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Abstract. We investigate the geometry of approximates in multiplicative Diophantine approxima-

tion. Our main tool is a new multiparameter averaging result for Siegel transforms on the space of
unimodular lattices in Rn which is of independent interest.

Contents

1. Introduction 1
2. Equidistribution on the space of lattices 4
3. Proof of Theorem 2.3 6
4. Appendix 11
References 12

1. Introduction

1.1. Multiplicative Diophantine approximation. Dirichlet’s fundamental theorem in Diophan-
tine approximation has several interesting variants. For instance, here is a multiplicative analogue
which can be proved using either Dirichlet’s original approach or Minkowski’s geometry of num-
bers. Let αij , 1 ≤ i ≤ m, 1 ≤ j ≤ n be real numbers and Q > 1. Then there exist integers
q1, . . . , qm, p1, . . . , pn such that

(1.1)

 ∏
1≤j≤m

max{1, |qj |}

1/m

≤ Q

and

(1.2)

 ∏
1≤i≤n

|αi1q1 + · · ·+ αimqm − pi|

1/n

≤ Q−m/n.

As a corollary, it follows that there are infinitely many q1, . . . , qm such that

(1.3)

 ∏
1≤i≤n

|αi1q1 + · · ·+ αimqm − pi|

 ≤
 ∏

1≤j≤m

max{1, |qj |}

−1

for some p1, . . . , pn.
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The study of Diophantine inequalities using the multiplicative “norm” as above instead of the supre-
mum norm is referred to as multiplicative Diophantine approximation. This subject is considered
more difficult and is much less understood in comparison to its standard counterpart. For instance,
arguably the most emblematic open problem in metric Diophantine approximation namely the Little-
wood conjecture, is a problem in this genre. We refer the reader to the nice survey [3] for an overview
of the theory. There have been several important advances recently, several arising from applications
of homogeneous dynamics to number theory. We mention the work of Kleinbock and Margulis [8] set-
tling the Baker-Sprindzhuk conjecture as well as the work of Einsiedler-Katok-Lindenstrauss making
dramatic progress towards Littlewood’s conjecture.
In our earlier work [1], we studied the problem of spiraling of lattice approximates and showed as a
consequence, that on average, the directions of approximates spiral in a uniformly distributed fashion
on the d− 1 dimensional unit sphere. In this paper, we extend our study to the multiplicative setting
as well as to the setting of Diophantine approximation with weights, which we introduce below. While
our strategy remains the same, our main tool, an equidistribution theorem for Siegel transforms on
homogeneous spaces (Theorem 2.2) is new and new inputs are required for the proof. Equidistribution
results of this kind have found many applications (cf. [8], [6], [13, 12]) in number theory. We hope
our result will be of interest to both dynamicists as well as number theorists.

1.2. Weighted Diophantine approximation. Another variation of Diophantine approximation is
developed as follows. Let αij , 1 ≤ i ≤ m, 1 ≤ j ≤ n be real numbers and let r = (r1, . . . , rn) ∈ Rn and
s = (s1, . . . , sm) ∈ Rm be probability vectors. Recall that a probability vector has nonnegative real
components, the sum of which is equal to 1. Then there exist infinitely many integers q1, . . . , qm such
that

(1.4) max
1≤i≤n

|αi1q1 + · · ·+ αimqm − pi|1/ri ≤ max
1≤j≤m

|qj |1/sj

for some p1, . . . , pn.
The subject of weighted Diophantine approximation has also witnessed significant progress of late.

We refer the reader to [10, 11] as well as the resolution of Schmidt’s conjecture on weighted badly
approximable vectors due to Badziahin-Pollington-Velani [2].

1.3. The setup. Let ` ≥ 1 be an integer. Define functions R` → R≥0 as follows:

‖v‖p := max
i=1,··· ,`

|vi|1/pi and ‖v‖pr :=
∏̀
i=1

|vi|

where p ∈ R` is a probability vector.
We now Let m,n ≥ 1 be integers and d := m + n. Let e1, · · · , em be the standard basis for Rm and
e1, · · · , ed be the standard basis for Rm×Rn = Rd. Fix probability vectors r ∈ Rm and s ∈ Rn—these
vectors are also referred to as weights in the literature. Let

g
(r)
t := diag(er1t, · · · , ermt) ∈ GLm(R).

Let Sm−1 denote the m− 1 dimensional unit sphere centered at the origin. For a subset Ã of Sm−1,

the union of all rays in Rm through each point of Ã is called the cone in Rm through Ã and denoted

by CÃ. The region of interest for Diophantine approximation with weights is

R := R(r,s) :=

{
v =

(
v1

v2

)
∈ Rm × Rn : 0 < ‖v1‖r‖v2‖s ≤ 1

}
.

