"D,X,DsX,.
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We thus obtain

Ay =G D, Dy — GG D, G5 Dyt + %Pmmnaﬂpgﬁaangpa
= G**(D,X,D3X,)(D,D\u)o X +G**D,DyX,(D\u)o X
— GG D,GsDXy(Dju) o X + %PMGW"GWQBGMQPXN (D'u)o X
=P, oX(D,Diu)o X +G*D,DyX,(D)u)o X
- GG"D,D . X,DsX,DsX,(Dyu)o X
- GG"D, X,D,DsX,DsX,(Dyu)o X
+ %PMGWGBP(QBQQXLQ,,XL +D,X,DyD, X,)D,X,.(Dju) o X
= Aruo X +G*’D,DyX, (D)o X —G*'D,D X,(D\u)o X
-GG D,DsX,D X,DsX,(Dyu)o X
+ Poy GG DD X, D, X, D, X,.(D}u) o X
= Arguo X + Po,G"GPP(DyD X, — D,DyX,)D, X,D X, (Dyu) o X,

where we have used the fact that G~'v = v and that PG~! is symmetric. From the
commutator rule (2.1) it then directly follows that

Ag(t)ﬂ = Ap(t)u o X.

The rest of the proof is obvious. O
Due to the result in Lemma 2.5 it is sufficient to consider the periodic problem
on the reference cylinder G. In particular, if ¢ = Vpy) - v then ¢ on M is given by

c= %GO‘BGMB =: %trg(t)(gt). This can be seen as follows

%GQBGMB = %Gaﬁ (QathQBXn +QaXnQBXm)
1

"2

=P, o X(Djvy)o X = (Vrg -v) o X,

G (Do Xx(Divy) © XDy Xy + Do Xy Dy X (Djc0g) © X)

where we have used (2.11) with & = Xy, and u = Xy, 0 X' = v, as well as (2.12).
This also shows the connection between formula (2.8) and the transport formula (2.9).

2.4.1. An arbitrary Riemannian metric. The main results of this paper in
Section 3 are also valid for G : G — R(*+Dx(+1) defined by

(2.13) G(a, )X - Y :=g(a,t)(P(a)X,P(a)Y) + (v(a) - X)(v(a) - Y),
VX,Y € R"™ V(a,t) € M x [0,T],

where ¢(t) is an arbitrary (sufficiently smooth) time-dependent Riemannian metric on
M, see also [9] for further details. Indeed, G(t) is a kind of Cartesian representation
of the metric g(¢). In particular, if we choose g(t) := X*h to be the (periodic)
pull-back metric of the Riemannian metric h on T'(¢) C R™*! that is induced by the
Euclidean metric in R"*1, then definition (2.13) coincides with definition (2.7). Using
integration by parts on closed hypersurfaces, see [5], leads to Green’s formula for the
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operator A

/G_l(t)VMu~Vdeo(t):/ G D, uDgwVdet Gdo
M M

__ / uD,,(G°® D yw) Vet G + uG*? D, Vet GD ywdo
M
1
= / uD,(G*’ D yw)Vdet G + uiG“'BG’"’QaGmgﬁw\/det Gdo
M
1
= — /M u (Da(Go‘fBDBw) + ZGa'gGP”DaGMDﬂw> do(t)

= —/ ulgpywdo(t),
M
where we have used the fact that
GP'D Gy = PpyGT" D Gon + 1oy G7D, G oy

= PpyG""D Gy + vpvy DGy

= Py G DGy — D, (V)G oy

= PpyG""D Gy = Dovpvp — vy Do

= Ppy G DGy
The last identity also shows that Agpyu = D, (G“ﬂQﬁﬂ) + %Ga"Gﬁf’QﬂGanQﬂﬂ.
However, we keep formula (2.10), since it is also valid, if we would replace (2.7) by
Gap = D, X - DgX + A\vgrg with A : M — (0, +00) continuously differentiable. It
can be shown that the elliptic operator A, defined in (2.10) is the usual Laplace
operator on M with respect to the Riemannian metric ¢g(¢). In order to see this,

assume that ¢ : @ € R® — M C R"*! is a local parametrization of M and let

gij(0) = %(9) . %(9). Furthermore, letl ﬁ” denote athe components of the inverse
of ¢ = (Gij)ij=1,..n- Since Pys(p(0)) = g (9)%“;7 (0) 555 (0), we immediately obtain

from definition (2.13) that

(214)  Guslp(6).1) = 222 (0)579 (0)9;1(8. 7 (6) 222(8) + v (0(6))v5(2(6)).

rTE 06!
(215) G (p(0),1) = 22 (0)g (0,1) 922 (0) + v (p(0) s (0(0),

where g¢;;(0,t) == g(p(0),1) (gg’; (0), %(9)) are the components of the metric with
respect to local coordinates and (g (6,t)); j=1,...n = (9i(0,));/—1.

