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Abstract

We analyse the asymptotic behaviour of solutions to the one dimensional fractional version of
the porous medium equation introduced by Caffarelli and Vázquez [13, 14], where the pressure is
obtained as a Riesz potential associated to the density. We take advantage of the displacement
convexity of the Riesz potential in one dimension to show a functional inequality involving the
entropy, entropy dissipation, and the Euclidean transport distance. An argument by approxi-
mation shows that this functional inequality is enough to deduce the exponential convergence
of solutions in self-similar variables to the unique steady states.
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1 Introduction

In this work, we analyse the long-time asymptotics of the nonlinear nonlocal equation

ρt = ∇ ·
(
ρ(∇(−∆)−sρ+ λx)

)
, λ > 0, x ∈ Rd , (1.1)

obtained from the fractional version of the porous medium equation introduced by Caffarelli and
Vázquez [13, 14]

uτ = ∇ · (u∇p), p = (−∆)−su , (1.2)

by passing to self-similar variables. Indeed, by adding the Fokker-Planck confining term ∇ · (xu),
solutions to (1.1) will characterize the long-time asymptotic behaviour of solutions to (1.2). This
connection will be further explained below.
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The fractional porous medium equation (1.2) can be viewed as a continuity equation, uτ +
∇ · (uV) = 0, for a density or concentration u(τ, y) with velocity V = −∇p, where the velocity
potential or pressure p is related to u by the inverse of a fractional Laplacian operator p = (−∆)−su,
0 < s < 1. The standard porous medium equation is recovered for s = 0. We assume that the
unknown u(τ, y), representing a density or concentration, is defined for y ∈ Rd and τ > 0 and
supply initial data u(y, 0) = u0(y), a nonnegative mass distribution in L1(Rd) ∩ L∞(Rd). We also
point out that the pressure can be represented as

p = (−∆)−su = W ∗ u,

with the singular convolution kernel

W (y) = cd,s|y|2s−d, cd,s =
s2−2sΓ(d/2− s)
πd/2Γ(1 + s)

, (1.3)

and 0 < s < min(1, d/2), called the Riesz potential of u as in the standard textbooks [27,
37]. This representation also makes sense for s = d/2 with the logarithm kernel W (y) =
−21−dπ−d/2Γ(d/2)−1 log |y| (see [15, 28] in one dimension) and for 1/2 < s < 1 in one dimen-
sion with the negative coefficient c1,s and the positive exponent 2s − 1 in W (y). As a result, the
potential W does not necessarily decay to zero at infinity in the last two cases, but the mag-
nitude of the gradient ∇W does. When the kernel W (y) is replaced by a less singular radially
symmetric function, the same equation appeared in granular flow [6, 39, 29, 17] and biological
swarming [32, 8, 7].

To describe the long time behaviour of solutions to (1.2), it is more convenient to study the
corresponding transformed equation (1.1) as discussed in [20, 14], by defining

ρ(t, x) := (1 + τ)αu(τ, y), (1.4)

with the similarity variables x = y(1 + τ)−β and t = log(1 + τ). The exponents α and β can be
determined from dimensional analysis and the mass conservation [5], which are given by

α = d/(d+ 2− 2s), β = 1/(d+ 2− 2s). (1.5)

In this way, the rescaled density ρ(t, x) satisfies (1.1) with λ = β = 1/(d + 2 − 2s). We will keep
λ > 0 arbitrary in (1.1) as a parameter to characterize the convexity of the energy defined below
and the convergence rate to the steady state later on. As a result, the long time behaviour of the
original density u(τ, y) is completely specified if we establish the convergence of ρ(t, x) to the steady
state ρ∞(x) of (1.1) with λ = β.

The existence and uniqueness of the steady state ρ∞ of (1.1) for each given mass was initially
characterized by an obstacle problem in [14], and then the explicit expression of ρ∞ was obtained
by Biler, Imbert and Karch [9, 10], for even more general nonlinear dependence of the pressure
p = (−∆)−sum−1, m > 1. In case m = 2 of our interest here, the self-similar solution of (1.2) is
given by

u(τ, y) = (1 + τ)−d/(d+2−2s)ρ∞
(
y(1 + τ)−1/(d+2−2s)

)
,

with the self-similar profile
ρ∞(x) = Kd,s

(
R2 − |x|2

)1−s
+

and the prefactor

Kd,s =
22s−1Γ(d/2 + 1)

Γ(2− s)Γ(d/2 + 1− s)
λ .
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The radius of the support R is determined by the total conserved mass M , that is,

M =

∫
Rd
u(τ, y)dy =

22sπd/2Γ(d/2 + 1)λ

(d+ 2− 2s)Γ(d/2 + 1− s)2
Rd+2−2s. (1.6)

After these preliminary discussion, we concentrate on the convergence of ρ(t, x) to the steady state
ρ∞(x) in the rest of the paper.

Let us point out that the fractional porous medium equation (1.1) can be viewed as a particular
case of the aggregation equation [17, 8, 4] written as

ρt = ∇ ·
(
ρ(∇W ∗ ρ+∇V )

)
, x ∈ Rd , (1.7)

where V (x) = λ
2 |x|

2 and W (x) = cd,s|x|2s−d, 0 < s < 1.

During the past fifteen years, several important techniques [34, 20, 23, 17, 40, 1] have been
developed for the convergence of linear or nonlinear Fokker-Planck equations to their steady states
with sharp rate. These techniques can also be employed to prove the convergence of solutions
of (1.1) to ρ∞, by realizing that the free energy E(ρ) defined as

E(ρ) =
1

2

∫
Rd

{
(−∆)−sρ(x) + λ|x|2

}
ρ(x) dx (1.8)

=
cd,s
2

∫
Rd

∫
Rd

ρ(x)ρ(y)

|x− y|d−2s
dydx+ λ

∫
Rd

|x|2

2
ρ(x) dx,

is a Lyapunov functional for 0 < s < min(1, d/2). One can similarly define the Lyapunov functional
for 1/2 ≤ s < 1 in one dimension, assuming that ρ satisfies a growth condition at infinity, namely
ρ log |x| ∈ L1(R) if s = 1/2 and ρ|x|2s−1 ∈ L1(R) if 1/2 < s < 1. In fact, (1.1) is a gradient flow
of the free energy functional (1.8) with respect to the Euclidean transport distance in the metric
space of probability measures [1, 18].

The basic properties of the energy E(ρ) and its dissipation I(ρ) defined below, together with
the long-time asymptotics of solutions to (1.1), are already derived in [14]. More precisely, along
the evolution governed by (1.1), one can obtain the formal relation dE(ρ)/dt = −I(ρ), where we
denote by I(ρ) the entropy production or entropy dissipation of E given by

I(ρ) =

∫
Rd
ρ |∇ξ|2 dx , with ξ =

δE
δρ

= (−∆)−sρ+
λ

2
|x|2.

Using this relation, the solution of (1.1) is shown to converge towards ρ∞ in [14], but no rate is
obtained. To be more precise, they show that solutions of the fractional porous medium equa-
tion (1.1) satisfy the energy inequality E

(
ρ(t, ·)

)
+
∫ t

0 I
(
ρ(τ, ·)

)
dτ ≤ E

(
ρ(0, ·)

)
that is enough to

conclude the converge of ρ(t, x) to the steady state ρ∞(x).

In this work, we will focus on obtaining the sharp convergence rate for the solutions of the
Cauchy problem for (1.1) towards the equilibrium ρ∞, for all 0 < s < 1 in one dimension, although
many of the calculations are presented in general dimensions. In the particular case of s = 1/2
in one dimension, the kernel is given by the logarithmic potential and it was treated in [15],
see also [28] for related functional inequalities. In fact, it is shown in [15] that the energy E(ρ)
is displacement convex, which can not be derived directly from the criteria given in the seminar
paper by McCann [31]. We will take advantage of these techniques in [15] to prove certain functional
inequalities, in particular the HWI inequalities as introduced in [35] (also obtained in [28] for the
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logarithmic case s = 1/2). This displacement convexity and related inequalities are then used to
show the convergence towards equilibrium in one dimension, through the exponential decay of the
transport distances and the relative energy, for general s ∈ (0, 1).

Finally, we point out that the problem of sharp convergence rates in several space dimensions is
still open. Moreover, it could be interesting to prove or disprove analogous functional inequalities
involving nonlocal operators in several space dimensions corresponding to the ones established here
in one dimension; see more comments at the end of Section 2. New techniques or inequalities have
to be developed. Showing asymptotic convergence when the confining term ∇ · (λxρ) is replace by
the general drift ∇ · (ρ∇V ) is another interesting problem, see [22, 17].