Fix an 0 < ε < 1, T > 0, and a subset A of Sm−1 with zero measure boundary. The subsets that
concern us, in particular, are

Rε,T := {v ∈ R : εT ≤ ‖v2‖s ≤ T} and RA,ε,T :=
{
v ∈ Rε,T : v1 ∈ g(r)

− log(T )(CA)
}
.

The subset Rε,T is analogous to the subset we considered in [1]. If, temporarily, we consider the special

case of r equal to (1/m, · · · , 1/m), then the set RA,ε,T is equal to
{
v ∈ Rε,T : v1

‖v1‖2 ∈ A
}

, which
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is the other subset from [1]. The reason that our formulation in terms of cones is the appropriate
generalization is as follows. Let us again consider an arbitrary r. Consider the slices of R given by
the equations

‖v1‖r = 1/p

for a real number p > 1. To map the slice given by p to the one given by p′ ≥ p, apply the

contracting (and, in general, nonuniformly contracting) automorphism g
(r)
log(p)−log(p′) to the slice. Now

g
(r)
−t takes Sm−1 into ellipsoids, whose eccentricities are increasing as t increases. It is reasonable that

the distribution of directions respects the action of g
(r)
−t —that this holds is the content of our result,

Theorem 1.1.
The regions of interest for multiplicative Diophantine approximation are

P :=

{
v =

(
v1

v2

)
∈ Rm × Rn : 0 < ‖v1‖pr‖v2‖pr ≤ 1

}
,

Pε,T := {v ∈ P : εT ≤ ‖v2‖pr ≤ T} and PA,ε,T :=
{
v ∈ Pε,T : v1 ∈ g(r)

− log(T )(CA)
}
.

The region P is sometimes referred to as a star body (see [16] for example). For the special case

of r equal to (1/m, · · · , 1/m), the set PA,ε,T is equal to
{
v ∈ Pε,T : v1

‖v1‖2 ∈ A
}
. Now, unlike for

Diophantine approximation with weights, them-volume of P1,1 is infinite. Let Pi denote the coordinate
codimension-one hyperplane in Rm normal to ei. Then

Pi ∩ Sm−1 =: Si
are great spheres of Sm−1; namely, Si = kiSm−2 for some ki ∈ SOm(R). For any δ > 0, let

S(δ)
i := Pi × [−δ, δ] ∩ Sm−1

denote the δ-thickening of Si on Sm−1. By elementary calculus, it is easy to see that the Pi point
in the directions in which P1,1 has regions with infinite volume (see also the Appendix). Radially
projecting P1,1 onto

S := S(δ) := Sm−1\ ∪mi=1 S
(δ)
i

it is easy to see that CS ∩ P1,1 has finite m-volume for every δ > 0. We also note that the g
(r)
−t -

action contracts slices of P in the same way as it does R and that it preserves each of the coordinate

planes: g
(r)
−t (Pi) = Pi, and consequently, the action of g

(r)
−t on CS ∩ P1,1 keeps the m-volume finite.

By continuity in t, the m-volume of slices between εT ≤ t ≤ T has a maximum for all fixed 1 ≥ ε > 0
and T > 0, and Riemann-integration implies that

volRd(PS,ε,T ) <∞.(1.5)

For Theorem 1.3 below, we will only consider the sets

PS,ε,T and PA,ε,T

for A with zero measure boundary contained in S(δ) for some δ > 0. For Theorem 1.4, we will consider
some sets outside of S.

1.4. Statement of results for lattice approximates. Let dk denote the probability Haar measure
on K := Kd := SOd(R). Our main number-theoretic results are three averaged spiraling of lattice
approximates results, one for approximation in the sense of Diophantine approximation with weights
and two in the sense of multplicative Diophantine approximation. We point out that our proof of
Theorems 1.1 and 1.3 gives that the equality of the numerator and the equality of the denominator
hold independently. One consequence is that other ratios may be obtained.

Theorem 1.1. For every unimodular lattice Λ ∈ Xd, subset A ⊂ Sm−1 with zero measure boundary,
and ε > 0, we have that

lim
T→∞

∫
K

#{kΛ ∩RA,ε,T } dk∫
K

#{kΛ ∩Rε,T } dk
=

volRd(RA,ε,1)

volRd(Rε,1)



4 JAYADEV S. ATHREYA, ANISH GHOSH, AND JIMMY TSENG

Remark 1.2. The special case of setting r equal to (1/m, · · · , 1/m) is, itself, already a generalization
of [1, Theorem 1.4], except, since the function ‖ · ‖(1/m,··· ,1/m) is (a power of) the sup norm, instead
of the Euclidean norm of [1, Theorem 1.4]. Here, we obtain that the limit of the ratio is

volRm(R1,1 ∩ CA)

volRm(R1,1)
,

where volRm(R1,1) = 2m. Note, as mentioned, the sets RA,ε,T for the special case reduce to their
counterparts in [1].