ponents of the inverse matrix. For a function u : M — R™*! the tangential gradient
on M satisfies

are the com-

(Vamu)op =g" 55505, onfl,
where U := u o ¢, see for example in [3]. Using relation (2.15), we obtain
0pqa 0

D, (G**Dgu)(0(0)) = §7(0) 57 (0) 57 (G Dgu)((9)))

o Opa D [ Opa . U
=05 0557 (Gams™ 55 ) ©

0 oU i 0P, 0%, oU
_ Y mn YY" ij . mn gy Y
— g (07" ) OV T O Go20) - 500 0107 ) 550
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The same procedure gives

(Pa“/GWG'BpQBGanQp@ °cp
— 89004 gij% 8905 gmn 8(,0,; 8@6 gkl 8(G0¢77 ° 90) a(pp Est6£
00" 7 067 9™ oo™ oo* 06! 065”7 06
_ 0 gl %glt (Gan o) 8£
00t~ 067 06! oot
_ 3g0a i % lk i 0g0a ~nm ~uv 83071 87(]
- 667’ ae] g aal 89" g Imug 691} + (VOéVn) oy aek
mu lk agmu 87U 890& ij % Ik 0 (a(pa ~nm-=uv a‘Pn ) ou

a6t ook 0009 90i9 Imupa \aen? 9 Hgv ) voF
_ omu lkagmual +269077 lki (~uv85077) 6U

a0l a0k " “aeu? Hel a6v ) oor
mu Lk agmu 87[] _ lekguv% 82(,07, 8£
o0l ook 00v 06199v ook "

Altogether, we obtain

. 1
(Da(G Dgu) + QPMGWGB”DﬁGanDp“) o

_ 0 (00N L g O9mu OU
“oom \7 gon) T29 I et oF

- (a2
" det(g,,) 00" 9909 )

which shows that A, is indeed the Laplace operator on M with respect to g(t).

2.5. Strong maximum principle. The (strong) maximum principle for para-
bolic partial differential equations in flat domains, see for example in [16], is also valid
for parabolic partial differential equations on closed hypersurfaces.

LEMMA 2.6. Suppose that the hypotheses of Theorem 5.1 hold and that M is
connected. Furthermore, suppose that Agpyu — cu —u; > 0 in G and that u(x*,t*) =
maxgu =: M for some (z*,t*) € G with t* > 0. Then u= M on M x [0,t*] if ¢ =0,
orifc¢>0 and M > 0.

Proof. We use the maximum principle in flat domains by observing that a linear
parabolic operator L on M C R™*! can be extended to a linear parabolic operator L
on an open strip Ny C R"*! about M such that

Lut(2,t) = Lu(a(x),t), Y(x,t) e N5 x[0,T],

see in the Appendix for more details. Hence, if Lu > 0, we also have Lu! > 0.
Moreover, u(z*,t*) = maxgu =: M for some (z*,t*) € G if and only if u'(z*,t*) =
maxg, u'. From the strong maximum principle in flat domains, see for example [16],
it therefore follows that the set S := {z € M | u(x,t) = M} for any fixed ¢t € [0,T]
must be open, provided that the zero-order term ¢ satisfies ¢ = 0 or that ¢ > 0 and

M > 0. Since S is also closed and M is connected, we have either S = @) or S = M.
0
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3. Periodic solutions: Results. The starting point for the study of time-
periodic solutions on hypersurfaces is the following result on the existence and unique-
ness of solutions to the corresponding initial value problem.

THEOREM 3.1. Let M C R be a closed, orientable, n-dimensional hypersur-
face of class C}, and let g(t), t € [0,T], be a family of Riemannian metrics on M
such that the map G defined in (2.13) is of class Hi14(G) for some o € (0,1). Fur-
thermore, let ¢ € Ho(G). Then for any f € Hao(G) and ug € C°(M) there is a unique
solution of

(S)) = Agpu—cu—u=f in Mx(0,T),
v u(-,0) =ug on M.

If up € Hopa(M), then u € Hora(G) and there is a constant C' such that

(31) |u|2+a,g < C(|f|a,g + |u0‘2+o¢,M)'

Using this result and a fixed point argument, it is possible to prove the existence
of periodic solutions for advection-diffusion equations on M with an explicit lower
bound on the zero-order term c.

PROPOSITION 3.2. Let M C R™! be a closed, orientable and connected, n-
dimensional hypersurface of class C3, and let g(t), t € [0,T)], be a family of Rieman-
nian metrics on M such that the map G defined in (2.13) is of class Hi1+a(G) for
some a € (0,1). Furthermore, let ¢, f € Ha(G). If ¢ > ¢y > 1”72, then there is a
unique solution u € Hara(G) of

Agpu—cu—u=f in Mx(0,T),

(Sp) = ][M u(-,0)dog = 0,

u(-,0) =u(-,T) —][M u(-,T)dog, on M

with
(32) |u‘2+o¢,g < C|f‘o¢,ga

for some constant C' depending on M, g and c.

