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Abstract. The present paper establishes upper and lower bounds
on the speed of approximation in a wide range of natural Diophan-
tine approximation problems. The upper and lower bounds coin-
cide in many cases, giving rise to optimal results in Diophantine
approximation which were inaccessible previously. Our approach
proceeds by establishing, more generally, upper and lower bounds
for the rate of distribution of dense orbits of a lattice subgroup
Γ in a connected Lie (or algebraic) group G, acting on suitable
homogeneous spaces G/H. The upper bound is derived using a
quantitative duality principle for homogeneous spaces, reducing it
to a rate of convergence in the mean ergodic theorem for a family
of averaging operators supported on H and acting on G/Γ. In par-
ticular, the quality of the upper bound on the rate of distribution
we obtain is determined explicitly by the spectrum of H in the au-
tomorphic representation on L2(Γ \ G). We show that the rate is
best possible when the representation in question is tempered, and
show that the latter condition holds in a wide range of examples.
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1. Best possible Diophantine exponents

Our purpose in the present paper is to consider dense orbits of a lat-
tice subgroup Γ ⊂ G acting on a homogeneous space G/H, and to give
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explicit quantitative upper and lower bounds on the rate of approxima-
tion of a general point x0 ∈ G/H by a generic orbit Γ · x ⊂ G/H. We
will address this problem in considerable generality below and give di-
verse examples for the approximation exponent under study, but before
delving into the general theory, let us point out the following remark-
able feature that emerges from our analysis. It is possible to give an
explicit spectral condition which can often be easily verified, and which
implies that the upper and lower bounds on the rate of approximation
coincide, yielding the best possible result. This gives rise to the solution
of an array of natural problems in classical Diophantine approximation
in real, complex and p-adic vector spaces. In order to demonstrate this
phenomenon we begin by presenting some concrete examples where the
optimal approximation Diophantine exponent can be obtained.

Let F denote the fields R, C or Qp. Let G be a linear algebraic
subgroup of the group SLn(F ).<F n considered as a group of affine
transformations of F n. We fix a norm on Rn and Cn, and a (vector
space) norm on Matn+1(R) and Matn+1(C). In the local field case we
take the standard valuation on the field, and the standard maximum
norm on the linear space F n, and on Matn+1(F ). We view the affine
group SLn(F ).<F n, n ≥ 2 as a subgroup of SLn+1(F ), specifically
as the stability group of the standard basis vector en+1, and consider
norms on it by restriction from SLn+1(F ) ⊂ Matn+1(F ). Let X ⊂ F n

be an affine subvariety which is invariant and homogeneous under the
G-action, so that X ' G/H where H is closed subgroup of G. We
define the distance on X by restricting the norm defined on F n. Let
Γ be a lattice subgroup of G which acts ergodically on G/H, so that
almost every Γ-orbit is dense in X.

Definition 1.1. Assume that for x, x0 ∈ X there exist an exponent
ζ <∞ and a constant ε0 = ε0(x, x0, ζ) > 0 such that for all ε ∈ (0, ε0),
the system of inequalities

‖γ−1x− x0‖ ≤ ε and ‖γ‖ ≤ ε−ζ .

has a solution γ ∈ Γ. We define the Diophantine approximation expo-
nent κΓ(x, x0) as the infimum of ζ > 0 such that the foregoing inequal-
ities have solutions as stated.

(1) The exponent above is an analogue for lattice orbits of the uni-
form approximation studied by Bugeaud and Laurent [3, 4, 5]
and also generalizes the Diophantine exponent for uniform ap-
proximation by SL2(Z)-orbits in R2 considered by Laurent and
Nogueira [26].

(2) We remark that the existence of some finite ζ for which the
foregoing Diophantine equation has solutions for arbitrary small
ε is a highly non-trivial condition, and is far from obvious in
general. It means that x0 has approximations by elements γx
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in the orbit of x whose norm is bounded by a power of ε−1, but
a priori the set where this condition is satisfied (for any finite
ζ) may be very small.

(3) One can also consider the approximation problem for the system
of inequalities

‖γx− x0‖ ≤ ε and ‖γ‖ ≤ ε−ζ .

Our methods can be used to provide best possible exponents in
this case as well.

Since all norms on F n and on Matn+1(F ) are equivalent, it is evident
that any choice of norm leads to the same exponent.

Notice also that it is evident that the function κΓ(x, x0) is Γ × Γ-
invariant, and hence when Γ acts ergodically on G/H, it is almost
surely a fixed constant, which we denote by κΓ(G/H) = kΓ(X).

We now proceed to describe some natural examples of classical Dio-
phantine approximation problems where the best possible exponent
κΓ(G/H) can be computed. The results stated below will all be shown
in due course to follow from the general results that will be developed
later on, see §5.

1.1. Inhomogeneous Diophantine approximation in the real
and the complex plane. Consider the affine action of the group
Γ = SL2(Z).<Z2 on the real plane R2.

Corollary 1.2. The approximation exponent for the Γ-orbits in the
plane is given by κΓ(R2) = 1.

More concretely, the problem of simultaneous inhomogeneous inte-
gral Diophantine approximation in the plane admits the following so-
lution. For any η > 0, for almost every x0 = (u0, v0), for almost
every x = (u, v), and for every ε sufficiently small, there are integers
a, b, c, d,m, n with

‖(au+ bv +m, cu+ dv + n)− (u0, v0)‖ ≤ ε

such that

ad− bc = 1 and max {|a|, |b|, |c|, |d|, |m|, |n|} ≤ ε−1−η.

Taking the latter equation modulo integers, we immediately deduce
that the rate of approximation by generic orbits of SL2(Z) in its action
on T2 = R2/Z2 by group automorphisms satisfies the following. For
any η > 0, for almost every x̄0 ∈ T2 and for almost every x̄ ∈ T2,
the equation ‖γx̄− x̄′0‖ ≤ ‖γ‖

−1+η has infinitely many solutions γ ∈
SL2(Z).

Let us note the following :

(1) The only results we are aware of in the literature regarding es-
timates of the Diophantine exponent for lattice actions on non-
compact homogeneous varieties are due to Laurent–Nogueira
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[26, 27]. They established that generically κΓ(x, x0) ≤ 3 for
SL2(Z) acting linearly on the plane by explicitly constructing
a sequence of approximants using a suitable continued frac-
tions algorithm. For the linear action on the real plane, Mau-
courant and Weiss [35] have also established an (explicit, but
not as sharp) upper bound for κΓ(x, x0) for arbitrary lattice
subgroups of SL2(R) using results on the effective equidistribu-
tion of horocycle flows. Diophantine exponents for cocompact
lattices acting on the complex plane can be derived from the
effective equidistribution theorem of Pollicott [39].

(2) We note that for the linear action, determining the exact value
of κΓ(x, x0) generically remains an open problem, for any lattice
subgroup, over any field, in any dimension. For explicit general
upper and lower bounds we refer to [13].

(3) For the sphere S2 viewed as a compact homogeneous space of
SO(3,R), an exponent of Diophantine approximation for a suit-
able lattice in the unit group of a quaternion algebra is a con-
sequence of the celebrated Lubotzky-Phillips-Sarnak construc-
tion [30][31]. Similarly, Diophantine exponents for actions of
specially constructed lattices on odd dimensional spheres can
be deduced from the sharp spectral estimates due to Clozel
[8]. The work of Oh [38] on spectral estimates for homogeneous
spaces of simple compact Lie group can also be used to establish
some Diophantine exponent for certain lattices.

Let us now consider the problem of simultaneous inhomogeneous Dio-
phantine approximation by pairs of Gaussian integers in C2, Eisenstein
integers, or more generally pairs of algebraic integers in an imaginary
quadratic number field. The group Γ = SL2(Z[i]).<Z[i]2 acts ergodi-
cally on C2, and the same holds for Γ = SL2(I).<I2, where I is the
ring of integers of the imaginary quadratic fields Q[

√
−D]), D ≥ 2 a

positive square free integer. We can now state the following result,
whose proof will be given in §5 below.

Corollary 1.3. Let I be the ring of integers in the imaginary quadratic
fields Q[

√
−1]), Q[

√
−2]), Q[

√
−3]), or Q[

√
−7]) and Γ = SL2(I).<I2.

Then the approximation exponent for the Γ-orbits in C2 is given by
κΓ(C2) = 1.

We note that establishing exact value of the approximation exponent
for a general imaginary quadratic field remains an open problem.

1.2. Approximation of indefinite ternary quadratic forms. Con-
sider the variety Qσ,d(R) of real indefinite ternary quadratic forms of
fixed non-zero discriminant d and signature σ, on which the group
SL3(R) acts via g · Q = Q ◦ g−1. Fixing the standard basis of R3,
each quadratic form can be represented by a symmetric 3 × 3 matrix
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A = AQ. The variety Qσ,d(R) can thus be identified with the set of
3× 3 symmetric matrices with determinant d and signature σ. We use
this identification to measure the distances on the variety by the norm
difference of the corresponding representing matrices.

In this setting we have the following Diophantine approximation re-
sult.

Corollary 1.4. (1) Given any indefinite ternary form Q0 ∈ Qσ,d(R),
for almost every indefinite non-degenerate form Q ∈ Qσ,d(R),
any η > 0, and sufficiently small ε > 0, there exists γ ∈ SL3(Z)
satisfying∥∥γ−1 ·Q−Q0

∥∥ ≤ ε and ‖γ‖ ≤ ε−5−η

and this exponent is the best possible, up to η > 0.
(2) For any other lattice subgroup Γ of SL3(R), the approximation

exponent on the variety of indefinite ternary quadratic forms is
again given by κΓ(Qσ,d(R)) = 5.

1.3. Constant determinant variety. Let k 6= 0 and consider the
constant determinant variety Vn,k(F ) = {A ∈ Matn(F ) ; detA = k}.
The group G = SLn(F )× SLn(F ) acts transitively on V , via (g, h)A =
gAh−1. The stability group H ' {(g, g) ; g ∈ SLn(F )}, namely the
diagonally embedded copy of SLn(F ). H is the fixed point set of the
involution (g, h) 7→ (h, g) and hence the variety Vn,k(F ) = G/H in
question is a semisimple symmetric space.

Corollary 1.5. (1) Let Γ be any irreducible lattice in SL3(F ) ×
SL3(F ). Then the best possible exponent of Diophantine ap-
proximation of Γ on the constant determinant variety is given
by κΓ(Vn,k(F )) = 4/3 in the cases F = R,C,Qp.

(2) In particular, for any square free integer d > 1, if σ denotes

the Galois involution of Q[
√
d], and A 7→ Aσ its extension to

Mat3(Q[
√
d]), the action of Γ = SL3(Q[

√
d]) on SL3(R) via

g 7→ γg (γσ)−1 has exponent exactly 4/3.

We note that upper and lower bounds for the exponent of approxi-
mation on the constant determinant variety when n > 3 are established
in [13]. However, the exact exponent of approximation in this case re-
mains an open problem. In the case n = 2, upper and lower estimates
for the exponent are established in the forthcoming work [14].

1.4. Complex structures. Consider the variety C4(W ) of complex
structures on a four dimensional real vector space W . Each complex
structure can be identified with a matrix J ∈ Mat4(R) satisfying J2 =
−I, and we measure the distance between complex structures by the
difference in norm of the representing matrices. The group SL4(R) acts
on the space of complex structures on W and the space C4(W ) can be
identified with SL4(R)/ SL2(C).
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Corollary 1.6. The action of any lattice subgroup Γ of SL4(R) on the
space of complex structures on C2 ∼= R4 has best possible approximation
exponent given by κΓ(C4(W )) = 9/4.

1.5. Simultaneous Diophantine approximation. The action of the
order two element σ = diag (1, 1,−1,−1) by conjugation on SL4(F )
has fixed point group given by

{(A,B) ∈ GL2(F )×GL2(F ) ; det(AB) = 1} .
We consider its semisimple subgroup H, namely the kernel of the
homomorphism (A,B) 7→ detA, and thus the homogeneous space
D2(F ) = SL4(F )/ (SL2(F )× SL2(F )). The latter can be identified
with the variety of direct sum decompositions of F 4 into a sum of two
2-dimensional subspaces endowed with a volume form, namely

(F 4, vol4) = (W1, vol2)⊕ (W2, vol2) ,

with vol4 the product of the two volume forms on the subspaces. H is
then the stability group of the decomposition given by (in the obvious
notation) F 4 = F 2⊕F 2. The problem of approximation on the variety
G/H is that of simultaneous unimodular Diophantine approximation
of two complementary 2-dimensional subspaces.

