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Motivated by Bland’s linear-programming generalization of the renowned Edmonds-Karp efficient refine-
ment of the Ford-Fulkerson maximum-flow algorithm, we present three closely related natural augmentation
rules for linear and integer linear optimization. In several nice situations, we show that polynomially many
augmentation steps suffice to reach an optimum. In particular, when using “discrete steepest-descent aug-
mentations” (i.e., directions with the best ratio of cost improvement per unit 1-norm length), we show that
the number of augmentation steps is bounded by the number of elements in the Graver basis of the prob-
lem matrix, giving the first strongly polynomial-time algorithm for N -fold integer linear optimization. Our
results also improve on what is known for such algorithms in the context of linear optimization (e.g., gener-
alizing the bounds of Kitahara and Mizuno for the number of steps in the simplex method) and are closely
related to research on the diameters of polytopes and the search for a strongly polynomial-time simplex or
augmentation algorithm.
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1. Introduction. We consider a general framework for solving linear programs (LPs) and
integer linear programs (ILPs) of the form

min{cᵀx : Ax= b, 0≤ x≤ u, x∈X } , (1)

where A ∈ Zd×n, b ∈ Zd, c ∈ Zn, and where X = Rn (LP) or X = Zn (ILP). We focus on solution
algorithms that are based on an augmentation procedure. At each iteration, we have a current
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feasible point xk. An augmentation direction z has xk+αz is feasible for some α> 0 (which implies
that z is in the kernel of A) and has cᵀz< 0. Together, the augmentation is αz, and we pass to
the next feasible solution xk+1 := xk +αz. We note the trivial fact that cᵀxk+1 < cᵀxk. In this way,
an augmentation procedure produces a sequence of feasible solutions x1, x2, . . . that are successive
improvements on the value of the objective function, until an optimal solution is reached. Finally,
an augmentation αz is maximal if, considering xk and z to be fixed, α is the largest value of t > 0
for which xk+1 := xk + tz is feasible. If the augmentation is maximal, xk+1 is the best point on the
intersection of the feasible region with the half-line {xk + tz : t > 0}. In what follows, we give
upper bounds on the number of maximal augmentations required to reached an optimum, in both
the LP and ILP cases.

Of course, augmentation algorithms are nothing new, and one can trace back their origin to the
classical simplex algorithm. For the case of LP, the simplex method is indeed an augmentation
algorithm, where we start at a vertex of the polyhedron that is the feasible region, and the aug-
mentation used at each iteration corresponds to an available edge direction at the current vertex.
Of course, in the degenerate case, there can be considerable work to calculate an improving edge
direction. Nonetheless, by limiting augmentation directions to available edge directions at the cur-
rent vertex, and always choosing maximal augmentations, we insure that the next feasible solution
is also a vertex, and so the simplex algorithm can continue. Similarly, the idea of augmentation has
played a very important historical role in the algorithmic theory of network flows; in particular,
there is the seminal and very well-known work of Edmonds and Karp (see [13]). They showed that
for maximum-flow (essentially the same problem as maximizing the flow on a single arc of a flow-
conservative network, subject to simple bounds on the other arcs), the number of augmentations
(taken by the classic Ford-Fulkerson augmentation algorithm) is bounded by the number of arcs
times the number of vertices, or slightly more crudely by the number of arcs squared, when aug-
mentations are always chosen to have the fewest number of arcs, and the augmentation is maximal.
In unpublished work, R. Bland ([5]) extended this, rather elegantly, to general LPs. Besides not
being published by Bland in the 1970’s, it is not well known even today. The result was implicitly
alluded to in print in 1987 (see [3]), and mentioned more concretely in J. Lee’s 1986 dissertation [23]
(see Proposition 3.1 in the follow-on publication [24]). Bland himself made a concrete statement of
it (still without proof) in 1992 (see [6]):

“It was prompted by another result in the same Edmonds-Karp paper [13], that if one always
augments on a shortest augmenting path, the number of augmentations in the Ford-Fulkerson
maximum flow algorithm is less than the product of the numbers of nodes and edges. Fulkerson
[15] had investigated the extent to which fundamental properties of networks generalize to
broader classes of linear programming problems, where elementary vectors in the appropriate
subspaces play the roles of circuits and cocircuits (minimal cutsets). Bland’s dissertation [4]
carried this further, and in later work he showed how the Edmonds-Karp result generalizes to
arbitrary linear programming problems of the form

maximize x0

subject to Ax= 0, (2)
l≤ x≤ u.