To obtain the exact generalization of [1, Theorem 1.4], replace the function ‖ · ‖(1/m,··· ,1/m) by the
Euclidean norm. Then the proof of the theorem will also give this generalization and the conclusion
is that the limit of the ratios is volSm−1(A). Note that, in all cases, the function ‖ · ‖s can be for an
arbitrary probability n-vector s.

Theorem 1.3. For every unimodular lattice Λ ∈ Xd, δ > 0, subset A ⊂ S(δ) =: S with zero measure
boundary, and ε > 0, we have that

lim
T→∞

∫
K

#{kΛ ∩ PA,ε,T } dk∫
K

#{kΛ ∩ PS,ε,T } dk
=

volRd(PA,ε,1)

volRd(PS,ε,1)

Theorem 1.4. For every unimodular lattice Λ ∈ Xd and open subset A ⊂ Sm−1 such that

A ∩ (∪mi=1Si) 6= ∅,

we have that

lim
T→∞

∫
K

#{kΛ ∩ PA,ε,T } dk =∞.

Theorem 1.4 tells us that on average there are arbitarily small neighborhoods of directions (which we
know explicitly) for which every unimodular lattice has infinitely many elements in our star body.

To prove these theorems, we need our main ergodic result, Theorem 2.2. We note that the spiraling
results for multiplicative and weighted Diophantine approximation follow by applying the Theorems

above to the unimodular lattice

(
Idm×m α

0 Idn×n

)
Zd attached to a matrix α = (αij) as usual.

Acknowledgements. The authors thank the Isaac Newton Institute for Mathematical Sciences for
providing a venue where part of the work for this project took place.

2. Equidistribution on the space of lattices

Given a unimodular lattice Λ in Rd and a bounded Riemann-integrable function f with compact

support on Rd, denote by f̂ its Siegel transform1:

f̂(Λ) :=
∑

v∈Λ\{0}

f(v).

Let µ = µd be the probability measure on Xd := SLd(R)/ SLd(Z) induced by the Haar measure on
SLd(R) and dv denote the usual volume measure on Rd. We recall the classical Siegel Mean Value
Theorem [17]:

Theorem 2.1. Let f be as above.2 Then f̂ ∈ L1(Xd, µ) and∫
Rd
f dv =

∫
Xd

f̂ dµ.

1One could define the Siegel transform only over primitive lattice points, in which case results analogous to Theo-

rems 2.2 and 2.3 also hold (using, essentially, the same proof).
2This condition can be generalized to f ∈ L1(Rd).
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Note that if f is the indicator function of a set A\{0}, then f̂(Λ) is simply the number of points in
Λ ∩ (A\{0}). Let

gt := g
(r,s)
t := diag(er1t, · · · , ermt, e−s1t, · · · , e−snt) ∈ SLd(R)

and e1, · · · , ed be the standard basis of Rd. We use 1̂A to denote the indicator function of the set A.
Setting t so that et = T gives

gtRε,T = Rε,1 =: Rε and gtPε,T = Pε,1 =: Pε

and

gtRA,ε,T = RA,ε,1 =: RA,ε and gtPA,ε,T = PA,ε,1 =: PA,ε.

Given a unimodular lattice Λ ∈ SLd(R)/ SLd(Z), a simple computation shows that

(2.1) #{kΛ ∩Rε,T } = 1̂Rε(gtkΛ) and #{kΛ ∩ PS,ε,T } = 1̂PS,ε(gtkΛ)

(2.2) #{kΛ ∩RA,ε,T } = 1̂RA,ε(gtkΛ) and #{kΛ ∩ PA,ε,T } = 1̂PA,ε(gtkΛ).

2.1. Statement of results for Siegel transforms. To prove Theorems 1.1 and 1.3, we need to
show the equidistribution of the Siegel transforms of the sets RA,ε, PA,ε, Rε, and PS,ε with respect to

averages over g
(r,s)
t -translates of K. The main ergodic tool in this setting is our fourth main theorem,

a result on the mutiparameter spherical averages of Siegel transforms:

Theorem 2.2. Let f be a bounded Riemann-integrable function of compact support on Rd. Then for
any Λ ∈ Xd,

lim
t→∞

∫
Kd

f̂(g
(r,s)
t kΛ) dk =

∫
Xd

f̂ dµ.

The above theorem is the generalization to the multiparameter case of our theorem for the single
parameter case [1, Theorem 2.2]. Unlike in the single parameter case where the proof can be assembled
from the work of Kleinbock-Margulis [8, Appendix], the multiparameter case cannot. Instead, we
generalize our proof of [1, Theorem 2.2]. As in [1], the upper bound requires work:

Theorem 2.3. Let f be a bounded function of compact support in Rd whose set of discontinuities has
zero Lebesgue measure. Then for any Λ ∈ Xd,

lim
t→∞

∫
Kd

f̂(g
(r,s)
t kΛ) dk ≤

∫
Xd

f̂ dµ.

Remark 2.4. The assumption that f has compact support can be replaced with that of f ∈ L1(Rd)—
the other assumptions are still, however, necessary for the proof.