The organization of this work is as follows. We first remind the reader in Section 2 about the
basics of the entropy/entropy dissipation method, together with the main functional inequality
that we will prove in one dimension. In fact, we follow closely the strategy developed for nonlinear
diffusion equations in [3, 2, 20, 23, 16, 17] to reduce to the proof of a Log-Sobolev type inequality.
This inequality is then proved in Section 3 as a consequence of the HWI inequality which crucially
uses the displacement convexity. Finally, Section 4 is devoted to obtain the rate of convergence
towards equilibrium of the solutions to (1.1) by an approximation method using the construction
of solutions in [13].

2 Entropy dissipation method

In this section, we first show some formal computations using the Bakry-Emery strategy [3] demon-
strating that the relative entropy E(ρ|ρ∞) := E(ρ) − E(ρ∞) decays to zero exponentially fast in
one dimension, by taking the second order time derivative of E(ρ|ρ∞) along the evolution equa-
tion (1.1). We will then discuss the strategy we use to render this computation rigorous in the
following sections.

Before starting the computations on the dissipation of the free energy, let us discuss a bit more
on the equilibrium solution ρ∞. It was recently proved in [22, Theorem 1.2] that E restricted to
P(Rd) is strictly convex in the classic sense for 0 < s < min(1, d/2), and it has a unique compactly
supported minimizer ρ∞ characterized by

(−∆)−sρ∞(x) + λ
|x2|
2

= C∗ , ∀ x ∈ supp(ρ∞) (2.1a)

(−∆)−sρ∞(x) + λ
|x2|
2

> C∗ , a.e. Rd , (2.1b)

for some constant C∗ determined by the total mass. This formulation is equivalent to the obstacle
problem in [14], for the rescaled pressure P = (−∆)−sρ and the quadratic obstacle Φ(x) = C∗ −
λ
2 |x|

2. Using the following relation (see [9, 10])

(−∆)−s(R2 − |x|2)1−s
+ =

2−2sΓ(2− s)Γ(d/2− s)
Γ(d/2)

(
R2 − d− 2s

d
|x|2
)

=
λ

2Kd,s

(
d

d− 2s
R2 − |x|2

)
, for all |x| 6 R, (2.2)

it is easy to verify that ρ∞ = Kd,s(R
2−|x|2)1−s

+ is indeed the minimizer for E for 0 < s < min(1, d/2).
Similar computations can be done in the range 1/2 ≤ s < 1, see [15, 4] for instance.
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Now, we can consider the difference E(ρ|ρ∞) := E(ρ) − E(ρ∞) as a measure of convergence
towards equilibrium. We first rewrite the equation (1.1) as

ρt = ∇ · (ρ∇ξ) with ξ := (−∆)−sρ+ λ|x|2/2. (2.3)

Assuming that ρ (and thus ξ) is smooth enough, taking the time derivative of the entropy dissipation
rate I(ρ) along the evolution equation, we obtain

d

dt
I(ρ) =

∫
ρt|∇ξ|2 + 2

∫
ρ∇ξ · ∇ξt

=

∫
∇ · (ρ∇ξ)|∇ξ|2 + 2

∫
ρ∇ξ · ∇

[
(−∆)−s

(
∇ · (ρ∇ξ)

)]
.

Using the fact D2ξ = D2(−∆)−sρ+λI for the Hessian matrix of ξ, the first term on the right hand
side above can be written as∫

∇ · (ρ∇ξ)|∇ξ|2 = −2

∫
ρ〈D2ξ · ∇ξ,∇ξ〉 = −2λI(ρ)− 2

∫
ρ
〈
D2(−∆)−sρ · ∇ξ,∇ξ

〉
.

Therefore, dI(ρ)/dt = −2λI(ρ)− 2R(ρ) with

R(ρ) =

∫
ρ
〈
D2(−∆)−sρ · ∇ξ,∇ξ

〉
−
∫
ρ∇ξ · ∇

[
(−∆)−s

(
∇ · (ρ∇ξ)

)]
. (2.4)

The entropy-entropy dissipation method can be summarized as follows: if R(ρ) ≥ 0 for the so-
lution ρ, then from the conditions dE(ρ)/dt = −I(ρ) and dI(ρ)/dt ≤ −2λI(ρ), we can conclude
that I(ρ)(t) ≤ I(ρ)(0)e−2λt and E(ρ)(t) − E(ρ∞) ≤

(
E(ρ)(0) − E(ρ∞)

)
e−2λt, or the exponential

convergence of both I(ρ)(t) and E(ρ)(t)− E(ρ∞) towards zero.

When s = 0, the equation (1.1) reduces to the standard porous medium equation with quadratic
nonlinearity. In this special case, the non-negativity of R(ρ) was established in [20] using several
integration by parts, leading to (with ξ = ρ+ λ|x|2/2)

R(ρ) =
1

2

∫
ρ2
[
(∆ξ)2 + ‖D2ξ‖2F

]
≥ 0.

Here ‖A‖F =
√

tr(ATA) is the Frobenius norm of the matrix A. Consequently, by deducing various
decay on the norms of ρ(t, ·)−ρ∞(·), the solution ρ converges to its steady state exponentially fast.

However, in the case s ∈ (0, 1) considered here, it is not immediately clear whether R(ρ)
given in (2.4) above is nonnegative or not. To simplify R(ρ), we need more explicit expressions
of D2(−∆)−sρ and ∇

[
(−∆)−s

(
∇ · (ρ∇ξ)

)]
, or the second order derivatives of the Riesz potential

of ρ and ρ∇ξ respectively. Since these derivatives can not be applied to the corresponding kernel
W (x) = cd,s|x|2s−d directly, we have to invoke the following technical lemma.

Lemma 2.1. If ρ is a smooth function on Rd, then the components of the Hessian matrix of the
Riesz potential (−∆)−sρ are given by

Dij(−∆)−sρ(x) = ∂ij(−∆)−sρ(x) = −c+
d,s

∫
Kij(x− y)

(
ρ(x)− ρ(y)

)
dy, (2.5)

where Kij(x) = |x|2s−2−d((d+ 2− 2s)xixj/|x|2 − δij
)

and c+
d,s = (d− 2s)cd,s.
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This lemma is proved by interpreting Dij(−∆)−sρ as a distributional derivative, and the details
are given in Appendix A. Using the singular integral representation (2.5), we obtain

R(ρ) =
∑
i,j

∫
Rd

{
ρ(x)∂iξ(x)∂jξ(x)Dij(−∆)−sρ(x)− ρ(x)∂iξ(x)Dij(−∆)−s[ρ∂jξ](x)

}
dx

= −c+
d,s

∑
i,j

∫
Rd

∫
Rd
ρ(x)∂iξ(x)Kij(x− y){

∂jξ(x)
(
ρ(x)− ρ(y))− ρ(x)∂jξ(x) + ρ(y)∂jξ(y)

}
dydx

= c+
d,s

∑
i,j

∫
Rd

∫
Rd
ρ(x)ρ(y)∂iξ(x)Kij(x− y)

{
∂jξ(x)− ∂jξ(y)

}
dydx

=
c+
d,s

2

∫
Rd

∫
Rd
ρ(x)ρ(y)

〈
∇ξ(x)−∇ξ(y),K(x− y)

(
∇ξ(x)−∇ξ(y)

)〉
dydx, (2.6)

where K(x) is a matrix with entries Kij(x) and the integrand is symmetrized in the last step.

Remark 2.2. Similar expressions already appear in the context of non-local equations for granular
flow or biological swarms, when the interaction kernel is smoother. In fact, if ρ is a smooth solution
of ρt = ∇ · (ρ∇W ∗ ρ) with a smooth kernel W such that the Hessian D2W is locally integrable,
then the time derivative of the interaction energy 1

2

∫∫
W (x− y)ρ(x)ρ(y)dydx is −

∫
ρ|∇ξ|2dx with

ξ = W ∗ ρ. The second order time derivative of the energy is

−
∫
Rd
ρt|∇ξ|2dx− 2

∫
Rd
ρ∇ξ · ∇ξtdx

which is exactly∫
Rd

∫
Rd
ρ(x)ρ(y)

〈
D2W (x− y)

(
∇ξ(x)−∇ξ(y)

)
,∇ξ(x)−∇ξ(y)

〉
dy dx

by applying appropriate integration by parts.

