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Abstract. The current neutrino oscillation theory asserts that neutrinos are

massive subatomic particles, and can undergo their flavor oscillation. First in

this article, we examine carefully the current oscillation theory, and argue that
a massless neutrino oscillation mechanism based on the Weyl equations for neu-

trinos is also a feasible theory. This massless neutrino oscillation mechanism

resolves both the parity problem and the handedness and speed of neutrino
problem, which the current massive neutrino oscillation mechanism faces. Sec-

ond, we propose a neutrino non-oscillation mechanism based on the weakton

model of subatomic particles, providing an alternative resolution to the solar
neutrino loss problem.
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1. Introduction

Neutrino was first proposed by Wolfgang Pauli in 1930 in order to guarantee the
energy and momentum conservation for β-decay. In the current standard model of
particle physics, there are three flavors of neutrinos: the electron neutrino νe, the
tau neutrino ντ and the mu neutrino νµ. The solar neutrino problem is referred
to the discrepancy of the number of electron neutrinos arriving from the Sun are
between one third and one half of the number predicted by the Standard Solar
Model, and was first discovered by R. Davis, D. S. Harmer and K. C. Hoffmann [1]
in 1968.
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The current dominant theory to resolve the solar neutrino problem is the neu-
trino oscillation theory, which are based on three basic assumptions: 1) the neu-
trinos are massive, and, consequently, are described by the Dirac equations, 2)
the three flavors of neutrinos νe, νµ, ντ are not the eigenstates of the Hamiltonian,
and 3), instead, the three neutrinos are some linear combinations of three distinct
eigenstates of the Hamiltonian. However, the massive neutrino assumption gives
rise two serious problems. First, it is in conflict with the known fact that the neu-
trinos violate the parity symmetry. Second, the handedness of neutrinos implies
their velocity being at the speed of light.

To resolve these difficulties encountered by the classical theory, we argue that
there is no physical principle that requires that neutrino must have mass to ensure
oscillation. The Weyl equations were introduced by H. Weyl in 1929 to describe
massless spin- 12 free particles [15], which is now considered as the basic dynamic
equations of neutrino [4, 6, 14]; see also [2]. One important property of the Weyl
equations is that they violate the parity invariance. Hence by using the Weyl
equations, we are able to introduce a massless neutrino oscillation model. With this
massless model, we not only deduce the same oscillation mechanism, but also resolve
the above two serious problems encountered in the massive neutrino oscillation
model.

Despite of the success of neutrino oscillation models and certain level of exper-
imental support, the physical principles behind the neutrino oscillation are still
entirely unknown. Recently, the authors developed a phenomenological model of
elementary particles, called the weakton model [9]. The ν mediator in the weak-
ton model leads to an alternate explanation to the solar neutrino problem. When
the solar electron neutrinos collide with anti electron neutrinos in the atmosphere,
which are abundant due to the β-decay of neutrons, they can form ν mediators,
causing the loss of electron neutrinos. Note that ν mediator can also have the
following elastic scattering

ν + e− −→ ν + e−.

Also ν participates only the weak interaction similar to the neutrinos, and conse-
quently possesses similar behavior as neutrinos. Consequently, the new mechanism
proposed here does not violate the existing experiments (SNO and KamLAND).

This article is organized as follows. Sections 2–4 examines the solar neutrino
problem, the classical oscillation theory, and the MSW effect. Section 5 intro-
duces the massless neutrino oscillation mechanism, and Section 6 introduces a non-
oscillation mechanism based on the weakton model.

2. Discrepancy of Solar Neutrinos

The solar neutrino problem is known as that the number of electron neutrinos
arriving from the Sun are between one third and one half of the number predicted
by the Standard Solar Model. This important discovery was made in 1968 by R.
Davis, D. S. Harmer and K. C. Hoffmann [1].

To understand clearly this problem, we begin with a brief introduction to the
Standard Solar Model, following [3].