This result is sufficient to establish conditional existence for the periodic problem
without a lower bound on c.

PROPOSITION 3.3 (Fredholm alternative). Suppose that the hypotheses of Propo-
sition 3.2 hold, then either the homogeneous problem

Agpu—cu—u =0 in Mx(0,T),

][ u(+,0)dog = 0,
M

u(-,0) =u(-,T) —][M u(-,T)dog on M,

12



has zero as its only solution, in which case the problem

Agpu—cu—u = f in Mx(0,T),

][M u(+,0)dog = ¢,
u(-,0) =u(-,T) — (][M u(-,T)dog — c) on M,

is solvable in the class Hoyo(G) for all f € Ho(G) and ¢ € R, or the homogeneous
problem has non-zero solutions, in which case the non-homogeneous problem cannot
be solved for some choices of f € Ho(G) and ¢ € R.
Using this Proposition, one can prove existence for the special choice ¢ = 0.
COROLLARY 3.4. Suppose that the hypotheses of Proposition 3.2 hold. Then for
all f € Ho(G) and ¢ € R there exists a unique solution u € Hato(G) of

Agpyu—ug = f in M x(0,7T),

][M u(+,0)dog = ¢,
u(-,0) = u(-,T) — (][M w(-, T)doo — c> on M.

Existence of solutions for the adjoint operator L*u := Aggyu(z,t) + u(x,t) of
the operator Lu := Agyu — %trg(gt)u — u; can now be established in the following
way. First, we define ¢(t) := g(T —t) and f(-,t) := f(-,T —t) for all t € [0,T]. Here
f € Ha(G) and g(t) is assumed to be a given family of Riemannian metrics with
g(0) = ¢g(T') and with G(¢), defined as in (2.13), of class Hj4(G). From Corollary 3.4
it follows that there exists a unique solution u € Hoio(G) of

Ag(t)g—gt =f in Mx(0,T),

][ u(-,0)doy = 0,
M

u(-,0) =u(-,T) _][M u(-,T)dog on M.

Next, we define u(-,t) := wu(-,T —t). Obviously, we have w;(-,t) = —u,(-,T — t).
Furthermore, it follows that
(3.3)

Ag(t)u($7 t) + ut(xa t) = Ag(T—t)M(x; T— t) - Qt(wv T— t) = i(xv T - t) = f(xa t)a

][ u(-,T)dog = 0,
M

u(-,T):u(-,O)—][Mu(-,O)dOO on M.

We use this result below to prove uniqueness of periodic solutions for the choice
¢ = 1try(g¢) of the zero-order term. That is for the operator Lu := Ayyu—3try(g:)u—

13



u. The Fredholm alternative in Proposition 3.3 then gives the main theorem of the
paper.

THEOREM 3.5. Suppose that the hypotheses of Proposition 3.2 hold. Then for all
f € Hal(G) and c € R there exists a unique solution u € Horo(G) of

Agyu — %trg(gt)u —w=f in Mx(0,T),

][M u(+,0)dog = ¢,
u(-,0) =u(-,T) — (][M u(+, T)dog — c> on M.

In particular, for all c € R and for all f € Ho(G) with fOT S fGst)do(t)dt = 0 there
exists a unique solution u € Hatra(G) of

Agyu — %trg(gt)u —uy=f in Mx(0,T),

][ u(+,0)dog = ¢,
M
u(,0)=wu(-,T) on M.

Finally, we obtain the following existence and uniqueness result for time-periodic
solutions to advection-diffusion equations on moving hypersurfaces.

THEOREM 3.6. Let I'(t) C R**1 ¢t € [0,T] be a family of closed, orientable, con-
nected, n-dimensional hypersurfaces of class C; with T'(0) = T'(T), such that there ex-
ist a hypersurface M satisfying the hypotheses of Proposition 3.2 and a C3-embedding
X : G — G; in the sense of Section 2. Then for all ¢ € R and for all f € Ho(G;) with

fOT fF(t) f(,t)do(t)dt = 0 there exists a unique solution u € Hato(Gt) of

Apipyu —uVpyy v —0% = f in Gy,
][ u(+,0)do(0) = ¢,
r'(0)

u(-,0) =u(-,T) on T(0).

4. Periodic solutions: Proofs.
Proof of Theorem 3.1 Again we use the fact that the advection-diffusion equation
on M can be reformulated as a (non-degenerate) parabolic partial differential equation
on a neighbourhood Ns of M, see the Appendix for more details. The theorem is
a consequence of the norm equivalence (2.5), Theorem 5.18 in [14]. More precisely,
the norm equivalence ensures that the lifted data on N is sufficiently smooth and
bounded. Hence, there exists a unique solution 4 of the Neumann boundary problem
on N satisfying a parabolic Schauder estimate. A solution u to the problem (Sy) can
be easily constructed from this solution @, see the Appendix for details. Moreover,
the solution u to the problem (S7) is unique, since it has to satisfy u! = 4. Finally, the
Schauder estimate for u follows from the norm equivalence (2.5) and the corresponding
estimate for 4. O
Proof of Proposition 3.2 We divide the proof in two steps. First, we show that
there is a unique solution u € CO(M x [0, T]) N C?*1(M x (0,T)) of (Sp) by applying
14



a contraction argument. Here, C%1! refers to functions that are continuously differen-
tiable with respect to time and twice continuously differentiable with respect to the
space coordinates. Then in a second step, we choose a special series that converges
against the periodic solution with respect to the | - |244,g-norm in order to establish
the Schauder estimate (3.2).