In one dimension, K(x) = (2−2s)|x|2s−3 is a positive scalar and R(ρ) ≥ 0 for any non-negative
density ρ, leading to the desired exponential convergence. However, in higher dimensions, the
matrix K(x) can be written as

K(x) = |x|2s−2−d((d+ 2− 2s)x⊗ x/|x|2 − I) ,

which has one positive eigenvalue λ1 = (d + 1 − 2s)|x|2s−d−2 and d − 1 negative eigenvalues λi =
−|x|2s−d−2, i = 2, · · · , d. Therefore, it is not known from (2.6) whether R(ρ) is positive or not. To
summarize, we can conclude that both the relative entropy E(ρ)−E(ρ∞) and the entropy dissipation
rate I(ρ) converge formally to zero exponentially fast only in one dimension.

The above approach for the exponential decay in one dimension can be proved rigorously, by
establishing the results for mollified solutions to the regularized equation (with linear diffusion for
example). One of the main difficulties in our case lies in the definition and continuity of the entropy
dissipation I(ρ). The set of functions for which I is finite is difficult to handle. Therefore, passing to
the limit the exponential decay of the entropy dissipation using density argument is a complicated
task in our case. Alternatively, we prove the same results in Section 3 for smooth solutions, and then
pass to the limit in Section 4. Before going to that, we point out that the exponential convergence
is in fact intimately connected with certain inequalities in the next subsection.
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2.1 Sobolev inequalities with fractional Laplacian

If R(ρ) ≥ 0, from the limits I
(
ρ(t)

)
→ 0 and E

(
ρ(t)

)
− E(ρ∞

)
→ 0 as t goes to infinity and the

inequality
d

dt
I(ρ) ≤ −2λI(ρ) = −2λ

d

dt

(
E(ρ)− E(ρ∞)

)
,

we can integrate in time to get

E(ρ)− E(ρ∞) 6
1

2λ
I(ρ). (2.7)

On the other hand, by assuming (2.7) above, we can also prove the exponential convergence of
E(ρ)− E(ρ∞) to zero with exponential rate −2λ (but not necessarily the exponential convergence
of I(ρ)), by integrating

d

dt

(
E(ρ)− E(ρ∞)

)
= −I(ρ) 6 −2λ

(
E(ρ)− E(ρ∞)

)
in time. The inequality (2.7) is usually called, in the context of optimal transport, Log-Sobolev
inequality in the linear diffusion case or generalized Log-Sobolev inequalities otherwise. We will
revisit (2.7) in the next section by investigating the displacement convexity of the energy E(ρ).
In particular, it becomes the logarithmic Sobolev inequality [26] for linear Fokker-Planck equa-
tion [2, 19, 38], and a special family of Gagliardo-Nirenberg inequalities for nonlinear Fokker-Planck
equations with porous medium type diffusion [23, 20, 16].

Following a similar approach as Del Pino and Bolbeault [23], expanding both sides of (2.7), we
obtain the equivalent inequality

λ

[∫
Rd
ρ(x)(−∆)−sρ(x)dx− 2

∫
Rd
ρ(x)x · ∇(−∆)−sρ(x)dx

]
≤ 2λE(ρ∞) +

∫
Rd
ρ(x)|∇(−∆)−sρ(x)|2dx.

The second term on the left-hand side can be simplified using the definition of (−∆)−sρ as the
Riesz integral

(−∆)−sρ(x) = cd,s

∫
Rd

1

|x− y|d−2s
ρ(y)dy ,

and consequently

−2

∫
Rd
ρ(x)x · ∇(−∆)−sρ(x)dx = 2(d− 2s)cd,s

∫
Rd

∫
Rd
ρ(x)ρ(y)x · (x− y)|x− y|2s−d−2dydx

= (d− 2s)cd,s

∫
Rd

∫
Rd
ρ(x)ρ(y)|x− y|2s−ddydx

= (d− 2s)

∫
Rd
ρ(x)(−∆)−sρ(x)dx.

Therefore, the inequality (2.7) becomes

λ(d+ 1− 2s)

∫
Rd
ρ(x)(−∆)−sρ(x)dx ≤ 2λE(ρ∞) +

∫
Rd
ρ(x)|∇(−∆)−sρ(x)|2dx. (2.8)
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To get a self-consistent inequality, we have to write E(ρ∞) in terms of some functionals of ρ, which
is established through the total conserved mass, M =

∫
ρ =

∫
ρ∞. Using the explicit expression

for ρ∞(x) = Kd,s(R
2 − |x|2)1−s

+ , the identity (2.2) implies that

(−∆)−sρ∞(x) =
λ

2

d

d− 2s
R2 − λ

2
|x|2 , for |x| 6 R.

Therefore, we conclude that

E(ρ∞) =
1

2

∫
Rd
ρ∞(x)

(
(−∆)−sρ∞(x) + λ|x|2

)
dx =

λKd,s

4

∫
Rd

(R2 − |x|2)1−s
+

(
d

d− 2s
R2 + |x|2

)
dx

=
λKd,s

4

dπd/2(d+ 2− 2s)Γ(2− s)
(d− 2s)Γ(d/2 + 3− s)

Rd+4−2s = K̃d,s

(∫
Rd
ρ(x)dx

) d+4−2s
d+2−2s

,

where (1.6) is used in the last step, together with the constant

K̃d,s =
d(d+ 2− 2s)(d+4−2s)/(d+2−2s)λ(d−2s)/(d+2−2s)

(d− 2s)(d+ 4− 2s)2(d+2−s)/(d+2−2s)πd/(d−2−2s)
.

Therefore, (2.7) is reduced to an inequality bounding the integral
∫
ρ(−∆)−sρ dx by

∫
ρ dx and∫

ρ|∇(−∆)−sρ|2 dx, that is,

λ(d+ 1− 2s)

∫
Rd
ρ(x)(−∆)−sρ(x)dx ≤ 2λK̃d,s

(∫
Rd
ρ(x)dx

) d+4−2s
d+2−2s

+

∫
Rd
ρ(x)|∇(−∆)−sρ(x)|2dx,

where the equality holds for the steady state ρ∞. In general, it is easier to prove the equivalent
inequality in the “product form”∫

Rd
ρ(−∆)−sρ dx ≤ C

(∫
Rd
ρ dx

)2−3θ (∫
Rd
ρ|∇(−∆)−sρ|2 dx

)θ
, (2.9)

where θ = d−2s
2d+2−4s is determined by the homogeneity and C is given by any function ρ(x) =

A(R2 − |x− x0|2)1−s
+ (which is independent of A, R and x0).

However, unlike the case of porous medium equation [23], we can not prove (2.9) to establish the
log-Sobolev inequality (2.7). The main difficulty lies in the integral

∫
Rd ρ|∇(−∆)−sρ|2, where basic

questions like monotonicity under symmetric decreasing rearrangement are not clear. Because of
the equivalence between (2.7) and (2.9), we will show that (2.9) holds in one dimension and it is a
consequence of the HWI inequalities, but it remains an open problem to prove or disprove (2.9) in
higher dimensions.

To summarize, provided the required regularity of the solutions in the formal calculation in
manipulating R(ρ), the exponential convergence of solutions to (1.1) is expected only in one di-
mension, which the equivalent inequality (2.9) can not be proved at this moment. The convergence
in one dimension will be established more rigorously in the next two sections, by showing an even
more general HWI inequality related the displacement convexity of the energy.

3 Transport inequalities

In this section, we derive several inequalities originated from optimal transportation theory that
will be used in the next section to show the exponential convergence of the relative entropy in one
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dimension. Besides E(ρ) and I(ρ) introduced earlier, we also need the following versions of the
energy and energy dissipation of a measure ρ ∈ P2,ac(R):

Eε(ρ) := E(ρ) + ε

∫
R
ρ log ρ ,

Iε(ρ) :=

∫
R

∣∣∂x(−∂xx)−sρ(x) + λx+ ε∂x log ρ(x)
∣∣2 dρ(x) ,

which are associated to the regularized equation (4.2) in the next section. Throughout this and
the next sections we shall commit an abuse of notation and identify every absolutely continuous
measure with its density. So we shall write dρ(x) and ρ(x)dx meaning the same thing.