In the nineteenth century, most physicist believed that the source of the Sun’s
energy was gravity. However, based on this assumption, Rayleigh showed that the
maximum possible age of the Sun was substantially shorter than the age of the
earth estimated by geologists.
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At the end of the nineteenth century, Bacquerel and Curies discovered radioac-
tivity, and they noted that radioactive substances release a large amounts of heat.
This suggested that nuclear fission, not gravity, might be the source of the Sun’s
energy, and it could allow for a much longer lifetime of the Sun. But, the crucial
problem for this solar model was that there were no heavier radioactive elements
such as uranium or radium present in the Sun, and from the atomic spectrum, it
was known that the Sun is made almost entirely of hydrogen.

Up to 1920, F. W. Aston gave a series of precise measurements of atomic masses.
It was found that four hydrogen atoms are more weight slight than one atom of
helium-4. This implied that the fusion of four hydrogens to form a 4He would be
more favorable, and would release a substantial amounts of energy. A. Eddington
proposed that the source of the Sun’s energy is the nuclear fusion, and in essence
he was correct.

In 1938, H. Bethe in collaboration with C. Critchfield had come up with a series
of subsequent nuclear reactions, which was known as the proton-proton p−p chain.
The p− p cycle well describes the reaction processes in the Sun, and consists of the
following four steps:

Step 1: two protons yield a deuteron

p+ p −→ 2H + e+ + νe at 99.75%,

p+ p+ e− −→ 2H + νe at 0.25%,

Step 2: a deuteron and a proton produces a helium-3

2H + p −→3 He + γ,

Step 3: helium-3 makes helium-4 or beryllium

3He + p −→ 4He + e+ + νe,

3He + 3He −→ 4He + p+ p almost at 86%

3He + 4He −→ 7Be + γ at 14%,

Step 4: beryllium makes helium -4

7Be + e− −→ 7Li + νe at 99.89%,

7Li + p −→ 4He + 4He,

7Be + p −→ 8Be + γ at 0.11%,

8Be −→ 8Be∗ + e+ + νe,

8Be∗ −→ 4He + 4He.

In the p− p chain, it all starts out as hydrogen (proton), and it all ends up as 4He
plus some electrons, positrons, photons and neutrinos. Because neutrinos interact
so weakly, they are the unique products in the p− p reactions reaching the earth’s
surface.
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In the p− p chain there are five reactions to yield neutrinos:

p+ p −→ 2H + e+ + νe,(2.1)

p+ p+ e− −→ 2H + νe,(2.2)

3He + p −→ 4He + e+ + νe, (' 0%),(2.3)

7Be + e− −→ 7Li + νe,(2.4)

8Be −→ 8Be∗ + e+ + νe.(2.5)

But the problem is that the detection of the neutrinos have an effect threshold
which will lead to a nearly vanishing response to all neutrinos of lower energy. The
energy spectras of neutrinos in the five reactions are

(2.6)

Em ' 0.4MeV for (2.1),

Em ' 1.44MeV for (2.2),

Em ' 18MeV for (2.3),

Em ' 0.9MeV for (2.4),

Em ' 14MeV for (2.5),

where Em is the maximum energy of neutrinos, and the energy flux are

(2.7)

F ' 1011/cm2 · s for (2.1),

F ' 108/ cm2 · s for (2.2)

F ' 102/ cm2 · s for (2.3

F ' 1010/ cm2 · s for (2.4),

F ' 106/ cm2 · s for (2.5).

The Homestake experiments

The experimental search for solar neutrinos has been undertaken since 1965 by
R. Davis and collaborators in the Homestake goldmine in South Dakota. Since the
neutrinos cannot be directly detected by instruments, it is only by the reactions

νe +X −→ Y + e−

to detect the outgoing products that counte the neutrinos. The Homestake exper-
iments take

(2.8) νe + 37Cl −→ 37Ar + e−.

The effective threshold of the reaction (2.8) is

Ec = 5.8MeV.

Thus, by (2.6) only these neutrinos from both reactions (2.3) and (2.5) can be
observed, which occur at a frequency of 0.015%. Theoretic computation showed
that the expected counting rate of solar neutrinos is at

(2.9) NTh = (5.8± 0.7) snu,

where snu stands for solar neutrino unit:

1 snu = 10−36 reactions/(37Cl atom · s).
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In 1968, R. Davis et al [1] reported the experimental results, their measuring
rate is

(2.10) N Exp = (2.0± 0.3) snu.

the experimental value (2.10) is only about one third of the theoretically expected
value (2.9). It gave rise to the famous solar neutrino problem.