Corollary 2.5. Let f be a bounded Riemann-integrable function of compact support in Rd. Then for
any Λ ∈ Xd,

lim
t→∞

∫
Kd

f̂(g
(r,s)
t kΛ) dk ≤

∫
Xd

f̂ dµ.

Proof. Immediate from the theorem and the Lebesgue criterion. �

As mentioned in [1], the lower bound follows either from the methods in [9] or by applying the
following equidistribution theorem (Theorem 2.6) of Duke, Rudnick and Sarnak (cf. [5]) (see also

Eskin and McMullen [7] and Shah [15]) and then approximating the Siegel transform f̂ from below
by h ∈ Cc(Xd).
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Theorem 2.6. Let G be a non-compact semisimple Lie group and let K be a maximal compact
subgroup of G. Let Γ be a lattice in G, let λ be the probabilty Haar measure on G/Γ, and let ν be any
probability measure on K which is absolutely continuous with respect to a Haar measure on K. Let
{an} be a sequence of elements of G without accumulation points. Then for any x ∈ G/Γ and any
h ∈ Cc(G/Γ),

lim
n→∞

∫
K

h(ankx) dν(k) =

∫
G/Γ

h dλ.

Remark 2.7. One can replace dk by dν(k) in Theorems 2.2 and 2.3 without any changes to the
proofs.

2.2. Proof of Theorems 1.1 and 1.3. We prove Theorems 1.1 and 1.3 using Theorem 2.2, while
deferring the proof of the latter to Section 3. Thus, applying Theorem 2.2 to the indicator function
of RA,ε, we obtain

lim
t→∞

∫
K

1̂RA,ε(g
(r,s)
t kΛ)dk =

∫
Xd

1̂RA,εdµ = volRd(RA,ε),

where we have applied Siegel’s mean value theorem in the last equality.3 Doing likewise for Rε, PA,ε,
and PS,ε, we obtain

lim
T→∞

∫
K

#{kΛ ∩RA,ε,T } dk∫
K

#{kΛ ∩Rε,T } dk
=

volRd(RA,ε)

volRd(Rε)

lim
T→∞

∫
K

#{kΛ ∩ PA,ε,T } dk∫
K

#{kΛ ∩ PS,ε,T } dk
=

volRd(PA,ε)

volRd(PS,ε)
,

which proves our desired results. Note that (1.5) with T = 1 gives that volRd(PS,ε) <∞.

2.3. Proof of Theorem 1.4. As in the Section 2.2, we use Theorem 2.2 before its proof. Let {δi}
be a seqence of positive real numbers decreasing to 0. Then

A ⊃ ∪iA ∩ S(δi).

Let Ci := C(A ∩ S(δi)). Applying Theorem 2.2, we have

lim
T→∞

∫
K

#{kΛ ∩ PA∩S(δi),ε,T } dk = volRd(PA∩S(δi),ε) = O

(
volRm(Ci)

)
,

which →∞ as i→∞ by Lemma 4.1.

3. Proof of Theorem 2.3

We adapt our proof in [1, Section 3] from the single parameter (i.e. the diagional action is R-rank 1)
case to the multiparameter (i.e. the diagional action is any allowed R-rank) case. Recall our diagional
action is

g
(r,s)
t =: gt.

As mentioned, to prove Theorem 2.2, we need only show the upper bound (Theorem 2.3):

(3.1) lim
t→∞

∫
Kd

f̂(gtkΛ) dk ≤
∫
Xd

f̂ dµ.

Fix a unimodular lattice Λ ∈ Xd. Let us break up the proof into four types of multiparameter
actions:

(1) r := (1/m, · · · , 1/m) and n = 1.
(2) r is an arbitrary probability m-vector and n = 1.
(3) r is an arbitrary probability m-vector and s is an probability n-vector such there exist a

unique entry j for which sj = ‖s‖ where ‖ · ‖ is the sup norm.

3A proof that 1̂RA,ε , 1̂Rε , 1̂PA,ε , 1̂PS,ε are Riemann-integrable is analogous to that in [1, Footnote 4].
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(4) r is an arbitrary probability m-vector and s is an arbitrary probability n-vector.

The first type is just our single parameter case [1, Theorem 2.2].

3.1. Proof for the second type of multiparameter. In this section, r is an arbitrary probability
m-vector and n = 1.

Using [1, Section 3.4] without change, we will approximate using step functions on balls, where we
use the norm on Rd = Rm×R given by the maximum of the Euclidean norm in Rm = span(e1, · · · , em)
and the absolute value in R = span(ed). Hence, balls will be open regions of Rd, which we also refer
to as rods or solid cylinders. As in [1], we need four cases: balls centered at 0 ∈ Rd, balls centered in
span(ed)\{0}, balls centered in span(e1, · · · , em)\{0}, and all other balls. Since we will approximate
using step functions, it suffices (as we had shown in [1, Section 3.4]) to assume that the balls in
the second case do not meet 0 and in the last case do not meet span(ed) ∪ span(e1, · · · , em).4 Let
E := B(w, r) be any such ball and χE be its characteristic function. By the monotone convergence
theorem, we have ∫

Kd

χ̂E(gtkΛ) dk =
∑

v∈Λ\{0}

∫
Kd

χk−1g−1
t E(v) dk.

