
HOMOLOGY OF DEPTH-GRADED MOTIVIC LIE ALGEBRAS AND
KOSZULITY

B. ENRIQUEZ AND P. LOCHAK

Abstract. The Broadhurst-Kreimer (BK) conjecture describes the Hilbert series of a bi-
graded Lie algebra a related to the multizeta values. Brown proposed a conjectural de-
scription of the homology of this Lie algebra (homological conjecture (HC)), and showed
it implies the BK conjecture. We show that a part of HC is equivalent to a presentation
of a, and that the remaining part of HC is equivalent to a weaker statement. Finally, we
prove that granted the first part of HC, the remaining part of HC is equivalent to either of
the following equivalent statements: (a) the vanishing of the third homology group of a Lie
algebra with quadratic presentation, constructed out of the period polynomials of modular
forms; (b) the koszulity of the enveloping algebra of this Lie algebra.

Introduction

0.1. The background. The multizeta values (MZVs) are a family of real numbers ζ(n1, .., ns),
where s ≥ 1 and n1, . . . , ns−1 ≥ 1, ns ≥ 2 ([Z]). Denote by Z ⊂ R the Q-vector subspace
spanned by these numbers; it is a subring of R. Two types of algebraic relations between
these numbers are known:
• associator relations arise from the fact that the MZVs are the coefficients of an ana-

lytic object called the Knizhnik-Zamolodchikov associator, and that this object satisfies the
“pentagon and duality” relations; additional relations relating the MZVs and the complex
number 2πi can be derived in the same way from the “hexagon” relation ([Dr, LM]);
• double shuffle and regularization relations arise from a combinatorial study of the MZVs

([Rac]).
The relation between the various “associator” relations has been elucidated in [Fur1]. It

can be explained as follows. Let Zassoc (resp., Z̃assoc) be the Q-ring generated by formal
analogues ζf (n1, . . . , ns) of the genuine MZVs (resp., these analogues and a formal analogue
(2πi)f of 2πi), subject to the “pentagon and duality” relations (resp., to these relations
and the “hexagon” relation). Then Z̃assoc is isomorphic to the quadratic extension of Zassoc

generated to (2πi)f subject to the relation ((2πi)f )2 = −24ζf (2), so Z̃assoc is a free Zassoc-
module with basis (1, (2πi)f ).

It has also been shown ([Fur2]) that the “associator” relations on MZVs imply the “double
shuffle” ones. More precisely, let Zds be the Q-rings generated by the ζf (n1, . . . , ns), subject
to the double shuffle and regularization relations. Then there is a surjective ring morphism
Zds → Zassoc, taking each generator to its analogue.

A ring Zmot of motivic analogues MZVs has been constructed ([G1, G2]); it is linearly
spanned by motivic analogues ζm(n1, . . . , ns) of the MZVs. The motivic MZVs satisfy the
associator relations (see [And], thm. 25.9.2.1), so there is a ring morphism Zassoc → Zmot,
given by ζf (n1, . . . , ns) 7→ ζm(n1, . . . , ns). (By composition of the morphisms Zds → Zassoc

and Zassoc → Zmot, one obtains a morphism Zds → Zmot, which had been directly constructed
in [Sou] before the construction of the morphism Zds → Zassoc in [Fur2].) Finally, there is a
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(period) evaluation morphism Zmot → Z, given by ζm(n1, . . . , ns) 7→ ζ(n1, . . . , ns). All this
gives rise to a sequence of surjective ring morphisms

Zds → Zassoc → Zmot → Z. (1)

The rings Zmot, Zassoc, Zds are equipped with a grading, called the weight grading, for which
ζm(n1, . . . , ns) and ζf (n1, . . . , ns) have weight n1 + · · ·+ns; under the direct sum conjecture,
this also defines a grading on the ring Z. The rings Zmot, . . . ,Z are also equipped with an
increasing filtration, the depth filtration, whose dth part is the linear span of all the elements
corresponding to (n1, . . . , ns), with s ≤ d. This filtration is compatible with the grading,
unconditionally in the case of Zmot, . . . ,Zds, and under the direct sum conjecture in the case
of Z. The Hilbert series of Zmot with respect to the weight grading has been computed in
[B1]. It is generally conjectured that the maps from (1) are isomorphisms compatible with
the gradings and filtrations. Under the direct sum conjecture, the depth-graded of Z is a
bigraded algebra; a formula for its double Hilbert series is conjectured in [BK]; we will call
this the Broadhurst-Kreimer (BK) conjecture. Combining the BK conjecture with that of
the isomorphism of Zds, Zassoc, Zmot and Z, one obtains three variants of the BK conjecture
predicting the double Hilbert series of the depth-graded of Zds, Zassoc and Zmot.

The graded and filtered algebras Zds, Zassoc and Zmot are related to prounipotent Lie
groups as follows. Set Z0

mot := Zmot/(ζ
m(2)), then there is an isomorphism of graded and

filtered algebras Zmot ' Z0
mot ⊗ Q[X], where X has weight 2 all the powers X,X2, . . .

have depth 1 ([B1], (2.13), with the notation H ∼ Zmot, A ∼ Z0
mot; X corresponds to

ζm(2)). Moreover, Z0
mot identifies with the function algebra of a prounipotent group scheme

Um arising in the theory of mixed Tate motives ([B1], Section 2.1 and main result). Its Lie
algebra um is graded and equipped with a decreasing filtration, which induces an isomorphism
Z0

mot ' U(um)∨ of graded and filtered algebras. In the same way, the fact that the rings
Zassoc,Zds are polynomial in infinitely many variables ([And], Remark 25.9.3.2) implies that
there are isomorphisms of graded and filtered algebras Zassoc ' Z0

assoc ⊗Q[X], Zds ' Z0
ds ⊗

Q[X], where X is a formal variable of weight 2 and such that X,X2, . . . have depth 1, and
Z0

assoc := Zassoc/(ζ
f (2)), Z0

ds := Zds/(ζ
f (2)); moreover, there are isomorphisms of graded

and filtered algebras Z0
assoc ' U(grt1)