Here the bound on the number of augmentations is the number of variables times the number
of different lengths of normalized elementary vectors; in particular if A is totally unimodu-
lar the bound is the product of the dimensions of A, as in the max flow result of Edmonds
and Karp, where A is the (totally unimodular) node-edge matrix of a directed graph. This
seemed to be amusing, but without any obvious use, until late in 1978 when Paul Seymour [31]
proved his remarkable decomposition theorem for unimodular matroids. Bland and Edmonds
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[7] used Seymour’s theorem to show how shortest augmentations could be computed in polyno-
mial time when the constraint matrix A is totally unimodular. Cost scaling was used to extend
the approach to a polynomial-time primal algorithm for totally unimodular linear programming
problems

maximize aᵀx
subject to Ax= b,
l≤ x≤ u.

which are solved as a sequence of subproblems of the form (2). More recently Tardos [32] has
given strongly polynomial algorithms for totally unimodular linear programming problems, and
still more general classes of combinatorial optimization problems, using cost scaling in a far
more clever way.”
Today, progress on the augmentation approach to LP continues: New families of augmentation

algorithms for LP include those proposed in [10] (and rediscovered in [2]). Very recently, [21]
rekindled our interest in Bland’s result as they, among other things, rediscovered it. Additionally,
Kitahara and Mizuno [22] gave an upper bound for the number of different basic-feasible solutions
generated by the simplex method. Their results are direct generalizations of Y. Ye’s work [33].

On the other hand, the study of augmentation algorithms for ILP goes back at least to the
1970’s and was part of the study of “test sets” (see [16, 28, 29] and the references therein). Several
authors considered augmentation algorithms as a way to reach an optimal solution of an ILP, and
more recently [19] showed that if a “best-improving” augmentation z in the “Graver basis” of the
constraint matrix is chosen (the authors of [19] called this augmentation rule “greedy improvement”
here we will call this “deepest descent”), only polynomially many augmentations (in the binary
encoding length of the input data) must be performed in order to reach the optimal value. The paper
[19] also shows how to efficiently use an augmentation algorithm for separable convex objective
functions and has implicit bounds like those presented here.

The set of possible augmentation directions we use depends on the type of problem: For the
LP case, we use as the set of possible augmentation directions the circuits of A. C(A) consists
of the normalized elementary vectors (or circuits) associated with ker(A) \ {0} (see [26]) — that
is, the vectors having (set-wise) minimal support in ker(A) \ {0}. The set of elementary vectors
of ker(A) \ {0} is a finite set of lines through the origin, with the origin excluded. Usually, it is
convenient to normalize in an arbitrary manner, so that C(A) comprises a single point and its
negative from each such line. In our context, Bland’s normalization uses the objective function so
that cᵀz =−1 for every augmentation direction — in his terms, such a z is unit augmenting. For
the vectors in C(A), we choose on each line the (nonzero) integer point closest to the origin and its
negative as normalized representatives.

For the IP case, the set of possible augmentation directions is the Graver basis of A, denoted
by G(A). We obtain Graver’s original finite set [16] of v-minimal elements in ker(A)∩Zn \ {0},
where uv v if and only if u(i)v(i) ≥ 0 and |u(i)| ≤ |v(i)|. In general, G(A) has a nice sign-compatible
representation property: every (integer vector) z ∈ ker(A) can be written as z =

∑
αigi, with

gi ∈ G(A), αi > 0, αi ∈Z in the integer setting, and αigi v z, for all i, and the sum involves at most
2n− 2 terms. In fact, G(A) is an inclusion-minimal set with this property. It should be noted that
due to the sign-compatible representation we have

‖z‖1 =
∑

αi‖gi‖1,

where ‖ · ‖1 is the usual 1-norm.
We remark that the all circuits are members of the Graver basis. But they also provide a

specialized elegant sign-compatible representation over the rationals for all non-zero elements of
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ker(A). Namely, every vector z ∈ ker(A) can be written as z =
∑
αigi, with gi ∈ C(A), αi ≥ 0,

αi ∈Q, and the sum involves at most n terms. Note that the (worst-case) number of summands
is smaller than in the general Graver decomposition. It is worth remarking that Graver bases can
also be defined for the general mixed-integer case (see [17, Section 3.3]) — but in the mixed-integer
setting, the Graver basis is not generally finite, in sharp contrast to the LP and ILP cases; so we
do not consider that situation here as, unlike the LP and ILP cases, it requires the existence of
some kind of specialized oracle to generate the moves one by one. For an introduction to Graver
bases see the books [25] and [12].

1.1. Contributions The first contribution of this paper is an extension of Bland’s theorem
beyond LP to ILP. Our main results and proofs extend what Bland did for circuits to Graver
bases. We look at several augmentation rules. Although they are very similar, our results here are
naturally divided into the LP and ILP cases, with small but important technical changes. Also,
depending on whether variables are restricted to integers or not, we obtain different sets as set of
allowable augmentation directions. We denote by T (A) the set of augmentation directions. The set
T (A) will change depending on the case.

In what follows, we will employ T (A) in an augmentation algorithm that iteratively replaces
a feasible (either continuous or integer) solution xk to Ax = b, 0 ≤ x ≤ u, by a better feasible
solution xk+1 := xk +αz, where cᵀz< 0 and α> 0. We consider three specific augmentation rules.