We use optimal transport techniques to prove the Log-Sobolev, the Talagrand, and the HWI
inequalities for the energy Eε for smooth probability measures ρ ∈ P2,ac(R). We shall focus on the
so called HWI inequality that generalizes certain elementary inequalities for convex functions on
Rd with Euclidean distance replaced by the Wasserstein distance on P2(R) (the space of probability
measures with finite second moment). The Wasserstein distance on P2(R) is defined for any ρ1, ρ2 ∈
P2(R) by

W2(ρ1, ρ2) :=

(
inf

π∈Π(ρ1,ρ2)

∫
R×R
|x− y|2 dπ(x, y)

) 1
2

,

where Π(ρ1, ρ2) be the set of all nonnegative Radon measures on R × R with marginals (projec-
tions) ρ1 and ρ2. The HWI inequality is called so because it was first established in [35] for the
relative Kullback information (denoted by H), the Wasserstein distance W2 and the relative Fisher
information (also denoted by I).

Before stating the main results, let us briefly review a few facts about the Wasserstein distance
and the weak convergence in P2(R) that shall be used in the proofs.

• We say that the a sequence (ρn)n∈N ⊆ P2(R) weakly converges to ρ ∈ P(R) (denoted as
ρn ⇀ ρ), if

lim
n→∞

∫
ϕ(x) dρn(x) =

∫
ϕ(x) dρ(x) ,

for all ϕ ∈ Cb(R), the space of bounded and continuous functions.

• The pair (P2(R),W2) is a complete metric space and the convergence under the distance W2

is stronger than the convergence in the weak sense. In fact, the following facts are equivalent
for any (ρn)n∈N ⊆ P2(R) and ρ ∈ P(R):

i) W2(ρn, ρ)→ 0 as n→ +∞;

ii) ρn ⇀ ρ and

lim
n→∞

∫
x2 dρn(x) =

∫
x2 dρ(x); (3.1)

iii) ρn ⇀ ρ and

lim
R→∞

lim sup
n→∞

∫
|x|>R

x2 dρn(x) = 0.

• Given ρ1, ρ2 ∈ P2(R) with ρ1 absolutely continuous with respect to the Lebesgue measure,
there exists a Borel map θ : R→ R such that θ#ρ1 = ρ2, i.e.,∫

R
ϕ(x) dρ2(x) =

∫
R
ϕ(θ(x)) dρ1(x), for every bounded Borel function ϕ,
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and θ also satisfies

W2(ρ1, ρ2) =

(∫
R
|x− θ(x)|2 dρ1(x)

) 1
2

,

It is well known that the optimal map θ is nondecreasing on R and increasing on supp(ρ1).

For a detailed proof of the above results and generalizations, the reader may check the standard
references [1] and [40]. Now, let us begin with the following technical lemma about the gradient of
the Riesz potential in general dimension d.

Lemma 3.1. Let 0 < s 6 1 and ρ ∈ L1(Rd) ∩ L∞(Rd) ∩ Cα(Rd) with α > max(1 − 2s, 0). Then
(−∆)−sρ ∈ C1(Rd) and for any x ∈ Rd,

∇(−∆)−sρ(x) = −cd,s(d− 2s)

∫
Rd

x− y
|x− y|d+2−2s

(
ρ(y)− ρ(x)

)
dy , if s ∈ (0, 1/2]

or

∇(−∆)−sρ(x) = −cd,s(d− 2s)

∫
Rd

x− y
|x− y|d+2−2s

ρ(y) dy , if s ∈ (1/2, 1].

Proof. For s = 1 and d > 2 this result is in [25, Lemma 4.1] for the Newtonian potential, and one
only needs ρ ∈ L∞(Rd) ∩ L1(Rd) in order to have (−∆)−1ρ ∈ C1(Rd) with

∇(−∆)−1ρ(x) = −cd,1(d− 2)

∫
Rd

x− y
|x− y|d

ρ(y) dy.

So let us assume that s ∈ (0, 1/2] if d > 2 and s ∈ (0, 1/2) if d = 1. To simplify the notation, we
write kd,s(x) := cd,s|x|2s−d. Hence, we note that under the hypothesis on ρ, we have that

ud,s(x) := −cd,s(d− 2s)

∫
Rd

(x− y)

|x− y|d+2−2s

(
ρ(y)− ρ(x)

)
dy = ∇kd,s ∗ (ρ− ρ(x))

is well defined for all x ∈ Rd.

Now, let η ∈ C1(Rd) be a radial function such that 0 6 η 6 1, η(x) = 0 if |x| 6 1, η(x) = 1 if
|x| > 2 and |∇η| 6 2. Define ηε(x) := η(ε−1x) and

p(x) := (−∆)−sρ(x) = ks ∗ ρ(x)

pε(x) := (kd,sηε) ∗ ρ(x)

Since ρ is bounded, we have that p→ pε uniformly on Rd as

|p(x)− pε(x)| 6
∫
|x−y|62ε

kd,s(x− y)
(
1− ηε(x− y)

)
ρ(y) dy

6 ‖ρ‖∞
∫
|y|62ε

1

|y|d−2s
dy = C‖ρ‖∞ε2s

for all x ∈ Rd, where C depends on d and s.

By the smoothness of kd,sηε we know that pε ∈ C1 and ∇pε(x) = ∇(kd,sηε) ∗ ρ(x), and since
kd,sηε is radial, we can write

∇pε(x) =

∫
Rd
∇(kd,sηε)(x− y)

(
ρ(y)− ρ(x)

)
dy .
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Therefore,

|ud,s(x)−∇pε(x)| =

∣∣∣∣∣
∫
|x−y|62ε

∇(kd,s(1− ηε))(x− y)
(
ρ(y)− ρ(x)

)
dy

∣∣∣∣∣
6
∫
|x−y|62ε

(
|∇kd,s(x− y)||1− ηε(x− y)|+ kd,s(x− y)|∇ηε(x− y)|

)∣∣∣ρ(y)− ρ(x)
∣∣∣ dy

6
∫
|x−y|62ε

( cd,s(d− 2s)

|x− y|d+1−2s
+

2

ε

cd,s
|x− y|d−2s

)∣∣∣ρ(y)− ρ(x)
∣∣∣ dy (3.2)

6 C

∫
|x−y|62ε

(
1

|x− y|d+1−2s−α +
1

ε

1

|x− y|d−2s−α

)
dy

6 C1ε
α+2s−1,

where the constant C1 only depends on d, s, α and on the Hölder constant of ρ. Thus, we also
have that ∇pε converges uniformly to ud,s as ε→ 0, and therefore ∇p = ud,s.

Now, if s ∈ (1/2, 1) and d > 2 or s ∈ (1/2, 1] and d = 1, we only need to adapt the argument
in formula (3.2) for the function

ud,s(x) := −cd,s(d− 2s)

∫
Rd

x− y
|x− y|d+2−2s

ρ(y) dy = ∇kd,s ∗ ρ

and using that ∇pε = ∇(kd,sηε) ∗ ρ in the following way

|ud,s(x)−∇pε(x)| = C ‖ρ‖∞
∫
|x−y|62ε

(
1

|x− y|d+1−2s
+

1

ε

1

|x− y|d−2s

)
dy

= C2ε
2s−1,

where the constant C2 only depends on d, s and on the L∞ norm of ρ.

Finally, if d = 1 and s = 1/2 we have that

(−∂xx)−
1
2 ρ(x) = −c1, 1

2

∫
R

log |x− y|ρ(y) dy

and

u1, 1
2
(x) = c1, 1

2

∫
Rd

(x− y)

|x− y|2
(
ρ(y)− ρ(x)

)
dy.

Arguing as above for k1, 1
2
(x) := −c1, 1

2
log |x| we arrive at the following estimates:

|p(x)− pε(x)| 6 ‖ρ‖∞
∫
|y|62ε

∣∣ log |y|
∣∣dy = C‖ρ‖∞ε

(∣∣ log 2ε
∣∣+ 1

)
and

|u1, 1
2
(x)− p′ε(x)| 6 C

∫
|x−y|62ε

( 1

|x− y|
+

1

ε

∣∣ log |x− y|
∣∣)∣∣∣ρ(y)− ρ(x)

∣∣∣ dy
6 C

∫
|x−y|62ε

( 1

|x− y|1−α
+

1

ε
|x− y|α

∣∣ log |x− y|
∣∣) dy

6 Cεα
(

1 + ε+ ε
∣∣ log 2ε

∣∣).
Therefore, since all these estimates are uniform in x, we conclude that the lemma is true for all
s ∈ (0, 1] and d > 1.
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Remark 3.2. With this expression for the derivative of (−∆)−sρ for s < 1
2 , we obtain the following

equality that shall be used in the next proposition:

∇(−∆)−sρ(x)

cd,s(2s− d)
= lim

r→0

∫
|x−y|>r

x− y
|x− y|d+2−2s

(
ρ(y)− ρ(x)

)
dy

= lim
r→0

∫
|x−y|>r

x− y
|x− y|d+2−2s

ρ(y) dy − lim
r→0

ρ(x)

∫
|x−y|>r

x− y
|x− y|d+2−2s

dy

= lim
r→0

∫
|x−y|>r

x− y
|x− y|d+2−2s

ρ(y) dy,

where we only used the fact that ks is radial and ∇ks is integrable at the infinity. For s > 1
2 , the

expression is valid without taking the limit, as the kernel is locally integrable.

