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Abstract

In September 2009, G20 paved the way for the mandatory central clearing of over-the-counter

(OTC) derivatives, which came into effect in December 2012. This new regulation involves a

central clearing counterparty (CCP): a financial institution acting as an intermediary between

buyers and sellers of OTC derivatives. The rationale behind this regulation is that, by removing

bilateral agreements, CCPs will absorb the risks facing individual firms and act as a cushion in

the event of market stress. However, this increases the systemic importance of CCPs within the

financial system.

In this paper, we analyze the effect of central clearing of OTC derivatives on the financial

system stability by means of network simulation approach. We build simple but realistic net-

works of financial firms, connected by bilateral links and via a single CCP. We simulate balance

sheets of firms and introduce shocks to the system to simulate defaults. The default mechanism

and shock absorption in presence of the CCP is modeled in the way that maximally reflects the

reality. We run Monte Carlo simulations of the networks’ evolution and obtain their default

and contagion characteristics. We analyze the likelihood of the CCP’s default and compare the

stability of the financial network with and without the CCP for various network configurations

and market scenarios.

We find that, for a homogeneous financial system, the presence of the CCP increases the

network’s stability and the probability of the CCP’s failure is virtually zero. However, for non-

homogeneous financial networks, we find the opposite effects: the presence of the CCP leads in

this case to a disproportionately large probability of contagion defaults, especially for smaller

financial firms. Furthermore, we find that the probability of the CCP failure is substantial in

this case, regardless of the capitalization requirements. In all, we find that non-homogeneous

networks exhibit greater instability and contagion in the presence of the CCP: a worrying fact,

given that any real financial system is highly inhomogeneous in terms of size and concentration.

Keywords: central clearing, random networks, core-periphery structure, OTC derivatives, con-

tagion.



Summary

The 2008 financial crisis has led policymakers to implement legislation aimed at reducing

the likelihood of future crisis and mitigating counterparty credit risk in the OTC derivatives

market. The Dodd-Frank act and European Market Infrastructure Regulations (EMIR) man-

date the central clearing of OTC derivatives transactions through central clearing counterparties

(CCPs). The activities of CCPs have been of great benefit in various financial markets, e.g.,

exchange-traded futures and options markets, where their main purpose was to shield their clear-

ing members from counterparty credit risk. The expansion of CCPs to OTC derivatives markets

is meant to achieve the same effect. However, the envisioned CCPs will be crucial players in

the financial system, hence a failure of a CCP can lead to catastrophic social losses. Further,

clearing and margining mechanisms envisioned by CCPs are of great concern to many financial

institutions who believe that the costs of central clearing (in terms of e.g., liquidity) will be

prohibitive, thus inducing these institutions to pull out of OTC derivatives markets altogether.

This paper studies how contagion and system risk is impacted by CCP clearing of OTC

derivatives. Comparable models of the financial system are built, that reflect the dynamics of

the system with central clearing and the bilateral OTC market. This enables us to compare

cascading failures and other contagion and default characteristics in both systems. Several net-

work configurations are considered, which function as the basis of our simulation experiments.

random networks with and without tiering effects and core-periphery structured networks are

recognized and separately considered in the analysis. We examine how concentration, i.e., the

number and size of market participants, as well as their capitalization affect system risk in each

specific setting. Our analysis takes as a starting point extreme adverse price movements causing

a default of at least one financial institution, which potentially can lead to subsequent contagion

defaults and possibly a failure of the CCP. From this starting point we investigate how contagion

spreads to other parties in a market with central clearing and in a bilateral OTC market.

Our analysis shows that the financial network topology heavily affects the performance of

CCPs and their capability of mitigating the system risk. Size differences between clearing mem-

bers and the existence of ”core” (highly connected) players in the financial network determine

how contagion spreads. Random networks (which are the least realistic representation of finan-

cial networks) show results that are in line with the general hypothesis that CCPs effectively

mitigate counterparty credit risk and the limit the spread of contagion losses, compared to bi-

lateral system. Tiered networks, on the other hand, reduce the benefit of CCPs, especially when

a large (and highly connected) financial institution defaults. We find that, in these networks,

the CCP is unable to reduce contagion risk. This effect is even more pronounced when the

so-called core-periphery structure networks are considered (such networks are believed to be
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the most realistic representation of financial systems). In such systems, the contagion risk (and

the default probability) increase for smaller financial institutions, when centralized clearing is

introduced.

We find that the effects of central clearing for small and large financial institutions are widely

different. Large clearing members benefit from it, as risks are shared, while smaller clearing mem-

bers are disproportionately ”sacrificed” in the event of market stress. In all, we find that CCPs

can mitigate risks in terms of total capital losses, but not in terms of the number of defaults in

the system. Due to contagion, the number of defaulting smaller and less well-connected finan-

cial institutions (typically pension and mutual funds) increases with the introduction of CCPs,

potentially leading to high social costs.
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1. Introduction