Definition 1 (Discrete Deepest Descent). With respect to a feasible solution xk, we
choose z such that −αcᵀz is maximized among all z ∈ T (A) and α > 0 such that xk+1 := xk +αz
is feasible (note that for ILP this means that α∈Z).

Definition 2 (Discrete Dantzig Descent). With respect to a feasible solution xk, we
choose z such that −cᵀz is maximized among all z ∈ T (A) such that xk + εz is feasible for some
ε > 0 (note that for LP this means for all sufficiently small ε > 0, and for ILP this means for ε= 1).
Then we take a maximum augmentation in such a direction. That is, we let xk+1 := xk +αz, where
α is the largest value for which xk +αz is feasible (note that for ILP this means that α∈Z).

Definition 3 (Discrete Steepest Descent). With respect to a feasible solution xk, we
choose z such that −cᵀz/‖z‖1 is maximized among all z ∈ T (A) such that xk + εz is feasible for
some ε > 0 (note that for LP this means for all sufficiently small ε > 0, and for ILP this means for
ε= 1). Then we take a maximum augmentation in such a direction. That is, we let xk+1 := xk+αz,
where α is the largest value for which xk +αz is feasible (note that for ILP this means that α∈Z).

Note that all three augmentation rules produce maximal augmentations. Practically speaking,
there are more situations in which discrete steepest descent and discrete Dantzig descent can be
practically implemented, as compared to discrete deepest descent. Still, it is interesting to analyze
and contrast these cases. We derive the following main results concerning these augmentation
rules for the ILP and the LP cases. In some structured instances, these bounds provide very good
guarantees of performance. Our ILP theorem is new, while our LP results extends what Bland
started early on and greatly extends the applicability of the bounds of Kitahara and Mizuno.

In what follows the base of all logarithms is base 2.

Theorem 1 (ILP case). Let A∈Zd×n, b∈Zd and c∈Zn define the ILP

min{cᵀx : Ax= b, 0≤ x≤ u, x∈Zn } .

Moreover, let x0 be an initial feasible solution, let xmin be an optimal solution, and let γ be the
maximum non-zero entry (in absolute value) in any feasible solution. Then we have the following
bounds on the number of augmentations to reach an optimal solution from x0.
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(a) The number of discrete deepest-descent augmentations needed to reach an optimal solution from
x0 is bounded by (4n− 4) log(cᵀ(x0−xmin)) (see also [19]).

(b) The number of discrete Dantzig-descent augmentations needed to reach an optimal solution from
x0 is bounded by (4n− 4)γ log(cᵀ(x0−xmin))

(c) Any discrete steepest-descent direction (which by definition belongs to G(A)) is an overall
steepest-descent direction (which could be any applicable direction from Zn). Moreover, the num-
ber of discrete steepest-descent augmentations to reach an optimal solution of the given ILP is
bounded by |G(A)|.

Remark: An earlier bound was proved, but not explicitly stated as a proposition, in [19] and
in [25] (see top of page 47 (end of proof of Lemma 3.10)).

While by nature LP augmentation algorithms cannot have cycling like can happen in the simplex
method, it should be noted that the LP case of the discrete deepest-descent and the discrete
Dantzig-descent augmentation algorithms only guarantee that we reach a feasible solution xk with
objective value is “close enough” to the optimal value. Whether any given feasible solution is “close
enough” can be checked by generating a vertex with objective value that is at least as good as cᵀxk.
Finding such a vertex can be done by augmenting xk only along such (discrete deepest-/Dantzig-
descent) circuit directions that lead to a better feasible solution with an additional component
reaching its lower or upper bound. Geometrically, this corresponds to (iterative) augmentation
within the smallest face of the polyhedron {x : Ax= b, 0≤ x≤ u, x∈Rn } that contains xk. (The
circuits of the problem matrix A provide such a restricted optimality certificate). We recommend
to see the example in [17]. Finally, again using the circuits of A, it can be checked whether the
vertex found is optimal. The overall closeness-test requires at most n augmentations.

We stress that our new theorem below proves that Kitahara-Mizuno style bounds [22] hold in
larger generality to include augmentations that go through the interior of the polytope and are not
restricted to edges. Theorem 1 is in fact an IP extension of those bounds too.

Theorem 2 (LP case). Let A∈Zd×n, b∈Zd and c∈Zn define the LP

min{cᵀx : Ax= b, 0≤ x≤ u, x∈Rn } .

Moreover, let x0 be an initial feasible solution, let xmin be an optimal solution, let γ be the maximum
non-zero entry (in absolute value) in any feasible solution, and let δ denote the least common multi-
ple of all subdeterminants of A. Then we have the following bounds on the number of augmentations
to reach an optimal solution from x0.

(a) The number of discrete deepest-descent augmentations needed to reach an optimal solution from
x0 is bounded by 2n log(δ cᵀ(x0−xmin)) (see also [19]).