∨ ([Dr], Prop. 5.9), Z0
ds ' U(ds0)

∨ ([Rac], Thm. I),
where grt1 is the “graded version of the Grothendieck-Teichmüller Lie algebra” arising in
the study of associators, and ds0 is the “double shuffle Lie algebra” arising in the study of
combinatorial relations between MZVs. All this yields compatible isomorphisms of graded
and filtered algebras

Zassoc ' U(grt1)
∨ ⊗Q[X], Zds ' U(ds0)

∨ ⊗Q[X], Zmot ' U(um)∨ ⊗Q[X],

which in their turn yield compatible isomorphisms of bigraded algebras

grdpth(Zassoc) ' grdpth(U(grt1))
∨ ⊗Q[X], grdpth(Zds) ' grdpth(U(ds0))

∨ ⊗Q[X],

grdpth(Zmot) ' grdpth(U(um))∨ ⊗Q[X].

The variants of the BK conjecture predicting the double Hilbert series of grdpth(Zassoc) and
its analogues therefore translate into conjectural formulas for the double Hilbert series of
grdpth(U(grt1)) and its analogues, which will be recalled in Section 3 (Conjecture 3.1).

Recently, F. Brown proposed a conjecture describing the homology of these bigraded Lie
algebras ([B2]) and implying these conjectural formulas.
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0.2. Contents of the paper. The main purpose of this paper is to partially reduce and
derive some consequences of Brown’s homological conjecture.

In Section 1, we introduce several objects: the Lie algebras um, grt1, ds0; the sequence of
morphisms um → grt1 → ds0 of Lie algebras dual to the sequence of morphisms Z0

ds →
Z0

assoc → Z0
mot induced by (1); the depth-graded version of these Lie algebras and of this

sequence of morphisms; and an upper bound Lie algebra ls of grds(ds0). In Section 2, we
present some known results on these Lie algebras. In Section 3, we present the BK conjectures
and its variants, as well as and Brown’s homological conjecture, which presents itself in four
versions relative to the Lie algebras grt1, ds0, u

m, ls; we prove that the version relative to ls
implies all the other versions.

The main results of the paper are contained in the remaining sections. In Section 4, we
show that a part of the homological conjecture for one of these Lie algebras (more precisely,
the part predicting the values of the first and second homology groups) implies a presentation
of the same Lie algebra. The proof of this result is close to the proof that any positively
graded Lie algebra L has a presentation with generating space H1(L) and relation space
H2(L) ([H], Section 3); the arguments from [H] are themselves analogues of those of [S],
Chap. 2 in the pro-p group situation. In Section 5, we show that the remaining part of the
homological conjecture, more precisely, the vanishing of the homology groups of order ≥ 3, is
equivalent to a weaker statement, namely the vanishing of the third homology group. Again,
the technical result used here is an analogue of a homological result for pro-p groups from
[S]. In Section 6, we relate the homological conjecture with the structure of a Lie algebra
M0 with quadratic presentation, constructed out of the period polynomials of cusp modular
forms. We show that granted the first part of the homological conjecture relative to any of
the Lie algebras grt1, . . . , ls, the remaining part of this conjecture is equivalent to either of
the following equivalent statements: (a) the vanishing of the Lie algebra homology group
H3(M0,k); (b) the koszulity of the enveloping algebra U(M0).

1. Motivic and related Lie algebras

In this section, we recall the construction of a Lie algebra gm attached to the category of
mixed Tate motives (Subsection 1.1); the realization of its Lie subalgebra um by derivations
of a free Lie algebra in two generators (Subsections 1.2 and 1.3); and the construction of Lie
algebras related to um (Subsection 1.4).

1.1. Motivic background. The Tannakian category MT(Z) of mixed Tate motives over
Z can be defined unconditionally (see [DG]; for a survey see [And]). It is equipped with
the de Rham fiber functor. Let GMT(Z) be the automorphism group of this functor; this is a
group scheme over Q. It decomposes as a semidirect product GMT(Z) = UMT(Z) oGm, where
UMT(Z) is a prounipotent Q-group scheme. Its Lie algebra decomposes as gm = um o Q. It
follows from work of Borel and Beilinson that there exist elements s2i+1, i ≥ 1 of um, freely
generating um, and a right inverse Gm → GMT(Z) of the projection GMT(Z) → Gm, for which
each s2i+1 has weight 2i+ 1. We will henceforth view um as graded by this grading.

1.2. The Poisson-Ihara Lie algebra (g, 〈, 〉). Let e0, e1 be free noncommutative variables
of weight 1, and let g := L(e0, e1) be the free Q-Lie algebra generated by these variables;
its bracket will be denoted [, ]. There is a linear map g→ Der(g), given by f 7→ Df , where
Df : e0 7→ 0, e1 7→ [e1, f ]. When equipped with the Poisson-Ihara Lie bracket 〈, 〉 given by

〈f, g〉 := [f, g] +Df (g)−Dg(f),
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g is a Lie algebra, and the map f 7→ Df is a Lie algebra morphism. Moreover, (g, 〈, 〉) is
graded for the weight grading. The Lie algebra (g, [, ]) is also equipped with a grading, for
which e1 has degree 1 and e0 has degree 0. This equips (g, 〈, 〉) with a grading, the depth
grading. The depth filtration on (g, 〈, 〉) is the decreasing Lie algebra filtration given by
F i(g) := ⊕j|j≥i{part of g of depth j}.

1.3. The Lie algebra morphism um → (g, 〈, 〉). The motivic Galois group GMT(Z) acts
naturally on the fundamental groupoids of certain geometric objects of MT(Z). In the case
of P1

Q − {0, 1,∞}, this induces a weight-graded Lie algebra morphism um → Der(g). It can
be shown that this morphism factors through the inclusion (g, 〈, 〉) ⊂ Der(g) and therefore
gives rise to a graded Lie algebra morphism um → (g, 〈, 〉). Moreover, it follows from [B1]
that this morphism is injective.