It is more convenient to prove the second and fourth cases together and before the others. Let E
be a rod in either of these two cases. Let r be small. Let R := et. Fix R, or equivalently, t be a large
value. Now g−1

t E is also a rod, but narrow in the directions given by Rm and long in the direction
given by ed. Recall from [1, Section 3], we have∫

Kd

χk−1g−1
t E(v) dk =: AER(‖v‖)(3.2)

and

AER(τ) =
volτSm(τSm ∩ g−1

t E)

volτSm(τSm)
.(3.3)

Also, recall, from [1, Section 3], the definition of a cap C(τ) , namely it is the intersection of the
rod g−1

t E with the sphere τSm. Now, unlike in [1], the caps are no longer spherical, but, for fixed
R, are ellipsoidial of fixed eccentricity. All our geometric considerations are for a fixed R (which is
only allowed to →∞ at the end). In particular, AER(τ) is a strictly decreasing smooth function with
respect to τ . Let BEuc(0, τ) denote a ball of radius τ in Rd with respect to the Euclidean norm. Now
it follows from the formula for AER that∑

v∈Λ\{0}

AER(‖v‖) ≤
∫ τ+

τ−

#
(
BEuc(0, τ) ∩ Λ\{0}

)
(−dAER(τ))

where the integral is the Riemann-Stieltjes integral and the integrability of the function #
(
BEuc(0, τ)∩

Λ\{0}
)

follows from its monotonicity and the continuity and monotoncity of AER(τ). The rest of the
proof is identical to that in [1, Section 3] and shows

lim
t→∞

∫
Kd

χ̂E(gtkΛ) dk ≤ volRd(E).

Finally, we prove the first and third case together. Let E be a rod in either of these two cases. The
difference between these two cases and the second and fourth cases is that the rod extends in both
the positive ed and negative ed directions. As the lattice Λ is fixed, there is a ball BEuc(0, τ0)) in Rd
that does not meet Λ\{0} for some τ0 > 0 depending only on Λ. Therefore, we can consider the two
ends separately. The proof is the same as in [1, Section 3.3], except that B is not a sphere, but an

4We note that the second and the fourth cases already suffice to show Theorems 1.1, 1.3, and 1.4.
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elliposoid of fixed eccentricity depending on R (which, recall is fixed until the end of the proof), but
this does not affect the proof. Consequently, for the second type of multiparameter, we can conclude

lim
t→∞

∫
Kd

χ̂E(gtkΛ) dk ≤ volRd(E).

3.2. Proof for the third type of multiparameter. In this section, r is an arbitrary probability
m-vector and s is an probability n-vector such there exist a unique entry j for which sj = ‖s‖
where ‖ · ‖ is the sup norm. On the other hand, for the rods that we define for this multipa-
rameter type, we will use the norm on Rd = Rm × Rn given by the maximum of the Euclidean
norm in span(e1, · · · , em+j−1, em+j+1, · · · ed) and the absolute value in span(em+j). As before, we
have four cases: balls centered at 0 ∈ Rd, balls centered in span(em+j)\{0}, balls centered in
span(e1, · · · , em+j−1, em+j+1, · · · ed)\{0}, and all other balls (again, Footnote 4 applies). Again,
we may assume that the balls in the second case do not meet 0 and in the last case do not meet
span(em+j) ∪ span(e1, · · · , em+j−1, em+j+1, · · · ed).

Now g−1
t has a unique largest expanding direction, namely along em+j . Replace the role of ed from

Section 3.1 with em+j . Let R = esjt. Fix a large R, then the analysis of the geometry of g−1
t E is

analogous to that in Section 3.1 because, for a fixed large R, the rod is much longer in along the
em+j direction than any other. The only difference is that there exists a minimum sphere radius τ̃(R)
larger than which the analysis of the geometry is valid because some directions are expanding (but
less than in em+j). However, for R large, τ̃(R) is small in comparision to the length of the rod τ+(R)
(which is on the order of R). In particular, limR→∞ τ̃(R)/τ+(R) = 0. Consequently (as shown in [1,
Section 3.3] for example, the error is O(R−1), which does not affect the proof. The conclusion, in all
four cases, is

lim
t→∞

∫
Kd

χ̂E(gtkΛ) dk ≤ volRd(E).