Super-K Experiment

In 2001, the Super-Kamiokande collaboration presented its results on solar neu-
trinos. Unlike the Homestake experiment, Super-K uses water as the detector. The
process is elastic neutrino-electron scattering:

νx + e −→ νx + e,

where νx is one of the three flavors of neutrinos. This reaction is sensitive to µ and
τ neutrinos as well as e-neutrinos, but the detection efficiency is 6.5 times greater
for e-neutrinos than for the other two kinds. The outgoing electron is detected by
the Cherenkov radiation it emits in water. They observed the rate at

r = 45% of the expected value.

The Super-Kamiokande detector is located in the Mozumi Mine near Kamioka
section of the city of Hida, Japan.

Sudbury Neutrino Observatory (SNO)

Meanwhile, in the summer of 2001 the SNO collaboration reported their obser-
vation results. They obtained

r = 35% of the predicted value.

The SNO used heavy water (2H2O) instead of ordinary water (H2O), and the SNO
detection method is based on the following reactions:

νe + 2H −→ p+ p+ e−,(2.11)

νx + 2H −→ p+ n+ νx,(2.12)

νx + e− −→ νx + e−.(2.13)

SNO detects electrons e−, but not τ− and µ−, as there is not enough energy in the
solar electron-neutrino such that the transformed tau and mu neutrino can excite
neutrons in 2H to produce either τ− or µ−.

KamLAND

The loss of reactor electron anti-neutrino ν̄e is verified by the KamLAND exper-
iment.

A potential alternative experiment

It is known that the following reaction

(2.14) νµ + n −→ µ− + p

may occur if the energy of νµ satisfies

Eνµ > mµc
2 = 106 MeV.
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By the energy spectrum (2.6), the maximum energy of solar neutrinos is about
14 ∼ 18 MeV, which is much smaller than mµc

2. Hence, assuming oscillation does
occur for solar neutrinos, the reaction

νµ + 2H −→ µ− + p+ p

does not occur for the transformed νµ from solar electron-neutrinos.
However, based on the weakton model, the complete reaction for (2.14) should

be
νµ + n+ γ −→ µ− + p.

Consequently, the following reaction

(2.15) νµ + 2H + γ −→ µ− + p+ p

would occur if

(2.16) Eνµ + Eγ > 106 MeV.

Hence one may use high energy photons to hit the heavy water to create the sit-
uation in (2.16), so that the reaction (2.15) may take place. From (2.15), we can
detect the µ− particle to test the neutrino oscillation.

Alternatively, by the µ-decay:

µ− → e− + ν̄e + νµ,

we may measure the electrons to see if there are more electrons than the normal
case to test the existence of mu-neutrinos.

3. Classical Theory on Neutrino Oscillations

Before presenting our own view, we recapitulate in this section the classical
neutrino oscillation theory.

3.1. Neutrino Oscillations. In order to explain the solar neutrino problem, in
1968 B. Pontecorvo [12, 13] introduced the neutrino oscillation mechanism, which
amounts to saying that the neutrinos can change their flavors, i.e. an electron
neutrino may transform into a muon or a tau neutrino. According to this theory,
a large amount of electron neutrinos νe from the Sun have changed into the νµ or
ντ , leading the discrepancy of solar electron neutrinos. This neutrino oscillation
mechanism is based on the following assumptions:

• The neutrinos are massive, and, consequently, are described by the Dirac
equations.

• The three types of neutrinos νe, νµ, ντ are not the eigenstates of the Hamil-
tonian (i.e. the Dirac operator)

(3.1) Ĥ = −i~c(~α · ∇) +mc2α0.

• There are three discrete eigenvalues λj of (3.1) with eigenstates:

(3.2) Ĥνj = λjνj for 1 ≤ j ≤ 3,

such that νe, νµ, ντ are some linear combinations of {νj | 1 ≤ j ≤ 3}:

(3.3)

νeνµ
ντ

 = A

ν1ν2
ν3

 ,

where A ∈ SU(3) is a third-order complex matrix given by (3.10) below.