1.4. Lie algebras related to um. In [Dr, Rac], explicit weight-graded Lie subalgebras grt1
and ds0 of (g, 〈, 〉) are introduced.

There is a sequence of Lie algebra morphisms

um ' im(um → g) ↪→ grt1 ↪→ ds0 ⊂ (g, 〈, 〉) (2)

where as mentioned above, the initial isomorphism follows from [B1], and the next injections
follow from work of Drinfeld and Ihara, and from [Fur2], respectively.

1.5. The Lie algebra ls. The Lie algebra ds0 is defined to be the set of elements of the
free algebra generated by e0, e1 which are primitive for two coproducts, the shuffle and the
stuffle coproduct. The associated graded of the stuffle coproduct for the depth filtration
can be computed explicitly. This gives rise to an explicit upper bound Lie algebra for the
depth-graded of the double shuffle Lie algebra ds0, called the “linearized shuffle” Lie algebra
and denoted ls. We have therefore a double inclusion grdpth(ds0) ⊂ ls ⊂ (g, 〈, 〉) (see [B2]).

Remark 1.1. This space was introduced earlier in [IKZ], and in dual form, in [G1, G2];
moreover, the Lie algebras ls and ds0 are respectively isomorphic to the Lie algebras intro-

duced in [E1, E2] under the notation ARI
al/il
ent and ARI

al/al
ent .

1.6. Bigraded Lie algebras. The depth filtration of the Lie algebra (g, 〈, 〉) induces a
filtration on each of its weight-graded Lie subalgebras; the associated graded Lie algebra is
then a (depth,weight)-bigraded Lie subalgebra of grdpth(g, 〈, 〉) = (g, 〈, 〉). The sequence (2)
therefore gives rise to a sequence

grdpth(um) ↪→ grdpth(grt1) ↪→ grdpth(ds0) ↪→ ls ⊂ (g, 〈, 〉) (3)

Numerical experimentation indicates that the first two injections of (2), and the first three
injections of (3) could in fact be isomorphisms.

2. Known results on depth-graded Lie algebras

In this section, we recall some results on the Lie algebras a = grdpth(um), . . . , ls from (3).
We first introduce the space P of even period polynomials (Subsection 2.1). Using this space,
we make explicit a system of generators and relations for the Lie algebras a of (3) (Subsection
2.2). We draw some consequences for ls (Subsection 2.4) and for the other Lie algebras a
(Subsection 2.5).

4



2.1. The spaces S and P. Let S denote the (complex) vector space of cusp forms for the
full modular group PSL2(Z), which decomposes as S =

⊕
n S2n where S2n denotes the space

of forms of weight 2n (n ≥ 0). One sets S(s) :=
∑

n≥0 dim(S2n)s2n. Then

S(s) =
s12

(1− s4)(1− s6)
. (4)

Let P̃2n denote the Q-vector space of all even period polynomials of degree 2n − 2, which
are the polynomials in Q[X, Y ] satisfying certain symmetry conditions: evenness in X and
Y , antisymmetry with respect to the exchange of X and Y and a functional equation. The
additional condition of divisibility by X2Y 2 defines a hyperplane P2n ⊂ P̃2n. The Eichler-
Shimura correspondence sets up a linear isomorphism S2n ' P2n⊗QC for any n ≥ 0. We set
P :=

⊕
n P2n.

2.2. Generators and relations in ls.

2.2.1. Generators. The depth one subspace ls1 of ls is 1-dimensional in each odd weight ≥ 3
and 0-dimensional in all the other weights, therefore if O(s) :=

∑
n≥0 dim(ls1[n])sn, then

O(s) =
s3

1− s2
(5)

(where [n] means the part of weight n). On the other hand, there exists an injective linear
map e : P→ ls4, compatible with the weight gradings on both sides (see [B2]).

2.2.2. Relations. As mentioned above, there is an isomorphism of graded vector spaces ls1 '
X3C[X2], where the degree on the right-hand side is the degree in X. On the other hand,
there is an injection P ↪→ X2Y 2C[X2, Y 2]as, where as means antisymmetry in X2, Y 2, and
where P2n maps to the part of total degree 2n− 2. The composition

P ↪→ X2Y 2C[X2, Y 2]as
XY×−→ X3Y 3C[X2, Y 2]as ' Λ2(X3C[X2]) ' Λ2(ls1)

is then an injective graded linear map P→ Λ2(ls1). On the other hand, the Lie bracket of ls
induces a linear map Λ2(ls1)→ ls2. It follows from [GKZ, Sch] that these two maps combine
into an exact sequence

0→ P→ Λ2(ls1)→ ls2 → 0.

2.3. Generators and relations in the Lie algebras grdpth(um), . . . , ls. Let a be one of the
Lie algebras grdpth(um), . . . , ls in sequence (3). There are isomorphisms ai ' lsi for i = 1, 2
between the depth 1, 2 subspaces of a and ls. Therefore there is an exact sequence

0→ P→ Λ2(a1)→ a2 → 0.

isomorphic to the analogous exact sequence for the Lie algebra ls.

2.4. Consequences for ls.
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2.4.1. A model Lie algebra M. We define a (weight, depth)-bigraded Lie algebra M, which
will be called the “model” Lie algebra, by the following presentation. The space of generators
is the direct sum of:
• a copy of the (weight, depth)-bigraded vector space ls1;
• a copy P{4} of the space P, where {4} means that for each n, the weight n component

of P is placed in bidegree (n, 4).
The map P → Λ2(ls1) constructed in Subsection 2.2.2 induces a bigraded linear map

P{2} ↪→ Λ2(ls1), where {2} has the same meaning as above. We then obtain a composed
map

P{2} ↪→ Λ2(ls1) ' L2(ls1) ↪→ L2(ls1 ⊕ P{4}) ↪→ L(ls1 ⊕ P{4}),
where L(V ) is the free Lie algebra generated by a (possibly graded) vector space V , and
Li(V ) is its degree i part (with respect to V ). The space of defining relations of M is defined
to be the image of this map. We have therefore

M := L(ls1 ⊕ P{4})/(P{2}),
where (P{2}) is the ideal generated by the image of the map P{2} ↪→ L(ls1 ⊕ P{4}).