More generally, we consider the embedding of the product group
H = SL2(F )n in G = SL2n(F ) in diagonal blocks, and the homogeneous
variety Dn(F ) = G/H. Similarly, approximation on G/H by orbits of
a lattice Γ ⊂ G amounts to simultaneous unimodular Diophantine
approximation of n two-dimensional subspaces in F 2n.

Corollary 1.7. Let F = R,C,Qp, and let Γ be any lattice of SL2n(F ),
n ≥ 2. Then the best possible approximation exponent for the lat-
tice orbits on the homogenous space X defined above is κΓ(Dn(F )) =
(2n)2−1−3n

2n
.

1.6. Representations of SL2.

1.6.1. Irreducible representations. Consider the variety Rn(R) of irre-
ducible linear representations τ : SL2(R) → SLn(R), n ≥ 3, with two
representations τ1 and τ2 identified if τ2 = τ1 ◦ jg, where jg denotes
conjugation by g ∈ SL2(R). The variety can of course be identified
with the set of all irreducible Lie-algebra representations hom(sl2, sln),
two representations being identified if they differ by precomposition by
an element Ad(g) for some g ∈ SL2(R). In every dimension n ≥ 2
there is a unique such representation up to equivalence, which we de-
note by σn. Thus Rn(R) is a transitive PGLn(R)-space. Depending on
dimension, the variety Rn has at most two connected components R,
and the group G = SLn(R) acts transitively on connected components.
Thus each connected component can be identified with G/H where
H ' SL2(R).
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Corollary 1.8. For any lattice subgroup Γ ⊂ SLn(R), the exponent of
Diophantine approximation for the action of Γ on a connected compo-
nent R ⊂ Rn(R) is κΓ(R) = 1

2
(n2 − 4)(n− 1), provided n ≥ 3.

1.6.2. Reducible representations of SL2. A reducible representation σ :
SL2(R) → SLn(R) can be decomposed to a sum of irreducible ones,
and as we saw above, for a lattice subgroup Γ ⊂ SLn(R) approximation
by lattice orbits on the variety Rσ(R) = SLn(R)/σ(SL2(R)) amounts
to a problem in simultaneous unimodular Diophantine approximation
associated with the decomposition, namely simultaneous approxima-
tion subject to the additional constraint of preserving volume forms.
Remarkably, in all of these problems the best possible Diophnatine
approximation is achieved.

Corollary 1.9. General representations. Let σ : SL2(R)→ SLn(R)
be any non-trivial representation, n ≥ 3. Then for any lattice subgroup
Γ ⊂ SLn(R), the exponent of Diophantine approximation for the action
of Γ on the variety Rσ(R) is κΓ(Rσ(R)) = 1

2
(n2 − 4)(d(σ)− 1), where

d(σ) is the maximal dimension of an irreducible subrepresentation of
σ.

1.7. Diagonal embedding and restriction of scalars. Let E be
a totally real field extension of Q of degree n − 1 ≥ 2 with ring
of integers IE. Embed Γ = SLn(IE) in SLn(R)n−1 = G via γ 7→
(σ1(γ), . . . , σn−1(γ)) where σj : E → R are the n− 1 distinct field em-
beddings. As is well-known (see e.g. [33, p. 295]), Γ is an irreducible
lattice in G. We denote the diagonally embedded copy of SLn(R) in G
by ∆(SLn(R)). We can now state :

Corollary 1.10. Γ acts on the variety X = SLn(R)n−1/∆(SLn(R))
with best possible exponent, given by κΓ(X) = (n−2)(n+1)/n, provided
n ≥ 3.

1.8. Covering homogeneous spaces. Finally, let us note that in all
of the previous examples concerning the varieties X ' G/H, if L is any
non-compact semisimple subgroup of H, then the lattice Γ acting with
the best possible Diophantine exponent on X also acts with the best
possible Diophantine exponent on the cover X̃ = G/L. The exponents
themselves, however, are generally different. We refer to Section 5 for
the proof of this and the above results.

1.9. Organisation of the paper. In Section 2, we introduce a gen-
eral set-up where our arguments apply and in Section 3 we develop
a framework for estimating the approximation exponent of a lattice
group Γ acting on homogeneous space G/H. In particular, we show
that this problem reduces to understanding the spectral decomposition
of H acting on L2(Γ\G). In Section 4, we discuss the necessary spec-
tral estimates. Finally, in Section 5, we prove the results stated in the
introduction.
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2. Definitions, notation and general set-up

2.1. Very brief overview. Given a lattice subgroup Γ of a locally
compact second countable (lcsc) σ-compact group G, and a closed sub-
group H ⊂ G, we consider the case where Γ acts ergodically on the
homogenous space G/H, with respect to the unique G-invariant mea-
sure class. It then follows that almost every orbit of Γ on G/H is dense,
and we will develop a quantitative gauge to measure the rate at which
denseness is achieved. An important part of the motivation for this
problem is that it includes a broad collection of classical Diophantine
approximation problems, as demonstrated in the previous section and
will be further demonstrated below.

Our approach is to reduce the study of ergodic properties of lattice
orbits on the homogeneous space G/H, via the quantitative duality
principle developed in [17], to the ergodic properties of the orbits of
the stability group H in the space Γ \G.

The main tool we will use to study the H-orbits in Γ \G is a quan-
titative mean ergodic theorem for a family of averages on H, acting in
L2(Γ\G). In particular, it is the rate of convergence in the mean ergodic
theorem for these averages on the stability group H which determines
the rate of approximation by lattice orbits on the homogeneous variety
G/H. Under favorable conditions, it is possible to establish the best
possible spectral estimate for these averages, and this makes it possible
to establish the best possible rate of distribution of almost every dense
orbit.

2.2. General set-up. Continuing with the notation of the previous
section, we fix a discrete lattice subgroup Γ ⊂ G, and G being unimod-
ular, we denote a choice of Haar measure on G by mG. Let H ⊂ G be
a closed unimodular subgroup, and choose Haar measure mH on H. It
follows that the homogeneous space G/H = X carries a G-invariant
Radon measure, unique up to multiplication by a positive scalar. We
denote by mX the unique G-invariant measure on X satisfying, for
every compactly supported continuous function f on G :∫

G

fdmG(g) =

∫
X

(∫
H

f(gh)dmH(h)

)
dmX(gH) .

Let Y = Γ \ G be the homogeneous space determined by the lat-
tice subgroup, endowed with a finite G-invariant measure. We denote
by mY = mΓ\G the unique G-invariant measure having the following
relation with Haar measure mG. For every compactly supported con-
tinuous function f on G :∫

G

f(g)dmG(g) =

∫
Γ\G

(∑
γ∈Γ

f(γg)

)
dmΓ\G(g) .
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Note that this choice of the invariant measure mY is not necessarily
a probability measure, and its total mass V (Γ) is equal to the Haar
measure of a fundamental domain of Γ in G. Thus mY (Y ) = V (Γ),
and we denote by m̃Y the probability measure mY /V (Γ).

We fix a metric dist on X which satisfies the following regularity
property:

Assumption 1: coarse metric regularity. For every compact Ω ⊂ G
and every compact S ⊂ X, there exists a constant C0(Ω, S) > 0 such
that for all g ∈ Ω and x, x0 ∈ S,

dist(gx, gx0) ≤ C0(Ω, S) dist(x, x0) . (2.1)

We let D : G → R+ be a proper continuous function, and set also
|g|D = eD(g). We will assume that right and left multiplication in G
produce only a bounded distortion of D, namely:

Assumption 2: coarse norm regularity. For every compact Ω ⊂ G,
there exists a constant b(Ω) > 0 such that for all u, v ∈ Ω and g ∈ G,

D(ugv) ≤ D(g) + b(Ω) . (2.2)

It then follows that |ugv|D ≤ eb(Ω) |g|D.
This condition is certainly satisfied if D is coarsely subadditive,

namely, if for all g1, g2 ∈ G,

D(g1g2) ≤ D(g1) +D(g2) + b

with fixed b > 0.
We remark that when F = R,C and X ⊂ F n is a homogeneous space

embedded in F n, condition (2.2) will allow us to take any vector-space
norm on Matn(F ) and restrict it to G, not just a submultiplicative
norm. This will be convenient in several applications. A similar remark
applies to general locally compact fields.

We consider the family of sets Gt = {g ∈ G ; D(g) ≤ t}, which are
sets of positive finite Haar measure on G for sufficiently large t. Their
intersection with H, namely Ht = {h ∈ H ; D(h) ≤ t}, are sets of
positive finite Haar measure in the unimodular subgroup H when t is
sufficiently large.

It follows from (2.2) that the sets Gt have the following stability
property : for every compact Ω ⊂ G, there exists a constant c1 =
c1(Ω) > 0 such that

ΩGtΩ ⊂ Gt+c1 (2.3)

for all t ≥ tΩ.
We now turn to describe the parameters that appear naturally in the

estimates of the exponents in the Diophantine approximation problems
that will be the main subject of the present paper.
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2.3. Approximation on homogeneous spaces. Fix any point x0 ∈
X, and another point x ∈ X with the orbit Γ · x dense in X. We
consider the problem of quantitative approximation of the point x0 ∈ X
by points in the orbit Γ ·x, namely establishing an estimate of the form
d(γ−1x, x0) < ε with |γ|D < Bε−ζ , as ε→ 0, with a fixed positive ζ.

Note that this problem is meaningful for any fixed dense orbit Γ · x,
but many possibilities may arise in the generality discussed here. One
is that every orbit of Γ is dense in X, and another is that only almost
every orbit is dense, but a dense set of points x ∈ X have non-dense
orbits. There could also be a dense set of points x′ ∈ X where Γ · x′
is in fact closed or even finite, although Γ · x is dense and d(x′, γx) is
arbitrarily small.

Let us now define the exponent of approximation κ for dense orbits
in the action of Γ in its action on (the general metric space) X.

Definition 2.1. Given a point x ∈ X with a dense orbit and a general
point x0 ∈ X, assume that there exist ζ <∞ and ε0 = ε0(x, x0, ζ) > 0
such that for all ε ∈ (0, ε0), the system of inequalities

dist(γ−1x, x0) ≤ ε and |γ|D ≤ ε−ζ

has a solution γ ∈ Γ. Define the Diophantine approximation exponent
κΓ(x, x0) as the infimum of ζ > 0 such that the foregoing inequalities
have solutions as stated.

Let us note the following fundamental, but easily verifiable fact :
under the assumptions (2.1) and (2.2) on the gauge D, the exponent
κ(x, x0) is a Γ × Γ-invariant function. Hence when Γ is ergodic on
G/H, it is equal to a constant almost surely, which we will denote by
κΓ(G/H).

Our goal is to give explicit upper and lower estimates of the approxi-
mation exponent κΓ(G/H), and to that end we introduce the following
natural (and necessary) assumptions, which as we shall see below are
satisfied in great generality.

Assumption 3: coarse exponential volume growth. There exist con-
stants 0 < a′ ≤ a < ∞ such that for every η > 0 and a constant
C2(η) ≥ 1, we have

C2(η)−1et(a
′−η) ≤ mH(Ht) ≤ C2(η)et(a+η) (2.4)

as t ≥ tη. Equivalently,

lim sup
t→∞

1

t
logmH(Ht) ≤ a and lim inf

t→∞

1

t
logmH(Ht) ≥ a′

for finite and positive a, a′. We note that because of property (2.2)
replacing H by a conjugate gHg−1 will not affect the values of a, a′,
and that the constant C2(η) will vary uniformly as g ranges over a
compact set.
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Typically, in our examples we will have a = a′, and often we will be
able to even assert that as t→∞,

mH(Ht) = Atreat + o
(
treat

)
for some A > 0 and r ≥ 0. (2.5)

This sharper estimate will play a role later on.
Anticipating some of our later considerations, we note that in [14]

we will also allow in (2.5) the case where a = a′ = 0, namely where
volume growth in H is polynomial.