(b) The number of discrete Dantzig-descent augmentations needed to reach an optimal solution from
x0 is no more than 2n2δγ log(δ cᵀ(x0−xmin))

(c) Any discrete steepest-descent direction (which by definition belongs to C(A)) is an overall
steepest-descent direction (which could be any applicable direction from Rn). Moreover, the num-
ber of discrete steepest-descent augmentations to reach an optimal solution of the given LP is
bounded by |C(A)|.

Remark: An earlier bound was proved, but not explicitly stated as a proposition, in [19] and
in [25] (see top of page 47 (end of proof of Lemma 3.10)). The bound obtained by the authors of
[19] leads directly to an extra factor of n in the number of augmentations. Our count here follows
the nice idea from [19] but we manage to get rid of this factor of n.

Note that the bounds in part (c) of Theorems 1 and 2 only depend on A, but not on b, c, and
the particular initial feasible solution x0 chosen. As a direct consequence of Theorem 1, we obtain
the following corollaries.
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Corollary 1. For the pure 0/1 ILP min{cᵀx :Ax= b, 0≤ x≤ 1, x∈Zn } the number of
discrete deepest-/Dantzig-/steepest-descent augmentations is bounded by O(n log(‖c‖1)).

We note that in the LP case, the proof of Theorem 2, part (c), immediately gives Bland’s
fundamental result:

Corollary 2 (Bland’s Theorem). The number of discrete steepest-descent augmentations
needed to solve min{cᵀx :Ax= b,0≤ x≤ u,x∈Rn } is bounded by the number of (different) posi-
tive values of −cᵀz/‖z‖1 over all (elementary vectors) z∈ C(A) times the number n of variables.

As for totally unimodular matrices A, C(A) = G(A), i.e., they coincide for the LP and ILP cases,
the proof of Theorem 2, part (c), also implies:

Corollary 3. For totally unimodular matrix A, the number of discrete steepest-descent aug-
mentations needed to solve min{cᵀx :Ax= b,0≤ x≤ u,x∈Zn } is bounded by the number of (dif-
ferent) positive values of −cᵀz/‖z‖1 over all (elementary vectors) z∈ C(A) times the number n of
variables.

For a totally unimodular matrix A, C(A) consists only of vectors with (at most d+ 1) entries
in {−1,0,1} Thus, for z ∈ C(A) we have | − cᵀz| ≤ ‖c‖1 and ‖z‖1 takes on at most d+ 1 different
values. Plugging this into Corollary 3 we get the following.

Corollary 4. For totally unimodular matrix A, the number of discrete steepest-descent aug-
mentations needed to solve min{cᵀx :Ax= b,0≤ x≤ u,x∈Zn } is bounded by n(d+ 1)‖c‖1.

From this we immediately recover the complexity bound for the algorithm by Edmonds and
Karp to find maximum flows in a network: Let A be the node/edge-incidence matrix of the directed
graph. Note that one row of A is redundant/linearly dependent on the other rows and thus can be
removed from A. Then n= |E| and d= |V | − 1. As we maximize the flow on a specific (auxiliary)
arc (from sink to source), we have ‖c‖1 = 1. Thus, n(d+ 1)‖c‖1 = |E| · |V | bounds the number
of discrete steepest-descent augmentations to solve the max-flow problem. This observation is not
very surprising, as the augmentation approach using Graver bases specializes to the algorithm by
Edmonds and Karp in the setting of maximum flows.

It is worth remembering that although the complexity statements in Corollary 1 and Corollary
4 depend on the unary size of c, these two results actually can be improved based on the results
of Frank and Tardos [14]. Frank and Tardos used Diophantine approximation to replace c with a
new objective function c′ where the integer numbers occurring in the entries are small but define
an equivalent problem with the same optima. Furthermore, the new weight function c′ can be
found in strongly polynomial time. In conclusion, if we are able to generate in polynomial time the
corresponding augmentation elements of the Graver basis according to one of the three rules, we
obtain strongly polynomial time algorithms. Of course, this is in general hard to do other than by
computing the entire Graver basis, but for special matrices A, one can do much better.

Our results on augmentations for totally unimodular matrices provide another interesting geo-
metric result. For years researchers have been looking at the diameter of the graph of polyhedra
(i.e., the graph whose nodes are the vertices of the convex polyhedron P = {x :Ax= b,0≤ x≤ u}).
It has been shown in [8] that the diameter of the graph of totally-unimodular d-dimensional poly-
topes (i.e., the length of the longest shortest path between a pair of nodes) is bounded above
by d3.5 log(d). We would like to stress that in our circuit augmentations we do not always follow
edges of the polyhedron P . This time we may cut through the interior of P or the interior of
some faces. This suggests the new notion of circuit diameter. The circuit distance from v1 to v2 is
the smallest number of circuit augmentations needed to go from v1 to v2. We can then define the
circuit diameter as the maximum number of steps along circuit basis directions that are needed
to go from any vertex of the polyhedron to any other vertex of the polyhedron. This notion was
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first introduced and investigated in the article [9]. Most interestingly, one can show that the circuit
diameter of a polyhedron is bounded from above by the usual combinatorial diameter of polyhedra
(this is because edges are themselves some of the possible augmentation directions, a subset of
the circuits). In this context our results show that one can bound the circuit diameter for totally
unimodular polytopes in standard form as follows

Corollary 5. For a d×n totally unimodular matrix A, the circuit diameter of the polyhedron
P := {x :Ax= b,0≤ x≤ u} is bounded above by 2(n(d+ 1)(n− d)).

