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We develop an approach for analyzing open quantum systems which can be used to

investigate quantum control problems, based on the use of both the Wigner functions and

the so-called Wigner measures. We also propose an axiomatic definition of coherent quantum

feedback control (see [1] and the collection of articles in [2]). While the results relating to

the Wigner functions and measures are quite technical, the latter topic is more conceptual.

The main advantage of using the Wigner functions and measures is the fact that their

domains are the phase spaces, and hence the transition from the Wigner measure or the

Wigner function of the composition of two subsystems to the Wigner measure or function

of any of the subsystems, is quite similar to the transition from the usual probability on the

product of two phase spaces to the probability on any of these spaces; the latter probability

is just the projection of the probability on the Cartesian product.

Actually, if the dimension of the phase space is finite, we can consider only the Wigner

function, because it is the density of the Wigner measure with respect to the Liouville

measure on phase space.
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However, if the phase space is infinite dimensional, then there does not exist a Lebesgue

type Liouville measure (on the σ-algebra of Borel subsets), which means that the measure is

translation invariant, σ-additive, σ-finite, and locally finite (each point has a neighborhood

of finite measure)1. Then we can, on one hand, use the Wigner measure itself. On the other

hand, we can employ, instead of the Lebesgue measure, a “good enough” measure, e.g., a

Gaussian measure like in “white noise analysis”, again substituting the Wigner measure by

a proper Wigner function. Below, we consider in parallel, both the Wigner measure and the

Wigner function.

The paper is organized as follows. In the first section, which is of independent interest,

we consider some properties of the Wigner measures and functions, describing the state of a

quantum system. Some of these properties are known but few can be found in the literature.

In the second section, we present some equations, which can be called the Liouville-Moyal

equations (cf. [5]), that describe the evolution of the Wigner measure and function. It is

worth pointing out that the Wigner measure is a signed cylindrical measure and it would

be interesting to get estimates of its variation and to find conditions for its σ-additivity; we

will not address these issues in the current paper.

In the next section, we discuss how one can describe the evolution of the Wigner measures

and functions of an open quantum system starting from the evolution of these objects related

to the larger (closed) system. In this section, we also consider a couple of models of quantum

control. In particular, we formulate an axiomatic definition of coherent quantum feedback

that, to our knowledge, is not present in the literature.

We also consider a general model, which can be specified to quantum control with or

1This statement is a particular case of a theorem of A. Weil.
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without feedback, depending on the inner design of the model (i.e., on the Hamiltonians

describing both dynamics of the subsystems, alone and in interaction). Also, we compare

two versions of (coherent) open loop quantum control.

1 Wigner measures and functions

In this section we give four (equivalent) definitions of the Wigner measure and function;

in particular, we recall some definitions from [5]. Some of these definitions appear in the

form of propositions. Let E := Q × P be the phase space of a Hamiltonian system; here

Q and P are real locally convex spaces (LCS), P = Q∗, Q = P ∗, and hence E∗ = P × Q.

Actually, below we assume that all these spaces are Hilbert and identify canonically Q with

Q∗ and P with P ∗. Denote by 〈·, ·〉 : P × Q → R the duality pairing. The linear map

J : E 3 (q, p) 7→ (p, q) ∈ E∗ is an isomorphism. Below, we usually identify the elements

h ∈ E and Jh ∈ E∗. In particular, for each h ∈ E, we denote by ĥ the pseudodifferential

operator in L2(Q,µ) whose symbol is Jh ∈ E∗. Here, µ is the P -cylindrical Gaussian measure

on Q whose Fourier transform Φµ : P → R is defined by

Φµ(p) := exp

(
−1

2
〈p, Bµp〉

)
,

where Bµ : P → Q is a continuous linear operator such that 〈p, Bµp〉 > 0 for p 6= 0.

Similarly, we denote by ν the Q-cylindrical Gaussian measure on P whose Fourier transform

Φν : Q → R is defined by

Φν(q) := exp

(
−1

2

〈
B∗

µq, q
〉)

.

If Q, and hence P , are Hilbert spaces, then B∗
µ = Bµ and Bµ > 0; moreover, µ and ν are

σ-additive if and only if Bµ is a trace class operator. If dim Q < ∞, then, instead of the
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Gaussian measures µ and ν we can use the Lebesgue measures.