Assumption 4: local dimension. For the family of neighborhoods
Oε(x0) = {x ∈ X ; dist(x, x0) < ε}, there exist constants 0 < d′ ≤ d <
∞ such that for every η > 0 and a constant C3(x0, η) ≥ 1, we have

C3(x0, η)−1εd+η ≤ mX(Oε(x0)) ≤ C3(x0, η)εd
′−η (2.6)

as ε ∈ (0, ε0(x0, η)). The constant d(x0) = lim supε→0
log(mX(Oε(x0)))

log ε
is

called the upper local dimension of X at x0, and the constant d′(x0) =

lim infε→0
log(mX(Oε(x0)))

log ε
is called the lower local dimension of X at x0.

Namely, we assume that both these dimensions are finite and positive.
Moreover, we note that it follows from property (2.1) that as x0 varies
in compact subset of X, the upper and lower local dimension as well
as C3 and ε0 above satisfy uniform bounds.

Clearly, when X is a real connected manifold d = d′ = dimR(X) at
every point, and we can also take then η = 0 in (2.6). Typically in the
examples we will consider, d and d′ will be constant on X and equal.

Assumption 5: quantitative mean ergodic theorem. We consider the
probability G-invariant measure m̃Y on Y = Γ \G and define bounded
operators πY (βt) on L2(Y, m̃Y ) given by

πY (βt)f(y) =
1

mH(Ht)

∫
Ht

f(yh)dmH(h) , y ∈ Y .

We assume that there exists θ > 0 such that for every η > 0 there
exists a constant C4(η) > 0 such that∥∥∥∥πY (βt)f −

∫
Y

f dm̃Y

∥∥∥∥
L2(Y,m̃Y )

≤ C4(η)mH(Ht)
−θ+η‖f‖L2(Y,m̃Y ) (2.7)

as t ≥ tη.
We assume that replacing H by a conjugate subgroup gHg−1 will

not change the validity of this estimate or the value of θ, and that the
constant C4(η) will vary uniformly as g ranges over a compact set. We
refer to [15] for proofs of the ergodic theorem (2.7) for an extensive
class of examples.

Note that the validity of the quantitative mean ergodic theorem for
the averaging operators πY (βt), implies of course the ergodicity of H
on Γ \G. By the duality principle, the ergodicity of Γ on G/H follows,
and in particular, almost every Γ-orbit in X = G/H is dense.
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To study the distribution of dense lattice orbits in the homogeneous
space X = G/H, we will need to utilize a Borel measurable section sX :
G/H → G. Letting pX : G → G/H denote the canonical projection,
we have pX ◦ sX = IX , and for each g ∈ G, we have g = sX(gH)hX(g),
where hX : G → H is determined by the section sX , and is Borel
measurable. Furthermore, note that hX is H-equivariant on the right,
namely hX(gh) = hX(g)h, for g ∈ G and h ∈ H. We assume also that
the section is bounded on compact sets in X, and that it is continuous
in a sufficiently small neighborhood of x0. In our considerations we will
assume that x0 is the point in X = G/H with stability group H = Hx0 ,
and so that sX([H]) = e = sX(x0).

Note that using the section we obtain a measure-theoretic isomor-
phism between p−1

X (Oε(x0)) and the direct product Oε(x0) × H, with
Haar measure on G taken on the left, and on the right the product
of the invariant measure mX on X (restricted to Oε(x0)) and Haar
measure mH on H.

Let A ⊂ X be a bounded open set, so that sX(A)Ht ⊂ G are bounded
sets in G. Then we claim that there exist constants C ′1 = C ′1(A) > 0
and c′1 = c′1(A) > 0 such that for all t > tA,∣∣Γ ∩ (HtsX(A)−1

)∣∣ ≤ C ′1mH(Ht+c′1
) . (2.8)

Indeed, taking a sufficiently small neighbourhood Ω of identity in G
such that its Γ-translates are disjoint, we conclude that∣∣Γ ∩ (HtsX(A)−1

)∣∣ ≤ mG((HtsX(A)−1) Ω)

mG(Ω)
,

and it follows from property (2.3) that(
HtsX(A)−1

)
Ω ⊂ Ht+c′1

sX(A′)−1

for some bounded A′ = A′(Ω, A) ⊂ X and c′1 = c′1(Ω, A) > 0. This
implies the estimate (2.8).

We note that that replacing H by a conjugate group gHg−1 will not
affect the validity of this estimate, and that the constants C ′1(A) and
c′1(A) will vary uniformly as g ranges over a compact set.

For a fixed compact set Ω0 ⊂ H, we denote

Ω̃ε(x0) = sX(Oε(x0)) · Ω0 ⊂ G ,

namely Ω̃ε(x0) is obtained by lifting the neighborhoodOε(x0) of x0 ∈ X
to G via the section sX , and then multiplying it by a compact set

Ω0 ⊂ H. Note that for ε < 1 (say) the union of the sets Ω̃ε(x0) is
contained in a fixed compact set in G, which we denote by Ω.

We define the associated characteristic function χε(g) = χΩ̃ε(x0)(g),
which has compact support, and we consider its periodization under Γ,
given by fε(Γg) =

∑
γ∈Γ χε(γg). Clearly fε is bounded and has compact

support in Y = Γ \G.
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Now note that given a bounded subset L ⊂ G, since the intersection
of the lattice Γ with the bounded set L · L−1 is finite and has at most
N(L) elements (say), the map g 7→ Γg is at most N(L)-to-1 on L. In

particular this is valid for Ω̃ε(x0), and it follows that mY (ΓΩ̃ε(x0)) ≥
N(Ω)−1mG(Ω̃ε(x0)). By definition of the measure mY , we also have∫
Y
fεdmY =

∫
G
χεdmG = mG(Ω̃ε(x0)). Furthermore, by its definition

the support of the function fε in Y is ΓΩ̃ε(x0), and on its support it is
bounded by N(Ωε(x0)) ≤ N(Ω). We can therefore conclude that∫

Y

f 2
ε dmY ≤

∫
Y

N(Ω)2χΓΩ̃ε(x0)dmY ≤ N(Ω)2mG(Ω̃ε(x0)) ,

so that

‖fε‖L2(Y,mY ) ≤ N(Ω)

√
mG(Ω̃ε(x0)) . (2.9)

With all the preliminaries in place, we now turn to stating and prov-
ing our main approximation results.

3. Bounding the exponent approximation for dense orbits

3.1. A lower bound for the approximation exponent. In the
present section we will consider a homogeneous space X = G/H and
use the bound (2.6) for the lower local dimension of X and the upper
bound (2.4) for rate of volume growth of the sets Ht to prove a lower
bound on the rate of approximation for almost every point by a dense
Γ-orbit in X.

Theorem 3.1. Let G be an lcsc group, H a closed subgroup, Γ a dis-
crete lattice in G acting ergodically on X = G/H. Suppose that as-
sumptions 1–4 stated in §2.2 and §2.3 are satisfied. In particular, a
denotes the volume growth exponent in (2.4), and d′ denotes the lower
local dimension in (2.6). Then for x ∈ X with a dense Γ-orbit, and for
almost every x0 ∈ X, the exponent of approximation satisfies

κΓ(x, x0) = κΓ(X) ≥ d′

a
.

Proof. We fix x ∈ X with a dense Γ-orbit, and assume in our discussion
below that H is the stability group of x ∈ X. This amounts to replacing
H by conjugate subgroups gxHg

−1
x with some gx ∈ G, for which (2.4)

is still valid, with constants depending on x and varying uniformly as
x varies in a compact set.

Given a bounded non-empty open set A ⊂ X, we consider its lift to G
via the section sX , namely the bounded set sX(A). Note that for γ ∈ Γ
the conditions D(γ) ≤ t and γ−1x ∈ A imply that γ ∈ Ht+c1sX(A)−1 for
some c1 = c1(A) > 0. Indeed, γ−1 = sX(γ−1H)hX(γ−1) where of course
sX(γ−1H) ∈ sX(A). Furthermore, since sX(A) is a fixed bounded set
and γ ∈ Gt, it follows from (2.3) that

hX(γ−1) = sX(γ−1H)−1γ−1 ∈ G−1
t+c1
∩H = H−1

t+c1
.
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Thus γ ∈ Ht+c1sX(A)−1.
The upper estimate we seek for the number of lattice points γ ∈

Γ ∩Gt such that γ−1x falls in the bounded open set A follow from the
upper bound (2.8) on the number of lattice points in Ht+c1sX(A)−1,
and the upper volume growth bound (2.4) of Ht, as follows:∣∣{γ ∈ Γ ∩Gt ; γ−1x ∈ A

}∣∣ ≤ ∣∣Γ ∩ (Ht+c1sX(A)−1)
∣∣

�A mH(Ht+c1+c′1
)�A,η e

t(a+η) .

This estimate holds for all η > 0 and sufficiently large t.
Now assume that for some x ∈ X with dense orbit, the set of x0 where

κ(x, x0) < d′/a actually has positive measure. Then there exists κ0 <
d′/a such that the set {x0 ∈ X ; κ(x, x0) ≤ κ0} has positive measure.
For each point y in the latter set there exists ε(y) such that for all
ε < ε(y) there exists some γ ∈ Γ with dist(γ−1x, y) ≤ ε and |γ|D ≤ ε−κ0 .

For a positive integers j, define

Aj =

{
y ∈ X ; ε(y) ≤ 1

j

}
and then clearly for some j0 the set Aj0 has positive measure, and we
can consider a bounded subset with positive measure, denoted by A′j0 .

We now claim that for every η > 0 and sufficiently small ε > 0,
any bounded set A of positive measure contains a 2ε-separated set of
cardinality at least Cηε

−d′+η for some Cη > 0. Indeed, if {yi : i ∈ I}
is a maximal 2ε-separated subset of A, every point in A is at distance
less than 2ε from one of the points yi. Then the union over i ∈ I of the
4ε-balls O4ε(yi) centered at yi must cover A. Hence, the measure A is
bounded by

0 < mX(A) ≤
∑
i∈I

mX(O4ε(yi)) ≤ |I|max
y∈A

C3(y, η)εd
′−η,

where we have used the lower local dimension estimate (2.6) and its
uniformity. Thus the size |I| of a maximal separated set satisfies the
desired lower bound.

Let us now apply the last assertion to the bounded positive measure
set A′j0 , and for each sufficiently small ε choose a 2ε-separated subset of

cardinality at least Cηε
−d′+η. Then for all ε < 1/j0, the ε-ball centered

at each of these 2ε-separated points must contain a point of the form
γ−1x with γ ∈ Γ satisfying |γ|D ≤ ε−κ0 . These points in the orbit are

distinct and their total number thus cannot exceed C ′η (ε−κ0)
a+η

. Thus
for all sufficiently small ε,

Cηε
−d′+η ≤ C ′η

(
ε−κ0

)a+η
.

This implies that κ0(a+η) ≥ d′−η for every η > 0 and hence κ0 ≥ d′/a,
which contradicts our choice. �
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Remark 3.2. We note that in order to estimate the exponent for the
case when the inequalities are of the form

‖γx− x0‖ ≤ ε and ‖γ‖ ≤ ε−ζ ,

the same argument can be used. One merely needs to note that the
condition γx ∈ A implies that γ ∈ sX(A)Ht+c1 and moreover we have
the following lattice point estimate, an analogue of (2.8):

|Γ ∩ (sX(A)Ht)| �A mH(Ht+c′1
).

The rest of the argument goes through exactly as above.

3.2. An upper bound for the approximation exponent. We now
turn to prove an explicit upper bound on the approximation exponent
by points in a dense lattice orbit, complementing the lower bound of
the previous section.

Theorem 3.3. Let G be an lcsc group, H a closed subgroup, Γ a dis-
crete lattice in G acting ergodically on X = G/H. Suppose that as-
sumptions 1–5 stated in §2.2 and §2.3 are satisfied. In particular, a
denotes the volume growth exponent in (2.4), d and d′ denote the upper
and lower local dimensions in (2.6), and θ denotes the rate in the mean
ergodic theorem in (2.7). Then for almost every x ∈ X and for every
x0 ∈ X, the exponent of approximation satisfies

κΓ(x, x0) = κΓ(X) ≤ d− d′/2
a′θ

.

Proof. Let us fix x0 ∈ X, and assume that H is the stability group of
x0 in G. We recall from §2.3 the associated section sX : G/H → G,
and also the sets Oε(x0) and their lifts, which were chosen as

Ω̃ε(x0) = sX(Oε(x0)) · Ω0

with Ω0 ⊂ H open and bounded. Finally recall the family of functions
fε ∈ L2(Y ) defined there.