The next proposition shows that the HWI inequality holds for E and Eε at least for a class
of bounded and Hölder continuous functions on R. The proof follows the arguments given in [28]
where the same inequality is proved for the case of the logarithmic interaction and strongly relies on
the fact that the optimal transport map w.r.t the Wasserstein distance is a monotone nondecreasing
function on R. We point out that the convexity of the confinement due to the drift measured by
λ > 0 appears explicitly in the inequalities as in [17].

Theorem 3.3. Let s ∈ (0, 1], λ ∈ R, ρ ∈ L1(R) ∩ L∞(R) ∩ Cα(R) nonnegative where α >
max(1− 2s, 0) and with

∫
ρ = 1, and ρ∞ the minimum point of E on P2(R). Then

E(ρ)− E(ρ∞) 6
√
I(ρ)W2(ρ, ρ∞)− λ

2
W 2

2 (ρ, ρ∞).

Proof. For s = 1/2 this result was proven at [28]. So, let us suppose that s ∈ (0, 1/2) and, to
simplify, let us denote Kρ(x) = ∂x(−∂xx)−sρ(x). Since ρ is absolutely continuous with respect to
the Lebesgue measure, there exists an nondecreasing transport map θ such that θ#ρ = ρ∞.

Then, let us write√
I(ρ)W2(ρ, ρ∞)− λ

2
W 2

2 (ρ, ρ∞)− E(ρ) + E(ρ∞) = T1 + T2 + T3

where

T1 :=

(∫ ∣∣∣Kρ(x) + λx
∣∣∣2dρ(x)

)1/2(∫
|x− θ(x)|2dρ(x)

)1/2

−
∫ (

Kρ(x) + λx
)

(x− θ(x)) dρ(x)

T2 :=

∫ {
λx(x− θ(x))− λ

2
x2 +

λ

2
θ(x)2 − λ

2
|x− θ(x)|2

}
dρ(x)

T3 :=
c1,s

2

∫
dρ(x)dρ(y)

|θ(x)− θ(y)|1−2s
− c1,s

2

∫
dρ(x)dρ(y)

|x− y|1−2s
−
∫
Kρ(x)(θ(x)− x)dρ(x) ,

where we added and subtracted several terms. This allows us to show that T1 > 0 by the Cauchy-
Schwarz inequality and T2 = 0 for all λ ∈ R. Now, for T3 let us call ks(x) = c1,s|x|2s−1. Then, by
the Remark 3.2

Kρ(x) = lim
r→0

∫
|y−x|>r

k′s(x− y)dρ(y)
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And, since k′s(x) = −k′s(−x), we can write∫
Kρ(x)

(
θ(x)− x

)
dρ(x)

= lim
r→0

∫
|y−x|>r

(
θ(x)− x

)
k′s
(
x− y

)
dρ(y)dρ(x)

=
1

2
lim
r→0

∫
|y−x|>r

(
θ(x)− θ(y)− x+ y)k′s

(
x− y

)
dρ(y)dρ(x)

Furthermore,

c1,s

∫
dρ(x)dρ(y)

|x− y|1−2s
= lim

r→0

∫
|y−x|>r

ks(x− y)dρ(x)dρ(y)

c1,s

∫
dρ(x)dρ(y)

|θ(x)− θ(y)|1−2s
= lim

r→0

∫
|y−x|>r

ks(θ(x)− θ(y))dρ(x)dρ(y)

and then,

T3 = lim
r→0

1

2

∫ {
ks
(
θ(x)− θ(y)

)
− ks(x− y)− k′s

(
θ(x)− θ(y)

)(
θ(x)− θ(y)− x+ y

)}
dρ(x)dρ(y)

The integrand is nonnegative by the convexity of ks on the positive real line and by the monotonicity
of θ, so T3 > 0 as well.

If s ∈ (1/2, 1], we still have ks(x) = c1,s|x|2s−1 convex because c1,s is negative in this range.
Thus, the previous computations still apply.

Remarks. 1) It is known that, if the HWI inequality holds for some λ > 0, then the Log-Sobolev
inequality also holds. One just needs to maximize the right-hand side for W2 > 0 or use the Young’s
inequality for (λ−

1
2

√
I)(λ

1
2W2). Then we have that

E(ρ)− E(ρ∞) 6
1

2λ
I(ρ), (3.3)

for all ρ satisfying the assumptions of the theorem above.

2) Note that in the proof of the Theorem 3.3 we did not use the fact that ρ∞ is the minimum of
E , only its regularity. In fact, the same inequality holds for any ρ0 in the place of ρ∞, and also with
ρ∞ in the place of ρ, because ρ∞ ∈ L∞(R) ∩ C1−s(R), which allows the existence of θ. Therefore,
if we exchange ρ and ρ∞ in the HWI we obtain the fractional version of the so called Talagrand
inequality or transportation cost inequality

W2(ρ, ρ∞) 6

√
2

λ

(
E(ρ)− E(ρ∞)

)
. (3.4)

We can derive similar results for the ε problems.

Proposition 3.4. Let s ∈ (0, 1], λ > 0, 0 < ε < λ/2π, ρ ∈ L1(R) ∩ L∞(R) ∩ Cα(R) nonnegative
where α > 1− 2s and with

∫
ρ = 1, and ρε∞ the minimum point of Eε on P2(R). Then

Eε(ρ)− Eε(ρε∞) 6
√
Iε(ρ)W2(ρ, ρε∞)− λ

2
W 2

2 (ρ, ρε∞)
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Proof. The proof is basically the same, but since we have a new term inside the respective diffusion,
we shall include it for completeness.

As in the previous theorem, let Kρ(x) = ∂x(−∂xx)−sρ(x) and θ be such that θ#ρ = ρε∞. Then,
we decompose the inequality as√

Iε(ρ)W2(ρ, ρε∞)− λ

2
W 2

2 (ρ, ρε∞)− Eε(ρ) + Eε(ρε∞) = T1 + T2 + T3

where

T1 :=

(∫ ∣∣∣Kρ(x) + λx+ ε∂x log ρ(x)
∣∣∣2dρ(x)

)1/2(∫
|x− θ(x)|2dρ(x)

)1/2

−
∫ (

Kρ(x) + λx+ ε∂x log ρ(x)
)

(x− θ(x)) dρ(x)

T2 := −
∫ (

ε∂x log ρ(x) + λx
)

(θ(x)− x) dρ−
∫ (λ

2
x2 + ε log ρ

)
dρ

+

∫ (λ
2
x2 + ε log ρε∞

)
dρε∞ −

λ

2

∫
|x− θ(x)|2dρ(x)

T3 :=
c1,s

2

∫
dρ(x)dρ(y)

|θ(x)− θ(y)|1−2s
− c1,s

2

∫
dρ(x)dρ(y)

|x− y|1−2s
−
∫
Kρ(x)(θ(x)− x)dρ(x)

By the same arguments, we conclude that T1, T3 > 0. Now, for T2, let us define the following
functional

H(f |g) :=

∫
f(x) log

(
f(x)

g(x)

)
dx

for all f, g ∈ L1(R). Then we can re-write T2 in the following way

T2 =ε

(
−
∫
∂x log

(
ρ(x)

e−πx2

)
(θ(x)− x) dρ(x)−H(ρ|e−πx2) +H(ρε∞|e−πx

2
) + π

∫
|θ(x)− x|2 dρ

)
+

(
1− 2π

λ
ε

)∫ {
−λx(θ(x)− x)− λ

2
x2 +

λ

2
θ(x)2 +

λ

2
(θ(x)− x)2

}
dρ(x).

Note that the second line is equal to (λ−2πε)
∫
|θ(x)−x|2 dx, which is nonnegative for ε < λ/2π.