The Weyl operator W(h) generated by h ∈ E is defined by W (h) := e−iĥ; recall that we

identify h and Jh, so ĥ is the pseudodifferential operator acting on L2(Q,µ) having symbol

h (the definition of a pseudodifferential operator on L2(Q,µ) can be found in [5]). It is worth

noticing that, in this special case, e−iĥ = êih, i.e., the exponential of the pseudodifferential

operator coincides with the pseudodifferential operator whose symbol is the exponential of

the symbol h. In general, this is not the case.

The Weyl function corresponding to the density operator T (a trace class positive operator

on L2(Q, µ) of trace one) is the function WT : E → R defined by WT (h) := tr (TW(h)) (see

[4]).

Definition 1 (see [5]) The Wigner measure corresponding to the density operator T is the

E∗-cylindrical measure WT on E defined by

∫
Q×P

ei(〈p1,q2〉+〈p2,q1〉)WT (dq1, dp1) = WT (h)(q2, p2).

This means that WT is the (inverse) Fourier transform of the function WT (h), hence the

following identity holds:

WT (dq, dp) =

∫
Q

∫
P

WT (h)(q2, p2)FE×E(dq2, dp2, dq, dp),

where FE×E is the Hamiltonian Feynman pseudo measure on E × E.

Any Feynman pseudomeasure FK on a Hilbert space K is a distribution (like in Sobolev-

Schwartz theory) on K, i.e., a linear functional (continuous in the appropriate sense) on a

space of functions on K. As in the case of usual measures, it is convenient to define FK by its

Fourier transform F̃K : K 3 z 7→ FK(ϕz) ∈ C, where ϕz : K → C is given by ϕz(x) := ei〈z,x〉.
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If K = E = Q × P and F̃K(q, p) = ei〈q,p〉, then FK is called the Hamiltonian Feynman

pseudomeasure; it can be used, instead of the exponential, in defining the Fourier transform

on infinite dimensional spaces, which maps functions to measures. The structure of the

Hilbert space is actually not important; the Feynman pseudomeasure can be defined on any

locally convex space and the Hamiltonian Feynman measure on any symplectic space (some

information about all of this can be found in [3], [9], [11]).

Proposition 2 ([5]) If G is the Weyl symbol of a bounded pseudodifferential operator acting

on L2(Q, µ), then ∫
P

∫
Q

G(q, p)WT (dq, dp) = tr
(
TĜ

)
This proposition can also be used as a definition (cf. [4, Definition 3], where dim Q =

dim P < ∞ and thus only Wigner functions, but not Wigner measures, are considered). The

density of WT with respect to µ (if it exists) is called the µ-Wigner function and it is denoted

by ΦT ; the µL-Wigner function is just the standard Wigner function.

Corollary 3 If the assumptions of Proposition 2 hold, then

∫
P

∫
Q

G(q, p)ΦT (q, p)µ⊗ ν(dq, dp) = tr(TĜ).

In [4], two other definitions of the Wigner function have also been considered (but only

for finite dimensional Q and P ). One of them has mainly a conceptual character, whereas

the other, going back to Wigner himself, can be used to develop the equation describing the

evolution of the Wigner measure. In this paper, we give the general definition if both Q and

P are infinite dimensional. In the definition below, similar to Definition 1, it is assumed that

both Q and P are Hilbert spaces.
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Definition 4 The µ-Wigner function ΦT on E is defined by

ΦT (q, p) :=e
1
2(〈p1,B−1

µ p1〉+〈q1,B−1
µ q1〉)∫

Q×P

e−i(〈p1,q2〉+〈p2,q1〉)WT (h)(q2, p2)e
1
2(〈p2,B−1

µ p2〉+〈q2,B−1
µ q2〉)(µ⊗ ν)(dq2, dp2)

Here, the function

(q, p) 7→ e−
1
2(〈p,B−1

µ p〉+〈q,B−1
µ q〉)

is a generalized density of the Gaussian measure µ ⊗ ν (see [8] and references therein).

There is a heuristic algorithm to develop this and similar formulae. This algorithm can be

described as follows. First, we write, for the case when dim Q < ∞, some formulae using

the standard Gaussian density with respect to the Lebesgue measure µL and then we pass

from the space L2(Q,µL) to L2(Q,µ). After that, we substitute the Gaussian density with

respect to µL by the generalized Gaussian density. To do this, it is necessary to recall that

the generalized Gaussian density is defined only up to real multiples which means that only

the finite dimensional formulae which are invariant with respect to real multiples can be

generalized to infinite dimensional spaces¿

Next, we formulate some propositions which, actually, are equivalent definitions of the

Wigner measure and function and are similar to the definitions mentioned above of the

Wigner function given in [4].