Let us apply the averaging operators πY (βt) acting on L2(Y ) to the
function fε :

πY (βt)fε(Γg) =
1

mH(Ht)

∫
Ht

∑
γ∈Γ

χε(γ
−1gh)dmH(h) .

To estimate the integrand, let us first determine where it is non-zero.
By definition, χε(γ

−1gh) 6= 0 implies that

γ−1gh ∈ Ω̃ε(x0) or γ ∈ ghΩ̃ε(x0)−1 .

Note that first, if h ∈ Ht and g ranges over a compact set L ⊂ G,

then γ ∈ gHtΩ̃ε(x0)−1 ⊂ Gt+c1 by (2.3). Second, since Ω̃ε(x0) =
sX(Oε(x0)) · Ω0 with Ω0 ⊂ H, we conclude that γ−1gH ∈ Oε(x0),
namely πY (βt)fε(Γg) 6= 0 implies that x = gH satisfies γ−1x ∈ Oε(x0)
with γ ∈ Γ such that D(γ) ≤ t+ c1.
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The quantitative mean ergodic theorem (2.7) gives the estimate∥∥∥∥πY (βt)fε −
∫
Y

fε dm̃Y

∥∥∥∥
L2(Y,m̃Y )

≤ C4(η)mH(Ht)
−θ+η ‖fε‖L2(Y,m̃Y )

for all η > 0 and sufficiently large t. We take ε = e−t/ζ with ζ > 0. Let
us fix a compact set L ⊂ G and define

L(t) = {g ∈ L ; πY (βt)fe−t/ζ(Γg) = 0} .
Integrating only on the subset ΓL(t) ⊂ Y , the previous estimate implies

m̃Y (ΓL(t))1/2 ·
∫
Y

fe−t/ζ dm̃Y ≤ C4(η)mH(Ht)
−θ+η‖fe−t/ζ‖L2(Y,m̃Y ).

Using the bound (2.6) on the upper local dimension of Oε(x0) and
the definition of the function fε, we deduce that for every η > 0 and
sufficiently small ε,∫

Y

fε dm̃Y = V (Γ)−1mG(Ω̃ε(x0))

= V (Γ)−1mX(Oε(x0))mH(Ω0)�Ω0,η ε
d+η .

Using (2.9) and the bound (2.6) on the upper local dimension ofOε(x0),
we also obtain

‖fε‖L2(Y,m̃Y ) ≤ V (Γ)−1/2N(Ω)

√
mG(Ω̃ε(x0))�Ω,Ω0,η ε

d′/2−η/2 .

Finally, we recall that by (2.4) mH(Ht) ≥ C2(η)−1e(a′−η)t for all suffi-
ciently large t. Putting these estimates together, we have

m̃Y (ΓL(t))1/2 ≤
(∫

Y

fe−t/ζdmY

)−1

C4(η)mH(Ht)
−θ+η‖fe−t/ζ‖L2(Y,m̃Y )

�Ω,Ω0,η ε
−d−ηe−(θ−η)(a′−η)tεd

′/2−η/2 = e−t(−d/ζ+θa
′+d′/(2ζ)−ρ),

where ρ = ρ(η) > 0 can be made arbitrary small as η → 0. Hence,

the exponent can be made positive provided that ζ > d−d′/2
a′θ

. We recall
from §2.3 that

mG(L(t)) ≤ N(L)mY (ΓL(t)) = N(L)V (Γ)m̃Y (ΓL(t)).

Now it follows from the above estimate that
∑∞

n=1mG(L(n)) < ∞.
Hence by Borel-Cantelli Lemma almost every point g ∈ L eventually
avoids Ln. Equivalently, for almost every g ∈ L there exists n(g) such
that πY (βn)fe−n/ζ(Γg) 6= 0 for all n ≥ n(g). As noted above, the non-
vanishing implies that there exists

γ ∈ LHnΩ̃e−n/ζ(x0)−1 ⊂ Gn+c1

which satisfies γ−1gH ∈ Oe−n/ζ(x0). Hence, we have proven that there
exists c1 = c1(L, x0) > 0, uniform over x0 in bounded sets, such that
for almost all g ∈ L and n > n(g), there exists γ ∈ Γ satisfying
d(γ−1gH, x0) < e−n/ζ with γ satisfying |γ|D ≤ ec1en � e(1+η)n with



BEST RATES OF DIOPHANTINE APPROXIMATION 17

η > 0. This proves the statement for ε = e−n/ζ with n ∈ N, and
for general ε this follows by interpolation. Finally, by taking L = Uj
where Uj is an increasing sequence of subsets exhausting G as j →∞,
we deduce that the same holds for almost every g ∈ G. This proves
that the approximation exponent κΓ(x, x0) satisfies the upper bound

κΓ(x, x0) ≤ d−d′/2
a′θ

for every x0 ∈ X and almost every x ∈ X. �

Remark 3.4. In order to study lower bounds for exponents for in-
equalities of the type

‖γx− x0‖ ≤ ε and ‖γ‖ ≤ ε−ζ ,

we need to study ergodic averages over H−1
t and therefore we need a

mean ergodic theorem for such averages. The same argument then goes
through with very minor modifications.

3.3. Optimality of the approximation exponent. It is a remark-
able fact that when d = d′, a = a′, and θ = 1/2 the spectral upper
bound in Theorem 3.3 in fact matches the a priori lower bound on the
rate of approximation given in Theorem 3.1, which was derived from
more elementary geometric counting arguments.

Retaining the assumptions of Theorem 3.3 and Theorem 3.1, and
assuming in addition that d = d′ and a = a′, we obtain the following
sufficient condition for optimality of the rate of distribution of almost
every dense lattice orbit on a homogeneous space.

Theorem 3.5. (1) If the rate of convergence in the mean ergodic
theorem (2.7) for the averages πY (βt) acting in L2(Γ\G) is gov-
erned by the square root of the volume of Ht (namely, bounded

by C4(η)mH(Ht)
− 1

2
+η for every η > 0), then the approximation

exponent is κΓ(X) = d
a
.

(2) When H is a connected non-compact semimple algebraic group
defined over a local field of characteristic zero, a necessary and
sufficient condition for the norm bound in (1) is that the re-
striction of the unitary representation on L2

0(Γ \G) to H have
tempered spherical spectrum as a representation of H.

Proof. Part (1) is of course immediate. As to part (2), when the sets
Ht are bi-KH-invariant, where KH is a maximal compact subgroup of
H, it suffices that the spherical spectrum of H in its representation
on L2

0(Γ \ G) is tempered in order to obtain the desired norm bound.
Note however that in the problem of approximating a general point
x0 ∈ X by points in a dense orbit Γ · x, we can assume that the
sets Ht are bi-invariant under a good maximal compact subgroup KH ,
provided we choose the original sets Gt ⊂ G to be bi-K-invariant,
namely KGtK = Gt, where K is a suitable maximal compact subgroup
of G, and KH = K ∩H. �
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Let us also note the following relation between the pigeon-hole prin-
ciple, spectral gaps and Diophantine approximation.

Remark 3.6. (1) The pigeon hole principle. Theorem 3.1 implies
that for every lcsc group G, subgroup H and lattice Γ satisfying
its assumptions, the best possible upper bound on the norm of
the averaging operators supported on Ht acting in L2

0(Γ \G) is
the estimate governed by the square root of the volume. It is
quite remarkable that the fact that the spectral decay rate in
L2

0(Γ \G) cannot be any faster follows from a geometric pigeon
hole principle for Γ-orbits in G/H.

(2) Diophantine approximation and spectral gap. The previous com-
ment raises the very interesting question of whether a converse
statement may hold. To be concrete, let us formulate just two
obvious questions, in the case where G and H are connected
non-compact almost simple Lie groups, and Γ a lattice in G.
• If the exponent of Diophantine approximation of Γ on G/H

is optimal, does it follow that the spherical spectrum of H
in L2

0(Γ \G) tempered ?
• More generally, given a rate of approximation for the Γ-

orbits on G/H, is it possible to derive a bound for the
spectral gap of the spherical spectrum of H in L2

0(Γ \G) ?

3.4. Sharp approximation by the best possible exponent. When
the best possible approximation exponent κΓ(x, x0) = d/a is obtained
in a given problem, the conclusion is that dist(γ−1x, x0) ≤ ε has so-
lutions γ ∈ Γ with |γ|D ≤ Bη(x, x0, η)(1/ε)(d/a)+η, for any η > 0. A
considerably sharper statement is that in fact η = 0 is possible, and
the solutions satisfy |γ|D ≤ B(x, x0)(1/ε)d/a(log(1/ε))k for some fixed
k. This is indeed often the case, and it suffices that the assumptions
3–5 stated in §2.3 hold in a slightly sharper form. Keeping the notation
introduced there, assume that

• Assumption 3′: The volume growth on H satisfies

C−1
2 tbeat ≤ mH(Ht) ≤ C2t

beat

for all sufficiently large t.
• Assumption 4′: The measure of ε-neighbourhoods on X sat-

isfies
C−1

3 εd ≤ mX(Oε(x0)) ≤ C3ε
d.

for sufficiently small ε uniformly over x0 in compact sets.
• Assumption 5′: The averaging operators on πY (βt) satisfy the

spectral bound∥∥∥∥πY (βt)f −
∫
Y

f dm̃Y

∥∥∥∥
L2(Y,m̃Y )

≤C4mH(Ht)
−θ log(mH(Ht))

m‖f‖L2(Y,m̃Y )
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for sufficiently large t.

Theorem 3.7. Let G be an lcsc group, H a closed subgroup, Γ a dis-
crete lattice in G acting ergodically on X = G/H. Suppose that as-
sumptions 1–2 stated in §2.2 and assumptions 3′–5′ are satisfied. Then
for every x0 ∈ X and for almost every x ∈ X, the system of inequalities

dist(γ−1x, x0) ≤ ε and |γ|D ≤ ε−d/2aθ(log(ε−1))k

has a solution γ ∈ Γ provided that k > (2m + 1 − 2bθ)/(θa) and ε ∈
(0, ε0(x, x0, k)).

Proof. We use the notation and the arguments from the proof of Theo-
rem 3.3, taking advantage of the superior estimates in the present case.
We take ε = tze−t/ζ with z, ζ > 0. We fix a compact set L ⊂ G and
define

L(t) = {g ∈ L ; πY (βt)ftze−t/ζ(Γg) = 0} .
Then as in the proof of Theorem 3.3 we deduce that

m̃Y (ΓL(t))1/2 �η

(∫
Y

fεdmY

)−1

mH(Ht)
−θ log(mH(Ht))

m‖fε‖L2(Y,m̃Y )

�Ω,Ω0,η ε
−d(tbeat)−θtmεd/2 = tm−dz/2−θedt/(2ζ)−aθt.

We choose ζ = d/(2θa) and z > (2m+ 1− 2bθ)/d.

mG(L(t))� m̃Y (ΓL(t))� t−1−η

for some η > 0. Hence, it follows that
∑∞

n=1mG(Ln) <∞. Now we may
argue as in the proof of Theorem 3.3 to conclude that for almost every
g ∈ L, there exists n = n(g) such that for all n > n(g) there exists γ ∈ Γ
such that d(γ−1gH, x0) ≤ nze−n/ζ and D(γ) ≤ n+ c1. Equivalently, for
sufficiently small ε of the form ε = nze−n/ζ , there exists γ ∈ Γ such that
d(γ−1gH, x0) ≤ ε and |γ|D ≤ ec1φ−1(ε) where φ(u) = (log u)zu−1/ζ . We
note that φ−1(ε) � ε−ζ log(ε−1)ζz for all sufficiently small ε. Hence,
this implies the required estimate for almost all x = gH with g ∈ L.
Finally, the proof of the theorem can be completed as before. �

Remark 3.8. Let us note that assumption 4′ is of course immediate
when G is a real or p-adic Lie group. Assumption 3′ holds in consid-
erable generality for closed subgroups of Lie and algebraic groups, and
in particular for all semisimple algebraic subgroups, see [18] and [15,
Ch. 7]. Assumption 5′ also holds quite generally, and we note than
when H is a semisimple algebraic subgroup, the best possible spectral
estimate θ = 1

2
is equivalent to showing that the representation π0

Y

restricted to H is weakly contained in a multiple of the regular rep-
resentation of H. But then the spectral estimate of π0

Y (βt) is via the
Harish Chandra Ξ-function of H. The well-known estimates of Harish
Chandra [19, 20, 21] then imply that the estimate given in assumption
5′ is indeed valid. These facts will be elaborated further below.
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We now turn to to describe spectral methods that yield best possible
Diophantine rates. We note that all the considerations we develop
below are required for the proofs of the Diophantine exponents stated
in our examples above. It is more useful and efficient, however, to
state the spectral estimates in general form, and we will devote §5 to
a detailed account of their applications.

