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Abstract. The main objectives of this article are 1) to introduces some basic

postulates for quantum multi-particle systems, and 2) to develop a universal
field theory for interacting multi-particle systems coupling both particle fields

and interacting fields. By carefully examining the nature of interactions be-

tween multi-particles, we conclude that multi-particle systems must obey both
the gauge symmetry and the principle of interaction dynamics (PID). Hence a

few basic postulates for multi-particle systems are introduced based on gauge

invariance and PID, leading to a field theory for interacting multi-particle sys-
tems. A direct consequence of the field theory is the derivation of general

atomic spectrum equations. Another important application of this field the-

ory is a unified field model coupling matter fields, with the energy-momentum
tensor Tµν , geometrized as hoped by Einstein and Nambu.
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1. Introduction

Classical quantum dynamic equations describe single or a few particle systems.
The existing model for a multi-particle system is non-relativistic and is based on
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prescribing the interaction between particles using such potentials as the Coulomb
potential. As far as we know, there is still no good model for a multi-particle system,
which takes also into consideration the dynamic interactions between particles.

The main objectives of this article are 1) to introduces some basic postulates
for quantum multi-particle systems, and 2) to develop a universal interactive field
theory for multi-particle systems coupling both particle fields and interaction fields.
Hereafter we describe some main ingredients of this study.

1. The main obstacle for establishing a field theory for an interacting multi-
particle system is the lack of basic principles to describe the dynamic interactions
of the particles. To seek the needed principles, we proceed with two observations.

The first observation is that one natural outcome of the field theory of four
interactions developed recently by the authors is that the coupling constants for
the U(1) × SU(2) × SU(3) gauge theory play the role of the three charges e, gw
and gs for electromagnetism, the weak and the strong interaction.

Now we consider an N -particle system with each particle carrying an interaction
charge g. Let this be a fermionic system, and the Dirac spinors be given by

Ψ = (ψ1, · · · , ψN )T ,

which obeys the Dirac equations:

(1.1) iγµDµΨ +MΨ = 0,

where M is the mass matrix, and

(1.2) DµΨ = ∂µΨ + igGΨ,

where G = (Gijµ ) is an Hermitian matrix, representing the interacting potentials
between the N -particles generated by the interaction charge g.

Now let

{τ0, τ1, · · · , τK | K = N2 − 1}
be a basis of the set of all Hermitian matrices, where τ0 = I is the identity, and
τa (1 ≤ a ≤ N2 − 1) are the traceless Hermitian matrices. Then the Hermitian
matrix G = (Gijµ ) and the differential operator Dµ in (1.1) can be expressed as

G = G0
µI +Gaµτa,

Dµ = ∂µ + igG0
µ + igGaµτa.

Consequently the Dirac equations (1.1) are rewritten as

(1.3) iγµ[∂µ + igG0
µ + igGaµτa]Ψ +MΨ = 0.

The second observation is that the energy contributions of the N particles are
indistinguishable, which implies that the SU(N) gauge invariance. Hence (1.3) are
exactly the Dirac equations in the form of SU(N) gauge fields {Gaµ | 1 ≤ a ≤ N2−1}
with a given external interaction field G0

µ.
With these two observations, it is natural for us to postulate that (see Postulate

3.7)
the Lagrangian action for an N -particle system satisfy the SU(N)
gauge invariance.

Also, it is then natural to postulate that (see Postulate 3.8)
gGaµ represent the interaction potentials between the particles.
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2. In an SU(N) gauge theory, the gauge fields depend on the specific represen-
tation generators {τ1, · · · , τK}. The principle of representation invariance (PRI)
introduced in [5] amounts to saying that an SU(N) gauge theory should be invari-
ant under the SU(N) representation transformation

(1.4) τ̃a = xbaτb for X = (xba) being a nondegenerate complex matrix.

One important consequence of PRI is that there exists a constant SU(N) tensor

αNa = (αN1 , · · · , αNN ),

such that the contraction field using PRI

(1.5) Gµ = αNa G
a

is independent of the SU(N) representation τa, and is the interaction field which
can be experimentally observed. This observation leads us to postulate that (see
Postulate 3.9)

for an N -particle system, only the interaction field Gµ in (1.5) can be
measured, and is the interaction field under which this system interacts
with other external systems.

3. Multi-particle systems are layered, and with the aforementioned postulates
and basic symmetry principles, we are able to determine in a unique fashion field
equations for different multi-particle systems.

For example, given an N -particle system consisting of N fermions with given
charge g, the SU(N) gauge symmetry dictates uniquely the Lagrangian density,
given in two parts: 1) the sector of SU(N) gauge fields LG and 2) the Dirac sector
of particle fields LD (see (5.4)):

(1.6)

LG = − 1

4~c
GabgµαgνβGaνµGbαβ ,

LD = Ψ̄

[
iγµ

(
∂µ +

ig

~c
G0
µ +

ig

~c
Gaµτa

)
− c

~
M

]
Ψ,

where

Gab =
1

2
Tr(τaτ

†
b ),

Gaµν = ∂µG
a
ν − ∂νGaµ +

g

~c
λabcG

b
µG

c
ν .

The combined action is invariant under 1) the SU(N) gauge transformation, 2) the
representation generator transformation (1.4), and 3) the Lorentz transformation.

The field equations are then derived by using the principle of interaction dynam-
ics (PID) for the interaction fields Gaµ, and by using the principle of Lagrangian
Dynamics (PLD) for the Dirac spinor fields:

Gab
[
∂νGbνµ −

g

~c
λbcdg

αβGcαµG
d
β

]
− gΨ̄γµτaΨ(1.7)

=

[
∂µ −

k2

4
xµ +

gα

~c
Gµ +

gβ

~c
G0
µ

]
φa for 1 ≤ a ≤ N2 − 1,

iγµ
[
∂µ +

ig

~c
G0
µ +

ig

~c
Gaµτa

]
Ψ− c

~
MΨ = 0,(1.8)

where G0
µ is the interaction field of external systems, α and β are constants, taking

values 0 and ±1 determined by the underlying physical situations. Here PID was
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first postulated in [4] by the authors, evidenced by the existence of dark matter
and dark energy.

Now the interaction between the N particles is clearly described by the gauge
fields Gaµ and the dual fields φa based on PID. In a nutshell, the field equations for
an N fermionic particle system are completely determined by the gauge invariance
combined with PID, stated as basic postulates earlier.

We also note that the Lagrangian action obeys the gauge invariance, but the field
equations spontaneously break the gauge symmetry, due essentially to the fields on
the right-hand sides of the field equations.

4. Also, we establish a unified field model coupling matter fields, which matches
the vision of Einstein and Nambu, as stated in Nambu’s Nobel lecture [10] (see
Section 6.2). Basically, one needs to geometrize the energy-momentum tensor Tµν
appearing in the Einstein field equations. For example, for multi-particle system
under gravity and electromagnetism, using the basic postulates as outlined above,
a unified field model can be naturally derived so that the energy-momentum tensor
Tµν is derived from first principles and is geometrized; see Section 6.2 for details.