Proposition 5 For any density operator T acting on L2(Q,µ) and any ϕ ∈ L2(Q,µ), the

following identities hold:

(Tϕ)(q) = e
1
4〈B−1

µ q,q〉
∫

P

∫
Q

e−i〈p,q1−q〉ϕ(q1)e
− 1

4〈B−1
µ q1,q1〉WT

(
dq1 + q

2
, dp

)
,

(Tϕ)(q) = e
1
4〈B−1

µ q,q〉
∫

P

∫
Q

e−i〈p,q1−q〉ϕ(q1)e
1
4〈B−1

µ q1,q1〉ΦT

(
q1 + q

2
, p

)
e

1
2〈B−1

µ p,p〉(µ⊗ ν)(dq, dp).
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The notation in the first formula means that q 7→ WT

(
dq1+q

2
, dp

)
is a function, whereas

(dq1, dp) 7→ WT

(
dq1+q

2
, dp

)
is a measure. The function q 7→ e−

1
2〈B−1

µ q,q〉 is the generalized

density of the Gaussian measure µ and the function p 7→ e−
1
2〈B−1

µ p,p〉 is the generalized density

of ν.

Let ρ1
T be the integral kernel of the density operator T acting on L2(Q,µ), defined by

the identity

(Tϕ)(q) = e
1
4〈B−1

µ q,q〉
∫

Q

e
1
4〈B−1

µ q1,q1〉ϕ(q1)ρ
1
T (q, q1)µ(dq1)

for any ϕ ∈ L2(Q,µ). We have the following result.

Proposition 6 For any ϕ ∈ L2(Q, µ), the following identity holds

ΦT (q, p) = e
1
2
(〈Bµq,q〉+〈Bµp,p〉)

∫
Q

ρ1
T

(
q − 1

2
r, q +

1

2
r

)
ei〈r,p〉e

1
2〈B−1

µ r,r〉µ(dr)

Let ρ2
T be the integral kernel of the density operator in L2(Q,µ) defined by the identity

(Tϕ)(q) = e
1
4〈B−1

µ q,q〉
∫

Q

ϕ(q1)e
− 1

4〈B−1
µ q1,q1〉ρ2

T (q, dq1)

for any ϕ ∈ L2(Q,µ). Thus, ρ2
T is a function with respect to the first argument and a

measure with respect to the second argument.

From Proposition 2, it follows that

ρ2
T (q, dq1) =

∫
P

e−i〈p,q1−q〉WT

(
dq1 + q

2
, dp

)
.

Then the change of variables formula (in which s− r = q, s + r = q1) implies

ρ2
T (s− r, ds + r) =

∫
P

e−i〈p,2r〉WT (ds, dp)

or

ρ2
T

(
q − r

2
, dq +

r

2

)
=

∫
P

e−〈p,r〉WT (dq, dp)
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and hence the “measure” dp 7→ WT (dq, dp) is the inverse Fourier transform of the function

r 7→ ρ2
T

(
q − r

2
, dq + r

2

)
. Therefore, we get the following result.

Proposition 7 Let FE be the Hamiltonian Feynman pseudomeasure on E := Q× P . Then

WT (dq, dp) =

∫
Q

ρ2
T

(
q − r

2
, dq +

r

2

)
FE(dr, dp);

here, to integrate with respect to the “measure” dq 7→ WT (dq, dp) one needs to use the so-

called Kolmogorov integral (see [7]2).

2 The evolution of Wigner functions and measures

We keep the assumptions and notations of the preceding section. For any t ∈ R, let WT (t)

be the Wigner measure which describes the state of the quantum system at the moment

t (so, in this section, WT (·) denotes a function of a real variable whose values are Wigner

measures, whereas in the preceding section, WT denoted a Wigner measure). Then WT (·)

satisfies the following equation [5]:

ẆT (t) = 2 sin

(
1

2
L∗H(WT (t))

)
, (1)

where, for any a ∈ R, sin (aL∗H) is the linear operator acting on the space H of E∗-cylindrical

measures on E which is adjoint to the operator sin (aLH) acting on the space of functions

on E, defined by

sin (aLH) :=
∞∑

n=1

a2n−1

(2n− 1)!
L(2n−1)
H .