For the first line, we can use the proof of the HWI inequality made in [35]. Actually, Otto and
Villani showed that whenever f, f0 ∈ C∞c (R)∩P(R) and V ∈ C2(R) is such that

∫
e−V dx = 1 and

V ′′ > K for some K ∈ R, then

H(f0|e−V )−H(f |e−V )−
∫
∂x log

f(x)

e−V (x)
(θ(x)− x)f(x) dx− K

2

∫
|θ(x)− x|2f(x) dx > 0,

and for the density argument given in the proof of the Theorem 9.17 of [40], we have that this
inequality holds for all f, f0 ∈ L1(R)P2(R). So, applying this for V (x) = πx2 we have that K = 2π
and we conclude that T2 > 0.

Remark 3.5. By the same arguments given for (3.3) and (3.4), we conclude that the follow-
ing Log-Sobolev and Talagrand inequalities hold for Eε, as long as ρ satisfies the assumptions of
proposition 3.4:

Eε(ρ)− Eε(ρε∞) 6
1

2λ
Iε(ρ), (3.5)

14



W2(ρ, ρε∞) 6

√
2

λ

(
Eε(ρ)− Eε(ρε∞)

)
.

Remark 3.6. These results also work for a general confinement potential V : R → R instead of
the quadratic one λ

2x
2, as long as V − λ

2x
2 is convex.

Finally, let us prove the following lemma that shall be used in the last section for the convergence
in entropy of the solutions of the approximate problems. The proof uses similar arguments given
in the Theorem 1.4 of [36]. Let us just remind that a sequence {ρn}n∈N ⊆ P(R) is said to converge

in the weak-∗ sense to ρ ∈ P(R), ρn
∗
⇀ ρ if

lim
n→∞

∫
R
ϕ(x)dρn(x) =

∫
R
ϕ(x)dρ(x) , for all ϕ ∈ C0(R)

where C0(R) is the space of continuous functions on R that goes to zero at infinity. It is clear that
convergence in W2 implies weak convergence and weak convergence implies weak-∗ convergence.

Lemma 3.7. The entropy Eε is weak-∗ lower semi-continuous for all ε > 0.

Proof. We know from [31] that the functional

ρ 7→
∫
ρ log ρ

is weak-∗ lower semi-continuous, so we just need to show the result for E . For this, let us write it
in the following way:

E(ρ) =

∫
R2

F (x, y)dρ(x)dρ(y),

where

F (x, y) =


λ

4
(x2 + y4) +

c1,s

2

1

|x− y|1−2s
, if x 6= y

+∞ , if x = y
.

Since F is non-negative and smooth outside the diagonal x = y, we can find a sequence
{Fk}k∈N ⊂ C0(R2) such that Fk(x, y) ↗ F (x, y) for all (x, y) ∈ R2. Therefore, by the mono-

tone convergence theorem and the fact that ρn × ρn
∗
⇀ ρ× ρ if ρn

∗
⇀ ρ, we have that

E(ρ) =

∫
F (x, y) dρ(x)dρ(y) = lim

k→∞

∫
Fk(x, y) dρ(x)dρ(y)

= lim
k→∞

lim
n→∞

∫
Fk(x, y) dρn(x)dρn(y) 6 lim

n→∞

∫
F (x, y) dρn(x)dρn(y)

= lim inf
n→∞

E(ρn) .

4 Exponential Convergence

In Section 2, most of the calculations are performed at a formal level, assuming some strong
regularity on the solutions of (1.1) that has not been proved at the moment (see [12] for the proof
of Hölder regularity). In this section, to avoid this regularity issues, we shall prove that the energy
of the solution decays exponentially fast for the regularized equation with mollified initial data,
and then passing the limit on these regularizing parameters.
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Theorem 4.1. Let ρ0 ∈ L1(R) ∩ L∞(R) such that

0 6 ρ0(x) 6 Ae−a|x| ,

for some constants a,A > 0. Then, for each 0 < s < 1/2, the solution ρ(t, ·) of (1.1) with initial
data ρ0 satisfies

E(ρ(t))− E(ρ∞) 6 e−2λt
(
E(ρ0)− E(ρ∞)

)
.

Proof. In order to use the results of Section 3, firstly we shall assume that

ρ0 ∈ C∞(R) and

∫
R
ρ0(x) dx = 1. (4.1)

Let ρ∞, ρ
ε
∞ ∈ P(R) be the minimizers for E and Eε respectively. By the assumption on ρ0 we know

from the proofs of Theorems 4.1 and 4.2 in [13] that the solutions ρ and ρε to{
∂tρ = ∂x(ρ∂x(−∂xx)−sρ+ λxρ) , in R× (0,∞)
ρ(0) = ρ0 , in R, (4.2)

and {
∂tρ

ε = ∂x(ρε∂x(−∂xx)−sρε + λxρε) + ε∂xxρ
ε , in R× (0,∞)

ρε(0) = ρ0 , in R (4.3)

satisfy ρ ∈ C([0,∞);L1(R)) and ρε ∈ C1((0,∞) × R) for all ε > 0 sufficiently small. Because of
the regularization in (4.3), for fixed time t > 0, ρε(t, .) is in fact in C2(R). Moreover, there exist
C(t), a(t) > 0, such that

0 6 ρ(t, x) , ρε(t, x) 6 C(t)e−a(t)|x|. (4.4)

Since ρε(t) is smooth, we can apply the Log-Sobolev Inequality (3.5) for Eε and obtain that for
all t > 0,

Eε(ρε(t))− Eε(ρε∞) 6
1

2λ
Iε(ρε(t)).

Making use of the fact that
d

dt
Eε(ρε(t)) = −Iε(ρε(t)),

we conclude that
Eε(ρε(t))− Eε(ρε∞) 6 e−2λt

(
Eε(ρ0)− Eε(ρε∞)

)
. (4.5)

To take the limits as ε→ 0+, let us analyze each term on both sides of (4.5) separately:

i) The easiest one is the limit Eε(ρ0), since lim
ε→0+

Eε(ρ0) = E(ρ0) holds as long as Eε(ρ0) <∞ for

some ε > 0, which is true by the assumptions on ρ0.

ii) For the term Eε(ρε∞), let us first define the following auxiliary functional on P2,ac(R):

H(ρ) := H(ρ|e−πx2) = π

∫
x2ρ+

∫
ρ log ρ.

Since
∫
e−πx

2
dx = 1, we can write

H(ρ) =

∫
ρ

e−πx2
log
( ρ

e−πx2

)
e−πx

2
dx =

∫ [ ρ

e−πx2
log
( ρ

e−πx2

)
− ρ

e−πx2
+ 1
]
e−πx

2
dx,
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which is nonnegative by Jensen’s inequality.

Let us prove that lim supε→0 Eε(ρε∞) 6 E(ρ∞). Using the fact that ρε∞ is the minimum for Eε,
we obtain the following inequality

Eε(ρε∞) 6 Eε(ρ∞) = E(ρ∞) + ε

∫
ρ∞ log ρ∞. (4.6)

By the characterization of the minimum ρ∞ in [14, 22], we know that ρ∞ ∈ P2
ac(R)∩L∞(R),

and hence the second term on the right hand side of (4.6) is finite. Thus, we can take the
limit ε→ 0 and obtain that lim supε→0+ Eε(ρε∞) 6 E(ρ∞).

For the opposite inequality lim infε→0+ Eε(ρε∞) > E(ρ∞), we can use the fact that ρ∞ is the
minimum for E and write

E(ρ∞) 6 E(ρε∞) = Eε(ρε∞)− εH(ρε∞) + επ

∫
x2ρε∞ (4.7)

6 Eε(ρε∞) + επ

∫
x2ρε∞. (4.8)

So, it is sufficient to prove that the second moments of ρε∞ are uniformly bounded for ε > 0
sufficiently small. For this, note that

0 6
λ

4

∫
x2ρε∞ 6

(1− επ)λ

2

∫
x2ρε∞

6
(1− επ)λ

2

∫
x2ρε∞ +

c1,s

2

∫
dρε∞(x)dρε∞(y)

|x− y|1−2s
+
ελ

2
H(ρε∞)

= Eε(ρε∞) 6 Eε(ρ∞) 6 E(ρ∞) +

∣∣∣∣∫ ρ∞ log ρ∞

∣∣∣∣
for all 0 < ε < 1/2π. Therefore, by (4.7) and (4.8)

E(ρ∞) 6 lim inf
ε→0+

Eε(ρε∞) + lim
ε→0+

επ

∫
x2ρε∞ = lim inf

ε→0+
Eε(ρε∞).