The paper is organized as follows. Section 2 examines the classical multi-particle
systems and Section 4 recalls PID and PRI. Section 3 introduces new basic postu-
lates for multi-particle systems, leading to field equations for multi-particle Sections
in Section 5. Section 6 derives unified field model coupling matter fields and Section
7 gives atomic spectrum equations.

2. Classical Theory of Multi-Particle Systems

We start with the known model of multi-particle systems. Consider an N -particle
system with particles

(2.1) A1, · · · , AN .
Let xk = (x1k, x

2
k, x

3
k) ∈ R3 be the coordinate of Ak, and

(2.2) ψ = ψ(t, x1, · · · , xk)

be the wave function describing the N -particle system (2.1). Then, the classical
theory for (2.1) is provided by the Schrödinger equation

(2.3) i~
∂ψ

∂t
= −

N∑
k=1

~2

2mk
∆kψ +

∑
j 6=k

V (xj , xk)ψ,

where V (xj , xk) is the potential energy of interactions between Aj and Ak, mk is
the mass of Ak, and

∆k =
∂2

(∂x1k)2
+

∂2

(∂x2k)2
+

∂2

(∂x3k)2
.

The wave function ψ satisfies the normalization condition∫
R3

· · ·
∫
R3

|ψ|2dx1 · · · dxN = 1.

Namely, the physically

|ψ(t, x1, · · · , xN )|2

represents the probability density of A1, · · · , AN appearing at x1, · · · , xN at time
t.
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It is clear that the Schrödinger equation (2.3) for an N -particle system is only
an approximate model:

• It is non-relativistic model;

• The model does not involve the vector potentials ~A of the interactions
between particles.
• By using coordinate xk to represent the particle Ak amounts essentially

to saying that the wave function ψ satisfying (2.3) can only describe the
statistic properties of the system (2.1), and contains no information for
each individual particle Ak (1 ≤ k ≤ N).
• The model is decoupled with interaction fields, which are given functions

appearing in the interacting multi-particle model.

In fact, the most remarkable characteristic of interacting multi-particle systems
is that both particle fields and interaction fields are closely related. Therefore, a
complete field model of multi-particle systems have to couple both the particle field
equations and the interaction field equations. In particular, a precise unified field
theory should be based on the field model of the multi-particle system coupled with
the four fundamental interactions.

3. Basic Postulates for Multi-Particle Quantum Physics

3.1. Basic postulates of quantum mechanics. For completeness, we first recall
the basic postulates of quantum physics.

Postulate 3.1. A quantum system consists of some micro-particles, which are
described by a set of complex value functions ψ = (ψ1, · · · , ψN )T , called wave func-
tions. In other words, each quantum system is identified by a set of wave functions
ψ:

(3.1) a quantum system = ψ,

which contain all quantum information of this system.

Postulate 3.2. For a single particle system described by a wave function ψ, its
modular square

|ψ(x, t)|2

represents the probability density of the particle being observed at point x ∈ R3 and
at time t. Hence, ψ satisfies that ∫

R3

|ψ|2dx = 1.

Postulate 3.3. Each observable physical quantity L corresponds to an Hermitian
operator L̂, and the values of the physical quantity L are given by eigenvalues λ of
L̂:

L̂ψλ = λψλ,

and the eigenfunction ψλ is the state function in which the physical quantity L
takes value λ. In particular, the Hermitian operators corresponding to position x,
momentum p and energy E are given by

(3.2)

position operator: x̂ψ = xψ,

momentum operator: p̂ψ = −i~∇ψ,

energy operator: Êψ = i~
∂ψ

∂t
.
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Postulate 3.4. For a quantum system ψ and a physical Hermitian operator L̂, ψ
can be expanded as

(3.3) ψ =
∑

αkψk +

∫
αλψλdλ,

where ψk and ψλ are the eigenfunctions of L̂ corresponding to discrete and contin-
uous eigenvalues respectively. In (3.3) for the coefficients αk and αλ, their modular
square |αk|2 and |αλ|2 represent the probability of the system ψ in the states ψk and
ψλ. In addition, the following integral, denoted by

(3.4) 〈ψ|L̂|ψ〉 =

∫
ψ†(L̂ψ)dx,

represents the average value of physical quantity L̂ of system ψ.

Postulate 3.5. For a quantum system with observable physical quantities l1, · · · , lN ,
if they satisfy a relation

R(l1, · · · , lN ) = 0,

then the quantum system ψ (see (3.1)) satisfies the equation

R(L̂1, · · · , L̂N )ψ = 0,

where L̂k are the Hermitian operators corresponding to lk (1 ≤ k ≤ N), provided

that R(L̂1, · · · , L̂N ) is a Hermitian.

We remark that in addition to the three basic Hermitian operators given by
(3.2), the other Hermitian operators often used in quantum physics are as follows:

(3.5)

angular momentum: L̂ = x̂× p̂ = −i~~r ×∇,

spin operator: Ŝ = s~~σ,
scalar momentum: ~p0 = i~(~σ · ∇) ( massless fermion),

scalar momentum: p̂1 = −i~(~α · ∇) ( massive fermion),

Hamiltonian energy : Ĥ = K̂ + V̂ + M̂,

where s is the spin, ~σ and ~α are the Pauli and Dirac matrix vectors, and K̂, V̂ , M̂
are the kinetic energy, potential energy, and mass operators.

3.2. Basic postulates for multi-particle quantum systems. As mentioned
earlier, the dynamic models for multi-particle quantum systems have to couple
both particle and interaction fields. Therefore there should be some added quantum
rules for the systems. In the following we propose the basic postulates for N -particle
quantum systems.

First of all, the physical systems have to satisfy a few fundamental physical
principles introduced below.
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Postulate 3.6. Any N -particle quantum system has to obey the physical funda-
mental principles such as:

(3.6)

Einstein General Relativity,

Lorentz Invariance,

Gauge Invariance,

Gauge Representation Invariance (PRI),

Principle of Lagrange Dynamics (PLD),

Principle of Interaction Dynamics (PID),

where the gauge invariance means the invariance of the Lagrangian action under
corresponding gauge transformations.

We note that in general multi-particle systems are layered, and may consist of
numerous sub-systems. In particular, we know that the weak and strong inter-
actions are also layered. Hence, here we consider the same level systems, i.e. the
systems which consist of identical particles or sub-systems possessing the same level
of interactions.

For multi-particle systems with N same level subsystems Ak (1 ≤ k ≤ N), the
energy contributions of Ak are indistinguishable. Hence, the Lagrangian actions
for the N -particle systems satisfy SU(N) gauge invariance. Thus we propose the
following basic postulate:

Postulate 3.7. An N -particle system obeys the SU(N) gauge invariance, i.e. the
Lagrangian action of this system is invariant under the SU(N) gauge transforma-
tion

(3.7)

 ψ̃1

...

ψ̃N

 = Ω

ψ1

...
ψN

 , Ω ∈ SU(N),

where ψ1, · · · , ψN are the wave functions of the N particles.

We now need to explain the physical significance of the SU(N) gauge fields
induced by Postulate 3.7.