3.3. Proof for the fourth type of multiparameter. In this section, r is an arbitrary probability
m-vector and s is an arbitrary probability n-vector. We may assume without loss of generality that
there exist indices 1 ≤ j1 < · · · < j` ≤ n such that sj1 = · · · = sj` = ‖s‖ =: λ and 2 ≤ ` ≤ n. (Again

‖ ·‖ denotes the sup norm.) Let λ̃ denote the largest component of s strictly less than λ, or, if no such

component exists, set λ̃ = 1. Let us denote this set of indices J and the remaining indices by Jc, and
note that J t Jc = {1, · · · , n}. The main difference and problem with this case is that caps are no
longer relatively small in relation to the largest dimension of the rod. To take care of this problem,
we adapt the proof in Section 3.2 in two ways, the first for the analog of first and third cases and the
second for the analog of the second and fourth cases.

We use two types of balls/rods. For the balls/rods that we define for this multiparameter type
for the first and third case, we will use the norm on Rd = Rm × Rn given by the maximum of the
Euclidean norm in

span(

m⋃
i=1

ei ∪
⋃
j∈Jc

em+j)

and the sup norm in

span(
⋃
j∈J

em+j).

For the balls/rods that we define for this multiparameter for the second and fourth cases, we use
the sup norm until almost the end of the proof (again, Footnote 4 applies). As before, we have
the four cases: balls centered at 0 ∈ Rd, balls centered in span(

⋃
j∈J em+j)\{0}, balls centered in

span(
⋃m
i=1 ei∪

⋃
j∈Jc em+j)\{0}, and all other balls. Again, we may assume that the balls in the second

case do not meet 0 and in the last case do not meet span(
⋃m
i=1 ei ∪

⋃
j∈Jc em+j) ∪ span(

⋃
j∈J em+j).

Let E := B(w, r). We prove each case in turn—for convenience of exposition, we prove the cases in
the order first, third, second, and fourth.
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3.3.1. The first case: balls centered at 0. Let R = eλt. Fix a large R. Consider the rod g−1
t E. The

directions J are all expanded to a radius of Rr. All other directions are expanding less or contracting.
As in Section 3.2, there exists a minimal radius τ̃(R) larger than which the analysis of the geometry

is valid and we can choose τ̃(R) = 3eλ̃t; hence, we have limR→∞ τ̃(R)/Rr = 0, which implies we can
ignore radius smaller than τ̃(R). As mentioned, caps C(τ) are no longer small, but this does not affect
the analysis of the geometry from Section 3.2 up to the inequality∑

v∈Λ\{0}

AER(‖v‖) ≤ O(R−`) + d

∫ Rr

τ̃

(1 + ε) vol(BEuc(0, 1))
C(τ̃)

volSd(Sd)
dτ

= O(R−`) + d(1 + ε)
vol(BEuc(0, 1))

volSd(Sd)
C(τ̃)(Rr − τ̃)

where C(τ) = volSd C(τ) and the O(R−`) comes from τ < τ̃(R). Now C(τ̃)(Rr − τ̃) is the volume of
the rod with a (relatively) small hole missing. Letting R→∞ and ε→ 0 yields our desired result:

lim
t→∞

∫
Kd

χ̂E(gtkΛ) dk ≤ volRd(E).

3.3.2. The third case: balls centered at span(
⋃m
i=1 ei ∪

⋃
j∈Jc em+j)\{0}. The proof is similar to the

first case. In any expanding directions
⋃
j∈J em+j , the components of w are zero and hence g−1

t w has

at most expansion at a rate of eλ̃t. Let R = eλt. Fix a large R. Let ε̃ := ε̃(R) := ‖g−1
t w‖/R. Hence,

limR→∞ ε̃(R) = 0. Consequently, using the analogous proof as in the first case for a slightly larger rod
(replacing r with (1 + 2ε̃)r), we have∑

v∈Λ\{0}

AER(‖v‖) ≤ O(R−`) + d

∫ τ+

τ̃

(1 + ε) vol(BEuc(0, 1))
C(τ̃)

volSd(Sd)
dτ

where τ+ := Rr(1 + 2ε̃) and C(τ̃)(τ+ − τ̃)→ volRd(E) as R→∞. This yields our desired result:

lim
t→∞

∫
Kd

χ̂E(gtkΛ) dk ≤ volRd(E).

3.3.3. The second case: balls centered in span(
⋃
j∈J em+j)\{0}. Of the indices in J pick one, say j1.

Let us first consider the special case that w = wem+j1 for some w 6= 0. This index will play the role of
d from Section 3.1. Let I = {1, · · · ,m} ∪ {m+ j : j ∈ Jc} and R = eλt. For the second (and fourth)
cases, we will assume an additional condition (which we later show does not affect the generality of
our result): for a fixed α ≥ 1, we only consider balls E for which

dist
(
w, span(

⋃
i∈I ei)

)
− r

r
≥ α(3.4)

holds. Recall that our ball E is given by the sup norm—it is a d-cube. Its translate E−w has exactly
one vertex p with all positive coordinates. Let us change E into a “half-closed” ball F by the union
of all the d− 1 hyperfaces of the cube with p + w as vertex. Any half-closed ball will be constructed
like this. We will refer to F and its gt-translates as half-closed rods or simply rods if the context is
clear. Fix a large R. Consider the rod g−1

t F and one of the d− 1-dimensional faces that is normal to
em+j1—call this face F and note that it is a d− 1-dimensional box.