2.4.2. A morphism M → ls. It follows from Subsections 2.2.1 and 2.2.2 that there exists a
morphism of bigraded Lie algebras

ϕ : M→ ls, (6)

defined by restriction to the space of generators of M as follows: the restriction of ϕ to ls1
is the canonical injection ls1 ↪→ ls; its restriction to P{4} is the composed map P{4} ' P

e→
ls4 ↪→ ls.

2.4.3. The homology of ls. If a is a Lie algebra, we denote by H·(a) its homology with

coefficients in the trivial module k, given by the homology of the complex . . .→ Λ3(a)
[,]⊗id→

Λ2(a)
[,]→ a→ 0. This is a graded cocommutative coalgebra, depending functorially on a.

It follows from the definition of M that

H1(M) ' ls1 ⊕ P{4}.

Moreover, the composed map P{2} → Λ2(ls1)→ Λ2(M)
[,]→M is zero. This induces a map

P{2} → H2(M).

One then checks that these maps are compatible with coproducts, so that the diagram

P{2} //

��

Λ2(ls1) // Λ2(ls1 ⊕ P{4})

��
H2(M) // Λ2(H1(M))

(7)

commutes. Using the morphism H·(M)→ H·(ls) induced by the morphism (6), one obtains:

Proposition 2.1. i) There exists a bigraded linear map ls1 ⊕ P{4} → H1(ls);
ii) there exists a bigraded linear map P{2} → H2(ls);

iii) the diagram (7) commutes.

2.5. Consequences for the Lie algebras grdpth(um), . . . , ls. Let a be one of the Lie alge-
bras grdpth(um), . . . , ls in sequence (3).
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2.5.1. A Lie algebra M0. We set

M0 := L(ls1)/(P{2}).
Then M0 is a (weight, depth)-bigraded Lie algebra. Then M can be identified with the free
product of Lie algebras M0 ∗ L(P{4}).

2.5.2. A morphism M0 → a. It follows from Subsection 2.3 that there exists a morphism of
bigraded Lie algebras

ϕ0 : M0 → a,

defined by restriction to the space of generators of M0 as follows: the restriction of ϕ0 to ls1
is the canonical injection ls1 ' a1 ↪→ a.

2.5.3. The homology of a. The map ls1 → M0 induces a linear map ls1 → H1(M0). The

linear map P{2} → Λ2(ls1) is such that the composite map P{2} → Λ2(ls1) ↪→ Λ2(M0)
[,]→

M0 is zero. One derives from there a linear map P{2} → H2(M0). One checks that the
diagram

P{2} //

��

Λ2(ls1)

��
H2(M0) // Λ2(H1(M0))

(8)

commutes. Using functoriality of Lie algebra homology with respect to the morphism ϕ0 :
M0 → a, and the fact that the morphism M0 → a is an isomorphism in depths 1 and 2, one
obtains:

Proposition 2.2. i) There exists a bigraded linear map ls1 → H1(a), which is an iso-
morphism in depth 1;

ii) there exists a bigraded linear map P{2} → H2(a), which is an isomorphism in depth
2;

iii) the diagram (8) commutes.

3. Conjectures on depth-graded Lie algebras

We present the motivic/combinatorial analogue of the Broadhurst-Kreimer conjecture,
which is a statement about Hilbert series (Subsection 3.1). We then present the homological
counterpart of this conjecture, due to Brown, in Subsection 3.2. We then discuss the relations
between both conjectures (Subsection 3.3).

3.1. Hilbert series. Based on numerical experimentation, the authors of [BK] formulated a
conjecture on dimensions of the depth-graded spaces of (real) multizeta values. The authors
of [B2, CGS] then proposed motivic/combinatorial analogues of this conjecture, which we
now recall.

Conjecture 3.1. ([BK, B2, CGS]) Let a be any of the Lie algebras grdpth(um), . . . , ls in
sequence (3). Let S(a) be its symmetric algebra and let S(a)[n, d] denote its piece of weight
n and depth d. Then there is an identity of formal series in two variables s, t:∑

n,d≥0

dimS(a)[n, d] · sntd =
1

1−O(s)t+ S(s)t2 − S(s)t4
,

where O(s), S(s) are defined in (5), (4).
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Conjecture 3.1 for the Lie algebra a will be denoted HS(a) (“Hilbert series statement for
a”). Then:

Proposition 3.2. There holds the sequence of implications

HS(ls)⇒ HS(grdpth(ds0))⇒ HS(grdpth(grt1))⇒ HS(grdpth(gm)).

Proof. Set a0 := gm, a1 := grdpth(grt1), a2 := grdpth(ds0)), a3 := ls. For i = 0, . . . , 3,

let fi(s, t) :=
∑

n,d≥0 dimS(ai)[n, d] · sntd ∈ Z≥0[t][[s]]. The inclusions a0 ⊂ · · · ⊂ a3 imply

f0(s, t) ≤ · · · ≤ f3(s, t), where ≤ means that the difference belongs to Z≥0[t][[s]]. The
structure result on gm (see Subsection 1.1) implies that f0(s, 1) = 1/(1−O(s)).

Fix i ∈ {0, 1, 2}. The statement HS(ai+1) implies that fi+1(s, t) = 1/(1−O(s)t+ S(s)t2−
S(s)t4) =: g(s, t). It follows that

fi(s, t) ≤ g(s, t). (9)

On the other hand,

fi(s, 1) ≥ f0(s, 1) = g(s, 1). (10)

If f, g belong to Z≥0[t] and are such that f(t) ≤ g(t) and f(1) ≥ g(1), then f = g. It follows
that if F,G belong to Z≥0[t][[s]] and are such that F (s, t) ≤ G(s, t) and F (s, 1) ≥ G(s, 1),
then F = G. (9) and (10) then imply fi(s, t) = g(s, t), therefore HS(ai). �

3.2. Homology.

Conjecture 3.3. ([B2]) Let a be any of the Lie algebras grdpth(um), . . . , ls in sequence (3).

i) There exists a bigraded linear isomorphism ls1⊕P{4} ' H1(a), such that the diagram

ls1 ⊕ P{4} //

&&

H1(a)

��
H1(ls)

commutes;
ii) the map P{2} → H2(a) is a linear isomorphism;

iii) for any k ≥ 3, Hk(a) = 0.