Let each particle of the N -particle system carry an interaction charge g (for
example a weak charge g = gw). Then, there are interactions present between
the N particles. By the SU(N) gauge theory, the gauge invariant 4-dimensional
energy-momentum operator is given by

(3.8) Dµ = ∂µ + igGaµτa for 1 ≤ a ≤ N2 − 1,

and the interaction energy generated by the N particles is

(3.9) E =

{
Ψ̄(iγµDµΨ) for fermions,

|DµΨ|2 for bosons,

where Ψ = (ψ1, · · · , ψN )T , and Dµ is as in (3.8). From (3.8) and (3.9) we obtain
the physical explanation to the SU(N) gauge fields Gaµ, stated in the following
postulate:
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Postulate 3.8. For an N -particle system with each particle carrying an interaction
charge g, the N particles induce dynamic interactions between them, and the SU(N)
gauge fields

(3.10) gGaµ for 1 ≤ a ≤ N2 − 1

stand for the interaction potentials between the N particles.

The N particles induce dynamic interactions between them in terms of the
SU(N) gauge fields (3.10). These interaction fields cannot be measured experimen-
tally because they depend on the choice of generator representation τa of SU(N).
By PRI given in the next section, there is a constant SU(N) tensor

(3.11) αNa = (αN1 , · · · , αNN ),

such that the contraction field using PRI

(3.12) Gµ = αNa G
a

is independent of the SU(N) representation τa. The field (3.12) is the interaction
field which can be experimentally observed. Thus we propose the following basic
postulate.

Postulate 3.9. For an N -particle system, only the interaction field given by (3.12)
can be measured, and is the interaction field under which this system interacts with
other external systems.

Remark 3.1. Postulates 3.6-3.9, together with the Postulates 3.1-3.5, form a com-
plete foundation for quantum physics. In fact, without Postulates 3.6-3.9, we cannot
establish the quantum physics of multi-particle systems.

The main motivation to introduce Postulates 3.7 and 3.8 are as follows. Consider
an N -particle system with each particle carrying an interaction charge g. Let this
be a fermionic system, and the Dirac spinors be given by

Ψ = (ψ1, · · · , ψN )T .

By Postulates 3.3 and 3.5, the Dirac equations for this system can be expressed in
the general form

(3.13) iγµDµΨ +MΨ = 0,

where M is the mass matrix, and

(3.14) DµΨ = ∂µ

ψ1

...
ψN

+ ig

G11
µ · · · G1N

µ
...

...
GN1
µ · · · GNNµ


ψ1

...
ψN

 ,

where G = (Gijµ ) is an Hermitian matrix, representing the interaction potentials
between the N particles generated by the interaction charge g.

Notice that the space consisting of all Hermitian matrices

H(N) = {G| G is an N-th order Hermitian matrix}

is an N2−dimensional linear space with basis

(3.15) τ0, τ1, · · · , τK with K = N2 − 1,
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where τ0 = I is the identity, and τa (1 ≤ a ≤ N2 − 1) are the traceless Hermit-
ian matrices. Hence, the Hermitian matrix G = (Gijµ ) ∈ H(N) in (3.14) can be
expressed as

G = G0
µI +Gaµτa with τa as in (3.15).

Thus, the differential operator in (3.14) is in the form

(3.16) Dµ = ∂µ + igG0
µ + igGaµτa.

The equations (3.13) with (3.16) are just the Dirac equations in the form of
SU(N) gauge fields {Gaµ | 1 ≤ a ≤ N2 − 1} with a given external interaction field

G0
µ. Thus, based on Postulate 3.6, the gauge invariance of an N -particle system

and the expressions (3.13) and (3.16) of the N fermionic particle field equations
dictate Postulates 3.7 and 3.8.

The derivation here indicates that Postulates 3.7 and 3.8 can be considered as the
consequence of 1) the gauge invariance stated in Postulate 3.6, and 2) the existence
of interactions between particles as stated in (3.14), which can be considered as an
axiom.

4. Two Fundamental Principles

4.1. Principle of Interaction Dynamics (PID). The main objective in this
section is to recall a fundamental principle of physics, the principle of interaction
dynamics (PID), first introduced in [4] by the authors. Intuitively, PID takes the
variation of the action functional under energy-momentum conservation constraint.
As demonstrated in [6, 4], there are strong physical evidence and motivations for
the validity of PID, including

(1) the discovery of dark matter and dark energy,
(2) the non-existence of solutions for the classical Einstein gravitational field

equations in general cases,
(3) the principle of spontaneous gauge-symmetry breaking, and
(4) the theory of Ginzburg-Landau superconductivity.

Let (M, gµν) be the 4-dimensional space-time Riemannian manifold with {gµν}
the Minkowski type Riemannian metric. For an (r, s)-tensor u we define the A-
gradient and A-divergence operators ∇A and divA as

∇Au = ∇u+ u⊗A,
divAu = div u−A · u,

where A is a vector field and here stands for a gauge field, ∇ and div are the
usual gradient and divergent covariant differential operators. Let F = F (u) be a
functional of a tensor field u. A tensor u0 is called an extremum point of F with
the divA-free constraint, if u0 satisfies the equation

(4.1)
d

dλ

∣∣∣
λ=0

F (u0 + λX) =

∫
M

δF (u0) ·X
√
−gdx = 0 ∀X with divAX = 0.

Principle 4.1 (Principle of Interaction Dynamics). (1) For all physical inter-
actions there are Lagrangian actions

(4.2) L(g,A, ψ) =

∫
M

L(gµν , A, ψ)
√
−gdx,
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where g = {gµν} is the Riemannian metric representing the gravitational
potential, A is a set of vector fields representing the gauge potentials, and
ψ are the wave functions of particles.

(2) The actions (4.2) satisfy the invariance of general relativity, Lorentz in-
variance, gauge invariance and the gauge representation invariance.

(3) The states (g,A, ψ) are the extremum points of (4.2) with the divA-free
constraint (4.1).

Based on PID and the Orthogonal Decomposition Theorems in [4], the field
equations with respect to the action (4.2) are given in the form

δ

δgµν
L(g,A, ψ) = (∇µ + αbA

b
µ)Φν ,(4.3)

δ

δAaµ
L(g,A, ψ) = (∇µ + βabA

b
µ)ϕa,(4.4)

δ

δψ
L(g,A, ψ) = 0,(4.5)

where Aaµ = (Aa0 , A
a
1 , A

a
2 , A

a
3) are the gauge vector fields for the electromagnetic,

the weak and the strong interactions, Φν = (Φ0,Φ1,Φ2,Φ3) in (4.3) is a vector field
induced by gravitational interaction, ϕa are the scalar fields generated from the
gauge fields Aaµ, and αb, β

a
b are coupling parameters.

PID is based on variations with divA-free constraint defined by (4.1). Physically,
the conditions

divAX = 0 in (4.1)

stand for the energy-momentum conservation constraints.