We illustrate Theorem 3.7 on the example of the affine action of
Γ = SL2(Z).<Z2 on the plane R2. In this case, we deduce that for
every x0 ∈ R2 and almost every x ∈ R2, the system of inequalities

‖γx− x0‖ ≤ ε and ‖γ‖ ≤ ε−1 log(ε−1)3+η

has a solution γ ∈ Γ for all η > 0 and sufficiently small ε. This improves
Corollary 1.2. We note that the other results stated in the introduction
also admit such logarithmic improvements.

3.5. Pointwise bounds on approximation exponents. In Theo-
rem 3.1 we have fixed any starting point x ∈ X with dense orbit Γ · x,
and proved that for almost every point x0 we have κ(x, x0) ≥ d′

a
. On

the other hand, in Theorem 3.3 we have fixed any point x0 ∈ X, and

showed that for almost every point x we have κ(x, x0) ≤ d−d′/2
a′θ

. Con-
sequently, the conclusion we can draw from their conjunction is that

d′

a
≤ κ(x, x0) ≤ d− d′/2

a′θ

for almost every x, x0 ∈ X.
It is a natural problem to investigate further the set where the upper

or the lower estimate hold, and the set where both are valid. We will
consider this problem only in the following important special case. If
the action of Γ on X is isometric with respect to the metric d, then
d(γ−1x, x0) = d(x, γx0). Furthermore, in an isometric action, if one or-
bit is dense then all of them are. The argument used to prove Theorem
3.3 therefore implies the following.

Theorem 3.9. Assume, in addition to the hypotheses of Theorem 3.3,
that the action of Γ on X = G/H is isometric. Then every orbit

approximates fast almost every point with the exponent κ = d−d′/2
a′θ

,
namely for every point x0 ∈ X, and for almost every point x ∈ X,
there exists γ ∈ Γ with

d(γx0, x) ≤ ε and |γ|D ≤ ε−ζ

provided that ζ > κ = d−d′/2
a′θ

and ε is sufficiently small.

It is conceivable that the conclusion holds, in the isometric case, for
every single pair (x, x0), but this remains an open problem.

The problem of uniformity on a co-null set of orbits. Theorem 3.3
establishes that every point x0 ∈ X can be approximated fast, namely
with approximation exponent is κ, by almost every orbit Γ ·x. Another
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natural open problem is whether this conull set can be taken to be one
and the same for every x0, for example, whether it can be defined by
suitable specific Diophantine conditions.

We note that in [26] and [27] Laurent and Nogueira consider the case
of SL2(Z) acting on R2, and assuming specific Diophantine conditions
on the point x, they deduce that the orbit SL2(Z)·x approximates every
point. In particular, they show that there is a fixed co-null set of points
x ∈ R2 such the orbit of each of them under SL2(Z) approximates every
point (at a fixed rate).

4. Spectral estimates

4.1. Subgroup temperedness problem. To apply Theorem 3.5 to
obtain optimal approximation results for Γ-orbits in G/H, we must ad-
dress the following basic questions. Consider an lcsc group G, a closed
unimodular subgroup H, a unitary representation π : G→ U(H), and
a lattice subgroup Γ ⊂ G. Let λH denote the regular representation
of H on L2(H), and let π ≤w π′ denote weak containment of unitary
representations. Recall that the unitary representation π of G is weakly
contained in the unitary representation π′ if for every F ∈ L1(G) the
estimate ‖π(F )‖ ≤ ‖π′(F )‖ holds. Clearly, if π is strongly contained
in π′ (namely equivalent to a subrepresentation), then it is weakly con-
tained in π.

Definition 4.1. (1) (G,H, π) is a tempered triple if the restriction
of the representation π to H is weakly contained in a multiple
of the regular representation of H, denoted ∞ · λH .

(2) H ⊂ G is (Γ \G)-tempered if the restriction to H of the repre-
sentation π0

Γ\G of G on L2
0(Γ\G) is weakly contained in ∞·λH ,

namely if H is (G,H, π0
Γ\G)-tempered.

(3) H is a tempered subgroup of G if the restriction of every uni-
tary representation of G without invariant unit vectors to H is
weakly contained in ∞ · λH .

Given a compact subgroup K ⊂ G, we will also consider when the
restriction to H of the spherical spectrum of the representation π0

Γ\G, or
any representation π without invariant unit vectors, is weakly contained
in λH . Here a spherical irreducible representation of G is one containing
aK-invariant unit vector. In these situations we will say thatH is Γ\G-
spherically tempered or that H is a spherically-tempered subgroup of
G.

Let us note that the case of H = G, namely when the representation
of G in L2

0(Γ \G) is a tempered or spherically tempered representation
of G, is a major open problem in the theory of automorphic forms.
Thus for G = SL2(R) and Γ ⊂ SL2(Z) the congruence subgroups, tem-
peredness amounts to the celebrated Selberg conjecture. For further
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discussion we refer to [6, 7], the surveys [40] and [1] and the references
therein.

It is a remarkable and most useful fact that the temperedness prob-
lem for subgroups H ( G exhibits very different behavior : it is a
ubiquitous phenomenon which can be established using several differ-
ent methods. The rest of our discussion will be devoted to demonstrat-
ing this fact and discussing further examples where the best possible
spectral estimate of H on L2

0(Γ \G) is obtained.
Before proceeding, let us first note the following.

Remark 4.2. (1) The properties stated in Definition 4.1 are inter-
esting as stated only for non-amenable subgroupsH. WhenH is
amenable, typically the representation of H on L2

0(Γ\G) will be
weakly equivalent to the regular representation of H. But then
the operator norm of the averaging operators πH(βt) in L2(H)
is identically 1, owing to the existence of an asymptotically in-

variant sequence of unit vectors in L2(H). Thus
∥∥∥π0

Γ\G(βt)
∥∥∥ = 1

for all t, and the operator norm does not decay at all.
(2) Nevertheless, it is an important and useful fact that when con-

sidering amenable groups, it is often the case that the relevant
operators have norm in Sobolev spaces which converge to zero.
The rate of decay can be estimated using again the spectral
characteristics of the representation of G on L2

0(Γ \ G). Such
estimates will appear in detail in [14].

(3) The definition of tempered subgroup above is different than the
notion of a subgroup H ⊂ G being (G,K)-tempered introduced
by Margulis [34]. The latter is strictly stronger than Definition
4.1, and it deviates from standard terminology, in which a rep-
resentation of a semi simple group is spherically tempered if
(a dense subspace of) its spherical matrix coefficients are in
L2+η(G) for every η > 0, and not necessarily in L1(G). We will
therefore use the term “(G,K)-tempered in L1” to refer to this
situation. As we shall see below in Theorem 4.11, if a closed
subgroup H of a semisimple group G is (G,K)-tempered in L1,
then H is in fact a tempered subgroup of G, in the sense defined
in the present paper.

4.2. Ubiquity of temperedness. To show that the phenomenon of
subgroup temperedness is remarkably prevalent and robust, we will
very briefly present five general methods establishing it, and then pro-
ceed to explain how to utilize them and give a considerable number of
further examples. Specifically, for given G,H and Γ the representation
of H ⊂ G in L2

0(G/Γ) can be shown to be tempered or spherically
tempered using the following methods.

(1) Kazhdan’s original argument and some variants. Here G
is a simple S-algebraic group (for instance, but many other lcsc
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groups qualify), and H ∼= SL2(F ) ⊂ SL2(F ).<σF
k is embedded

in G as a closed subgroup, where σ is a representation of SL2(F )
on F k without non-zero invariant vectors. The lattice subgroup
Γ ⊂ G is arbitrary.

(2) Tensor power argument. Here G is a semisimple S-algebraic
group G (or a subgroup of G) embedded diagonally in Gn(G),
where n(G) is an integer determined explicitly by spectral es-
timates which give an explicit form of property T . Again the
lattice is arbitrary.

(3) Restriction of universal pointwise bounds. K-finite ma-
trix coefficients on a semisimple S-algebraic group G satisfy
several universal pointwise bounds. It is often possible to es-
tablish directly that their restriction (or the restriction of some
of them) to a subgroup H is in L2+η(H) for every η > 0. This
includes the case of L1-tempered (G,K) representations. Once
again the lattice here is arbitrary.

(4) Direct proofs of temperedness of G/Γ. For some spe-
cific choices of the group G and the lattice Γ temperedness has
been established directly. This applies for example to SL2(Z) ⊂
SL2(R) and SL2(Z[i]) ⊂ SL2(C), as well as some of their con-
gruence subgroups.

(5) Bounds towards Ramanujan-Selberg conjecture. If G
is of real rank one, for example SO(n, 1), some bounds towards
Ramanujan-Selberg conjecture are known for some lattices. The
restriction of π0

Γ\G to SO(k, 1) can be spherically-tempered or
close to tempered for certain 1 ≤ k < n.

We now turn to presenting and utilizing these arguments in more de-
tail, together with some other relevant spectral estimates. We remark
that in all the examples given below of tempered triples (G,H,Γ) the
assumptions stated in §2.3 are satisfied, and best possible approxima-
tion rates for the action of Γ ⊂ G on the homogeneous varieties G/H
are obtained. For more on these arguments, we refer to §5.

4.3. Restriction to SL2-subgroups : Kazhdan’s argument. The
phenomenon of subgroup temperedness appeared already in Kazhdan’s
original proof of property T in [25]. We quote the basic observation
in the following form which will be convenient for our purposes, and
which summarizes the results stated by Zimmer in [43, Ex. 7.3.4.,
Thm. 7.3.9] and Margulis [34, Ch. III, Prop. 4.5]. Note also that a
remarkable geometric proof for the case of SL2(R).<R2 is given in [24,
Prop. 3.3.1].

Theorem 4.3. Let F denote a locally compact non-discrete field of
characteristic zero. Let σ : SL2(F ) → SLk(F ) be a linear representa-
tion without invariant non-zero vectors, k ≥ 2. Let S = SL2(F ).<F k
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be the semi-direct product group. Then for any non-trivial unitary rep-
resentation π : S → U(H) on a Hilbert space H, if the representation π
does not admit a π(F k)-invariant unit vector, then the representation
π restricted to SL2(F ) is tempered.

Let now G be any lcsc group, let S be as in Theorem 4.3 and let
σ : S → G be a representation with closed image. Clearly the image
of F k cannot be compact without being trivial, since the image of
SL2(F ) normalizes it, but does not centralize it. Therefore, if π is any
mixing unitary representation of G, namely a representation whose
matrix coefficients vanish at infinity, then π ◦ σ(F k) has no invariant
unit vectors. Therefore the triple (G, σ(SL2(F )), π) is tempered.

Note that when G is the group of F -points of an algebraic group
over F , H = σ(SL2(F )) acts via the adjoint representation on g, which
decomposes as a sum of irreducible linear representations of H. Let
v ⊂ g be an H-invariant irreducible subspace of dimension at least 2
which forms an abelian subalgebra v. Clearly the group V = exp v
cannot be compact, since it is normalized by H but not centralized by
it. Then S = H.<V satisfies the hypothesis of Theorem 4.3. (Note
that when we assume that the adjoint representation of H on g has
an irreducible subspace of dimension at least 2 which is realized on an
Abelian subalgebra, then the exception case giving rise to the oscillator
representation of Sp2n does not arise).

When G is a semisimple group and the lattice Γ ⊂ G is irreducible,
the Howe-Moore mixing theorem for irreducible actions [23] implies
that the representations π0

Γ\G is mixing. The Abelian group V = exp(v)

is non compact and hence acts ergodically on Γ\G. We summarize these
considerations in the following result which is corollary of Theorem 4.3.

Theorem 4.4. Let F be a locally compact non-discrete field of char-
acteristic zero, and let G denote the F -points of a connected semisim-
ple linear algebraic group defined over F . Let σ : SL2(F ) → G be a
non-trivial rational representation, and assume that the adjoint repre-
sentation of H = σ(SL2(F )) on the Lie algebra g admits an irreducible
subrepresentation of dimension at least 2 on an Abelian subalgebra. If
Γ ⊂ G is an irreducible lattice subgroup, then the unitary representation
of H on L2

0(Γ \G) is tempered.