Hence, as ε goes to zero from above, we have that the minimum of Eε(ρ) indeed converge to
the minimum of E(ρ), i.e., E(ρ∞) = lim

ε→0+
Eε(ρε∞).

iii) Finally, let us prove that E(ρ(t)) 6 lim infε→0+ Eε(ρε(t)), as a consequence of the convergence
of ρε(t) to ρ(t) in P2,ac(R) and the lower semi-continuity of the energy Eε. For this we can
use the bound (4.4) to obtain

lim
R→∞

sup
ε>0

∫
|x|>R

ρε(t, x)dx 6 lim
R→∞

C(t)

∫
|x|>R

e−a(t)|x|dx = 0,

which means that ρε(t) is a tight family of probability measures and by Prokhorov Theorem,
there exist a sequence εn → 0+ such that ρεn(t) ⇀ ρ(t), i.e.,∫

R
ϕ(x)ρεn(t, x) dx→

∫
R
ϕ(x)ρ(t, x) dx , ∀ϕ ∈ Cb(R) (4.9)

Moreover, due to uniform exponential bound, we also have that

lim
R→∞

sup
εn→0

∫
|x|>R

x2ρεn(t, x)dx 6 lim
R→∞

C(t)

∫
|x|>R

x2e−a(t)|x|dx = 0. (4.10)
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Therefore, by item (iii) of (3.1) we have that (4.9) and (4.10) imply that ρεn(t) converges to
ρ(t) in (P2(R),W2). Now, for the following inequality

E(ρεn(t)) = Eεn(ρεn(t))− εnH(ρεn(t)) + πεn

∫
x2ρεn(t, x) 6 Eεn(ρεn) + πεn

∫
x2ρεn(t, x),

and by the fact that E is lower semi-continuous in (P2(R),W2) and the second moments of
ρεn(t) are uniformly bounded w.r.t n, we obtain

E(ρ(t)) 6 lim inf
n→∞

E(ρεn(t)) 6 lim inf
n→∞

Eεn(ρεn(t)).

Putting all the limits as ε goes to zero together, we can conclude the exponential convergence of
E(ρ(t))− E(ρ∞), that is,

E(ρ(t))− E(ρ∞) 6 lim inf
n→∞

Eεn(ρεn(t))− lim
n→∞

Eεn(ρεn∞)

= lim inf
n→∞

(
Eεn(ρεn(t))− Eεn(ρεn∞)

)
6 e−2λt lim inf

n→∞

(
Eεn(ρ0)− Eεn(ρε∞)

)
= e−2λt

(
E(ρ0)− E(ρ∞)

)
.

If the regularity assumption in (4.1) is not true, we can proceed the above argument with the
mollified initial data ρ0,δ = ηδ∗ρ0, which has the same bound and mass as ρ0. Since we still have the
same exponential bounds for the respective solutions ρδ(t), we can argue as above and conclude that
E(ρ(t)) 6 lim infδ→0 E(ρδ(t)) holds for all t > 0. For t = 0 we can use the exponential bound of the
initial data and the Dominated Convergence Theorem to conclude that limδ→0 E(ρδ,0) = E(ρ0).

As a direct consequence of the Talagrand inequality in (3.4), we also obtain the exponential
decay in Wasserstein distance.

Corollary 4.2. Assume that ρ0 satisfies 0 6 ρ0(x) 6 Ae−a|x| for all x ∈ R and some a,A > 0.
Then, for each 0 < s < 1/2, the solution of (1.1) with initial data ρ0 satisfies

W2(ρ(t), ρ∞) 6 e−λt
√

2

λ

(
E(ρ0)− E(ρ∞)

)
.

For the Fokker-Planck equation or the classic Porous Medium Equations, exponential conver-
gence of the relative entropy E(ρ) − E(ρ∞) implies convergence of ρ to the steady states ρ∞ in
some classical Lp norms. Here we can show that the convergence in the relative entropy implies
the convergence of the norm ‖(−∆)−

s
2 (ρ− ρ∞)‖2.

Lemma 4.3. Let ρ∞ be the unique minimizer of E, then for any ρ ∈ P2(Rd),

1

2
‖(−∆)−

s
2 (ρ− ρ∞)‖22 ≤ E(ρ)− E(ρ∞).

Proof. The characterization (2.1a) and (2.1b) of the global minimizer ρ∞ and the non-negativity
of ρ− ρ∞ outside of the support of ρ∞ imply that

0 = C∗

∫
Rd

(ρ− ρ∞) ≤
∫
Rd

(
(−∆)−sρ∞(x) + λ

|x2|
2

)
(ρ− ρ∞).
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Therefore, we deduce

E(ρ)− E(ρ∞) =
1

2

∫
ρ(−∆)−sρ− 1

2

∫
ρ(−∆)−sρ∞ +

λ

2

∫
|x|2(ρ− ρ∞)

≥ 1

2

∫
ρ(−∆)−sρ− 1

2

∫
ρ(−∆)−sρ∞ −

∫
(ρ− ρ∞)(−∆)−sρ∞

=
1

2

∫
(ρ− ρ∞)(−∆)−s(ρ− ρ∞) =

1

2
‖(−∆)−

s
2 (ρ− ρ∞)‖22.

Since the norm ‖(−∆)−
s
2 (ρ−ρ∞)‖2 is in general weak, it is unlikely to produce a bound on any

stronger Lp norm for the difference ρ− ρ∞. One way to show the exponential convergence of ρ(t)
to ρ∞ is by assuming that a higher norm on ρ−ρ∞ is bounded. For example, if ‖(−∆)

s
2 (ρ−ρ∞)‖2

is uniformly bounded, then we have (easy to establish in Fourier space)

‖ρ− ρ∞‖22 ≤ ‖(−∆)
s
2 (ρ− ρ∞)‖2‖(−∆)−

s
2 (ρ− ρ∞)‖2

and ‖ρ− ρ∞‖2 converges to zero also exponentially fast, but with a smaller rate.

Let us prove that in fact the exponential convergence also holds in L2 without any additional
hypothesis. For this we shall use the following interpolation inequality.

Theorem 4.4. Let 0 < α 6 1 and 0 < s < d/2 and 0 < r < α/2. There exists a constant
C = C(d, s, α) such that

‖u‖2 6 C‖(−∆)−
s
2u‖σ12 [u]σ2α ‖u‖

σ3
1 (4.11)

for all u ∈ L1(Rd) ∩ Cα(Rd) with

σ1 =
r

s+ r
, σ2 =

s(d+ 2r)

2(d+ α)(s+ r)
, σ3 =

s(d+ 2α− 2r)

2(d+ α)(s+ r)
.

Proof. We first use Fourier variables, Plancherel’s formula, and the Hölder’s inequality to interpo-
late between Ḣr(Rd) and (−∆)−

s
2u ∈ L2(Rd) obtaining

‖u‖22 =

∫
Rd
|û(ξ)|2dξ ≤

(∫
Rd
|û(ξ)|2|ξ|−2sdξ

)σ1 (∫
Rd
|û(ξ)|2|ξ|2rdξ

)1−σ1

= ‖(−∆)−
s
2u‖2σ12

(∫
Rd
|û(ξ)|2|ξ|2rdξ

)1−σ1
(4.12)

where σ1 = r/(s+ r), for all 0 < s < 1/2 and r > 0.

Our aim now is to bound Ḣr(Rd) by [u]α and ‖u‖1. We write the singular integral representation
of this norm (Proposition 3.4 of [24]) and we split it as

‖u‖2
Ḣr =

∫
Rd
|û(ξ)|2|ξ|2rdξ =Cd,r

∫
Rd

∫
Rd

(u(x)− u(y))2

|x− y|d+2r
dxdy

=Cd,r

∫∫
|x−y|≤R

(u(x)− u(y))2

|x− y|d+2r
dxdy + Cd,r

∫∫
|x−y|>R

(u(x)− u(y))2

|x− y|d+2r
dxdy

:= I1 + I2 .
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To estimate I1, we make use of |u(x) − u(y)| ≤ [u]α |x − y|α to get, by the change of variables
(z, w) = (x− y, x+ y), that

I1 = Cd,r

∫∫
|x−y|≤R

(u(x)− u(y))2

|x− y|d+2r
dxdy ≤ Cd,r[u]α

∫∫
|x−y|≤R

|u(x)− u(y)|
|x− y|d+2r−α dxdy

≤ C[u]α ‖u‖1
∫
|z|≤R

|z|α−2r−d dz ≤ C[u]α‖u‖1Rα−2r ,

where the last step is allowed since 2r < α. On the other hand, we can similarly estimate the far
field term as

I2 = Cd,r

∫∫
|x−y|≥R

(u(x)− u(y))2

|x− y|d+2r
dxdy ≤ 4Cd,r

∫
Rd
|u(x)|2dx

∫
|z|≥R

dz

|z|d+2r
≤ C‖u‖22R−2r .