Conjecture 3.3 for the Lie algebra a will be denoted HC(a) (“homology conjecture for
Lie algebra a”). Taking into account Proposition 2.2, ii), HC(a), ii), says that H2(a) is
concentrated in depth 2. It also follows from Proposition 2.2 that for any Lie algebra a in
sequence (3), the diagram

P{2} //

��

Λ2(ls1)

��
H2(a) // Λ2(H1(a))

commutes.

3.3. Relation between the Hilbert series and the homological conjectures. It has
been proved in [B2] that for a one of the Lie algebras grdpth(um), . . . , ls in sequence (3), HC(a)
implies HS(a).
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4. Homological conjecture and presentation

In this section, we establish the equivalence between a part of the homological conjecture
3.3 and presentation results for the corresponding Lie algebras. In Subsection 4.1, we show
one implication, and in Subsection 4.2, we show the converse implication. As mentioned in
the Introduction, the results of this section are close to those of [H] and [S], Chap. 2.

4.1. From presentation to homology. If V is a vector space and I ⊂ L(V ) is a Lie ideal,
then the Lie analogue of Hopf’s formula (see [H], Proposition 5.6) gives

H2(L(V )/I) = I/[L(V ), I];

it can be derived from the definition of the homology of L(V )/I using a long exact sequence.
If now R is a vector subspace of L2(V ) and I := (R) ⊂ L(V ) is the ideal generated by R,

then I decomposes as I = R⊕ [V,R]⊕ [V, [V,R]]⊕ · · · according to the degree with respect
to V , while [L(V ), I] = [V,R]⊕ [V, [V,R]]⊕ · · · ; it follows that

H2(L(V )/(R)) = R. (11)

One derives from there
H2(M) = P{2}. (12)

One also computes
H1(M) = M/[M,M] = ls1 ⊕ P{4}. (13)

(13) and (12) then imply:

Lemma 4.1. Let a be one of the Lie algebras grdpth(um), . . . , ls in sequence (3). If there is

a bigraded Lie algebra isomorphism M ' a, such that the diagram M //

  

a

��
ls

commutes,

then HC(a) i) and ii) hold.

4.2. From homology to presentation. Let g be a positively graded Lie algebra, so g =
g1⊕g1⊕ . . ., with [gi, gj] ⊂ gi+j. The grading of g then induces a positive grading on each of
the homology groups of g. There is a quotient map g→ H1(g) = g/[g, g], which is surjective
and graded. Set H := H1(g) and let H = H1 ⊕H2 ⊕ . . . be the degree decomposition of H.
Let us choose a graded right inverse H → g of the projection map g→ H. It gives rise to a
surjective, graded Lie algebra morphism L(H) → g. Let I be the kernel of this morphism.
Then I is a graded ideal of L(H); let I = I2 ⊕ I3 ⊕ . . . be the degree decomposition of I.
Then there is a graded Lie algebra isomorphism L(H)/I ' g. Equation (11) then implies
that H2(g) = I/[L(H), I]. Assume that H2(g) is concentrated in degree 2. Then

I3 = [H1, I2], I4 = [H2 + [H1, H1], I2] + [H1, I3],

I5 = [H3 + [H1, H2] + [H1, [H1, H1]], I2] + [H2 + [H1, H1], I3] + [H1, I4], etc.

It follows that for any n > 0,

In+2 ⊂
∑
k≥1

∑
n1,...,nk>0,

n1+···+nk=n

[Hn1 , [Hn2 , . . . , [Hnk
, I2]]]. (14)

Since conversely, the right-hand side of (14) is contained in its left-hand side, one has for
any n > 0, In+2 =

∑
k≥1
∑

n1,...,nk>0,

n1+···+nk=n
[Hn1 , [Hn2 , . . . , [Hnk

, I2]]]. It follows that I = (I2). We
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also have H2(g) ' I2, and the injective composed map H2(g) ' I2 ⊂ L2(H1) ⊂ L2(H) '
Λ2(H1(g)) can be identified with the coproduct map H2(g)→ Λ2(H1(g)). It follows that this
coproduct map is injective.

All this implies:

Lemma 4.2. If g is a positively graded Lie algebra, such that H2(g) is concentrated in degree
2, then the coproduct map H2(g)→ Λ2(H1(g)) is injective, and there exists an isomorphism of
graded Lie algebras g ' L(H1(g))/(H2(g)), where H2(g) is viewed as a subspace of L2(H1(g))
via the sequence of maps H2(g)→ Λ2(H1(g)) ' L2(H1(g))).

This lemma can be adapted to the case when g is also equipped with a second grading,
compatible with the first one. Let a be any of the Lie algebras grdpth(um), . . . , ls in sequence
(3) and assume that it satisfies HC(a), i) and ii). Then applying the graded version of Lemma
4.2 to a equipped with the depth grading as the first grading, and the weight grading as the
second grading, we obtain a bigraded isomorphism M ' a.

4.3. Combining Lemma 4.2 with Lemma 4.1, we obtain:

Theorem 4.3. For a one of the Lie algebras grdpth(um), . . . , ls in sequence (3), the conjunc-
tion of HC(a) i) and ii) is equivalent to the existence of a bigraded Lie algebra isomorphism
M ' a, such that the diagram

M //

  

a

��
ls

commutes.

Remark 4.4. Under HC(a) i) and ii), Theorem 4.3 gives a presentation of a. When a =
grdpth(ds0), this presentation was first conjectured in [E1], §17, 18 and [E2], §7,8.