Let us give some explicit examples of subgroup temperedness deriv-
ing from the results above.

(1) H = SL2(F ) ⊂ SL3(F ) = G is a tempered subgroup, provided
the representation of SL2(F ) in SL3(F ) is non-trivial and re-
ducible.

(2) H = SL2(F ) ⊂ SLn(F ) = G, n ≥ 3 is a tempered subgroup,
for a host of reducible representations of SL2(F ) in SLn(F ),
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for example when the subgroup preserves the direct sum de-
composition F n = F 2 ⊕ F n−2 and acts irreducible on the first
summand.

(3) H = SL2(F ) × · · · × SL2(F ) ⊂ SL2n(F ) = G is a tempered
subgroup, where the n-fold product SL2(F ) × · · · × SL2(F )
is embedded so as to preserves the direct sum decomposition
F 2n = F 2 ⊕ · · · ⊕ F 2.

4.4. The tensor power argument. Recall that a unitary represen-
tation π of an lcsc group G is called a strongly Lp-representation if
there exists a dense subspace J ⊂ H, such that the matrix coefficients
〈π(g)v, w〉 belong to Lp(G), for v, w ∈ J . If π in an Lp+η-representation
for all η > 0, we will call it an Lp

+
-representation. When K ⊂ G is a

compact subgroup, recall also that a vector v ∈ H is called K-finite (or
π(K)-finite) if its orbit under π(K) spans a finite dimensional space.

We recall the following spectral estimates, which will play an impor-
tant role below. They are due to [10, Thm. 1], [9], [22] (see [24] for a
simple proof).

Theorem 4.5. Tensor power argument. For any lcsc group G and
any strongly continuous unitary representation π

(1) If π is strongly L2+, then π is weakly contained in the regular
representation λG.

(2) If π is strongly Lp, and n is an integer satisfying n ≥ p/2, then
π⊗n is strongly contained in ∞ · λG.

We now state the following result, which summarizes a number of
results due to [9, 23, 2, 29, 37] in a form convenient for our purposes.

Theorem 4.6. Lp-representations.
Let F be an locally compact non-discrete field of characteristic zero.

Let G denote the group of F -rational points of an algebraically con-
nected semisimple algebraic group which is almost F -simple. Let π
be a unitary representation of G without non-trivial finite-dimensional
G-invariant subspaces (or equivalently without G+-invariant unit vec-
tors).1

(1) If the F -rank of G is at least 2 then π is strongly Lp
+

with
p+ = p+(G) <∞ depending only on G.

(2) If the F -rank of G is 1, then any unitary representation π ad-
mitting a spectral gap (equivalently, which does not contain an
asymptotically invariant sequence of unit vectors) is strongly
Lp

+
for some p+ = p+(π) <∞. In particular, every irreducible

infinite-dimensional representation has this property.

1G+ denotes the closed subgroup of G generated by one-parameter unipotent
subgroups.
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(3) When G is S-algebraic group and π is such that every simple
component has a spectral gap and no non-trivial finite-dimensional
subrepresentations, then π is a strongly Lp

+
-representation.

We remark that an explicit estimate of the best exponent p+(G) valid
for all unitary representation as above when G is simple and has F -
split rank at least two is given by [22][41] for SLn(F ) and Sp2n(F ), by
[29][28] in the Archimedean case, and by [37] for general p-adic groups.

Let us define n(G) as the least integer greater or equal to p+(G)/2.
We can now state the following result which establishes that diagonal

embeddings in product groups are often tempered.

Theorem 4.7. Assume that L is an F -simple algebraic group defined
over F with F -rank at least two, as in Theorem 4.6, and assume that
L = L+. Let H = ∆(L) be the diagonal embedding of L in Ln(L) = G. If
Γ ⊂ G is an irreducible lattice, then the restriction of the representation
π0

Γ\G of G on L2
0(Γ \G) to H is a tempered representation of H.

Proof. Choose any n = n(L) unitary representations π1, . . . πn of L
which are irreducible and infinite dimensional, and consider the repre-
sentation τ = π1 ⊗ π2 ⊗ · · · ⊗ πn as a representation of G = Ln. Now
restrict τ to the subgroup ∆(L) = H ⊂ G = Ln, where ∆(L) is the
diagonally embedded subgroup in Ln. The restriction of τ to H has a
dense subspace of matrix coefficients which are in L2+η(H), for every
η > 0. Hence the restriction of the representation τ to the subgroup H
is weakly contained in the regular representation λH of H, by Theorem
4.5(1).

Let us apply this fact to the representation of G on L2
0(Γ\G), where

Γ ⊂ Ln = G is an irreducible lattice. The representation of G on
L2

0(Γ \G) decomposes to a direct integral of irreducible unitary repre-
sentations of G of the form π1 ⊗ π2 ⊗ · · · ⊗ πn = τ , with each πi an
irreducible infinite dimensional unitary representation of L = L+. This
follows since the lattice Γ is irreducible, and so each of the direct sum-
mands in the direct sum Ln is mixing on Γ \G. Hence the restriction
of each such representation τ to H is a tempered representation of H.
Since the irreducible constituents τ in the direct integral decomposition
of π0

Γ\G are tempered when restricted to the subgroup H, it follows that

their direct integral, the representation on L2
0(Γ \ G) is also tempered

when restricted to H. �

Some concrete examples of tempered subgroup that arise are as fol-
lows.

(1) Let H = ∆(SL3(F )) ⊂ SL3(F )× SL3(F ) = G with ∆(SL3(F ))
being the diagonally embedded copy of L = SL3(F ). Then H
is a π0

Γ\G-tempered subgroup of G. Indeed SL3(F ) has property

T , with n(SL3(F )) = 2, so that Theorem 4.7 applies.
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(2) More generally, ifH is simple andH ⊂ ∆(SLn(F )) ⊂ SLn(F )k =
G, where n ≥ 3 and k ≥ n− 1, then H is a π0

Γ\G-tempered sub-

group, for any irreducible lattice Γ. Here ∆(SLn(F )) is the
diagonal embedded copy of SLn(F ) into a product of k copies
of SLn(F ). Indeed, in general n(SLn(F )) = n−1, for any n ≥ 3
and Theorem 4.7 applies.

4.5. Universal pointwise bounds : Harish Chandra function.

4.5.1. Spectral estimates on Iwasawa groups. Let us recall the discus-
sion from [15], and begin with the following general definition of groups
with an Iwasawa decomposition, which we call Iwasawa groups. Besides
semisimple linear algebraic groups, note that this class includes for ex-
ample algebraic groups of affine transformations of Euclidean spaces or
nilpotent groups, with semisimple Levi component.

Definition 4.8. Groups with an Iwasawa decomposition.

(1) An lcsc group G has an Iwasawa decomposition if it has two
closed amenable subgroups K and P , with K compact and G =
KP .

(2) The Harish-Chandra Ξ-function associated with the Iwasawa
decomposition G = KP of the unimodular group G is given
by

Ξ(g) =

∫
K

δ
−1/2
G (gk)dk

where δG is the left modular function of P , extended to a left-
K-invariant function on G = KP . (Thus if mP is left Haar
measure on P , δG(p)mP is right P -invariant, and Haar measure
on G is given by dmG = dmKδG(p)dmP ).

Convention. The definition of an Iwawasa group involves a choice
of a compact subgroup and an amenable subgroup. When G is the
the group of F -rational points of a semisimple algebraic group defined
over a locally compact non-discrete field F , G does admit an Iwasawa
decomposition, and we can and will always choose below K to be a
good maximal compact subgroup, and P a corresponding minimal F -
parabolic group (see [33] or [42]). This choice will be naturally extended
in the obvious way to S-algebraic groups.

Let now G be an lcsc group, K a compact subgroup, and π : G →
U(H) be a strongly continuous unitary representation, where U(H) is
the unitary group of the Hilbert space H. We recall the following basic
spectral estimates for general Iwasawa groups, which were stated in
[15] and constitute a natural generalization of [10].

Theorem 4.9. [15] Let G = KP be a unimodular lcsc group with
an Iwasawa decomposition, and π a strongly continuous unitary repre-
sentation of G. Let v and w be two K-finite vectors, and denote the
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dimensions of their spans under K by dv and dw. Then the following
estimates hold, where Ξ is the Harish-Chandra Ξ-function.

(1) If π is strongly L2+η for every η > 0, then π is weakly contained
in the regular representation of G.

(2) If π is weakly contained in the regular representation, then

|〈π(g)v, w〉| ≤
√
dvdw ‖v‖ ‖w‖Ξ(g) .

(3) If π is strongly L2k+η for all η > 0, then

|〈π(g)v, w〉| ≤
√
dvdw ‖v‖ ‖w‖Ξ(g)

1
k .

Let us note the following :

(1) The quality of the estimate in Theorem 4.9 varies with the
structure of G. For example, if P is normal in G (so that G is
itself amenable) then P is unimodular if G is. Then δG(g) = 1
for g ∈ G and the estimate is trivial.

(2) For semisimple algebraic groups over F the Ξ-function is in fact
in L2+ , a well-known result due to Harish-Chandra.

(3) Theorem 4.9 will be most useful when the Harish-Chandra func-
tion is indeed in some Lp

+
(G), p+ < ∞, so that Theorem 4.5

applies. We note that in [16], it was established that the Harish
Chandra function of the adele groups of semi simple algebraic
groups have this property, with p+ = 4.

(4) When Ξ is in some Lq, q <∞, Theorem 4.9(1) implies that any
representation a tensor power of which is weakly contained in
the regular representation is strongly Lp for some p.

Theorem 4.9 is a universal pointwise bound for matrix coefficients of
unitary representation of Iwasawa groups. When G is a realsemisimple
algebraic group the Harish Chandra ΞG function admits an explicit
two-sided estimate in terms of δG, as follows. We denote by δ̃G the
W -invariant function extending δG from A+ to all of A, where W is
the Weyl group of A in G. Then

B1(G)δ̃G(g)−1/2 ≤ ΞG(g) ≤ B2(G)δ̃
−1/2
G (g)(1 + ‖g‖)d(G) (4.1)

where log ‖g‖ = dist(gK,K), dist the G-invariant Riemannian distance
given by the Killing form on symmetric space G/K (or a suitable G-
invariant distance on the Bruhat-Tits building in the local field case).
The modular function δG on A is given by the product of all the char-
acters associated with the roots of an F -split torus A ⊂ P , namely
by the character associated with the sum of all positive roots of A in
G. Finally, d(G) is a constant depending only on G, and bounded by
the number of roots. Defining n(p) to be the least integer satisfying
n(p) ≥ p/2, and keeping our notation above, we can now state the
following explicit integral criterion for subgroup temperedness.
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Proposition 4.10. Let H be a closed subgroup of an Iwasawa group
G, and π an Lp

+
-representation of G.

(1) If Ξ
1/n(p)
G restricted to H is in L2+η for every η > 0, then

(G,H, π) is a tempered triple, i.e. π restricted to H is weakly
contained in ∞ · λH .

(2) Let G be a semisimple algebraic group, H a semisimple algebraic
F -subgroup, and choose the Cartan and Iwasawa decomposition
of H to be the restrictions of those chosen on G. If the product

δ̃
−1/n(p)
G ·δH is in L2+η(A+

H) for every η > 0 (w.r.t Haar measure
on the positive Weyl chamber A+

H ⊂ A ∩H), then (G,H, π) is
a tempered triple.

Proof. 1) Using Theorem 4.9 and the definition of n(p), the assumption
implies that the K-finite matrix coefficients of π are in L2+η(H) for
every η > 0 when restricted to H. By [10], a representation which has
a dense set of matrix coefficients which are in L2+η is weakly contained
in a multiple of the regular representation. Finally, K-finite vectors are
dense in any unitary representation.

2) We need only verify that the restriction of a K-finite matrix co-
efficient of G to A+

H is in L2+η w.r.t. the density arising on A+
H by

writing Haar measure on H in Cartan coordinates. The latter den-
sity is bounded on A+

H by δ2+η
H . Using Theorem 4.9 again, the matrix

coefficients in question are bounded on A+ by (for all η > 0)

Ξ
1/n(p)
G ≤

(
BG(1 + ‖·‖)d(G)δG

)−1/n(p) ≤ B(G, p, η)δ
−1/n(p)+η
G .