Joining the two integrals and optimizing in R, we infer

‖u‖2
Ḣr ≤ C‖u‖

2(α−2r)/α
2 ‖u‖2r/α1 [u]2r/αα . (4.13)

We finally use the classical interpolation results between Lp(Rd) and Cα(Rd) spaces due to L. Niren-
berg in [33], see also [11] for a full statement. This interpolation inequality ensures the existence
of a constant depending on α and d such that

‖u‖22 ≤ C ‖u‖
(d+2α)/(α+d)
1 [u]d/(α+d)

α .

Putting it together with (4.13), it yields

‖u‖2
Ḣr ≤ C‖u‖

(d+2α−2r)/(d+α)
1 [u](d+2r)/(d+α)

α .

Finally, we plug this into (4.12) to conclude (4.11).

Therefore, from Theorem 4.1 and Theorem 4.4, we derive the following decay towards the
stationary state under the L2 norm.

Corollary 4.5. Assume that ρ0 satisfies 0 6 ρ0(x) 6 Ae−a|x| for all x ∈ R and some a,A > 0.
Then, for each 0 < s < 1/2, the solution of (1.1) with initial data ρ0 satisfies

‖ρ(t)− ρ∞‖2 6 C (1 + [ρ∞]α)σ2 (E(ρ0)− E(ρ∞))
σ1
2 e−λσ1t .

Proof. Given ρ0 under the conditions above, we know from Theorem 5.1 of [12] that there exists an
α ∈ (0, 1) such that the solution ρ of (1.1) satisfies ρ(t) ∈ Cα(R) for all t > 0 with a uniform bound
in time. Since ρ∞ is (1− s)-Hölder continuous, we can use inequality (4.11) for u = ρ(t)− ρ∞ and
0 < r < 2 min(α, 1− s) to conclude.

Let us point out that the decay of the entropy in Theorem 4.1 implies a uniform in time control
of the second moment of the solutions trivially at least for 0 < s < 1/2. Otherwise, one has to
work a bit due to the sign of the constant in the fractional operator. In any case, a uniform in time
control of the second moments together with the L2-decay rates implies L1-decay rates of the form

‖ρ(t)− ρ∞‖1 6
∫
|x|<R

|ρ(t, x)− ρ∞(x)|dx+

∫
|x|≥R

|ρ(t, x)− ρ∞(x)|dx

6 C

(
Rd/2 ‖ρ(t)− ρ∞‖2 +R−2

∫
Rd
|x|2
(
ρ(t, x) + ρ∞(x)

)
dx

)
6 C

(
E(ρ0) + E(ρ∞)

)d/(d+4) ‖ρ(t)− ρ∞‖4/(d+4)
2 , (4.14)
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by choosing R ∼
(
(E(ρ0) + E(ρ∞))/ ‖ρ(t)− ρ∞‖2

)2/(d+4)
; see a similar calculation in [21, Lemma

2.24] for instance. In one dimension, using Corollary 4.5, we obtain the decay rate e−4λσ1t/5 for
‖ρ(t)− ρ∞‖1.

We finally remark that the decay in Lp-norms obtained via Corollary 4.5 and (4.14) are trans-
lated through the change of variables (1.4)-(1.5) into algebraic decay rates toward self-similar
solutions of the original fractional porous medium equation (1.2).

A Distribution Derivatives of Riesz potential

In the discussion of the entropy dissipation methods in Section 2, the explicit expression of the
Hessian matrix Dij(−∆)−sρ is needed to simplify the terms in R(ρ). Since the Riesz potential
(−∆)−s is a singular integral, these second order derivatives can not be applied to the kernel (1.3)
directly, but can be derived from several equivalent approaches. Below, we interpret Dij(−∆)−sρ
as distributional derivatives, and obtain the expressions using the definition in a similar way as
representing the velocity gradient using vorticity in fluid mechanics [30].

For any test function φ ∈ C∞(Rd), the distributional derivative Dij(−∆)−sρ is defined as

〈
Dij(−∆)−sρ, φ

〉
:=
〈
(−∆)−sρ,Dijφ

〉
= cd,s

∫
Rd

∫
Rd

ρ(y)

|x− y|d−2s

∂2φ(x)

∂xi∂xj
dydx.

Next, we use integration by parts to shift the derivatives from the test function φ to the singular
integral (−∆)−sρ, by writing the above expression as a limit outside a ball. More precisely,

〈
(−∆)−sρ,Dijφ

〉
= lim

ε→0+
cd,s

∫
Rd
ρ(y)

[∫
B(y,ε)c

1

|x− y|d−2s

∂2φ(x)

∂xi∂xj
dx

]
dy

= lim
ε→0+

(d− 2s)cd,s

∫
Rd
ρ(y)

[∫
B(y,ε)c

xi − yi
|x− y|d+2−2s

∂φ(x)

∂xj
dx

]
dy,

where B(y, ε)c is the complement of the ball B(y, ε) = {x ∈ Rd | |x−y| < ε} and the integration on
the boundary ∂B(y, ε) vanishes in the limit. Integrating by parts again, we obtain (the unit outer
normal at x ∈ B(y, ε)c is −(x− y)/|x− y|)

lim
ε→0+

c+
d,s

∫
Rd
ρ(y)

[∫
B(y,ε)c

Kij(x− y)φ(x)dx −
∫
∂B(y,ε)

(xi − yi)(xj − yj)
|x− y|d+3−2s

φ(x)dSx

]
dy, (A.1)

where c+
d,s = (d− 2s)cd,s and

Kij(x) =
1

d− 2s

∂2

∂xi∂xj
|x|2s−d =

1

|x− y|d+2−2s

(
(d+ 2− 2s)

xixj
|x|2

− δij
)
.

Since for any x ∈ ∂B(y, ε), φ(x) = φ(y) + (x− y) · ∇φ(y) +O(|x− y|2), we can replace φ(x) by
φ(y) in the boundary integral in (A.1), i.e.,

lim
ε→0+

∫
∂B(y,ε)

(xi − yi)(xj − yj)
|x− y|d+3−2s

φ(x)dSx = φ(y) lim
ε→0+

∫
∂B(y,ε)

(xi − yi)(xj − yj)
|x− y|d+3−2s

dSx.
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It is easy to see that for j 6= i,∫
∂B(y,ε)

(xi − yi)(xj − yj)
|x− y|d+3−2s

dSx =

∫
B(y,ε)c

Kij(x− y)dx = 0,

and for j = i, ∫
∂B(y,ε)

(xi − yi)(xi − yi)
|x− y|d+3−2s

dSx =

∫
B(y,ε)c

Kii(x− y)dx =
|Sd−1|
d

ε2s−2,

where |Sd−1| is the area of the unit sphere Sd−1 = {x ∈ Rd | |x| = 1}.

Therefore, the distributional derivative
〈
Dij(−∆)−sρ, φ

〉
written as the limit (A.1) can be sim-

plified as

〈
Dij(−∆)−sρ, φ

〉
= lim

ε→0+
c+
d,s

∫
Rd
ρ(y)

[∫
B(y,ε)c

Kij(x− y)φ(x)dy − φ(y)

∫
B(y,ε)c

Kij(x− y)dy

]
dy

= lim
ε→0+

c+
d,s

∫∫
|x−y|>ε

Kij(x− y)
(
ρ(y)φ(x)− ρ(y)φ(y)

)
dydx

= − lim
ε→0+

c+
d,s

∫
Rd
φ(x)

[∫
B(x,ε)

Kij(x− y)
(
φ(x)− φ(y))dy

]
dx.

This implies the following singular integral represent of the Hessian matrix of (−∆)−sρ:

Dij(−∆)−sρ(x) = −c+
d,s

∫
Rd
Kij(x− y)

(
ρ(x)− ρ(y)

)
dy.

In particular, we can write the fractional Laplacian (−∆)1−sρ as

(−∆)1−sρ(x) = −
d∑
i=1

Dii(−∆)−sρ(x) = c+
d,s

∫
Rd
Kij(x− y)

(
ρ(x)− ρ(y)

)
dy

= c+
d,s

∫
Rd

ρ(x)− ρ(y)

|x− y|d+2−2s
dy,

recovering its standard singular integral representation [27, 37].
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