Proof: To see this take any vertex v of P . Choose a cost vector specific to v: namely, let ci = 1
if vi = 0 and ci = −1 if vi = ui. Otherwise put ci = 0. Thus, this new objective function c has
n− d=n− rank(A) many nonzero entries. Thus, by Corollary 4 in the steepest descent approach,
any other vertex is connected to v in no more than n(d+ 1)(n− d) many steps. Hence, also the
path between any pair of vertices of P is bounded by 2n(d+ 1)(n− d). �

Finally, let us consider optimization problems for which the constraint matrix is structured.
Recall that an N -fold matrix is a matrix of the form

[A,B](N) :=


B B · · · B
A O O
O A O

. . .

O O A

 .

For fixed matrices A and B, the size of the Graver basis of A,B](N) (and its binary encoding length)
increases only polynomially with N . Combining this with Theorems 1 and 2, parts (c), we obtain
the following result.

Theorem 3. For fixed matrices A and B the associated families of N -fold LPs and ILPs can
be solved in strongly polynomial-time.

This generalizes the results from [18, 19], which showed that for fixed matrices A and B, the
corresponding N -fold ILPs could be solved in time polynomial in N , in fact in O(N 3) steps.
Theorem 3 strengthens this to strong polynomiality. As a direct consequence we get:

Corollary 6. The following special cases of N -fold matrices can be solved in strongly poly-
nomial time in the linear and integer case:
• All 2-way transportation problems with a fixed number of rows or columns.
• All 3-way transportation problems with two of the three dimensions fixed.
• All d-way transportation problems with d− 1 dimensions of fixed constant value.

2. Proofs We present the proofs to the above results in separate subsections. We will use the
following lemma (a slight variation from Theorem 3.1 in [1]) which establishes the bounds we claim
once we can guarantee sufficient improvement at each iteration:

Lemma 1. Let ε > 0 be given. Moreover, let H denote the difference between maximum and
minimum objective-function values of the LP/ILP problem in n variables. Suppose that fk = cᵀxk
is the objective-function value of the solution xk at the k-th iteration of an algorithm and that
f∗ = cᵀxmin is the minimum objective-function value. Furthermore, suppose that the algorithm
guarantees that for every augmentation k,

(fk− fk+1)≥ β(fk− f∗)

(i.e., the improvement at augmentation k+ 1 is at least β times the maximum possible improve-
ment). Then the algorithm reaches a solution with fk − f∗ < ε in no more than 2 log (H/ε)/β
augmentations.
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Proof: Without loss of generality we assume that c is an integer vector. (Thus for the ILP version
the values fk are decreasing successive integer values.) The biggest necessary change of value of
the objective function occurs when we start the augmentation at an maximum point xmax and end
with some minimum optimal point xmin. Thus, we have H = fmax− fmin.

If we had at every augmentation an improvement of at least β(fmax− fmin)/2, then in no more
than 2/β augmentations we would have reached the optimum. But if this improvement is not
achieved at each augmentation, say at the q-th augmentation we have f q−f q+1 ≤ β(fmax−fmin)/2
then, together with the hypothesis (f q − f q+1)≥ β(f q − fmin), we get that

f q − fmin ≤ (fmax− fmin)/2 =H/2.

In other words, the overall improvement reached so far is at least half of the maximum possible
improvement H. In conclusion, after 2/β augmentations, we have either reached the optimum or
have at least divided the possible gap by 2. Therefore in no more than 2/β log2 (H/ε) augmentations
we reach a solution with fk− f∗ < ε. �

It is important to note that in the ILP case fk is integer and we can apply Lemma 1 with ε= 1
and conclude that we can reach the optimum in O(log (H)/β) augmentations. In the LP case, let δ
denote the least common multiple of all subdeterminants of A. Observe that once we find a feasible
solution xk with objective value fk satisfying fk− f∗ < ε= 1/δ, then any vertex with an objective
value at most fk must be optimal. As explained above (right before the statement of Theorem 1),
such a vertex can be found from xk in at most n additional augmentations. This leads to extra
factors of n and of log(δ) in the bounds for the LP cases compared to the ILP cases.

2.1. Proof of Theorem 1 Let us assume that xk is a non-optimal feasible solution, and let
xmin be an optimal solution to the ILP. Then there exists a (sign-compatible) representation

xmin−xk =
∑

αigi,

with αi > 0, αi ∈Z and with αigi v xmin−xk. Moreover, due to Sebö’s result [30], at most 2n− 2
summands are needed.