Step i) We define Jy : CO(M) — CO(M %[0, T))NC*L (M x(0,T)) by Jo(ug) := u,
where u is the unique solution to the initial value problem (S7), see Theorem 3.1. Then
we define J : CO(M) — CO(M) by J(ug)(z) = Jo(uo)(z,T) = u(z,T) for all z € M.
In the following we show that J is a contraction with contraction constant 6; < %
Let wy,wy € CO(M) and w := wy — wa, v := J(w1) — J(wz). We thus have to show
that

[vlo.m < 0r|wlo,m

for some 0 < 0; < % Henceforward, the linear second order operator in (Sp) is

denoted by L, that is
Lu = Agpyu — cu — uy.

Let € € (122, ¢p), then we obtain

Le= =ee™ —ce™ = (e — c)e @
< (e—cp)e " <.
Hence U* := £ (Jo(wy) — Jo(wz)) — |w|ome™ satisfies the conditions
LU* = +(LJy(wy) — LJo(ws)) — |w]orLe™

=x(f-f)—|w
= —|wlomLe >0 in M x (0,T).

O,MLeiet

Furthermore, we have

U*(-,0) = +(Jo(wr) — Jo(w2))(+0) — wlorm
= :I:(w1 — ’LUQ) - |U}|07M
(4.1) =tw—|wlom <0 in M.

Now we suppose that M* = MaX(y 1) Mx [0,T] U*(z,t) > 0. Then M* must be
attained at a point (z*,t*) € M x (0,T]. It follows from the maximum principle,
see Lemma 2.6, that U*(2*,0) = M* > 0, which contradicts (4.1). Hence M* <0,
which means that U+ < 0 in M x [0, T]. Tt follows that +v < |w|o me™ T on M, and

wlom < e Twlom.

This shows that .J is a contraction with constant 67 := e~ 7 < e~ T = % Now we

define
B:= {u € C'(M) :][ udog = 0},
M

and the operator K : B — C°(M) by

K(UO) == J(’LLO) —][M J(UQ)dOO.
15



In fact we have

][M K (ug)doo = (1 _ ][M ldoo) ][M J(ug)doo = 0.

Hence K : B — B. Obviously, (B,]| - |o.m) is a (non-empty) Banach space. In the
following we show that K is a contraction. Let wi,ws € B. We thus have to show
that

|K (w1) — K (w2)|om < Ok |wi — walo,m

for some 0 < 0k < 1. Using the fact that J is a contraction we obtain
|K(’LU1) - K(w2)|0’M = |J(w1) —][ J(wl)doo - <J(’LU2) —][ J(’LUQ)dO()) |0,M
M M
< 1 wn) = Jwn)loa -+, Twn) = Tws)doslo
M

< <1 +][ 1d00> |J(w1) — J(w2)]o,m
M
< 205wy — walo,m-

We set O := 20; < 1. Since K is a contraction with constant g, it follows that
there is unique function uj € B with K (uf) = ug, that is

J(ug) f][ J(uy)dog = ug.
M
Now let u* := Jo(uy). We then have

Lu*=f in Mx(0,T),

][M u*(+,0)dog = 0,
' (,0) = uj () = J(ug) - f

[ ugyaon = (1) —][ w* (-, T)dos.

M

Now suppose @ € CO(M x [0,T]) N C*1(M x (0,T)) is a solution of (Sp). Then we
have 4y := 4(-,0) € B and @ = Jy(7) as well as 4(-,T) = J(do). Moreover, it follows
that

K(to) = J(to) ][M J(tg)dog = u(-,T) ][M (-, T)dog = .

Therefore, we have & = u*, which completes the first step of the proof.
Step i1) We now define wg := 0 and w41 := K(wy) for k& € Ny. By induction it
follows from Theorem 3.1 that Jy(wg) € Hata(G). Moreover, we have

| K (Witm) — K (W) |24a,Mm
< | J(Wktm) = J(wi)|240.m + |][ J(Witm) — J(wi)doglo,am
M