4.2. Principle of representation invariance (PRI). We now recall the prin-
ciple of representation invariance (PRI) first postulated in [5]. We proceed with
the SU(N) representation. In a neighborhood U ⊂ SU(N) of the unit matrix, a
matrix Ω ∈ U can be written as

Ω = eiθ
aτa ,

where

(4.6) τa = {τ1, · · · , τK} ⊂ TeSU(N), K = N2 − 1,

is a basis of generators of the tangent space TeSU(N). An SU(N) representation
transformation is a linear transformation of the basis in (4.6) as

(4.7) τ̃a = xbaτb,

where X = (xba) is a nondegenerate complex matrix.
Mathematical logic dictates that a physically sound gauge theory should be

invariant under the SU(N) representation transformation (4.7). Consequently, the
following principle of representation invariance (PRI) must be universally valid and
was first postulated in [5].

Principle 4.2 (Principle of Representation Invariance). All SU(N) gauge theories
are invariant under the transformation (4.7). Namely, the actions of the gauge
fields are invariant and the corresponding gauge field equations as given by (4.3)-
(4.5) are covariant under the transformation (4.7).

Direct consequences of PRI include the following; see also [5] for details:



FIELD THEORY FOR MULTI-PARTICLE SYSTEM 11

• The physical quantities such as θa, Aaµ, and λcab are SU(N)-tensors under
the generator transformation (4.7).
• The tensor

(4.8) Gab =
1

4N
λcadλ

d
cb =

1

2
Tr(τaτ

†
b )

is a symmetric positive definite 2nd-order covariant SU(N)-tensor, which
can be regarded as a Riemannian metric on SU(N).
• The representation invariant action is

L =

∫
M

−1

4
GabgµαgνβF aµνF bαβ + Ψ̄

[
iγµ(∂µ + igAaµτa)−m

]
Ψ,

and the representation invariant gauge field equations are

Gab
[
∂νF bνµ − gλbcdgαβF cαµAdβ

]
− gΨ̄γµτaΨ = (∂µ + αbA

b
µ)φa,

(iγµDµ −m)Ψ = 0.

As we indicated in [5], the field models based on PID appear to be the only model
which obeys PRI. In particular, both the standard model and the electroweak theory
violate PRI, and consequently they are approximate models of the fundamental
interactions of Nature.

5. Field Equations of Multi-Particle Systems

Based on the basic axioms given by Postulates 3.6-3.9, we can establish field
equations for various levels of N -particle systems. We proceed in several different
cases.

Fermionic systems

ConsiderN fermions with interaction charge g, the wave functions (Dirac spinors)
are given by

(5.1) Ψ = (ψ1, · · · , ψN )T , ψk = (ψ1
k, ψ

2
k, ψ

3
k, ψ

4
k)T for 1 ≤ k ≤ N,

with the mass matrix

(5.2) M =

m1 0
. . .

0 mN

 .

By Postulates 3.6 and 3.7, the Lagrangian action for the N -particle system (5.1)-
(5.2) must be in the form

(5.3) L =

∫
(LG + LD)dx,

where LG is the sector of the SU(N) gauge fields, and LD is the Dirac sector of
particle fields:

(5.4)

LG = − 1

4~c
GabgµαgνβGaνµGbαβ ,

LD = Ψ̄

[
iγµ

(
∂µ +

ig

~c
G0
µ +

ig

~c
Gaµτa

)
− c

~
M

]
Ψ,
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where Gaµ (1 ≤ a ≤ N2−1) are the SU(N) gauge fields representing the interactions

between the N particles, τa (1 ≤ a ≤ N2 − 1) are the generators of SU(N), and

Gab =
1

2
Tr(τaτ

†
b ),

Gaµν = ∂µG
a
ν − ∂νGaµ +

g

~c
λabcG

b
µG

c
ν .

According to PID and PLD, for the action (5.3) the field equations are given by

(5.5)

δL

δGaµ
= Dµφa by PID,

δL

δΨ
= 0 by PLD,

where Dµ is the PID gradient operator given by

Dµ =
1

~c

(
∂µ −

1

4
k2xµ +

gα

~c
Gµ +

gβ

~c
G0
µ

)
,

Gµ is as in (3.12), α and k are parameters, k−1 stands for the range of attracting

force of the interaction, and
(
gα
~c
)−1

is the range of the repelling force.
Thus, by (5.4) and (5.5) we derive the field equations of the N -particle system

(5.1)-(5.2) as follows

Gab
[
∂νGbνµ −

g

~c
λbcdg

αβGcαµG
d
β

]
− gΨ̄γµτaΨ(5.6)

=

[
∂µ −

1

4
k2xµ +

gα

~c
Gµ +

gβ

~c
G0
µ

]
φa for 1 ≤ a ≤ N2 − 1,

iγµ
[
∂µ +

ig

~c
G0
µ +

ig

~c
Gaµτa

]ψ1

...
ψN

− c

~
M

ψ1

...
ψN

 = 0,(5.7)

where γµ = gµνγ
ν , and G0

µ is the interaction field of external systems. It is by this

field G0
µ that we can couple external sub-systems to the model (5.6)-(5.7).

Remark 5.1. In the field equations of multi-particle systems there is a gauge fixing
problem. In fact, we know that the action (5.3)-(5.4) is invariant under the gauge
transformation

(5.8)

Ψ̃ = eiθ
aτaΨ,

G̃aµτa = Gaµe
iθbτbτae

−iθbτb +
i

g
∂µe

iθbτbe−iθ
bτb .

Hence if (Ψ, Gaµ) is a solution of

(5.9) δL = 0,

then (Ψ̃, G̃aµ) is a solution of (5.9) as well. In (5.8) we see that G̃aµ have N2 − 1
free functions

(5.10) θa(x) with 1 ≤ a ≤ N2 − 1.

In order to eliminate the N2 − 1 freedom of (5.10), we have to supplement N2 − 1
gauge fixing equations for the equation (5.9). Now, as we replace the PLD equation
(5.9). By the PID equations (5.5), (5.8) breaks the gauge invariance. Therefore
the N2 − 1 freedom of (5.10) is eliminated. However, in the PID equations (5.5)
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there are additional N2 − 1 new unknown functions φa (1 ≤ a ≤ N2 − 1). Hence,
the gauge fixing problem still holds true. There are two possible ways to solve this
problem:

(1) there might exist some unknown fundamental principles, which can provide
the all or some of the N2 − 1 gauge fixing equations; and

(2) there might be no general physical principles to determine the gauge fixing
equations, and these equations will be determined by underlying physical
system.

Bosonic systems

Consider N bosons with charge g, the Klein-Gordon fields are

Φ = (ϕ1, · · · , ϕN )T ,

and the mass matrix is given by (5.2). The action is

(5.11) L =

∫
(LG + LKG)dx

where LG is as given by (5.4), and LKG is the Klein-Gordon sector given by

LKG =
1

2
|DµΦ|2 +

1

2

( c
~

)2
|MΦ|2

Dµ = ∂µ +
ig

~c
G0
µ +

ig

~c
Gaµτa.