Note that sign-compatibility of the representation xmin− xk =
∑
αigi implies that for all i the

vectors xk + αigi and xmin − αigi are all feasible solutions, since their components lie between
the components of xk and of xmin. Moreover, we can observe that for all such sign-compatible
representations xmin−xk =

∑
αigi we must have cᵀgi ≤ 0 for all i, as otherwise xmin−αigi would

be a feasible solution with cᵀ(xmin−αigi) = cᵀxmin−αicᵀgi < cᵀxmin, contradicting the minimality
of xmin.

Next, we analyze what happens for each choice of augmentation rule:

2.1.1. Proof to part (a): Discrete deepest descent. We observe that

0> cᵀ(xmin−xk) = cᵀ
∑

αigi =
∑

αic
ᵀgi ≥−(2n− 2)∆

where ∆> 0 is the largest value of −αcᵀz over all z∈ G(A) and integer α> 0 for which xk +αz is
feasible. Rewriting this, we get

∆≥ cᵀ(xk−xmin)

2n− 2
.

Now let αz be the discrete deepest-descent augmentation applied to xk, leading to xk+1 := xk+αz.
Then we get ∆ =−αcᵀz and

cᵀ(xk−xk+1) =−αcᵀz= ∆≥ cᵀ(xk−xmin)

2n− 2
.

Thus, we have a factor of β = 1/(2n − 2) of objective-function decrease at each augmentation,
leading to the desired polynomial number of augmentations via Lemma 1 taking ε= 1. In this case,
we get the number of augmentations bounded by (4n− 4) log(cᵀ(x0−xmin))).
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2.1.2. Proof to part (b): Discrete Dantzig descent. We observe that

0> cᵀ(xmin−xk) = cᵀ
∑

αigi =
∑

αic
ᵀgi ≥−∆0

∑
αi ≥−(2n− 2)∆0αmax,

where this time ∆0 > 0 denotes the greatest value of −cᵀz over all z∈ G(A) for which xk +z is still
feasible and where αmax = max{αi }. Rewriting this, we get

∆0 ≥
cᵀ(xk−xmin)

(2n− 2)αmax

.

Now let αz be the discrete Dantzig-descent augmentation applied to xk, leading to xk+1 := xk+αz.
Then we get

cᵀ(xk−xk+1) =−αcᵀz= α∆0 ≥∆0 ≥
cᵀ(xk−xmin)

(2n− 2)αmax

≥ cᵀ(x0−xmin)

(2n− 2)γ
,

where γ is the maximum entry in any feasible integer solution (or, equivalently, in any vertex of PI).
Thus, we have a factor of β = 1/((2n− 2)γ) of objective-function decrease at each augmentation
leading to the desired polynomial number of augmentations via Lemma 1 taking ε= 1. In this case
we get the number of augmentations bounded by (4n− 4)γ log(cᵀ(x0−xmin)))

2.1.3. Proof to part (c): Discrete steepest descent. We begin with a series of lemmata.
Note that the proof for the LP case follows exactly the same lines, since we do not use integrality
of the components in our arguments.

Lemma 2. Let xk be a feasible solution, and let z be an associated steepest descent direction.
Then there is some augmentation direction g ∈ G(A) from xk, with −cᵀg/‖g‖1 ≥−cᵀz/‖z‖1.

Proof. There is a sign-compatible representation z =
∑
αigi via elements gi ∈ G(A). Observe

that due to the sign-compatible representation, xk +αigi is also feasible for all i. (The components
of xk +αigi lie between those of xk and xk + z, implying that 0≤ xk +αigi ≤ u.) In other words,
all αigi are applicable augmentations at xk.

It remains to show that there exists some index i with −cᵀgi/‖gi‖1 ≥−cᵀz/‖z‖1. Assume to the
contrary that we have −cᵀgi/‖gi‖1 <−cᵀz/‖z‖1 for all i. This yields

−cᵀz = −
∑

αic
ᵀgi

=
∑

αi‖gi‖1
−cᵀgi
‖gi‖1

<
∑

αi‖gi‖1
−cᵀz
‖z‖1

=
−cᵀz
‖z‖1

∑
αi‖gi‖1

=
−cᵀz
‖z‖1

‖z‖1

= −cᵀz,

a contradiction. �
Lemma 2 states that among all steepest-descent directions applicable at a feasible solution xk,

there is always one in G(A). Or in other words, the discrete steepest-descent rule is a steepest
descent rule as claimed in Theorems 1 and 2, parts(c).
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Lemma 3. Let xk be a feasible solution, let αs be a steepest-descent augmentation relative to
xk, and let xk+1 := xk +αs. Let βt be a steepest-descent augmentation relative to xk+1. Then we
have −cᵀs/‖s‖1 ≥−cᵀt/‖t‖1.