< ‘J(wk+m) - J(wk)‘Z—&-a,M + |‘](wk+m) - J(wk)‘O,M
<2l (Wigm) — J(wi)|24a,Mm
< 2[Jo(Wrtm) — Jo(wi)|2+a,6-
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In the following we show that |Jo(wk+m) — Jo(wk)|2+a,g — 0 for & — oo and hence,

uy = limpoeowr € Hapa(M) as well as u* = Jo(ul) € Hara(G) according to

Theorem 3.1. Furthermore, we then have u* = limy_, o Jo(wy). We now choose
¢ € C*([0,T]) with ¢ =0 on [0,17], ¢ = 1 on [2T,T] and ¢’ > 0. The function
C(Jo(wg+1) — Jo(wg)) then satisfies

L(¢(Jo(wrs1) — Jo(w))) = —C¢' (Jo(wrt1) — Jo(wy)) in M x (0,T),
(C(Jo(wk+1) — Jo(w)))(-,0) =0 on M

From the Schauder estimate (3.1) it follows that

1¢(Jo(wrt1) = Jo(wk))|24a,g < CI¢ (Jo(wrt1) = Jo(wk))lag
< C(Q)]Jo(wrt1) = Jo(wk)|a,g,

and hence,

|J(wi11) = J(wi)[24a,m < |C(Jo(wit1) = Jo(wk))|2+a.6
(4.2) < C(O))Jo(wry1) — Jo(wi)]a,g-

Since L(Jo(wg42) — Jo(wr41)) = 0, the estimate (3.1) also gives

|Jo(wi+2) — Jo(Wk+1)|24a,6 < Clwits — Wrt1|24a,m < ClK (wg+1) — K(wk)|24a,Mm
< ClJ(wr+1) — J(Wk)|24-0,Mm
< C(O]Jo(wr+1) — Jo(wi)la.g

where we have used (4.2) in the last step. The interpolation estimate (2.6) then yields

| Jo(wi2) — Jo(Wrt1)|24a,0
< C(Q)e' | Jo(wrg1) — Jo(wk)|24a,g + C(Cs €)Jo(wir1) — Jo(wi)lo,g

Moreover, the maximum principle gives
|Jo(wr+1) — Jo(wi)lo,g < [wr+1 — wklo,m,

and hence,

| Jo(wi2) — Jo(Wrt1)|240a,0
< C(Q)e [ Jo(wis1) — Jo(wr)|2+a.g + C(¢, €)|wrsr — wro,m-

Choosing € > 0 such that C(¢)e! ™ = 0 and setting C* := C((, €) for this choice of
€ leads to

[Jo(wk+2) — Jo(Wrt1)|2+a.¢ < Ox|Jo(wit1) — Jo(wk)|2+a,6 + C* lwkt1 — wilo,m-
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. . . . k+j
Since K is a contraction, we obtain |wg4j+1 — Wetjlom < 05w — wolom and

m—
|Jo(Wktm+1) = Jo(Wr+1)|24a,6 < Z o(Wrjt2) — Jo(Wrtj+1)|2+4a,9
7=0

m—1

< {9K|J0(wk+j+1) — Jo(Whj)21a,g + CT O wy — w0|0,M}
j=0
m—1

< {9];’(+j+1|J0(w1) — Jo(wo)|24a,g +C*(k+j+ 1)9§€+j|w1 — wolo,

j

gh+1 _ gh+m+1 5 ghtl _ ghmtl
< [Jo(wr) = Jo(wo)|21a,6— 1— 0, + C* w1 — wolo,m 905 1= 9};

i+t . (k+1)0%
1—0n +C|w1 w0|0Mma

<
Il
o

< |Jo(wr) = Jo(wo)|24a,g

which converges to 0 for k — co. Therefore, the periodic solution u* = Jy(ug) is in
’H,2+a(g) and

Ox c*
| Jo(ug) = Jo(wi)|2ra,g < [Jo(wr) — Jo(wo)|2ya, 9T g T lwy — w0|O,Mm-

Since wo = 0 and |w1|24a0,m < ClJo(wo)|24a,6 < C|fla,g, as well as

|Jo(w1)]24a,6 < C(|flag + [wil2ram) < Clflag,
|Jo(w1) — Jo(wo)l24a,g < Clwilota,m < C|flags

which hold because of (3.1), we finally obtain the estimate

|u*|2+a,g < C|f|a,g'

O
Proof of Proposition 3.3 Since u solves the non-homogeneous problem if and only
if u := u — ¢ solves the problem

Ay — cu —uy = f 4+ ce,

][ ﬁ(-,O)dOO =0,
M
A(,0) = a(-T) - ][ (-, T)doo,

M

we can assume without loss of generality that ¢ =0. Now, let B := {u € Haya(9) :
Frqul,0)dog = 0 and uf-, 0 )= Frq u(-; T)dog on ./\/l} and let Ly : B — Ho(G)
be the hnear second order operator deﬁned by

LTU = Ag(t)u -

?U — Ut.

According to Proposition 3.2 the operator Ly is invertible and the inverse operator

L' is continuous. Hence, we can define the operator K : Ho(G) — B C Ha(G) by

Ku := L ( u — cu). Because of the Schauder estimate (3.2) and the fact that B
18



is compactly embedded in H(G) this is a compact operator. The equation Agyu —

cu — uy = f is equivalent to
Lyu + ! =f
TU clu=

& u+Ku=L;'f.