5. Reduction of the homological conjecture

Let g = ⊕i>0gi be a positively graded Lie algebra over a field k of characteristic 0. We
assume that the graded pieces gi are finite dimensional.

Let Mod be the category whose objects are the graded g-modules V of the form V =⊕
i∈Z Vi, where each graded piece Vi is finite dimensional and Vi = 0 for i � 0, and the

morphisms are the graded g-module morphisms. Let Vec denote the category of graded
vector spaces with the same conditions.

Define the valuation v as the map from the set of objects of any of these categories to
Z ∪ {∞} given by v(V ) = min{i ∈ Z, Vi 6= 0} for V a nonzero object and v(0) = ∞. For
a an integer, define the shift operator by a, denoted V 7→ V [a], as the self-map of the set of
objects of any of the categories Mod or Vec, given by V [a]i = Vi+a for any i ∈ Z.

For k ≥ 0, there is a functor Hk :Mod → Vec given by Hk(V ) := Hk(g, V ) (Lie algebra
homology group); we call it the k-th homology functor.

Let n > 0 be an integer. Denote again by k the trivial g-module (one-dimensional,
concentrated in degree 0), and assume that Hn(g,k) = 0.

Let V be a nonzero object inMod; set v := v(V ). For s ≥ 0, define the truncated module
V {s} as the object of Mod given by V {s}i = Vi for i ≥ v + s, V {s}i = 0 otherwise (in
particular, V {0} = V ). Then for any s ≥ 0, there is an exact sequence in Mod

0→ V {s+ 1} → V {s} → k[s+ v]dim(Vs+v) → 0,
10



where the last module is a direct sum of copies of shifts of the trivial module k. The
assumption Hn(k) = 0 implies Hn(k[s+v]) = 0, therefore the homology long exact sequence
implies that for any s ≥ 0, the map Hn(V {s + 1}) → Hn(V {s}) is onto. For any s ≥ 0,
each of the maps of the sequence Hn(V {s})→ Hn(V {s− 1})→ · · · → Hn(V {0}) = Hn(V )
is therefore onto, so that

the composed map Hn(V {s})→ Hn(V ) is onto. (15)

On the other hand, Hn(V {s}) is the homology group of a complex constructed out of the
graded vector space Λ·(g)⊗ V {s} , which is nonzero only in degrees ≥ v + s, therefore

Hn(V {s}) is nonzero only in degrees ≥ v + s. (16)

For any integer k ∈ Z and any s ≥ max(0, k − v + 1), (16) implies that (degree k part
of Hn(V {s}))=0 and (15) implies that the map (degree k part of Hn(V {s})) →(degree k
part of Hn(V )) is onto, so that (degree k part of Hn(V )) = 0. It follows that Hn(V ) = 0.
Therefore

for any object V of Mod,Hn(V ) = 0. (17)

Let U(g) be the universal enveloping algebra of g. When equipped with the grading induced
by g and with the action of g by left multiplication, U(g) is an object ofMod. The truncation
U(g){1} can be identified with the kernel U(g)+ of the counit map U(g) → k. Then there
is an exact sequence in Mod

0→ U(g)+ → U(g)→ k→ 0.

Shapiro‘s lemma implies thatHi(g, U(g)) = 0 for any integer i > 0. When i = 0, H0(g, U(g)) ='
k ' H0(g,k). The homology long exact sequence then implies an isomorphism Hi+1(g,k) '
Hi(g, U(g)+) for any integer i. Combining this equality for i = n with the specialization of
(17) for V = U(g)+, we obtain Hn+1(k) = 0.

We summarize these results as follows:

Proposition 5.1. Let g = ⊕i>0gi be a positively graded Lie algebra over a field k of charac-
teristic 0, such that all the graded pieces gi are finite dimensional. Let n be an integer ≥ 0.
If Hn(g,k) = 0, then for any m ≥ n, Hm(g,k) = 0.

Remark 5.2. Proposition 5.1 illustrates a general principle in homological algebra for
(pro)nilpotent objects; compare in particular Proposition 21 in [S] (§4) for pro-p groups.

�

An immediate corollary of Proposition 5.1 is the following result.

Theorem 5.3. For a one of the Lie algebras grdpth(um), . . . , ls in sequence (3), item iv) of
the Homological Conjecture 3.3 is equivalent to H3(a) = 0.

6. Homological conjecture and koszulity

In this section, we show that for any Lie algebra a = grdpth(ds0), . . . , ls in sequence (3), the
conjecture HC(a) implies two equivalent statements, namely the vanishing of the homology
group H3(M0,k), and the koszulity of the algebra U(M0), equipped with the depth grading.
This section is organized as follows. In Subsection 6.1, we compute the homology of free
products of algebras. In Subsection 6.2, we use this result to show that HC(a) implies the
vanishing of H3(M0,k). In Subsection 6.3, we use a result of Goncharov ([G1]) to prove an
equality (ls1 ⊗ P) ∩ (P ⊗ ls1) = 0 on the generators and relations of M0. After recalling

11



some results on Koszul algebras (Subsection 6.4), we study Lie algebras with a quadratic
presentation in Subsection 6.5: we prove that for such a Lie algebra with space of generators
V and space of relations R ⊂ L2(V ), such that (V ⊗R)∩ (R⊗ V ) = 0, the vanishing of the
third Lie algebra homology group is equivalent to the koszulity of its enveloping algebra. In
Subsection 6.6, we gather all these results to prove the main theorem 6.8.

6.1. Homology of free products of algebras. Let k be a field. The category of k-algebras
with unit is equipped with a coproduct operation (see [Bbk], Chap. III, p. 195, exercice 6).
For A,B two k-algebras with unit, we denote by A∗B their coproduct in this category (also
called the free product of A and B).