2The Kolmogorov integral is just the trace in a tensor product of a space of functions on Q and a space

of measures on Q; ρ2
T is an element of such a space
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Here, L(n)
H is defined in the following way: for any function Ψ : E → R and any n ∈ N,

L(n)
H Ψ(x) := {Ψ,H}(n)(x), x ∈ E,

where

{Ψ,H}(n)(x) := Ψ(n)(x)I⊗nH(n)(x),

Ψ(n), H(n) denote the derivatives of order n of the functions Ψ and H, respectively, and I⊗n

is the nth tensor power of the operator I which defines the symplectic structure on the phase

space E ([5]).

The identity (1) leads to the equation describing the evolution of the µ-Wigner function.

To do this, it is enough to recall that for any function Φ : E → R, the nth order derivative

of the product Φnµ can be calculated using the Leibniz rule and that derivatives of the

Gaussian measure µ can be calculated as follows. For any h, h1, h2, . . . ∈ B
1
2
µ Q, we have

µ′h = −
〈
B−1

µ h, ·
〉
µ

µ′′h1h2 = −
〈
B−1

µ h1, h2

〉
µ +

〈
B−1

µ h1, ·
〉 〈

B−1
µ h2, ·

〉
µ, etc.

These expressions are some sort of Wick formulae. Here, the symbols
〈
B−1

µ h, ·
〉

and
〈
B−1

µ hj, ·
〉

mean the unique µ-almost everywhere defined measurable functions on Q having the follow-

ing properties (see [10]):

(1) if x ∈ B
1
2
µ Q, then

〈
B−1

µ h, x
〉

=
〈
B
− 1

2
µ h,B

− 1
2

µ x
〉
;

(ii) the domains of each of these functions are linear measurable subspaces of Q of measure

1;

(iii) these functions are linear on their domains.
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For any a > 0, the operator sin (aL∗
H), acting on functions on E, is defined by

sin (aL∗
H) ϕ(µ⊗ ν) := (sin aL∗H) (ϕµ⊗ ν).

For any t ∈ R, let ΦT (t) be the µ-Wigner function which describes the state of the quantum

system at the moment t. Then, the following holds.

Theorem 8 The µ-Wigner function valued map ΦT (·) satisfies the following equation

Φ̇T (t) = 2 sin

(
1

2
L∗
H (ΦT (t))

)
.

3 Reduced evolution of the Wigner measure

To get the Wigner measure and function of a subsystem of a quantum system, it is necessary

to use Propositions 6 and 7. In fact, if ρ1
T and ρ2

T are the integral kernels in the sense of the

above definitions of the operator T of the quantum system which is the quantum version of

the classical Hamiltonian system with phase space E1 × E2, E1 = Q1 × P1, E2 = Q2 × P2,

then the corresponding (reduced) density operators Ti acting on L2(Qi, µi), i = 1, 2 (here

and below we use the natural generalizations of the above notations and assumptions), are

given by

ρ1
T1

(q1
1, q

1
2) =

∫
Q2

ρ1
T (q1

1, q
1
2, q

1, q2)e
1
2〈Bµ1⊗µ2 (q1,q2),(q1,q2)〉µ2(dq2)

ρ2
T (q1, dq1

2) =

∫
Q2

ρ2
T (q1, dq1

2, q
2, dq2)

where the latter integral is again the Kolmogorov integral. Hence, due to Propositions 6 and

7, the following statement holds.
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Theorem 9 Let WT and ΦT be the Wigner measure and function of the quantum system

whose Hilbert space is L2(Q1×Q2, µ1⊗µ2). Then the Wigner measure WT and function ΦT

of the subsystem of this system with Hilbert space L2(Q1, µ1) are given by

WT1(dq1, dp1) =

∫
Q2×P2

WT (dq1, dp1, dq2, dp2),

ΦT (q1, p1) =

e
1
2(〈B−1

µ1
q1,q1〉+〈B−1

µ1
p1,p1〉)

∫
Q2×P2

e
1
2(〈B−1

µ2
q2,q2〉+〈B−1

µ2
p2,p2〉)ΦT (q1, p1, q2, p2)(µ2 ⊗ ν2)(dq2, dp2).

Now we will consider the models mentioned in the introduction. We use below the

following notation: if T is a Hilbert space, then Ls(T ) denotes the collection of all selfadjoint

operators on T .