Proof. Suppose on the contrary that −cᵀs/‖s‖1 <−cᵀt/‖t‖1. First observe that αs + βt is an
applicable augmentation at xk. Moreover, we have

−cᵀ(αs+βt) = α‖s‖1
−cᵀs
‖s‖1

+β‖t‖1
−cᵀt
‖t‖1

> α‖s‖1
−cᵀs
‖s‖1

+β‖t‖1
−cᵀs
‖s‖1

= (α‖s‖1 +β‖t‖1)
−cᵀs
‖s‖1

,

≥ (‖αs+βt‖1)
−cᵀs
‖s‖1

,

and therefore
−cᵀ(αs+βt)

‖αs+βt‖1
>
−cᵀs
‖s‖1

.

This contradicts the fact that s was a steepest descent direction for xk. �
Lemma 3 states that the steepness of steepest-descent augmentations never increases.

Lemma 4. Let xk be a feasible solution and let α1z1, . . . , αjzj be the following steepest-descent
augmentations applied to xk. If z1 and zj do not have the same sign-pattern from {≤ 0,≥ 0}n,
then we have −cᵀz1/‖z1‖1 >−cᵀzj/‖zj‖1.

Proof. Assume on the contrary that −cᵀz1/‖z1‖1 ≤ −cᵀzj/‖zj‖1. By monotonicity, Lemma 3,

we must have −c
ᵀz1

‖z1‖1
= −cᵀz2
‖z2‖1

= · · ·= −cᵀzj
‖zj‖1

. We conclude that

−cᵀ
(∑j

i=1αizi

)
=
∑j

i=1αi‖zi‖1
−cᵀzi
‖zi‖1

=
∑j

i=1αi‖zi‖1
−cᵀz1
‖z1‖1

=
(∑j

i=1αi‖zi‖1
)
−cᵀz1
‖z1‖1

>
∥∥∥∑j

i=1αizi

∥∥∥
1

−cᵀz1
‖z1‖1

,

since z1 and zj do not have the same sign-pattern. This implies that

−cᵀ
(∑j

i=1αizi

)
‖
∑j

i=1αizi‖1
>
−cᵀz1
‖z1‖1

.

As by assumption
∑j

i=1αizi is an applicable augmentation at xk, this contradicts the fact that z1
was a steepest descent direction for xk. �

Lemma 4 states that once the sign pattern of a steepest-descent augmentation strictly changes,
the steepness must decrease. This lemma has a surprising consequence if we only apply steepest-
descent directions from G(A):

Corollary 7. For discrete steepest descent, no direction from G(A) is chosen twice as an
augmenting direction. Therefore, the number of steepest-descent augmentations needed to reach an
optimal solution is bounded by |G(A)| and thus is independent on b, c and the initial solution z0.
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Proof. Let xk be a feasible solution and let α1z1, . . . , αjzj, with z1, . . . ,zj ∈ G(A), be the following
steepest-descent augmentations applied to xk with αi chosen maximally in each augmentation.
Moreover assume that zj = z1. Then, by Lemma 4, all intermediate augmentations must have the
same sign-pattern as z1, as otherwise the steepness of the augmentations would have dropped.
As all vectors α1z1, . . . , αjzj have the same sign-pattern, the components of xk + α1z1 + αjzj lie
between the components of xk and xk +

∑j

i=1αizi and therefore also between 0 and u. Thus,
xk + α1z1 + αkzj = xk + (α1 + αj)z1 is a feasible solution. This contradicts the fact that α1 was
chosen maximally. �

2.2. Proof of Theorem 2 Let us assume that xk is a non-optimal feasible solution, and let
xmin be an optimal solution to the LP. Then there exists a (sign-compatible) representation

xmin−xk =
∑

αigi,

with αi > 0 and with αigi v xmin − xk. Moreover, due to Carathéodory theorem, at most n sum-
mands are needed in such a representation. Again, sign-compatibility of the representation xmin−
xk =

∑
αigi implies that for all i the vectors xk +αigi and xmin−αigi are all feasible solutions.

Let us now analyze what happens for each choice of augmentation rule:

2.2.1. Proof to part (a): Discrete deepest descent. We observe that

0> cᵀ(xmin−xk) = cᵀ
∑

αigi =
∑

αic
ᵀgi ≥−n∆

where ∆> 0 is the largest value of −αcᵀz over all z∈ C(A) and α> 0 for which xk +αz is feasible.
Rewriting this, we get

∆≥ cᵀ(xk−xmin)

n
.

Now let αz be the discrete deepest-descent augmentation applied to xk, leading to xk+1 := xk+αz.
Then we get ∆ =−αcᵀz and

cᵀ(xk−xk+1) =−αcᵀz= ∆≥ cᵀ(xk−xmin)

n
.

Thus, we have a factor of β = 1/n of objective-function decrease at each augmentation. Applying
Lemma 1 with ε= 1/δ then yields a solution x̄ with |cᵀ(x̄− xmin)|< 1/δ within 2n log(δ cᵀ(x0 −
xmin))) many augmentations. Due to the definition of δ as the least common multiple of all sub-
determinants of A, any vertex with an objective value at most cᵀx̄ must be optimal. As explained
right before the statement of Theorem 1, such a vertex can be found from x̄ in at most n additional
augmentations. Finally, note that once the discrete deepest-descent augmentation makes progress
in objective value less than ε/(2n− 2), we have

|cᵀ(xk−xmin)|=
∑
|αicᵀgi|< (2n− 2) · ε/(2n− 2) = ε.