ON SOLAR NEUTRINO PROBLEM 7

Remark 3.1. The formulas (3.1)-(3.3) constitute the current model of neutrino
oscillation, which requires the neutrinos being massive. However, the massive neu-
trino assumption gives rise two serious problems. First, it is in conflict with the
known fact that the neutrinos violate the parity symmetry. Second, the handedness
of neutrinos implies their velocity being at the speed of light.

In fact, by using the Weyl equations as the neutrino oscillation model we can
also deduce the same conclusions and solve the two mentioned problems. Moreover,
the ν mediator introduced by the authors in [9] leads to an alternate explanation to
the solar neutrino problem.

Under the above three hypotheses (3.1)-(3.3), the oscillation between νe, νµ and
ντ are given in the following fashion. For simplicity we only consider two kinds
neutrinos νe, νµ, i.e. ντ = 0. In this case, (3.3) becomes

(3.4)
ν1 = cos θνµ − sin θνe,

ν2 = sin θνµ + cos θνe.

By the Dirac equations, ν1 and ν2 satisfy

i~
∂νk
∂t

= λkνk for k = 1, 2.

The solutions of these equations read

(3.5) νk = νk(0)e−iλkt/~, k = 1, 2.

Assume that the initial state is at νe, i.e.

νe(0) = 1, νµ(0) = 0.

Then we derive from (3.4) that

(3.6) ν1(0) = − sin θ, ν2(0) = cos θ.

It follows from (3.5) and (3.6) that

(3.7) ν1 = − sin θe−iλ1t/~, ν2 = cos θe−iλ2t/~.

Inserting (3.7) into (3.4) we deduce that

νµ(t) = cos θν1(t) + sin θν2(t) = sin θ cos θ(−e−iλ1t/~ + e−iλ2t/~).

Hence, the probability of νe transforming to νµ at time t is

(3.8) P (νe → νµ) = |νµ(t)|2 =

[
sin 2θ sin

(
λ2 − λ1

2~
t

)]2
.

Also, we derive in the same fashion that

νe(t) = cos θν2 − sin θν1 = cos2 θe−iλ1t/~ + sin2 θe−iλ2t/~,

and the probability of νµ to νe is given by

(3.9) P (νµ → νe) = |νe(t)|2 = cos2
(
λ2 − λ1

2~
t

)
+ cos2 2θ sin2

(
λ2 − λ1

~
t

)
From formulas (3.8) and (3.9), we derive the oscillation between νe and νµ, the
energy difference λ2−λ1, and the angle θ, if the discrepancy probability P (νe → νµ)
is measured.
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3.2. Mixing matrix and neutrino masses. As mentioned in Remark 3.1, the
current neutrino oscillation requires mass matrix A defined in (3.3). In this sub-
section we shall discuss these two topics.

Mixing matrix

The matrix A given in (3.3) is called the MNS matrix, which is due to Z. Maki, M.
Nakagawa and S. Sakata for their pioneering work in [10]. This can be considered
as an analog for leptons as the Cabibbo-Kobayashi-Maskawa (CKM) matrix for
quarks. The MNS matrix is written as

(3.10) A =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12c23 − s12c23s13eiδ c23c13

 ,

where δ is the phase factor, and

cij = cos θij , sij = sin θij ,

with the values θij being measured as

θ12 ' 34◦ ± 2◦, θ23 ' 45◦ ± 8◦, θ13 ' 10◦.

The matrix A of (3.10) is a unitary matrix: A† = A−1. Therefore, (3.3) can be also
rewritten as ν1ν2

ν3

 = A†

νeνµ
ντ

 .

Neutrino masses

As masses are much less than kinetic energy c|p|, by the Einstein triangular
relation of energy-momentum

E2 = p2c2 +m2c4,

we obtain an approximate relation:

E ' |p|c+
1

2

m2c3

|p|
.

The eigenvalues λk of (3.2) and E satisfy

(3.11) λk = Ek ' |p|c+
1

2

m2
kc

3

|p|
for k = 1, 2, 3.

Then we have

(3.12) λi − λj = Ei − Ej '
(m2

i −m2
j )

2E
c4, E ' |p|c.

By (3.12), if we can measure the energy difference λi−λj , then we get the mass
square difference of νi and νj :

∆ij = m2
i −m2

j .