Since 1 4 K is a Fredholm operator, the second equation has a solution if and only if
(L +K)u = 0 implies u = 0. The standard Fredholm theory therefore gives the result.
O

Proof of Corollary 3.4 Because of the Fredholm alternative in Proposition 3.3 we
only have to establish uniqueness of the homogeneous problem. Suppose we have
a solution ¢ € Hat1a(G) of the homogeneous problem. Because of the maximum
principle, see Lemma 2.6, we then have

max o(-.0) > max o(-, T) = mix (so<~,o> +f w(-,T)ero)

= max ¢(+,0) +][ (-, T)doy,
M M

and hence, f,, ¢(-,T)dop < 0. In the same way we obtain

e (<p(-.0)) = max (—(.00) = £ (. T)dn

and £, (-, T)dog > 0. It follows that f, (-, T)doo = 0 and hence, ¢(-,0) = o(-,T)
on M. Moreover, we know from the strong maximum principle that either ¢ is
constant or maxy (-, 7) < maxag ¢(+,0). Therefore, ¢ has to be constant. From
frqe(,0)dog = 0 it then follows that ¢ = 0. O
Proof of Theorem 3.5 The second statement easily follows from the first statement
and the fact that

/M u(-, T)dog = / u(-, T)do(T) = / / dt/
—c|M\+A /

= M| +/ / w4 $trg(ge)udo(t)dt

—C|M\+/ / Agpyudo(t) //fdo = c|M|,

that is £, u(-,T)doy = ¢ and hence, u(-,0) = u(-,T). In order to prove the first
statement, we mention that according to Proposition 3.3, it suffices to prove the
uniqueness result for the homogeneous equation, that is f = 0 and ¢ = 0. Let
u € Hata(G) be a solution of the homogeneous problem. As above, we obtain u(-,0) =
u(-,T) on M. Next, we choose ¢ € Ha1(G) such that

Agnyp+ype=u in Mx(0,T),

][ o(+,T)doy = 0,
M

p(,T) = (-, 0) - ][M o(0)doy on M.
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According to Corollary 3.4 such a solution exists if we choose f = u in (3.3). We then
obtain

T
0= / /M (Agyu — 2trg(ge)u — uy) pdo(t)dt
0
T T
= / / u(A gy + @1)do(t)dt — / / Strg(ge)up + (ugp)ido(t)dt
0 JM 0 JM
T T 4
= / / u(A gy + @i )do(t)dt — / %/ wpdo(t)dt
0 JM 0 M
T
= [ [ tuPastoyie = [ ue 7ot TydoT) + [ 0000 0)do(0)
0 M M M
T
— [ [ uPao(tyit ~ [ ute0yel 7o) + [ ut0)6,0)dof0)
0 M M M
T
[ [ uPastoyie~ [ w000t 1) - o, 0)dof0)
0 M M
T T
= / / lul?do(t)dt +/ u(~,0)doo][ ©(+,0)dog = / / lu|?do(t)dt
0 M M M 0 M
Hence, we have u = 0. This completes the proof of the claim. O
Proof of Theorem 3.6 The Theorem directly follows from Lemma 2.5 and Theorem
3.5. O

5. Appendix. In this section, we show that solving a parabolic partial differen-
tial equation (PDE) on the hypersurface M C R”*! is, in a certain sense, equivalent
to solving a related parabolic PDE on an open neighbourhood of M C R"*!. The
main advantage of this approach is that the well-established machinery of parabolic
PDEs on (n + 1)-dimensional domains of R"*! can be immediately applied after a
suitable PDE on the open neighbourhood has been found. The main task therefore
remains to formulate a PDE on an open neighbourhood of M from which the solution
of the PDE on M can be extracted.

To motivate the idea, we first have a look at the following second-order parabolic
PDE on the n-dimensional hyperplane Mg := {z € R**!: 2,,; =0}

JAmeu—u=f in Mogx (0,7),
(P) = {u(-,O) =up(-) on Moy,

where Apou = Y. | Ug,q; denotes the standard Laplacian on M. Now, let u €
C°(Mgy x [0,T]) NC?*1(My x (0,T)) be a solution to this problem. Furthermore, let
Ns = {x € R""! : |z,41] < 6} be an open neighbourhood of width § around M.
The function u! : N's x [0,T] — R defined by u!(z,t) := u(z,t) with = (z,7,11) is
then a solution to the following (strongly) parabolic initial value boundary problem

At —d; = f' in N5 x (0,T),
(P =< Qg,,, =0 on ON5x(0,T),
a(-,0) =ub(-) on N;.
Here, f': N5 x (0,T) — R and ul : N5 — R are defined by f!(z,t) := f(z,t) and
ub(x) := ug(z), respectively. Al = Z?:Jrol Qiy,2, denotes the standard Laplacian on
20