Then, the PID equations of (5.11) are as follows

Gab
[
∂νGbνµ −

g

~c
λbcdg

αβGcαµG
d
β

]
+
ig

2

[
(DµΦ)†(τaΦ)− (τaΦ)†(DµΦ)

]
(5.12)

=

[
∂µ −

1

4
k2xµ +

g

~c
αGµ +

g

~c
βG0

µ

]
φa for 1 ≤ a ≤ N2 − 1,

DµDµ

ϕ1

...
ϕN

− ( c~)2M2

ϕ1

...
ϕN

 = 0.(5.13)

Mixed systems

Consider a maxed system consisting of N1 fermions with n1 charges g and N2

bosons with n2 charges g, and the fields are

Dirac fields: Ψ = (ψ1, · · · , ψN1
)T ,

Klein-Gordon fields: Φ = (ϕ1, · · · , ϕN2
)T .

The interaction fields of this system are SU(N1) × SU(N2) gauge fields, SU(N1)
gauge fields are for fermions, and SU(N2) for bosons:

{Gaµ |1 ≤ a ≤ N2
1 − 1} for Dirac fields Ψ,

{G̃kµ | 1 ≤ k ≤ N2
2 − 1} for Klein-Gordon fields Φ.

The action is given by

(5.14) L =

∫ [
L1
G + L2

G + LD + LKG
]
dx,
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where L1
G and L2

G are the sectors of SU(N1) and SU(N2) gauge fields as given in
(5.4) with N = N1 and N = N2 respectively.

Define the two total gauge fields of SU(N1) and SU(N2), as defined by (3.11)-
(3.12):

(5.15)
Gµ = αN1

a Gaµ for 1 ≤ a ≤ N2
1 − 1,

G̃µ = αN2

k G̃kµ for 1 ≤ k ≤ N2
2 − 1.

Namely, LD and LKG are given by

LD = Ψ̄

[
iγµ

(
∂µ +

in1g

~c
G0
µ +

in1g

~c
Gaµτ

1
a

)
− c

~
M1

]
Ψ,

LKG =
1

2

∣∣∣ (∂µ +
in2g

~c
G0
µ +

in2g

~c
G̃kµτ

2
k

)
Φ
∣∣∣2 +

1

2

( c
~

)2
|M2Φ|2,

where G0
µ is the external field.

Thus, we derive the field equations for mixed multi-particle systems expressed
in the following form

G1ab
[
∂νGbνµ −

n1g

~c
λb1cdg

αβGcαµG
d
β

]
− n1gΨ̄γµτ

1
aΨ(5.16)

=

[
∂µ −

1

4
k21xµ +

n1g

~c
α1Gµ +

n2g

~c
α2G̃µ

]
φa for 1 ≤ a ≤ N2 − 1,

G2kl
[
∂νG̃lνµ −

n2g

~c
λl2ijg

αβG̃iαµG̃
j
β

]
+
in1g

2

[
(DµΦ)†(τ2kΦ)− (τ2kΦ)†(DµΦ)

]
(5.17)

=

[
∂µ −

1

4
k22xµ +

n1g

~c
β1Gµ +

n2g

~c
β2G̃µ

]
φ̃k for 1 ≤ k ≤ N2

2 − 1,

iγµ
(
∂µ +

in1g

~c
G0
µ +

in1g

~c
Gaµτ

1
a

)
Ψ− c

~
M1Ψ = 0,(5.18)

gµνDµDνΦ−
( c
~

)2
M2

2 Φ = 0,(5.19)

where Gµ and G̃µ are as in (5.15), and Dµ is defined by

Dµ = ∂µ +
in2g

~c
G0
µ +

in1g

~c
G̃kµτ

2
k .

We remark here that the coupling interaction between fermions and bosons is
directly represented on the right hand side of gauge field equations (5.16) and
(5.17), due to the presence of the dual interaction fields based on PID. Namely,
the interactions between particles in an N -particle system are achieved through
both the interaction gauge fields and the corresponding dual fields. This fact again
validates the importance of PID.

Another remark is that the Lagrangian action (5.14) obeys gauge invariance, but
the field equations (5.16) and (5.17) spontaneously break the gauge symmetry, due

essentially to the fields Gµ and G̃µ on the right-sides of the field equations.

Layered systems

Let a system be layered consisting of two levels: 1) level A consists of K sub-
systems A1, · · · , AK , and 2) level B is level inside of each sub-system Aj , which
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consists of N particles Bj1, · · · , B
j
N :

(5.20)
at level A : A = {A1, · · · , AK},

at level B : Aj = {Bj1, · · · , B
j
N} for 1 ≤ j ≤ K.

Each particle Bji carries n charges g.
Let the particle field functions be

at level A : ΨA = (ψA1
, · · · , ψAK

),

at level B : ΨBj
= (ψBj1

, · · · , ψBjN
) for 1 ≤ j ≤ K.

The interaction is the SU(K)× SU(N) gauge fields:

at level A : SU(K) gauge fields Aaµ 1 ≤ a ≤ K2 − 1,

at level B : SU(N) gauge fields (Bj)
k
µ 1 ≤ k ≤ N2 − 1.

Without loss of generality, we assume A and B are the fermion systems. Thus
the action of this layered system is

(5.21) L =

∫ [
LAG +

K∑
j=1

LBjG + LAD +

K∑
j=1

LBjD

]
dx,

where

(5.22)

LAG = the sector of SU(K) gauge fields,

LAD = Ψ̄A

[
iγµ
(
∂µ +

inN

~c
gG0

µ +
inN

~c
gAaµτ

K
a

)
− c

~
MA

]
ΨA,

LBjG = the j-th the sector of SU(N) gauge fields,

LBjD = Ψ̄Bj

[
iγµ
(
∂µ +

ing

~c
G0
µ +

ing

~c
(Bj)

k
µτ

N
k

)
− c

~
MBj

]
ΨBj ,

where G0
µ is the external field. The corresponding PID field equations of the layered

multi-particle system (5.20) follow from (5.21) and (5.22), and here we omit the
details.

Remark 5.2. Postulate 3.9 is essentially another expression of PRI, which is very
crucial to couple all sub-systems together to form a complete set of field equations
for a given multi-particle system. In particular, this approach is natural and unique
to derive models for multi-particle systems, satisfying all fundamental principles of
(3.6) and the gauge symmetry breaking principle (Principle 6.3). It is also a unique
way to establish a unified field theory coupling the gravity and other interactions in
various levels of multi-particle systems. In the next section we discuss this topic.

6. Unified Field Model Coupling Matter Fields

6.1. General Principles of the Unified Field Theory. We recall and examine
some basic ingredients of the unified field theory developed recently by the au-
thors, based on PID and PRI recapitulated earlier. This theory focuses on 1) the
interaction field particles, and 2) the interaction potentials.

Symmetry of fundamental interactions
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One crucial component of this theory is that laws of the fundamental interactions
are dictated by the following symmetries:

(6.1)

gravity: general relativity,

electromagnetism: gauge invariance,

weak interaction: gauge invariance,

strong interaction: gauge invariance,

Also, the last three interactions in (6.1) obey the Lorentz invariance and PRI.
As a natural outcome, the three charges e, gw, gs are the coupling constants of the
corresponding gauge fields.