The function ΞG is invariant under the Weyl group of A in G, and
thus when we extend the r.h.s. of the estimate above so as to be
invariant under the Weyl group, we obtain an estimate of ΞG on all of A.
Using the matching Cartan decompositions of H and G, we restrict this
estimate to A+

H , and conclude that integrability (w.r.t. Haar measure)

of
(
δ̃
−1/n(p)
G · δH

)2+η

on A+
H implies the (almost) square-integrability of

the matrix coefficients restricted to H. �

4.6. Universal pointwise bounds using strongly orthogonal sys-
tems. Another universal pointwise bound for K-finite matrix coeffi-
cients was developed by Howe [22] and Howe and Tan [24]. To state
it for SLn(R), let â = (a1, . . . , an) parametrize the element of the
diagonal group A ⊂ SLn(R), with A+ being given by the condition
a1 ≥ a2, . . . ,≥ an. We let Ξ2 denote the Harish Chandra Ξ-function of
SL2(R), and define the following bi-K-invariant function on SLn(R) :

Ψ(k1âk2) = min
i 6=j

Ξ2

(√
ai/aj 0

0
√
aj/ai

)
(4.2)

Then the following universal pointwise bound holds [24]. For any two
K-finite vectors u and v in a unitary representation π of SLn(R) without
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invariant unit vectors,

|〈π(â)u, v〉| ≤
√
dudv ‖u‖ ‖v‖Ψ(â) . (4.3)

The foregoing construction uses some naturally embedded copies of
SL2(R) in SLn(R), namely Hi,j stabilizing the plane spanned by the
standard basis vectors ei, ej and acting trivially on the other basis
vectors. It then applies the fact that the unitary representations of
SL2(R).<R2 are tempered when restricted to SL2(R), provided the rep-
resentation has no R2-invariant unit vectors.

More generally, it is possible to use a family of commuting copies of
SL2(R) in a semisimple group G in order to bound the matrix coefficient
by an expression involving the Harish Chandra functions of the SL2(R)
subgroups. A commuting family of such subgroup arises from any
strongly orthogonal root system Υ = {β1, . . . , βk} in the root system
of G, namely a system satisfying that βi ± βj is not a root for 1 ≤ i 6=
j ≤ k. This construction was elaborated systematically for all simple
algebraic groups over local fields in [37]. It produces, for each such
G, and for each strongly orthogonal root system Υ, a bi-K-invariant
function ξG,Υ satisfying [37, Thm. 1.1]:

|〈π(g)v, w〉| ≤ BG

√
dvdw ‖v‖ ‖w‖ ξG,Υ(g)

for every K-finite matrix coefficient as above. The function ξG,Υ in
question is given on A+ by a product of the Ξ2-functions associated
with the collection of subgroups Hβ, β ∈ Υ, each of which is isomorphic
to SL2(F ) or P SL2(F ).

Thus, when the restriction of ξG,Υ to a closed subgroup H ⊂ G is in
L2+η(H) for every η > 0, the subgroup H is tempered in G. When H
is a semisimple algebraic F -subgroup, and we choose the Cartan and
Iwasawa decompositions of H to be the restrictions of those chosen on
G, the integrability condition amounts to ξG,Υ · δH restricted to A+

H

being in L2+η(H) for every η > 0 w.r.t. Haar measure on AH . Again
this condition can be phrased in terms of the characters associated
with the strongly orthogonal root system when restricted to A+

H , and
is a different condition than the one provided by the restriction of the

Ξ
1/n(p)
G -function to A+

H .
In particular if G(F ) be simple, let H ⊂ G be the subgroup H =∏
β∈ΥHβ associated with a strongly orthogonal system Υ of roots in

the root system of G over F . Then H is a tempered subgroup of G,
as follows from [24][22] for the real and complex case, and [37] more
generally.

4.7. Subgroups which are (G,K) tempered in L1 are tempered.
In [34] and [37] several examples were given of subgroups H ⊂ G which
are (G,K)-tempered in L1, where both G and H are semisimple. As
we shall now prove, all of these examples are of tempered subgroups
in the sense of the present paper. In many cases, both facts follow
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from a straightforward application of a suitable universal pointwise
bound of K-finite matrix coefficients of G restricted to H. We note
that the condition that all K-invariant matrix coefficients of irreducible
unitary representations of G being in L2+η(H) for all η > 0 is of course
weaker that being in L1(H). It is strictly weaker, since for example, the
embedding of SL2(R) ⊂ SLn(R) in the upper left corner is not (G,K)-
tempered in L1 (see e.g. example 5.3 in [37]), but it is tempered in
the usual sense by the basic Kazhdan argument. Thus the K-invariant
matrix coefficients in this case are L2+η(H) for every η > 0, but not in
L1(H). In general we have

Theorem 4.11. Let H be a closed subgroup of the semisimple group
G. If H is (G,K)-tempered in L1, then H is a tempered subgroup of
G.

Proof. K-finite vectors are dense in every continuous unitary repre-
sentation G on a separable Hilbert space. It suffices to show given a
unitary representation π of G without invariant unit vectors, that the
restriction of K-finite matrix coefficients of π to H are in L2+η(H) for
every η > 0. We will use an extension of an argument of Cowling [9,
Lem. 2.2.6], and prove the following more general fact.

Assume that for every unitary representation π of G without invari-
ant unit vectors, the restriction of the K-invariant matrix coefficients
of π to H are in Lp(H). We claim that then the restriction of all K-
finite matrix coefficients of every such unitary representations π to H
is in L2p(H).

Given this claim, the condition that H is (G,K)-tempered in L1 (and
even the weaker condition that it is (G,K)-tempered in L1+η for every
η > 0) implies that the K-finite matrix coefficients of G restricted to
H are in L2+η(H) for every η > 0, namely almost square integrable.
By Theorem 4.5 π restricted to H is weakly contained in ∞ · λH and
H is a tempered subgroup of G.

To prove the claim let u and v in Hπ be K-finite, and then there
exist trigonometric polynomials r1, . . . , rN on K, such that for w = u, v
and all k ∈ K

π(k)w =
N∑
j=1

r̄j(k)wj.

The linear span (under left translation) of the functions r̄j(k
′)·ri(k), 1 ≤

i, j ≤ N in C(KH×KH) and C(K×K) is finite dimensional, and hence
the restriction of the L2-norm, the L∞-norm and the Lp norm to the
subspace are all equivalent, namely ‖·‖L2p(KH×KH) ≤ C2p,∞ ‖·‖L∞(KH×KH),

and ‖·‖L∞(K×K) ≤ C∞,2 ‖·‖L2(K×K).
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Therefore

‖〈π(·)u, v〉‖2p
L2p(H)

=

∫
H

∫
KH

∫
KH

|〈π(khk′)u, v〉|2p dkdk′dh

=

∫
H

∫
KH

∫
KH

∣∣∣∣∣
N∑

j,j′=1

rj′(k
′)rj(k) 〈π(h)uj, vj′〉

∣∣∣∣∣
2p

dkdk′dh

≤ C2p
2p,∞

∫
H

max
(k,k′)∈KH×KH

∣∣∣∣∣
N∑

j,j′=1

rj′(k
′)rj(k) 〈π(h)uj, vj′〉

∣∣∣∣∣
2p

dh

≤ C2p
2p,∞

∫
H

max
(k,k′)∈K×K

∣∣∣∣∣
N∑

j,j′=1

rj′(k
′)rj(k) 〈π(h)uj, vj′〉

∣∣∣∣∣
2p

dh

≤ C2p
∞,2C

2p
2p,∞

∫
H

∣∣∣∣∣∣
∫
K

∫
K

∣∣∣∣∣
N∑

j,j′=1

rj′(k
′)rj(k) 〈π(h)uj, vj′〉

∣∣∣∣∣
2

dkdk′

∣∣∣∣∣∣
p

dh

= C2p
∞,2C

2p
2p,∞

∫
H

∣∣∣∣∫
K

∫
K

|〈π(khk′)u, v〉|2 dkdk′
∣∣∣∣p dh

= C2p
∞,2C

2p
2p,∞

∫
H

∣∣∣∣∫
K

∫
K

〈(π ⊗ πc)(khk′)(u⊗ uc, v ⊗ vc〉 dkdk′
∣∣∣∣p dh

= C2p
∞,2C

2p
2p,∞

∫
H

|〈π ⊗ πc(h)U, V 〉|p dh

with πc being the representation contragredient to π, namely 〈πcuc, vc〉 =

〈π(g)u, v〉, and

U =

∫
K

π(k′)(u⊗ uc)dk′, , V =

∫
K

π(k−1)(v ⊗ vc)dk .

Clearly U and V are bi-K-invariant vectors, and the matrix coefficient
they determine is an Lp-function on H by our assumption, provided
only that the representation π ⊗ πc does not admit G-invariant unit
vectors. But since both π and πc do not admit G-invariant unit vectors,
by the Howe-Moore theorem the matrix coefficients of π⊗πc vanish at
infinity on G. This completes the proof of Theorem 4.11. �

Let us now note some further examples of tempered subgroups H ⊂
SLn(R) based on the foregoing discussion.

(1) According to [34, Ex. b], the irreducible representation of
SL2(R) into SLn(R), n ≥ 4 yields a subgroup which is (G,K)-
tempered in L1, and hence a tempered subgroup. As noted
above, the irreducible representation in the case n = 3 yields
a tempered subgroup by Kazhdan’s argument, which is not
(G,K)-tempered in L1.
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(2) According to [34, Ex. c] given any simple group H, there ex-
ists k = k(H) such that for any irreducible representation of
τ : H → SLn(R), τ(H) is (G,K)-tempered in L1 and hence a
tempered subgroup of SLn(R) provided n ≥ k.

(3) Even more generally, according to [34, Ex. c], for any (possibly
reducible) representation τ : H → SLn(R), if the dimension n′

of the sum of the irreducible non-trivial subrepresentations of τ
satisfies n′ ≥ k′ (with k′ a suitable constant), then again τ(H)
is (G,K)-tempered in L1 and hence tempered.

(4) If L is any simple subgroup of dimension n, then Ad(L) ⊂
SLn(R) is a tempered subgroup of SLn(R). Indeed, according to
[37, Ex. §5.1], the restriction of the universal pointwise bound
ξΥ for a suitable maximal strongly orthogonal system Υ to the
subgroup Ad(L) is just δL. Since δL is in L2+η(A+

L) for every
η > 0, it follows that Ad(L) is a tempered subgroup of SLn(R).

4.8. Bounds towards the Selberg eigenvalue conjecture. For
simple real groups of real rank one, bounds towards the Selberg eigen-
value conjecture for certain pairs (G,Γ) have been developed, and in
many cases they are optimal or close to optimal. It is possible to ex-
ploit such bounds to establish best possible (or close to best possible)
exponents of Diophantine approximation in number of very interesting
and natural examples. We will consider this topic in detail in [14], and
here we will just briefly mention some of the possibilities.

First, if the representation of G on L2
0(Γ \G) is tempered, then so is

its restriction to any closed subgroup H ⊂ G. The main interest in this
fact lies in the cases where the subgroup H is non-amenable, and thus
the case of G = SL2(R) is excluded here. We list some possibilities

(1) G = SL2(C), H = SL2(R), Γ is an arithmetic lattice as well
as some of its low level congruence groups, for example Γ =
SL2(Z[i]).

(2) Let G be a simple Kazhdan group of real rank one, so that G =
Sp(n, 1) or the exceptional group F−20

4 . There is an embedding
of H = Sp(2, 1) ⊂ Sp(n, 1) = G (whenever n ≥ 3) which gives a
tempered subgroup (see [37, Sec. 4.8]), and thus so is also every
closed subgroup of H. Note that the temperedness here applies
to all the representations π0

Γ\G for all lattices Γ ⊂ Sp(n, 1).

(3) The representation of G = SL2(R)×SL2(Qp) on L2
0(Γ\G) where

Γ = SL2(Z[1
p
]) is tempered, provided p is such that the congru-

ence subgroup Γ(p) ⊂ SL2(Z) satisfies the Selberg eigenvalue
conjecture. This is indeed the case for p ≤ P for some P . Thus
again every subgroup of G is tempered in this representation.

Second, spectral estimate weaker than temperedness have been es-
tablished for arithmetic lattices in SO(n, 1) or SU(n, 1). Such eignen-
value bounds are sufficient to imply that the restriction of π0

Γ\G to
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suitable SO(k, 1) or SU(k, 1) is tempered, or close to tempered. They
allow the derivation of Diophantine exponents which are optimal or
close to optimal in the case of the action of arithmetic lattice on ratio-
nal ellipsoids, for example. For more details we refer to [14].