There are three mass square differences for ν1, ν2, ν3:

(3.13) ∆21 = m2
2 −m2

1, ∆32 = m2
3 −m2

2, ∆31 = m2
3 −m2

1,

only two of which are independent (∆31 = ∆32 + ∆21).



ON SOLAR NEUTRINO PROBLEM 9

Now, we consider the mass relation between νe, νµ, ντ and ν1, ν2, ν3. Applying

the Dirac operator Ĥ on both sides of (3.3), by (3.2), we have

(3.14) Ĥ

νeνµ
ντ

 = A

λ1 0 0
0 λ2 0
0 0 λ3

ν1ν2
ν3

 ,

where A is the MNS matrix (3.10). The energies Ee, Eµ, Eτ of νe, νµ, ντ are given
by

(3.15)

Ee =

∫
ν∗e Ĥνedx =

∫
A∗1kA1jν

∗
kĤνjdx (Ĥνj = λjνj),

Eµ =

∫
ν∗µĤνµdx =

∫
A∗2kA2jν

∗
kĤνjdx,

Eτ =

∫
ν∗τ Ĥντdx =

∫
A∗3kA3jν

∗
kĤνjdx,

where Aij are the matrix elements of A,A∗ij are the complex conjugates of Aij . The
masses me,mµ,mτ of νe, νµ, ντ are as follows

(3.16) E2
e = p2c2 +m2

ec
4, E2

µ = p2c2 +m2
µc

4, E2
τ = p2c2 +m2

τ c
4.

It is very difficult to compute Ee, Eµ, Eτ by (3.15). However, since A ∈ SU(3)
is norm-preserving:

E2
e + E2

µ + E2
τ = E2

1 + E2
2 + E2

3 ,

by (3.16) and E2
k = p2c2 +m2

kc
4, we deduce that

m2
e +m2

µ +m2
τ = m2

1 +m2
2 +m2

3,

which leads to

(3.17) m2
e +m2

µ +m2
τ = ∆32 + 2∆21 + 3m2

1,

where ∆32 and ∆21 are as in (3.13).
If neutrinos have masses, then only the mass square differences ∆ij in (3.13) can

be measured by current experimental methods. Hence, the only mass information
of νe, νµ, ντ is given by the relation (3.17).

4. MSW Effect

In 1978, L. Wolfenstein [16] first noted that as neutrinos pass through matter
there are additional effects due to elastic scattering

νe + e −→ νe + e.

This phenomenon was also observed and expanded by S. Mikheyev and A. Smirnov
[11], and is now called the MSW effect.

The MSW effect can be reflected in the neutrino oscillation model. We recall
the oscillation model without MSW effect expressed as

(4.1)

νk = ϕk(x)e−iλkt/~,

[−i~c(~α · ∇) +mc2α0]ϕk = λkϕk k = 1, 2, 3,νeνµ
ντ

 = A

ν1ν2
ν3

 , A is as in (3.10).
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To consider the MSW effect, we have to add weak interaction potentials in the
Hamiltonian operator Ĥ for neutrinos νe, νµ, ντ . The weak potential energy is given
as follows [7, 8]:

(4.2) Vν = g2s

(
ρν
ρe

)3

Nwe
−kr

[
1

r
− Bν

ρ
(1 + 2kr)e−kr

]
,

where ρν , ρe are the radii of neutrinos and electron, gs is the weak charge, and Nw is
the weak charge density. Namely the Hamiltonian with MSW effect for (νe, νµ, ντ )
is

(4.3) Ĥ

νeνµ
ντ

 =

Ĥ + Ve 0 0

0 Ĥ + Vµ 0

0 0 Ĥ + Vτ

νeνµ
ντ

 ,

where Ĥ = −i~c(~α · ∇) +mc2α0, and V is as in (4.2).
The equations in (4.1) are also in the form

(4.4)

eiλ1t/~

eiλ2t/~

eiλ3t/~

A†Ĥ

νeνµ
ντ

 =

λ1 λ2
λ3

ϕ1

ϕ2

ϕ3

 .