Following the simplicity principle of laws of Nature, the three basic symmetries—
the Einstein general relativity, the Lorentz invariance and the gauge invariance—
uniquely determine the interaction fields and their Lagrangian actions for the four
interactions.

Mechanism of fundamental interactions

Albert Einstein was the first physicist who postulated that the gravitational
force is caused by the space-time curvature. However, Yukawa’s viewpoint, entirely
different from Einstein’s, is that the other three fundamental forces take place
through exchanging intermediate bosons such as photons for the electromagnetic
interaction, W± and Z intermediate vector bosons for the weak interaction, and
gluons for the strong interaction.

In the same spirit as the Einstein’s principle of equivalence of gravitational force,
it is natural for us to postulate an alternate mechanism for all four interactions.
The rigorous mathematical foundation of this mechanism is developed in [4].

Geometric Interaction Mechanism 6.1. The gravitational force is the curved
effect of the time-space, and the electromagnetic, weak, strong interactions are the
twisted effects of the underlying complex vector bundles M ⊗p Cn.

As mentioned earlier, traditionally one adopts Yukawa’s viewpoint that forces of
the interactions of Nature are caused by exchanging the field mediators.

Yukawa Interaction Mechanism 6.2. The four fundamental interactions of Na-
ture are mediated by exchanging interaction field particles, called the mediators. The
gravitational force is mediated by the graviton, the electromagnetic force is medi-
ated by the photon, the strong interaction is mediated by the gluons, and the weak
interaction is mediated by the intermediate vector bosons W± and Z.

It is the Yukawa mechanism that leads to the SU(2) and SU(3) gauge theories
for the weak and the strong interactions. In fact, the three mediators W± and Z for
the weak interaction are regarded as the SU(2) gauge fields W a

µ (1 ≤ a ≤ 3), and
the eight gluons for the strong interaction are considered as the SU(3) gauge fields
Skµ (1 ≤ k ≤ 8). Of course, the three color quantum numbers for the quarks are an
important fact to choose SU(3) gauge theory to describe the strong interaction.

The two interaction mechanisms lead to two entirely different directions to de-
velop the unified field theory. The need for quantization for all current theories for
the four interactions are based on the Yukawa Interaction Mechanism. The new
unified field theory is based on the Geometric Mechanism, focusing directly on the
four interaction forces, and does not involve a quantization process.
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A radical difference for the two direction mechanisms is that the Yukawa Mech-
anism is oriented toward to computing the transition probability for the particle
decays and scatterings, and the Geometric Interaction Mechanism is oriented to-
ward to fundamental laws, such as interaction potentials, of the four interactions.

Gauge symmetry breaking

In physics, symmetries are displayed in two levels in the laws of Nature:

the invariance of Lagrangian actions L,(6.2)

the covariance of variation equations of L.(6.3)

The implication of the following three symmetries:

(6.4)

Einstein General Relativity,

Lorentz Invariance,

Gauge Representation Invariance (PRI),

is the universality of physical laws, i.e. the validity of laws of Nature is independent
of the coordinate systems expressing them. Consequently, the symmetries in (6.4)
cannot be broken at both levels of (6.2) and (6.3).

However, the physical implication of the gauge symmetry is different at the two
levels (6.2) and (6.3):

(1) The gauge invariance of the Lagrangian action, (6.2), amounts to saying
that the energy contributions of particles in a physical system are indistin-
guishable.

(2) The gauge invariance of the variation equations, (6.3), means that the par-
ticles involved in the interaction are indistinguishable.

It is clear that the first aspect (1) above is universally true, while the second
aspect (2) is not universally true. In other words, the Lagrange actions obey the
gauge invariance, but the corresponding variation equations break the gauge sym-
metry. This suggests us to postulate the following principle of gauge symmetry
breaking for interactions described by a gauge theory.

Principle 6.3 (Gauge Symmetry Breaking). The gauge symmetry holds true only
for the Lagrangian actions for the electromagnetic, week and strong interactions,
and it will be violated in the field equations of these interactions.

The principle of gauge symmetry breaking can be regarded as part of the spon-
taneous symmetry breaking, which is a phenomenon appearing in various physical
fields. In 2008, the Nobel Prize in Physics was awarded to Y. Nambu for the dis-
covery of the mechanism of spontaneous symmetry breaking in subatomic physics.
In 2013, F. Englert and P. Higgs were awarded the Nobel Prize for the theoretical
discovery of a mechanism that contributes to our understanding of the origin of
mass of subatomic particles.

Although the phenomenon was discovered in superconductivity by Ginzburg-
Landau in 1951, the mechanism of spontaneous symmetry breaking in particle
physics was first proposed by Y. Nambu in 1960; see [9, 11, 12]. The Higgs mecha-
nism, discovered in [3, 1, 2], is a special case of the Nambo-Jona-Lasinio spontaneous
symmetry breaking, leading to the mass generation of sub-atomic particles.

PID provides a new mechanism for gauge symmetry breaking and mass gener-
ation. The difference between both the PID and the Higgs mechanisms is that
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the first one is a natural sequence of the first principle, and the second is to add
artificially a Higgs field in the Lagrangian action. Also, the PID mechanism obeys
PRI, and the Higgs mechanism violates PRI.

6.2. Unified Field Model Coupling Matter Fields. The unified field theory
introduced in [4, 5] considers two aspects: 1) the interaction field particles, and
2) the interaction potentials. Hence, it restricted the unified field model to be the
theory based on

(6.5) Einstein relativity + U(1)× SU(2)× SU(3) symmetry.

However, if we consider the interaction potentials between the particles of N -
particle systems, then the unified field theory has to be based on the following
symmetries instead of (6.5):

(6.6) Einstein relativity + SU(N1)× · · · × SU(NK) symmetry,

where N1, · · · , NK are the particle numbers of various sub-systems and layered
systems.

The two types of unified field models based on (6.5) and (6.6) are mutually
complementary. They have different roles in revealing the essences of interactions
and particle dynamic behaviors.

In this subsection, we shall establish the unified field model of multi-particle
systems based on (6.6), which matches the vision of Einstein and Nambu. In his
Nobel lecture [10], Nambu stated that

Einstein used to express dissatisfaction with his famous equation of
gravity

Gµν = 8πTµν

His point was that, from an aesthetic point of view, the left hand side
of the equation which describes the gravitational field is based on a
beautiful geometrical principle, whereas the right hand side, which de-
scribes everything else, . . . looks arbitrary and ugly.

... [today] Since gauge fields are based on a beautiful geometrical
principle, one may shift them to the left hand side of Einsteins equa-
tion. What is left on the right are the matter fields which act as the
source for the gauge fields ... Can one geometrize the matter fields
and shift everything to the left?

The gravity will be considered only in systems possessing huge amounts of par-
ticles, which we call gravitational systems. Many gravitational systems have very
complicated structures. But they are composites of some simple systems. Here we
only discuss two cases.