The coproduct property implies that ifA,B admit presentations of the formA = T (V )/(R),
B = T (W )/(S), where V,W are vector spaces and R, S are vector subspaces of T (V ), T (W ),
then a presentation of A ∗B is

A ∗B ' T (V ⊕W )/(R⊕ S), (18)

where we use the canonical injections R ⊂ T (V ) ↪→ T (V ⊕W ), S ⊂ T (W ) ↪→ T (V ⊕W ).
It is proved in loc. cit. that A ∗ B is equipped with a complete increasing filtration

P0 ⊂ P1 ⊂ · · · ⊂ A ∗B, where Pn is the image of the part of tensor degree ≤ n of the tensor
algebra T (A ⊕ B) under the algebra morphism T (A ⊕ B) → A ∗ B induced by the linear
map A ⊕ B → A ∗ B, direct sum of the canonical maps A → A ∗ B, B → A ∗ B, and that
there exist isomorphisms

P0 ' k, P2n/P2n−1 ' ((A/k)⊗ (B/k))⊗n ⊕ ((B/k)⊗ (A/k))⊗n if n > 0,

P2n+1/P2n ' ((A/k)⊗ (B/k))⊗n ⊗ (A/k)⊕ ((B/k)⊗ (A/k))⊗n ⊗ (B/k) if n ≥ 0.

One derives from there that if A,B are equipped with augmentation morphisms A → k,
B → k with kernels I, J , then injection followed by product induces an isomorphism

k⊕
(⊕

n>0

(I ⊗ J)⊗n ⊕ (J ⊗ I)⊗n
)
⊕
(⊕

n≥0

(I ⊗ J)⊗n ⊗ I ⊕ (J ⊗ I)⊗n ⊗ J
) ∼→ A ∗B. (19)

Moreover, the augmentation morphisms A→ k, B → k induce an augmentation morphism
A ∗B → k, whose kernel I can be identified with the image of the sum of all the summands
of (19) except k. Together with the fact that (19) is an isomorphism, this implies:

Lemma 6.1. The map (A ∗ B) ⊗A I ⊕ (A ∗ B) ⊗B J → I induced by the product is an
isomorphism of left A ∗B-modules.

Let C → k be an augmented algebra and let N be a C-module. Recall that k is a C-
module through the augmentation map. Let K ⊂ C be the kernel of this map; there is an
exact sequence of C-modules

0→ K → C → k→ 0.

As C is a free C-module, one has TorCi (C,k) = 0 for any i ≥ 1. The long exact sequence for
Tor then then yields the isomorphism

TorCi (k, N) = TorCi−1(K,N) for any i ≥ 1. (20)

Let now A → k, B → k be augmented algebras and let M be an A ∗ B-module. The
isomorphism (20) implies that for any i > 1, there is an isomorphism

TorA∗Bi (k,M) ' TorA∗Bi−1 (I,M). (21)
12



Lemma 6.1 then implies that

TorA∗Bi (I,M) ' TorA∗Bi−1 ((A ∗B)⊗A I,M)⊕ TorA∗Bi−1 ((A ∗B)⊗B J,M) (22)

According to (19), inclusion followed by product induces an isomorphism of A-modules

A⊗X ∼→ A ∗B, where X = k⊕
(⊕

n>0

(J ⊗ I)⊗n
)
⊕
(⊕

n>0

(J ⊗ I)⊗n ⊗ J
)

where A ⊗X is viewed as a free A-module and A ∗ B is viewed as an A-module under left
multiplication. It follows that A ∗ B is free as an A-module, and therefore is flat over A.
Likewise, A∗B is flat over B. One derives from there isomorphisms TorA∗Bi−1 ((A∗B)⊗AI,M) '
TorAi−1(I,M) and likewise exchanging A and B, therefore

TorA∗Bi−1 ((A ∗B)⊗A I,M)⊕TorA∗Bi−1 ((A ∗B)⊗B J,M) ' TorAi−1(I,M)⊕TorBi−1(J,M). (23)

Using again (20), we obtain

TorAi−1(I,M)⊕ TorBi−1(J,M) ' TorAi (k,M)⊕ TorBi (k,M). (24)

Combining (21), (22), (23) and (24), we obtain:

Proposition 6.2. If A,B are augmented algebras and M is any A ∗B-module, then

TorA∗Bi (k,M) = TorAi (k,M)⊕ TorBi (k,M)

for any i ≥ 2.

6.2. Homological conjecture and vanishing of H3(M0,k). Let a be one of the Lie
algebras grdpth(ds0), . . . , ls in sequence (3). Assume that HC(a) i) and ii) hold. By Theorem
4.3, we then have a Lie algebra isomorphism a 'M. According to Theorem 5.3, HC(a), iii)
says that H3(a,k) = 0. Given the isomorphism a 'M, this last statement is equivalent to

H3(M,k) = 0. (25)

Set A := U(M0) and B := T (P{4}). Identity (18) implies that A ∗ B identifies with

U(M) as an augmented algebra. Proposition 6.2 and the identity Hi(g,M) = Tor
U(g)
i (k,M)

relating the homology of a Lie algebra g with values in a g-module M with the Tor groups
of its enveloping algebra ([W], Cor. 7.3.6) imply the equality Hi(M,k) = Hi(M0,k) ⊕
Hi(L(P{4}),k) for any i ≥ 2. The equality Hi(L(P{4}),k) = 0 for i ≥ 2 then implies that
Hi(M,k) = Hi(M0,k) for i ≥ 2, and therefore H3(M,k) = H3(M0,k). Equality (25) is
therefore equivalent to H3(M0,k) = 0.

We have proved:

Proposition 6.3. Assume that for a one of the Lie algebras grdpth(ds0), . . . , ls in sequence
(3), HC(a) i) and ii) hold. Then HC(a) iii) is equivalent to H3(M0,k) = 0.