Let P, P1, P2, C , C1, C2, be Hilbert spaces. We think of P, as the Hilbert space of

a quantum system under control (usually called a plant) and C as the Hilbert space of a

quantum controller; Pj, and Cj, j = 1.2, correspond to parts of the of the plant and of the

controller, respectively. Let H := P ⊗ C be the Hilbert space of the composed quantum

system and ĤP ∈ L∗(P), ĤC ∈ L∗(C ), K̂P1⊗C1 ∈ L∗(P1 ⊗ C1), K̂P2⊗C2 ∈ L∗(Pe ⊗ C2).

Define Ĥfeedback := ĤP ⊗I dC + I dP ⊗ ĤC + K̂P1⊗C1 ⊗I dP2⊗C2 + I dP1⊗C1 ⊗ K̂P2⊗C2 ∈

Ls(H), where I dP ∈ Ls(P), I dC ∈ Ls(C), I dP1⊗C1 ∈ Ls(P1⊗C1), I dP2⊗C2 ∈ Ls(P2⊗

C2), are the identity operators in the corresponding spaces. The first term in Ĥfeedback

describes the evolution of the system under control alone, the second term describes the

evolution of the quantum controller alone, and the last two terms describe the (coherent)

quantum feedback. It is worth noting that the definition of Ĥfeedback is symmetric with

respect to the plant, the controller, and the feedback.
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The more general Hamiltonian Ĥ := ĤP⊗I dC +I dP⊗ĤC +K̂ , where K̂ ∈ Ls(P⊗

C ) (cf. [6]) can be used to describe both open loop (coherent) quantum control and coherent

quantum control with feedback. It is clear that the former model of quantum feedback is a

particular case of this one (when K̂ = K̂P1⊗C1 ⊗I dP2⊗C2 + I dP1⊗C1 ⊗ K̂P2⊗C2).

On the other hand, if K̂ := K̂1⊗I dP2⊗C2 , we get an open loop quantum control system.

Here we have not assumed that the quantum system is obtained by a quantization procedure

of a classical Hamiltonian system. However, if this were the case, then we would take, with

natural notations, Pj = L2(QPj
, µj), j = 1, 2, P = L2(QP1 ⊗QP2 , µ1 ⊗ µ2).

Then, one can describe the evolution of the Wigner function or measure of the whole

system (with Hilbert space L2(QP1 ⊗QP2 , µ1 ⊗ µ2)) using the equations of Theorem 9 and

then we can describe the reduced dynamics of the system with Hilbert space L2(QP1 , µ1)

using the formulae above for the reduced Wigner function and measure.

After that, our task is to find Hamiltonians K1 and K2 (respectively K ) to realize some

prescribed dynamics of the first system.

Remark 10 This task is similar to the simpler one to choose the time dependent Hamilto-

nian function K1(·) on QP1 to realize a prescribed dynamics on L2(QP1 , µ1), assuming that

Ĥ = Ĥ1 + K̂1(t), where Ĥ1 ∈ Ls(P), K̂ (t) ∈ Ls(P). We expect that the latter model

can be obtained as a limit of a family, depending on a parameter, of models of the first type.

Remark 11 Along the same lines, we can extend our model by including an additional

quantum system that, coupled to the plant, produces some perturbations. However, we can

also assume that this source of perturbations is already part of the plant.

Remark 12 The approach presented in the first two sections of this paper can be applied
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directly only to quantum systems which can be obtained by Schrödinger quantization of

classical Hamiltonian systems.

To consider the more general case which includes, e.g., some spin systems, we need to

extend our approach using the methods of superanalysis. We expect that all our results can

be generalized to this case.

Remark 13 In a similar way, one can define feedback for classical Hamiltonian systems.

Remark 14 In our quantum model with feedback, we can also separate the inner dynamics

of the plant, of the controller, and of the corresponding coupling. Then

Ĥ =
(
ĤP1 ⊗I dP2 + I dP1 ⊗ ĤP2

)
⊗I dC

+ I dP ⊗
(
ĤC1 ⊗I dC2 + I dC1 ⊗ ĤC2

)
+ K̂P1⊗P2 ⊗I dC1⊗C2 + I dP1⊗P2 ⊗ K̂C1⊗C2

+ K̂P1⊗C1 ⊗I dP2⊗C2 + K̂P2⊗C2 ⊗I dP1⊗C1 .

Here, the plant, the controller, and the two systems responsible for feedback again look

similar.
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