Systems with gravity and electromagnetism

Consider the system consisting of N1 fermions with n1 electric charges n1e and
N2 bosons with n2 charges n2e:

Ψ = (ψ1, · · · , ψN1
) for fermions,

Φ = (ϕ1, · · · , ϕN2
) for bosons.

The action is given by

(6.7) L =

∫ [
c4

8πG
R+ LN1

A + LN2

A + ~cLD + ~cLKG
]√
−gdx
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where R is the scalar curvature, G is the gravitational constant, g = det(gµν),LN1

A

and LN2

A are the sectors of SU(N1) and SU(N2) gauge fields for the electromagnetic
interaction

(6.8)

LN1

A = −1

4
GabgµαgνβAaµνAbαβ 1 ≤ a, b ≤ N2

1 − 1,

LN2

A = −1

4
G̃klgµαgνβÃkµνÃlαβ 1 ≤ k, l ≤ N2

2 − 1,

Aaµν = ∂µA
a
ν − ∂νAaµ +

n1e

~c
λabcA

b
µA

c
ν n1 ∈ Z,

Ãkµν = ∂µÃ
k
ν − ∂νÃkµ +

n2e

~c
λ̃kijÃ

i
µÃ

j
ν n2 ∈ Z,

and LD,LKG are the Dirac and Klein-Gordon sectors:

(6.9)

LD = Ψ̄

[
iγµ
(
∂µ +

in1e

~c
A0
µ +

in1e

~c
Aaµτa

)
− c

~
M1

]
Ψ,

LKG =
1

2
gµν(DµΦ)†(DνΦ) +

1

2

( c
~

)2
|M2Φ|2,

Dµ = ∇µ +
in2e

~c
A0
µ +

in2e

~c
Ãkµτ̃k,

where M1 and M2 are the masses, ∇µ is the covariant derivative, and A0
µ is the

external electromagnetic field.
Based on PID and PLD, the field equations of (6.7) are given by

(6.10)

δ

δgµν
L =

c4

8πG
DG
µ φ

g
ν , (PID)

δ

δAaµ
L = DA

µ φa, (PID)

δ

δÃkµ
L = DÃ

µ φ̃k, (PID)

δ

δΨ
L = 0, (PLD)

δ

δΦ
L = 0, (PLD)

where

(6.11)

DG
µ = ∇µ +

n1e

~c
Aµ +

n2e

~c
Ãµ,

DA
µ = ∂µ −

1

4
k21xµ +

n1e

~c
αAµ +

n2e

~c
α̃Ãµ,

DÃ
µ = ∂µ −

1

4
k22xµ +

n1e

~c
βAµ +

n2e

~c
β̃Ãµ.

Here Aµ = αN1
a Aaµ and Ãµ = αN2

k Ãkµ are the total electromagnetic fields generated
by the fermion system and the boson system.
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By (6.7)-(6.9), the equations (6.10)-(6.11) are written as

Rµν −
1

2
gµνR = −8πG

c4
Tµν +

(
∇µ +

n1e

~c
Aµ +

n2e

~c
Ãµ

)
φgν ,(6.12)

Gab
[
∂νAbνµ −

n1e

~c
λbcdg

αβAcαµA
d
β

]
− n1eΨ̄γµτaΨ(6.13)

=

[
∂µ −

1

4
k21xµ +

n1e

~c
αAµ +

n2e

~c
α̃Ãµ

]
φa,

G̃kl
[
∂νÃlνµ −

n2e

~c
λ̃lijg

αβÃiαµÃ
j
β

]
+
i

2
n2e

[
(DµΦ)†(τ̃kΦ)− (τ̃kΦ)†(DµΦ)

]
,(6.14)

=

[
∂µ −

1

4
k22xµ +

n1e

~c
βAµ +

n2e

~c
β̃Ãµ

]
φ̃k,

iγµ
[
∂µ +

in1e

~c
A0
µ +

in1e

~c
Aaµτa

]
Ψ− c

~
M1Ψ = 0,(6.15)

gµνDµDνΦ−
( c
~

)2
M2

2 Φ = 0,(6.16)

where the energy-momentum tensor Tµν in (6.12) is

Tµν =− 1

2
gµν(LN1

A + LN2

A + ~cLD + ~cLKG) +
1

2
(DµΦ)†(DνΦ)(6.17)

− 1

4
GabgαβAaµαAbνβ −

1

4
G̃klgαβÃkµαÃlνβ .

The energy-momentum tensor Tµν contains the masses M1,M2, the kinetic energy
and electromagnetic energy.

It is clear that both sides of the field equations (6.12)-(6.16) are all generated by
the fundamental principles. It is the view presented by Einstein and Nambu and
shared by many physicists that the Nature obeys simple beautiful laws based on a
few first physical principles. In other words, the energy-momentum tensor Tµν is
now derived from first principles and is geometrized as Einstein and Nambu hoped.

Systems with four interactions

The above systems with gravity and electromagnetism in general describe the
bodies in lower energy density. For the systems in higher energy density, we have
to also consider the weak and strong interactions. The interactions are layered as
shown below, which were derived in [8, 7]:
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molecules

atoms

nucleons electrons

naked quarks gluon clouds

weaktons gluons

w∗-weaktons

naked quarks mediator clouds

weaktons mediators

weaktons

EM

EM EM

Strong Strong

Weak Strong

Weak & Strong

Weak Weak

Weak Weak

Weak

The layered systems and sub-systems above determine the action of the system
with four interactions as follows:

(6.18) L =

∫
c4

8πG
R
√
−gdx+ actions of all levels,

and the action of each layered level is as given by the manner as used in (5.21)-
(5.22).

Hence, the unified field model of a multi-particle system is completely determined
by the layered structure of this system, as given by (6.18). It is very natural that
a rationale unified field theory must couple the matter fields and interaction fields
together.

Remark 6.1. Once again we emphasize that, using PRI contractions as given
by (3.12) and proper gauge fixing equations, from the unified field model (6.18)
coupling matter fields for multi-particle system, we can easily deduce that the total
electromagnetic field Aµ obtained from (6.18) satisfies the U(1) electromagnetic
gauge field equations, and derive the weak and strong interaction potentials as given
in [4, 5].

7. Atomic Spectrum

Classical quantum mechanics is essentially a subject to deal with single particle
systems. Hence, the hydrogen spectrum theory was perfect under the framework
of the Dirac equations. But, for general atoms the spectrum theory was defective
due to lack of precise field models of multi-particle systems.

In this subsection, we shall apply the field model of multi-particle systems to
establish the spectrum equations for general atoms.

Classical theory of atomic shell structure
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We recall, see among others [13], that an atom with atomic number Z has energy
spectrum

(7.1) En = −Z
2

n2
me4

2~2
, n = 1, 2, · · · .

If we ignore the interactions between electrons, the orbital electrons of this atom
have the idealized discrete energies (7.1). The integers n in (7.1) are known as prin-
cipal quantum number, which characterizes the electron energy levels and orbital
shell order:

(7.2)
n : 1 2 3 4 5 6 7

shell symbol: K L M N O P Q.