5. The examples, revisited

We now turn to complete the proofs of the corollaries stated in Sec-
tion 1. In every case, we will first identify the algebraic group G, its
algebraic subgroup H (and thus the variety G/H), the distance func-
tion on H, and the lattice subgroup Γ. We will then show that the
representation of H in L2(Γ \G) is tempered, identify the rate of vol-
ume growth on H with respect to the distance function, and then use
Theorem 3.5 to conclude that the rate of Diophantine approximation
is the one stated in the corollary.

5.1. Proof Corollary 1.2. Affine action on the real plane. Here
G = SL2(R).<R2, acting affinely on the plane R2, H = SL2(R) is
the stability group of the zero vector, so that G/H = R2. The lattice
is Γ = SL2(Z).<Z2, namely the lattice of integral points. We take
any norm on R2, and any norm on H induced from a matrix norm on
Mat3(R). It is well-known that the volume growth on H is given by
vol({h ∈ H ; ‖h‖ < T}) ∼ C‖·‖T

2 as T → ∞. As to the spectral esti-
mate, the G-equivariant factor map Γ\G→ SL2(Z)\SL2(R) allows us
to lift L2(SL2(Z)\SL2(R)) and embed it as an G-invariant subspace H
of L2(Γ \ G). It is well-known that the representation of H = SL2(R)
on H ∼= L2(SL2(Z) \ SL2(R)) is tempered. We claim that the represen-
tation of H on H⊥ ⊂ L2(Γ \ G) is also tempered. Indeed the unitary
representation of G on H⊥ is such that the subgroup R2 does not have
an invariant unit vector. As a result, Kazhdan’s argument as formu-
lated in Theorem 4.4 implies that the representation of H = SL2(R) on
H⊥ is tempered. Thus here a = 2, d = dimG/H = 2, and we conclude
using Theorem 3.5 that the Diophantine exponent is κ = d/a = 1.

5.2. Proof of Corollary 1.3. Affine action on the complex plane.
Here G = SL2(C).<C2, G acts affinely on G/H = C2, with sta-
bility group H = StabG(0) = SL2(C), and we consider the lattice
Γ = SL2(Z[i]).<Z[i]2. We take any norm on C2, and any (vector space)
norm on Mat2(C) restricted to H, and in that case the volume growth
is vol({h ∈ H ; ‖h‖ < T}) ∼ C‖·‖T

4 as T →∞. Indeed, in general the
volume growth of balls defined with respect to any (vector space) norm

on SLn(F ) ⊂ Matn(F ) is T n
2−n when F = R according to [11], and

T 2(n2−n) when F = C. Again, the representation of H = SL2(C) on
H = L2(SL2(Z[i]) \ SL2(C)) is known to be tempered (see below), and
the representation of G on the orthogonal complement H⊥ is such that
C2 does not have invariant unit vectors. Thus Theorem 4.4 implies
that the representation of H = SL2(C) on H⊥ is tempered. Clearly
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here d = 4 and since a = 4 it follows that κΓ(C2) = 1 according to
Theorem 3.5.

Consider now the lattice subgroup Γ = SL2(I).<I2, where I is the
ring of Eisenstein integers contained in Q[

√
−3]), or the rings of integers

of the imaginary quadratic fields Q[
√
−2]) and Q[

√
−7]). it has been

established directly that the Laplace operator acting on the manifolds
SL2(I)\SL2(C)/ SU2(C) has no exceptional eigenvalues, see [12, Prop.
6.2, p. 347]. It follows that the spherical spectrum of the representation
of SL2(C) in L2(SL2(I) \ SL2(C)) is tempered. Now, if we take a
norm on H biinvariant under K = SU2(C), then the norm balls would
be bi-K-invariant sets, and the spectral bound on the rate of decay
of the associated averaging operators in the representation space is
determined by the spherical spectrum. Hence the operator norms decay
in this case is indeed the best possible, given by the reciprocal of the
square root of the volume. Hence, κΓ(C2) = 1 as above. Finally, this
estimate clearly holds for any norm on H if it holds for one choice.

We note that the case of a general Bianchi group SL2(I) for I the
ring of integer of an imaginary quadratic field Q[

√
−D]) (D ≥ 2 a

square-free positive integer), Selberg conjecture is still open even for
the lattice of integral points (i.e. level one congruence group), and so
is the problem of best possible Diophantine approximation.

5.3. Proof of Corollary 1.4. Ternary forms. The variety Qσ,d(R)
can thus be identified with the set of 3 × 3 symmetric matrices with
determinant d and signature σ. The group G = SL3(R) acts on this
variety via (g,X) 7→ tgXg, and the stability group is isomorphic to
H = SO(2, 1). Thus Qσ,d(R) can be identified with the homogeneous
space G/H. We note that SO(2, 1) ∼= PSL2(R), but the representation
of SO(2, 1) in SL3(R) is irreducible and Kazhdan’s argument does not
apply. Rather, we use the fact that given any irreducible representation
σn : SL2(R) → SLn(R) the image Hn = σn(SL2(R)) is a tempered
subgroup of SLn(R) provided n ≥ 3, as follows from Theorem 4.11.
Given any norm on Matn(R), the volume growth of norm balls in Hn =
σn(SL2(R)) is asymptotic to C‖·‖,nT

2/(n−1) (see, for instance, [11] or
[18, Sec. 7]). In the case of ternary forms n = 3 so that a = 1,
and d = dimG/H = 8− 3 = 5, and we conclude that the exponent of
Diophantine approximation is κΓ(Qσ,d(R)) = 5 for any lattice subgroup
Γ ⊂ SL3(R).

5.4. Proof of Corollary 1.5. Constant determinant variety. Here
G = SL3(F )× SL3(F ), H = ∆(SL3(F )) the diagonally embedded copy
of SL3(F ), and G/H ∼= SL3(F ). We take distances given by a norm
on Mat3(F ) restricted to H and G/H. As is well known (see [29] and
[37]) here n(SL3(F )) = 4, and so every irreducible infinite dimensional
representation of SL3(F ) is L4+η for every η > 0. Hence the restriction
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of the tensor power of two such representations to the diagonal sub-
group ∆(SL3(F )) is in L2+η for every η > 0, as shown in Theorem 4.7.
Thus, while H is not a tempered subgroup of G, for every irreducible
lattice Γ ⊂ SL3(F ) × SL3(F ), the representation of H in L2

0(Γ \ G)
is tempered. The rate of volume growth of norm balls in SL3(F ) is
asymptotic to T 6 when F = R or F = Qp and T 12 when F = C. The
(relevant) dimension of G/H is d = 8 when F = R,Qp, and d = 16
when F = C. Thus for any irreducible lattice, κΓ(G/H) = 4/3.

5.5. Proof of Corollary 1.6. Complex structures. Here G = SL4(R),
H = SL2(C), and G/H is the variety of complex structures on R4. We
claim that for any lattice Γ of SL4(R), the restriction of the represen-
tation of SL2(C) on L2

0(Γ \ SL4(R)) is tempered. This follows from
a straightforward explicit calculation using the natural embedding of
SL2(C) in SL4(R) and applying the universal pointwise estimate (4.2)
given by Howe and Tan (see §4.6). The real dimension of the vari-
ety G/H is d = 9, and the volume growth in SL2(C) in the defining
representation is a = 4. We conclude that κΓ(G/H) = 9/4.

5.6. Proof of Corollary 1.7. Simultaneous Diophantine approxima-
tion. Here G = SL2n(F ), H = SL2(F )n ⊂ SL2n(F ), and the vari-
ety Dn(F ) ' SL2n(F )/ SL2(F )n can be interpreted as the variety of
”unimodular direct sum decompositions” of F 2n, to n two-dimensional
subspaces with suitable volume forms. We take a norm Mat2n(F ) and
restrict it to H, and an embedding G/H ⊂ F k with distance given
as a restriction of a norm on F k. H is a direct product group, and
each SL2(F )-component of H is tempered in G by Kazhdan’s argu-
ment, as stated in Theorem 4.4. Hence the same is true for the direct
product group, namely H. The dimension of G/H is clearly given by
(2n)2− 1− 3 · n when F = R,Qp, and when F = C the real dimension
is doubled. The exponent of volume growth of H = SL2(F )n is n times
the volume growth of SL2(F ) in the defining representation, namely 2n
for F = R,Qp and 2n for F = C. We note however that the volume
growth of norm balls in this case is in fact asymptotic to a multiple of
T 2n (or T 4n), so the exponent of volume growth is as stated. Thus for
F = R,Qp,C, we have κΓ(Dn(F )) = ((2n)2 − 1− 3n)/2n.

5.7. Proof of Corollary 1.8. Irreducible representation of SL2. As
already noted in §4.7, it was shown in [34, Ex. b] that for every ir-
reducible representation σn : SL2(R) → SLn(R), n ≥ 3, the subgroup
σn(SL2(R)) = H is a subgroup which is (G,K)-tempered in L1. By
Theorem 4.11, it follows that it is therefore tempered. We remark that
the latter fact can also easily be proved directly using the Howe-Tan
universal pointwise bound stated in (4.2) and (4.3). Taking any norm
on Matn(R), the growth of norm balls of radius T restricted to σn(H)
is asymptotic to T 2/(n−1) (see [11] or [18, Sec. 7]), and the dimension
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of the variety in question is of coarse d = n2 − 4. The Diophantine
exponent is given by κ = d/a = 1

2
(n2 − 4)(n− 1), by Theorem 3.5.

5.8. Proof of Corollary 1.9. Reducible representations of SL2. Let
σ : SL2(R) → SLn(R) = G be a non-trivial representation, where
n ≥ 3, and denote H = σ(SL2(R)). If σ is irreducible, H is a tempered
subgroup of G by Corollary 1.8. Otherwise, σ is reducible, and there is
at least one H-invariant subspace V ⊂ Rn, on which the action of H is
by an irreducible representation of dimension k, where 2 ≤ k < n. It
follows that H is contained in a subgroup L of G, which is isomorphic
to SL2(R).<σkRk. By Theorem 4.3, L is tempered subgroup of G and
hence so is H. Choose a norm ‖·‖ on Matn(R), and let a(σ, ‖·‖) denotes
the rate of growth of norm balls inH with respect to the norm restricted
to H. Then for any lattice Γ ⊂ SLn(R), the exponent of Diophantine
approximation on G/H is given by (n2− 4)/a(σ, ‖·‖), by Theorem 3.5.

5.9. Proof of Corollary 1.10. Restriction of scalars for totally real
fields. SLn(R), n ≥ 3 has the property that every unitary representa-
tion without invariant unit vectors is in L2(n−1)+η. By Theorem 4.7, the
diagonal embedding H = ∆(SLn(R)) of SLn(R) in G = SLn(R)n−1 has
the property that the restriction of the representation of G on L2

0(G/Γ)
to H is tempered, for any irreducible lattice Γ ⊂ G. The lattice Γ asso-
ciated with restriction of scalar from a totally real field of degree n− 1
over Q is well known to be irreducible (see e.g. [33]). Restricting the
trace norm on SLn(R)n−1 to the diagonal subgroup, the volume growth

of norm balls of radius T is asymptotic to T n
2−n. The dimension of the

variety if of course (n− 2)(n2 − 1), and thus by Theorem 3.5 we have
κ = (n+ 1)(n− 2)/n.

5.10. Covering homogeneous spaces. Finally, note the obvious fact
that if a unitary representation π of a unimodular lcsc group H is
weakly contained in a multiple of the regular representation of H, then
for every closed unimodular subgroup L ⊂ H, the restriction of π to
L is weakly contained in the regular representation of L. Thus if H is
tempered in G, so is any subgroup L ⊂ H, and similarly, if the triple
(G,H, π) is tempered, then so is the triple (G,L, π). When L is a non-
compact semisimple subgroup of the algebraic group G, temperedness
implies that π restricted to L obeys best possible estimate of operator
norms. Thus if Γ has best possible rate on G/H, it has best possible
rate also on its covers G/L, by Theorem 3.5. However, in the compu-
tation of the exponent κ = d/a, the dimension d of the homogeneous
variety G/L is larger than dimG/H, and the rate of growth of norm
balls in L is generally different than the rate of growth of norm balls
in H.
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