Hence, we can decide effectively when we should stop making discrete deepest-descent augmenta-
tions and should find a vertex.

2.2.2. Proof to part (b): Discrete Dantzig descent. In order to avoid zig-zagging (see
example in Section 4 of [17] and the details of how to avoid this), we must augment to a vertex
with smaller objective value after each discrete Dantzig-descent augmentation. For this, we need
at most n discrete Dantzig-descent augmentations within smaller and smaller faces of P . Let xk
be a vertex of the given polyhedron. Again we observe that

0> cᵀ(xmin−xk) = cᵀ
∑

αigi =
∑

αic
ᵀgi ≥−∆0

∑
αi ≥−n∆αmax,
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where ∆0 > 0 is the greatest value of −cᵀz over all z ∈ C(A) for which xk + λz is feasible for
sufficiently small λ> 0 and where αmax = max{αi }. Rewriting this, we get

∆0 ≥
cᵀ(xk−xmin)

nαmax

.

Now let αz be the discrete Dantzig-descent augmentation applied to xk, leading to xk+1 := xk+αz.
As xk is a vertex and z an edge direction, we have xk,z ∈ 1

δ
Zn. As xk+1 is lies on the intersection

of the half-line {x= xk +λz : λ≥ 0} with some facet of the polyhedron, we get that xk+1 ∈ 1
δ2
Zn.

Consequently, α≥ 1/δ.
Thus, we get

cᵀ(xk−xk+1) =−αcᵀz= α∆0 ≥
1

δ
∆0 ≥

cᵀ(xk−xmin)

nδαmax

≥ cᵀ(x0−xmin)

nδγ
,

where γ is the maximum entry in any feasible solution (or, equivalently, in any vertex). Thus, we
have a factor of β = 1/(nδγ) of objective-function decrease at each augmentation. Applying Lemma
1 with ε= 1/δ then yields the desired bound on the number of augmentations 2n2δγ log(δ cᵀ(x0−
xmin))) to reach a vertex x̄ with |cᵀ(x̄−xmin)|< 1/δ. This vertex must be optimal.

2.2.3. Proof to part (c): Discrete steepest descent. The proof here follows literally the
same lines as the proof to Theorem 1, part (c).

2.3. Proof to Theorem 3. If one keeps A and B fixed and lets N vary, the binary encoding
lengths of the Graver bases of [A,B](N) are bounded by a polynomial in N , see [11]. More precisely,
there is a constant g(A,B), the so-called Graver complexity of A and B (see [20, 27]), given by

max{‖g‖1 : g ∈ G(BG(A))} ,

such that ∣∣G ([A,B](N)
)∣∣≤( N

g(A,B)

)∣∣G ([A,B](g(A,B))
)∣∣∈O (N g(A,B)

)
.

This means that we can find a steepest descent direction in G
(
[A,B](N)

)
in time polynomial in

N and by Theorems 1 and 2, parts (c), the number of steepest descent augmentations to turn
any feasible solution x0 into an optimal solution is bounded polynomially in N . As the input of
an N -fold LP/ILP contains Θ(N) integer numbers (to encode b and c), we can augment x0 to
optimality in strongly polynomial-time. It remains to show how we can find such a feasible solution
x0 in strongly polynomial-time. Note that by a shift of coordinates, we may assume w.l.o.g. that
l= 0.

To find such a feasible solution x0 consider an extended N -fold LP/ILP with problem matrix
B O O IdB −IdB B O O IdB −IdB · · · B O O IdB −IdB
A IdA −IdA O O

A IdA −IdA O O
. . .

A IdA −IdA O O

 .

This is an N -fold matrix composed out of the matrices Ā =
(
A IdA −IdA O O

)
and B̄ =(

B O O IdB −IdB
)
. As right-hand side of our LP/ILP, we choose the same right-hand side vector

b, and as objective vector we use a 0/1-vector with zeros in the original components and with
ones in the auxiliary components. All variables get lower bounds of 0, and the original variables
get upper bounds specified by u. Due to the special problem matrix, one can immediately write
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down a feasible solution to this problem. (Simply assign zeros to the original variables and set the
auxiliary slack variables according to the positive and negative parts of the right-hand side values.)

Optimizing this special objective linear function can now be done in strongly polynomial-time,
since with A and B also Ā and B̄ are constant and thus the running time of this auxiliary N -fold
LP/ILP is bounded polynomially in N , but does not depend on the right-hand side or the objective
vector. If the optimal value of this auxiliary LP/ILP is 0, a feasible solution to our original problem
has been found (simply drop the auxiliary components). If the optimal value is positive, our original
problem is infeasible. �
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