R™*1. Obviously, we have Au'(z,t) = Apgul(z,t) +uly | . (2,1) = Appulz,t)

since ulszrl =0on N; x (0,T). Conversely, let & € CO(N s x [0, T]) NC*(N5 x (0,T))
be a solution of the lifted PDE (PY). Then the function u : Mg x [0,T] — R defined
by u(z,t) := 55 f t)ds for all (z,t) € Mo x [0,T] is a solution to (P). This

easily follows from f(x t) = 55 f F(z, 5),t)ds, ug(z) = %f_é ub(z, s)ds and the
fact that

o
5 / N, 5),0) (), )

5
/uwx x,5),t)ds — 215/ ((z, 8),t)ds
)
g

m\H
M: I M+

- 1
20

/ i, (2 8), )05 + 25 (s ((228),8) — iy, (2, —6), 1))

P 83@?
9 §
_ 1= 7
b |ttt

n
= g, (2,1) — up(z,t)
=1

for all (z,t) € My x (0,T).
Now we want to use this idea for the following second-order parabolic PDE on
the closed hypersurface M C R**+1

) Lu=f in Mx(0,T),
() = {u(-,O) =up(-) on M,

where
Lu:= Aypyu~+w - Vyu — cu — uy.

Here Ayyu =D, (G"BQBu) + %PMGWG/BPQﬁGanQ[)u denotes the Laplacian with
respect to a (sufficiently) smooth time-dependent Riemannian metric g(¢) on M,
where the map G(t) is the Cartesian representation of g(t) as defined in (2.13). w is
a given vector field on M. The corresponding lifted second-order parabolic PDE is
then given by

La=f' in Nsx(0,T),
(8" = %zo on AN; x (0,T),

a(0) = up(-) on NG,

where N is the open strip of width ¢ around M defined in (2.2), and f'(z,t) :=
fla(z),t) as well as ul(z,t) = ‘u(a(x),t) are the lifted data. In order to define an
approprlate parabohc operator L on N, we first introduce the parallel hypersurfaces

= {a+ sv(a) : a € M} for |s| < ¢ and the bijective projections as : My — M
deﬁned by as := ajr,. Obviously, we have N5 = U‘S|<5 M. On M, we introduce
the rescaled tangential gradient for differentiable functions @ by

Vs ti(as) == (1 — d(zs)H(zs)) 'V dlzs), Vi, € My, Vs € (—6,0).
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For 0 > 0 sufficiently small the map (1 — dH)(x,) is indeed invertible, see [4] for

further details. The Cartesian components of the rescaled tangential gradient V aq u
are denoted by

Qn-&-lﬂ
We then define the parabolic operator L by

(5.1)

2/\
La= (GWD u) L ip LGIGPPD G D i+

U ~ . L
ey 2+wl-VMSu—clu—ut,

where G'*# denotes the components of (G')™! and G, ; denotes the components of
GY(z,t) := G(a(x),t). Furthermore, w!(x,t) := w(a(z),t) and c(z,t) = c(a(x),?).
Below we show that for @ = u!(z, s) := u(a(x),t) we have

(5.2) Lul(z,t) = Lu(a(z),t), Yz e N;.

Moreover, we have 2 9L =0, since u'(a + sv(a)) = u(a) for all a € M, |s| < 4. Using

these facts, it is easy to show that u! is a solution to (S') if u is a solution to (9).

Now suppose that @ : N5 x [0,7] — R™"*! is a solution to (S!). In this case we
define u: M x [0,T] — R by

5
u(a,t) := 2—15 /4 i(a + sv(a),t)ds, V(a,t) € M x[0,T].

In order to see that u satisfies (S), we introduce the family of functions us : M X
[0,T] — R for s € [—4, d] defined by

(5.3) us(a,t) :==a(a+ sv(a),t), V(a,t) € M x[0,T],Vs € [-4,].

We need this definition, because it is a priori not clear whether @ is constant in the
normal direction. Obviously, we have

(5.4) Am, = aglMs.

Since the tangential gradient v M, only depends on the values of 4 on Mg, we obtain

2~1 2.
La(zs,t) = Ll (zs, t) — %(xs,t) + %(ms,t)
2,

= Lug(a(xs),t) +

552 (a(zs),t), Vas € Mg, Vs e (=4,9),

where we have used formula (5.2), %ua =0and & L L (zs,t) = a;gs (a(zs),t) in the last
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step. It follows that for all a € M and ¢t € (0,T") we have

s s
f(a,t) = 2%5 /_5 fia+ sv(a),t)ds = 2%5 /—5 Li(a + sv(a),t)ds

10 1 [ 9%,
=%/, Lug(a,t)ds + % |, 2 (a,t)ds
1 6
=—L U
% [Jué(a,t)ds
= (Lu)(a, 1),

5 9% . e
where the term [ 5 %ds vanishes, because of the Neumann boundary condition in

(5'). Hence, u = 3 fi; usds is a solution to (S) if @ is a solution to the lifted problem

(SY). From the uniqueness of solutions to (S!) it follows that & = u!, which shows
that 4 has to be constant in the normal direction.