Choose a large natural number N . Partition the smallest side length of F into N segments of
length L. For each of the other side lengths in F , partition into segments whose length is nearest to
L. This partitions F into N (N) boxes with the same side lengths and, furthermore, each of which can
be contained in a d− 1-dimensional cube of side length 2L < 2/N . Let us index these little boxes by
k. The cartesian product of each of these little cubes with the em+j1-th coordinate of g−1

t F are rods,

which we make into half-closed rods in the way specified above. This is a partition of g−1
t F such that

there is only one direction, namely em+j1 , that is long. To each element of this partition, cases two
and four of Section 3.1 applies (the fact that each element is a half-closed rod as opposed to an open



10 JAYADEV S. ATHREYA, ANISH GHOSH, AND JIMMY TSENG

rod does not affect the proof in Section 3.1). Since this is a partition, elements are pairwise disjoint
and we may sum over each element of the partition to obtain

∑
v∈Λ\{0}

AFR(‖v‖) ≤ d
N (N)∑
k=1

∫ τ+
k

τ−k

(1 + ε) vol(BEuc(0, 1))
Ck(τ−k )

volSd(Sd)
dτ

= d(1 + ε)
vol(BEuc(0, 1))

volSd(Sd)

N (N)∑
k=1

Ck(τ−k )(τ+
k − τ

−
k )

where τ−k and τ+
k are, up to O(R−1), the minimum and maximium radii such that τSd meets the k-th

partition element and Ck(τ) is the volume of the cap of the k-th element, i.e. Ck(τ) = volτSd(Ck(τ))
where Ck(τ) is the intersection of k-th partition element with τSd. Within O(R−1), τ+

k − τ
−
k is the

length of the rod g−1
t F along the em+j1 direction. Now Ck(τ−)(τ+ − τ−) is the volume of an element

that has length along em+j1 within O(R−1) of the length along em+j1 of g−1
t F , but with cross-section

volume Ck(τ−). Since in the second case (3.4) holds, a direct calculation (using trigonometry) gives
that

Ck(τ−) ≤ γ̃ volRd−1(Bk)

sind−1(π/2− arcsin(1/α))
(3.5)

where γ̃ > 1 is a number depending only N and α such that γ̃ ↘ 1 as N,α → ∞ and Bk is the
interesection of the d − 1-dimensional hyperplane normal to em+j1 with the k-th partition element.
Consequently, for large N,α,

N (N)∑
k=1

Ck(τ−k )(τ+
k − τ

−
k )

is arbitrarily close to volRd(E). As vol(BEuc(0,1))
volSd (Sd)

= 1
d+1 , letting R → ∞ and ε → 0, we have our

desired result for the special case:

lim
t→∞

∫
Kd

χ̂E(gtkΛ) dk ≤ volRd(E),

up to the restrictions that the balls are now half-closed and that (3.4) must hold. Likewise, we have
the same conclusion for w = wem+j for any j ∈ J .

We now consider the second case in general. We may assume that w ∈ span(
⋃
j∈J em+j) =: PJ

but not in any of the coordinate axes. Let q := q(R) denote the point of g−1
t F with smallest

Euclidean norm. By convexity, it is easy to see that the point q is unique (for fixed R) and that
q ∈ span(

⋃
j∈J em+j). We remark that q is an eigenvector of g−1

t and thus the direction of q is fixed

for all R. Let ‖ · ‖J be the sup norm in PJ . Rotate a coordinate axis to the direction of q—doing
this to a half-closed ‖ · ‖J -ball of radius β yields a rotated half-closed `-cube C(β) with side length 2β.
Cover F ∩ PJ by a partition of affine translates of

⋃
t Ct(β) where β > 0 is a constant so small that

volR`(F ∩PJ) is less than but as close to volR`(
⋃
t Ct(β)) as desired. For each Ct(β) take the cartesian

product with the other directions of F to obtain F̃t(β). Then volRd(F ) is less than but as close to

volRd(
⋃
t F̃t(β)) as desired. Choose t so large that eλtβ is larger than the R chosen in the special case

(where the center is on the axis) above—this gives us a much larger R for this, the second case in

general. Now the special case holds for each F̃t(β) and applying it to each and summing over the
partition and noting that the volume of the partition is arbitrarily close to volRd(E) yields the second
case in general:

lim
t→∞

∫
Kd

χ̂E(gtkΛ) dk ≤ volRd(E),

up to the restrictions that the balls are now half-closed and that (3.4) must hold.
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3.3.4. The fourth case: all other balls. This is an adaption of the second case. The difference is that
q /∈ PJ . Let ‖ · ‖I be the sup norm in the span(

⋃
i∈I ei) =: PI and let qI and qJ be the orthogonal

projections of q onto PI and PJ , respectively. Then

‖qI(R)‖I
‖qJ(R)‖J

= 0

as R →∞. Consequently, for R large enough, (3.5) holds and thus the proof of the second case also
applies to this case, allowing us to conclude:

lim
t→∞

∫
Kd

χ̂E(gtkΛ) dk ≤ volRd(E),

up to the restrictions that the balls are now half-closed and that (3.4) must hold.