6.3. The equality (ls1 ⊗ P) ∩ (P ⊗ ls1) = 0. The three last lines of [G1] contain the
computation of the homology of a complex denoted there D•,3 → D•,2 ⊗ D•,1 → Λ3(D•,1):
this complex is acyclic except at D•,3. The dual complex is Λ3(ls1)

[,]⊗id→ ls2 ⊗ ls1
[,]→ ls3; the

result of [G1] then implies that the map

Λ3(ls1)
[,]⊗id→ ls2 ⊗ ls1 (26)

is injective.
13



Since the kernel of the map [, ] : Λ2(ls1)→ ls2 is equal to P, the kernel of the map (26) is
equal to (P⊗ ls1) ∩ Λ3(ls1). It then follows form the injectivity of (26) that

(P⊗ ls1) ∩ Λ3(ls1) = 0. (27)

The subspace (ls1 ⊗ P) ∩ (P ⊗ ls1) of ls⊗31 is contained in ls1 ⊗ Λ2(ls1) (as P consists of
antisymmetric tensors) and in Λ2(ls1) ⊗ ls1 (for the same reason), therefore it is contained
in the intersection of these spaces, namely Λ3(ls1). It follows that (ls1 ⊗ P) ∩ (P ⊗ ls1) is
contained in the intersection of Λ3(ls1) with P⊗ ls1, which by (27) is zero. We have proved:

Proposition 6.4. The equality (ls1⊗P)∩ (P⊗ ls1) = 0 holds (equality of subspaces of ls⊗31 ).

6.4. The notion of koszulity. Let A = ⊕i≥0Ai be a graded connected algebra over a field
k, with finite dimensional graded pieces. Set A+ := ⊕i>0Ai; equip the space T+(A+) :=
⊕s>0A

⊗s
+ with the bidegree (syzygy, weight) by declaring An1 ⊗· · ·⊗Ans of bidegree (s, n1 +

· · · + ns). The space T+(A+) is equipped with a differential of bidegree (−1, 0) given by
a1⊗ · · ·⊗ as 7→

∑s−1
i=1 (−1)i+1a1⊗ · · ·⊗ aiai+1⊗ · · ·⊗ as. The corresponding homology group

H(T+(A+), d) inherits a bigrading, so it decomposes as H(T+(A+), d) = ⊕i,j>0TorAij(k,k).

Observe that the group TorAij(k,k) vanishes unless i ≤ j.

The graded algebra A is called Koszul iff the groups TorAij(k,k) vanish unless i 6= j ([PP],
Def. 1, p. 19, and loc. cit., identity relating Tor and Ext, end of p. 3).

When A is quadratically presented, i.e., A = T (V )/(R), where V is a finite dimensional
vector space and R ⊂ V ⊗2 is a vector subspace, and V has degree 1, the diagonal homol-
ogy ⊕i>0TorAii(k,k) identifies as a graded vector space with the positive part of the graded
coalgebra C(A) := ⊕n≥0Cn(A), where Cn(A) = ∩n−2i=0 V

⊗i ⊗ R ⊗ V ⊗n−2−i ([LV], Proposition
3.3.2).

6.5. Koszulity of enveloping algebras. Let V be a finite dimensional vector space and
R ⊂ L2(V ) be a vector subspace. Let g := L(V )/(R) be the corresponding Lie algebra. Its
enveloping algebra will be denoted by A, so A = U(g) = T (V )/(R). If we assign to V the
degree 1, this is a quadratic algebra.

There are canonical isomorphisms Hi(g) ' Ci(A) for i = 1, 2. Together with the equality
Hi(g) = ⊕jTorijA(k,k) (see [W], Cor. 7.3.6) and the isomorphism Ci(A) ' ToriiA(k,k) ([LV],
Proposition 3.3.2), this implies

TorijA(k,k) = 0 for i 6= j and i = 1, 2. (28)

Assume now that (V ⊗R)∩ (R⊗V ) = 0. Then Cn(A) = 0 for any n ≥ 3, therefore (using
again [LV], Proposition 3.3.2)

ToriiA(k,k) = 0 for i ≥ 3. (29)

Given (28), the koszulity of A is equivalent to

TorijA(k,k) = 0 for i 6= j and i ≥ 3.

Given (29), the latter statement is equivalent to

TorijA(k,k) = 0 for i ≥ 3 and any j > 0.

This statement is equivalent to

⊕j>0TorijA(k,k) = 0 for i ≥ 3,
14



which by [W], Cor. 7.3.6 is equivalent to

Hi(g,k) = 0 for i ≥ 3.

Taking into account Proposition 5.1, this is equivalent to the vanishing of H3(g,k).
We have proved:

Proposition 6.5. Let V be a finite dimensional vector space and R ⊂ L2(V ) be a vector
subspace. Assume that (V ⊗ R) ∩ (R ⊗ V ) = 0. Let g := L(V )/(R) be the Lie algebra with
space of generators V and space of relations R. The following conditions are equivalent:

i) the algebra U(g), equipped with the grading for which V has degree 1, is Koszul;
ii) H3(g,k) = 0.

Note that in this proposition, the category of finite dimensional vector spaces can be
replaced by that of Z≥0-graded vector spaces with finite dimensional graded pieces.

Combining Proposition 6.4 with this variant of Proposition 6.5 applied to V = ls1, R = P
and g = M0, we obtain:

Proposition 6.6. The following statements are equivalent:

i) H3(M0,k) = 0;
ii) the algebra U(M0), equipped with the depth grading, is Koszul.

Remark 6.7. As M0 is graded by depth, so is its homology group H3(M0,k). If H3(M0,k)d
denotes the depth d part of this group, then H3(M0,k)d = 0 for d = 1, 2 for obvious reasons.
Proposition 6.4 implies that H3(M0,k)3 = 0.

6.6. Combining Theorem 4.3, Proposition 6.3 and Proposition 6.6, we obtain:

Theorem 6.8. Let a be one of the Lie algebras grdpth(ds0), . . . , ls in sequence (3).

(a) the conjunction of HC(a) i) and ii) is equivalent to the isomorphism a 'M;
(b) granted the conjunction of HC(a) i) and ii), HC(a) iii) is equivalent to either of the

following statements: (1) the vanishing of H3(M0,k); (2) the koszulity of the algebra
U(M0), equipped with the depth grading (for which ls1 has depth 1).
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Nombres Bordeaux 15 (2003), 411-478.
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