In the following, we prove formula (5.2) and show that L is in fact a strongly
parabolic second-order operator on Nj. First, it is easy to show that the tangential
gradient of the projection a is given by

Vam,alxs) = Plas) —d(xs)H(xs), VYas € M.

Using the fact that the v(z) = v(a(x)) and P(x) = P(a(zx)), it follows that for
ul(-,t) == u(a(-),t) the following identity hold

Vo ul (s, t) = (1 — d(zs)H(xs))Vmulalzs), t).
Hence, V(zs,t) € M, x [0,T] we have
(5.5) Vmu(a(zs),t) = (L — d(x)H(zs)) 'V ul (zs, 1) = 6M8ul(xs,t),

or (Vapu) = %Msul, respectively. From this result and the fact that %—’5 =0 we
directly obtain that

. ~ ~ 1 - -
Lut(@,t) =D, (G"Dyu') (2,1) + 5 (Pay NG D yGl,, D '), )

+wl(z,t) - Vg ul(z,t) — (x, t)u (z,t) — ul(a, 1)
=D, (G**Dyu) (a(z),t) + %(PMGV"GWQQGMQIJU)(a(x), t)
+wla(z),t) - Vyula(e), t) — c(a(z), Hua(z), t) — ua(z),t)
=Lu(a(x),t).

In order to see that the operator L is strongly parabolic, we consider the second-order
terms in (5.1). Using the notation A(z) := (L — dH)(z) for all z € Ns as well as

— « 21
(Aaﬁ)aﬁ:l,...,n-;-l =4, (A ﬁ)a,ﬁ:l n+l " AT

.....
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for the components of A and A~!, we obtain

- - 8%4 8%4
D, (G' Dyit) + 8712‘ — A°*P,, D, (G'P A< P, D, i) + S

52

= A*’D,(G'"P AP D, i) — AP v,v, D, (G'*P AP D, @) — ijDp(GlaﬁAﬂmunubDbﬁ)
+ A% v,u, D, (G APRy, v, D, 4) + %

= A’ D,(G'"P AP D, 1) — vavy D,y (G'*P AP* D, i) — A*" D, (vav,D, i)
+ vy Dy (vav, D, 4) + %

= A’ D,(G'"P AP*D, ) — v, D, (v, D, i) + G**P AP*v, Dyvo Dyt — v,D, (v, D, 1)

— A% Dyvav, D0+ VnDn(I/LDLfL) + VaUnDyvov, D, + 92
v

= A’ D,(G'"PAP'D, i) — A*’D,vov,D,ii
= 0
= A D,(G"PAPD, ) — (V pm, - V)a—ﬁ
v
= 0
= APGIP AP D, Dy A D, (G AP ) Dyt = (Vaa, - v) i
Here we have used the fact that (G')~'v = v and A~'v = v as well as 2% = (0. For

v
G = 1, this identity simplifies to
~ 2 3

m o a u [e3% (675 - (e L I o a -
(5.6) D, D, i+ 52 = AP*A*D, D, i+ AP D, A% D, — (V pm, - u)gu

REMARK 5.1. A similar extension idea has been used only recently to develop
numerical schemes for the simulation of geometric PDEs on surfaces, see [15]. The
model problem considered in [15] is the following elliptic problem

Aru—cu=f on T.

Using our notation, the authors propose the following non-degenerate extended equa-
tions

V- (pA72Va) — pcla = pft in NG,

o4

au_ 0 on ONj,

v

where p = det A. This problem is of course equivalent to the problem
1
;v (pAT2VE) —da=f in N

with zero Neumann boundary conditions. A long calculation now reveals that in the
case of G = 1 and w = 0 the resulting elliptic part of our parabolic operator L in
(5.1) indeed reduces to the operator iV (nA7Va) — da,

1 1
—V - (WA72VaG) = =Dy (uA“P APY D 4)
ju 0
1
= AP APYD D i+ AP D, APV D, it + Do AP APYD i+ ;DQ,LLA“BAMD,Y&
9
= AP APYD D i+ A’ D, AP Dyt — A® Dy, —

ov '’
24



since
1
Do AP APYD i 4+ = DoyuA*P APYD i
o

= —A"AP DL A APYD i+ A™ Dy A AP APY D
= A" Dy (dH ., ) AP APYD it — AR Do (M, ) AP AP D4
= AV, AP APYD. i+ dA*" D, D,.D,dAP APYD. i
— A" H, AP APYD it — dA" D, D,y D,dA“? APV D,y
= dA“"D,D,D,dAP APYD. i — A" H,,,vyDyit — dA" DD, D,dA*P APV D,y

0
= —-A"D,v,—.
1% 8yu

From (5.6) it hence follows that

1 Cgon = o~ 0%
;V'(MA VU)ZQQQQU"' ﬁ.
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