Replacing Ĥ by Ĥ in (4.4), we infer from (4.1) that

(4.5) A†ĤA

ν1ν2
ν3

 =

β1 β2
β3

ν1ν2
ν3

 .

The equation (4.5) is the neutrino oscillation model with the MSW effect, where
the eigenvalues βk and eigenstates νk (1 ≤ k ≤ 3) are different from that of (4.1).
In fact, the MSW effect is just the weak interaction effect.

5. Massless Neutrino Oscillation Model

There are several serious problems in the massive neutrino oscillation model
(4.1), which we briefly explain as follows.

Parity problem. It is known that all weak interaction decays and scatterings
involving neutrinos violate the parity symmetry, discovered by Lee and Yang in 1956
and experimentally verified by C. Wu [5, 17]. It means that the neutrinos are parity
non-conserved. Hence it requires that under the space reflective transformation

(5.1) x −→ −x,
the equations governing neutrinos should violate the reflective invariance. We know
that the Dirac equations are covariant under the reflection (5.1), while the Weyl
equations are not covariant. Hence, the massive neutrino oscillation model is in
conflict with the violation of parity symmetry.

Handedness and speed of neutrinos. Experiments showed that all neutrinos pos-
sess only the left-handed spin J = − 1

2 , and anti-neutrinos possess the right-handed

spin J = 1
2 . It implies that the velocity of free neutrinos must be at the speed of

light, which is a contradiction with massive neutrino assumption.
In fact, the handedness is allowed only for massless particles. Otherwise, there

exist two coordinate systems A and B satisfying

vA < vp < vB ,
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where vA, vB and vp are the velocities of A,B and the particle. When we look at
the particle ν from A and B, the spins would be reversed. Therefore, all massive
particles must have both left-handed and right-handed spins.

In addition, all experiments measuring neutrino velocity had found no violation
to the speed of light.

Infinite number of eigenvalues and eigenstates. The neutrino oscillation theory
faces the problem of the existing of infinite number of eigenvalues. In the massive
model (4.1), the wave functions are the Dirac spinors

ϕ = (ϕ1, ϕ2, ϕ3, ϕ4)t.

For free neutrinos moving on a straight line, ϕ depends only on z. Thus the
eigenvalue equations in (4.1) become

(5.2)

− i~cσ3
d

dz

(
ϕ3

ϕ4

)
+mc2

(
ϕ1

ϕ2

)
= λ

(
ϕ1

ϕ2

)
,

− i~cσ3
d

dz

(
ϕ1

ϕ2

)
−mc2

(
ϕ3

ϕ4

)
= λ

(
ϕ3

ϕ4

)
,

where

(5.3) σ3 =

(
1 0
0 −1

)
.

The equations (5.2) possess infinite number of eigenvalues

(5.4) λ =

√
m2c4 +

4π2n2~2c2
l2

, ∀l > 0, n = 0, 1, 2, · · · ,

and each eigenvalue has two eigenstates

(5.5)

ϕ1 =
ei2πnz/l√

2l3/2


√

1 +mc2/λ
0√

1−mc2/λ
0

 ,

ϕ2 =
ei2πnz/l√

2l3/2


0√

1 +mc2/λ
0

−
√

1−mc2/λ

 .

The problem is that which eigenvalues and eigenstates in (5.4) and (5.5) are the
ones in the neutrino oscillation model (4.1), and why only three of (5.4)-(5.5) stand
for the flavors of neutrinos.

The Weyl equations can replace the Dirac equations to describe the neutrino
oscillation, which we call massless neutrino oscillation model, expressed as follows

(5.6)

νk = ϕk(x)e−iλkt/~,

i~c(~σ · ∇)ϕk = λkϕk for k = 1, 2, 3,νeνµ
ντ

 = A

ν1ν2
ν3

 , A is as in (3.10),

where νk (1 ≤ k ≤ 3) are the two-component Weyl spinors, and ~σ = (σ1, σ2, σ3)
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Based on the massless model (5.6), both problems of parity and handedness of
neutrinos have been resolved, and we can derive in the same conclusions as given in
(3.8) and (3.9). In this case, the differences λi − λj of eigenvalues in the transition
probabilities such as (3.8) and (3.9) stand for the differences of frequencies:

(5.7) λi − λj = ωi − ωj ,
where ωk (1 ≤ k ≤ 3) are the frequencies of νk.