Each orbital electron is in some shell of (7.2) and possesses the following four
quantum numbers:

(1) principle quantum number n = 1, 2, · · · ,
(2) orbital quantum number l = 0, 1, 2, · · · , (n− 1),
(3) magnetic quantum number m = 0,±1, · · · ,±l,
(4) spin quantum number J = ± 1

2 .

For each given shell n, there are sub-shells characterized by orbital quantum
number l, whose symbols are:

(7.3)
l : 0 1 2 3 4 · · ·
sub-shell: s p d f g · · · .

By the Pauli exclusion principle, at a give sub-shell nl, there are at most the
following electron numbers

Nnl = Nl = 2(2l + 1) for 0 ≤ l ≤ n− 1.

Namely, for the sub-shells s(l = 0), p(l = 1), d(l = 2), f(l = 3), g(l = 4), their
maximal electron numbers are

Ns = 2, Np = 6, Nd = 10, Nf = 14, Ng = 18.

Thus, on the n-th shell, the maximal electron number is

(7.4) Nn =
n−1∑
l=0

Nl = 2n2.

Atomic field equations

Based on the atomic shell structure, the electron system of an atom consists of
shell systems as (7.2), which we denote by

(7.5) Sn = the n-th shell system for n = 1, 2, · · · .
Each shell system Sn has n sub-shell systems as in (7.3), denoted by

(7.6) Snl = the l-th sub-shell system of Sn for 0 ≤ l ≤ n− 1.

Thus, we have two kinds of classifications (7.5) and (7.6) of sub-systems for
atomic orbital electrons, which lead to two different sets of field equations.

A. Field equation of system Sn. If we ignore the orbit-orbit interactions,
then we take (7.5) as an N -particle system. Let Sn have Kn electrons:

(7.7) Sn : Ψn = (ψ1
n, · · · , ψKn

n ), Kn ≤ Nn, 1 ≤ n ≤ N,
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where Nn is as in (7.4). Hence, the model of (7.7) is reduced to the SU(K1) ×
· · · × SU(KN ) gauge fields of fermions. Referring to the single fermion system
(5.1)-(5.7), the action of (7.7) is

(7.8) L =

∫ N∑
n=1

(LSU(Kn) + LnD)dx,

where

(7.9)

LSU(Kn) = − 1

4~c
gµαgνβAanµνA

an
αβ 1 ≤ an ≤ Kn,

LnD = Ψ̄n(iγµDµ −
mec

~
)Ψn 1 ≤ n ≤ N,

Aanµν = ∂µA
an
ν − ∂νAanµ −

e

~c
λanbncnA

bn
µ A

cn
ν ,

DµΨn = (∂µ −
ie

~c
A0
µ −

ie

~c
Aanµ τan)Ψn,

where Aanµ are the SU(Kn) gauge fields representing the electromagnetic (EM)
potential of the electrons in Sn, λanbncn are the structure constants of SU(Kn) such

that Ganbn = 1
2 tr(τanτ

†
bn

) = δanbn , A0
µ is the EM potential generated by the nuclear,

g = −e (e > 0) is the charge of an electron, and me is the electron mass.
The PID gradient operators for SU(K1)× · · · × SU(KN ) in (5.5) are given by

(7.10) Dn
µ =

1

~c

∂µ +
e

~c
∑
k 6=n

A(k)
µ

 for 1 ≤ n ≤ N,

where A
(k)
µ = αKk

aKA
ak
µ is the total EM potential of Sk shell as defined in (3.12).

Then by (7.8)-(7.10), the field equations of (7.7) can be written in the following
form

∂νAanνµ +
e

~c
λanbncng

αβAbnαµA
cn
β + eΨ̄γµτ

anΨn(7.11)

=

∂µ +
e

~c
∑
k 6=n

A(k)
µ

φan for 1 ≤ an ≤ K2
n − 1, 1 ≤ n ≤ N,

iγµ
[
∂µ −

ie

~c
A0
µ −

ie

~c
Aanµ τan

]
Ψn −

mec

~
Ψn = 0.(7.12)

B. Field equation of system Snl. The precise model of atomic spectrum

should take (7.6) as an N -particle system. Also, Sn =
n−1∑
l=0

Snl is again divided into

n sub-systems

Sn : Sn0, · · · , Snn−1.

Hence, the system Snl has more sub-systems than Sn, i.e. if Sn has N sub-systems,
then Snl has 1

2N(N + 1) sub-systems.
Let Snl have Knl electrons with wave functions:

(7.13) Snl : Ψnl = (ψ1
nl, · · · , ψ

Knl

nl ), 1 ≤ n ≤ N, 0 ≤ l ≤ n− 1,
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and Knl ≤ 2(2l + 1). Then the action of (7.13) takes as

(7.14) L =

∫ n−1∑
l=0

N∑
n=1

(LSU(Knl) + LnlD )dx,

where LSU(Knl) and LnlD are similar to that of (7.9). Thus, the field equation of the
system (7.13) is determined by (7.14).

Remark 7.1. The reason why atomic spectrum can be divided into two systems
(7.7) and (7.13) to be considered is that in the system (7.13) the electrons in each
Snl have the same energy, and in (7.7) the electons in each Sn have the same
energy if we ignore the interaction energy between different l-orbital electrons of
Snl. Hence, the system of Snl is precise and the system of Sn is approximative.

Atomic spectrum equations

For simplicity, we only consider the system Sn, and for Snl the case is similar.
Since the electrons in each Sn have the same energy λn, the wave functions in (7.7)
can take as

(7.15) ψjn = ϕjn(x)e−iλnt/~ for 1 ≤ j ≤ Kn.

It is known that the EM fields Aaµ in atomic shells are independent of time t, i.e.
∂tA

a
µ = 0. Therefore, inserting (7.15) into (7.11) and (7.12) we derive the spectrum

equation in the form

λnΦn = ic~(~α ·D)Φn − eV Φn(7.16)

+mec
2α0Φn + eAan0 τanΦn for 1 ≤ n ≤ N,

∆Aan0 −
e

~c
λanbncn

~Abn · (∇Acn0 +
e

~c
λcndnfnA

dn ~Afn)− eΦ†nτanΦn(7.17)

=
e

~c
∑
k 6=n

A
(k)
0 φan ,

∆ ~Aan −∇( div ~Aan) +
e

~c
λanbncng

αα ~Abnα A
cn
α + eΦ̄n~γτanΦn(7.18)

= (∇+
e

~c
∑
k 6=n

~A(k))φan ,

where Φn = (ϕ1
n, · · · , ϕKn

n )T , Aanµ = (Aan0 , ~Aan), V = ze/r is the Coulomb potential

of the nuclear, ~A = (A1, A2, A3) is the magnetic potential of the nuclear, and

DΦn = (∇− ie

~c
~A− ie

~c
~Aanτan)Φn,

~Abnα = ∂α ~A
bn −∇Abnα −

e

~c
λbncndnA

cn
α
~Adn .

The equations (7.16)-(7.18) need to be complemented with some gauge fixing
equations; see Remark 5.1.
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