3.3.5. Finishing the second and fourth cases. We wish to prove the second and fourth cases for the
balls defined for the first and third cases (i.e. in terms of the product of Euclidean norms). To remove
the restriction of half-closed rods, consider the measure zero boundaries of the half-closed rods at each
stage. Using [1, Lemma 3.5] to approximate this measure zero set and the method of handling the
null term from [1, Section 3.4], we can remove this restriction. To remove the restriction given by
(3.4), we note that [1, Lemmas 3.1 and 3.5] apply to the balls of the second and fourth case with the
restriction (3.4) because α is fixed and the ball given by the product of the Euclidean norms not do
meet PI . This is all that is needed to apply [1, Section 3.4]. Doing so allows us to conclude

lim
t→∞

∫
Kd

χ̂E(gtkΛ) dk ≤ volRd(E),

where E is a ball in the same norm as for the first and third case.

3.4. Finishing the proof of Theorem 2.3. For each mutiparameter type, apply [1, Section 3.4]
without change.

4. Appendix

We prove Lemma 4.1. Recall that ‖v‖pr :=
∏`
i=1 |vi|; let ` = m in this section. Let

S := {v ∈ Rm : ‖v‖pr ≤ 1}.

Lemma 4.1. Let w be on a great sphere for Sm−1. Let A := B(w, r) ∩ Sm−1 for some r > 0. Then
volRm(CA ∩ S) =∞.

Proof. For m = 1, a great sphere is simply the intersection of an axis with the circle. Elementary
calculus gives the result.

We may assume that m ≥ 2. Without loss of generality, we may assume that r is small. There
are two cases. First assume that A does not meet any coordinate axes. Then there exists exactly
one coordinate in which the points in A may have small absolute value. By reordering indices if
necessary, we may assume that the m-th coordinate is the one that has small absolute values. In
the other directions, the absolute values are bounded away from 0. In other words, given a constant
c > 0, we have

∏m−1
i=1 |vi| ≥ c for all v ∈ A. Note that volSm−1(A) = O(rm−1) and the

∏m−1
i=1 |vi| =

O(volSm−1(A)) for all v ∈ A (because r is small). Consequently, for large τ , we have that
∏m−1
i=1 |τvi| =

O(volτSm−1(τA)). Perhaps by cutting off the part of the cone nearest to the orgin, we have that
CA∩S is the graph of the function over A determined by

∏m
i=1 |xi| = 1, giving us that volτSm−1(τA∩

S)|τvm| = O(1). This implies that |vm|τm ≤ O(1). Riemann integration now gives volRm(CA ∩ S) =
const

∫∞
1

volτSm−1(τA ∩ S) dτ = const
∫∞

1
1
|τvm| dτ ≥ const

∫∞
1
τm−1 dτ = ∞. We note that const

depends on how close A is to a coordinate axis.
The other case is when A meets coordinate axes. Since r is small, it may only meet one. Pick an

open ball B̃ ⊂ A that avoids the axis and apply the previous proof.
�
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[13] J. Marklof and A. Strömbergsson, The distribution of free path lengths in the periodic Lorentz gas and related

lattice point problems, Annals of Mathematics 172 (2010) 1949–2033.

[14] W. Schmidt, Asymptotic formulae for point lattices of bounded determinant and subspaces of bounded height,
Duke Math J. 35 (1968), 327–339.

[15] Nimish Shah, Limit distributions of expanding translates of certain orbits on homogeneous spaces, Proc. Indian

Acad. Sci., Math. Sci. 106 (1996) 105–125.
[16] U. Shapira, A solution to a problem of Cassels and Diophantine properties of cubic numbers. Ann. of Math. (2)

173 (2011), no. 1, 543–557.

[17] C. S. Siegel, A mean value theorem in geometry of numbers, Ann. Math. 46 (1945), 340–347.

J.S.A.: Department of Mathematics, University of Illinois Urbana-Champaign, 1409 W. Green Street,

Urbana, IL 61801, USA

E-mail address: jathreya@illinois.edu

A.G.: School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai

400005 India
E-mail address: ghosh@math.tifr.res.in

J.T.: School of Mathematics, University of Bristol, University Walk, Bristol, BS8 1TW UK
E-mail address: j.tseng@bristol.ac.uk


	1. Introduction
	2. Equidistribution on the space of lattices
	3. Proof of Theorem 2.3
	4. Appendix
	References