However, the massless model also faces the problem of infinite number of eigen-
values as mentioned above. The eigenvalue equations in (5.6) for the straight line
motion on the y−axis is written as

(5.8) i~cα2 d

dy

(
ϕ1

ϕ2

)
= λ

(
ϕ1

ϕ2

)
with α2 =

(
0 −i
i 0

)
.

The eigenvalues of (5.8) are

(5.9) λk = k~c, ∀k > 0,

and each eigenvalue of (5.9) has two eigenstates

(5.10)

(
ϕ1
1

ϕ2
1

)
=

(
sin ky
− cos ky

)
,

(
ϕ1
2

ϕ2
2

)
=

(
cos ky
sin ky

)
.

The eigenvalues of (5.6) at x-axis and z-axis are all the same as in (5.9), and the
eigenstates at the x and z axes are

(5.11)

(
ϕ1

ϕ2

)
=

(
e−ikx

e−ikx

)
and

(
ϕ1

ϕ2

)
=

(
e−ikz

0

)
or

(
0
eikz

)
.

6. Neutrino Non-oscillation Mechanism

Although the massless neutrino oscillation model can solve the parity and the
handedness problems appearing in the massive neutrino oscillation mechanism, the
problem of infinite numbers of eigenvalues and eigenstates still exists in the model
(5.6).

In fact, the weakton model first introduced in [9] can provide an alternative
explanation to the solar neutrino problem. Based on the weakton model, there
exists a ν-mediator, whose weakton constituents are given by

(6.1) ν = αeνeν̄e + αµνµν̄µ + ατντ ν̄τ ,

where α2
e +α2

µ +α2
µ = 1. The values α2

e, α
2
µ, α

2
τ represent the ratio of the neutrinos

νe, νµ and ντ in our Universe
In view of (6.1), we see the reaction

(6.2)

νe + ν̄e −→ ν (νeν̄e),

νµ + ν̄µ −→ ν (νµν̄µ),

ντ + ν̄τ −→ ν (ντ ν̄τ ),

which are generated by the weak interaction attracting force, as demonstrated in
the weak charge potentials

(6.3) Φi = gwe
−r/r0

[
1

r
− Bi
ρν

(1 +
2r

r0
)e−r/r0

]
for 1 ≤ i ≤ 3,

where r0 = 10−16 cm, B1, B2, B3 > 0 are the weak interaction constants for νe, νµ, ντ
respectively, and ρν is the neutrino radius.
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The formula (6.3) defines attractive radii Ri for the neutrinos and antineutrinos
of the same flavors. Namely, when νi and ν̄i are in the radius Ri, the reaction (6.2)
may occur:

(6.4) νi + ν̄i −→ ν (νiν̄i) if dist(νi, ν̄i) < Ri for 1 ≤ i ≤ 3,

where ν1 = νe, ν2 = νµ, ν3 = ντ , and dist(νi, ν̄i) is the distance between νi and ν̄i.
The condition (6.4) implies that the transition probability Γi depends on Ri:

(6.5) Γi = Γi(Ri) for 1 ≤ i ≤ 3.

The attracting radius Ri satisfies that

(6.6)
d

dr
Φi(Ri) = 0.

Thus we can give a non-oscillation mechanism of neutrinos to explain the solar
neutrino problem. Namely, due to the β-decay, there are large amounts of elec-
tronic anti-neutrinos ν̄e around the earth, which generate the reaction (6.3) with
νe, leading to the discrepancy of the solar neutrino.

In addition, there are three axis eigenvalues of the Weyl equations given by
(5.10) and (5.11). We believe that they are the three flavors of neutrinos νe, νµ, ντ .
Namely, the following three wave functions

(6.7)

ψ1 = c1

(
sin ky
− cos ky

)
+ c2

(
cos ky
sin ky

)
,

ψ2 =

(
e−ikx

e−ikx

)
,

ψ3 = c3

(
e−ikz

0

)
+ c4

(
0
eikz

)
represent the three flavors of neutrinos. In fact, massive particles in field equations
are distinguished by different masses, and flavors of neutrinos by different axis
eigenstates.
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