System risk and the resulting contagion of losses, especially from OTC derivatives, and its

impact on the stability of the financial system became prominent during the 2007-2008 financial

crisis. The opaque nature of the OTC derivatives markets combined with mismanagement of

risk provided a suitable environment for excessive risk taking by a few institutions leading to

major bailouts of these institutions. Various measures have been taken since addressing the

issues that are believed to have led to the 2007 financial meltdown. Regulations have been

put in place ever since to smooth any disruptive shocks the financial system may face after

the default of a Systemically Important Financial Institution (SIFI) and to counter the opaque

nature of the OTC derivatives market by central clearing mechanisms capable of monitoring the

market. CCPs are burdened with the task of mitigating counterparty credit risk perceived as

the principal risk in the financial system and to enforce prudential risk management practices of

its GCMs. The financial crisis of 2007-2008 revealed that the bilateral nature of CDS contracts

posed a fundamental risk to the system. Enforcement of central clearing will however not apply

to all derivatives products as the focus of the recent financial reforms has been on CDSs, as

these instruments are held responsible for the initial sub prime crisis and the resulting financial

melt down, and interest rate derivatives, being by far the biggest category of OTC derivatives.

As far as central clearing of other types of OTC derivatives is concerned, Blundwell-Wignal and

Atkinson (2011) note that “this is unlikely to happen for customised structured products, and

exemptions will apply for exchange rate derivatives and corporate end-users of derivatives”.

As new regulations will mostly apply to already standardized derivatives products in man-

aging systemic risk. This fact may prove to be a challenge for a lot of institutions trading in

interest rate derivatives, such as pension funds. Risk sharing mechanisms and margin require-

ments meant to mitigate counterparty risk is experienced by these parties as an extra source of

risk and costs, which might prove difficult to integrate with their business models. The aim of

this paper is to contribute in the understanding of contagion risk faced by financial institutions

in different network structures. The main objective hereby is to model an OTC derivatives

market via application of network theory.

Various approaches in modelling the dynamics of contagion defaults based on topological

structures have been proposed in recent literature. Initial research was mostly directed to bank-

ing systems from both empirical as theoretical perspectives. Allen and Gale (2000) propose that

the completeness of network structures increases system stability. Their claim however, that

complete network structures are more robust than incomplete structures, has been criticised

and shown to not hold in general. Nier et al. (2008) studies numerically how the structure,

interconnectedness and interbank exposures affect the stability of the banking system. Gai and

Kapadia (2010) apply statistical techniques to show that financial systems exhibit a robust-

yet-fragile tendency. A lower probability of contagion is achieved by an increased connectivity.

However, the increased connectivity is shown to result in more widely spread contagion in the

network, as a result of a higher vulnerability of the system to second-round defaults. Gai et

al. (2011) apply network theory to model how systemic liquidity crises similar to the liquidity

dry-up in 2007-2008 may be amplified by a greater complexity and concentration.
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Network theory has not been limited to a theoretical framework of analysis. Contagion in

financial markets and other cascading failures have been extensively researched by, among oth-

ers, Furfine (2003), Degryse and Nguyen (2004), Esinger, Lehar and Summer (2006), Lelyveld

and Liedorp (2006) and Cont, Moussa and Santos (2012). The general framework of analysis

is based on the assumption that contagion defaults are triggered by the default of a single in-

stitution within the system. This ensures the tractability of results and differentiates between

SIFIs, which affect a considerable number of institutions if not the whole system, and smaller

institutions in the sense that they do not lead to widespread contagion. Esinger, Lehar and

Summer (2006) criticize this approach in that it only emphasizes the effect of interbank linkage

and ignores the correlation between interbank exposures.

A more recent paper by Markose (2012) discusses the spread of contagion within the deriva-

tives market in contrast to most research focused on banking systems. The study shows that

a few Systemically Important Financial Intermediaries can lead to considerable losses to the

financial system. Markose (2012) notes that most research assumes either networks based on

Erdős-Rényi graphs, which are typically random and uncorrelated, and are the main focus of

theoretical models, or complete network structures as in Allen and Gale (2000), which are the

general setting when empirical data is considered. Markose (2012) argues that a core-periphery

network structure captures the true nature of financial markets. Craig and von Peter (2010) and

Fricke and Lux (2012) show that this holds for the German bank system and the overnight inter-

bank transactions in the Italian interbank market, respectively. Blundell-Wingel and Atkinson

(2011) discuss in detail the challenges faced in derivatives markets due to its sheer size and high

concentration.

The ambition to enforce the participation in a system of central clearing for various stan-

dardized derivatives products may prove challenging for various market participants. Small asset

managers and banks might be more concerned that the risk sharing mechanisms and cost will

unevenly punish them. Adverse selection and moral hazard cuts both ways, but its effects on the

stability of the system are generally more visible for big firms which makes inferring unbiased

conclusions quite hard. It is not our interest however to focus on the such challenges that might

be inherent to a system of central clearing. In this paper we are interested in the comparison

of stability and the dynamics of a system where OTC derivatives are centrally cleared and one

where trades are of bilateral nature. We pose the question how the system risk and its impact on

the market participants might manifest in light of a few key parameters. Is the central clearing

system more resilient to cascading failures considering the network topology, where distinction

is made between a random (tiered) network structure and a tiered core-periphery structure.

Secondly, how does the size of the system affect stability. Do more market participant lead to

a more stable financial system. And finally, how does a higher buffer affect risk of contagion

defaults and losses. Different market participants generally incur losses specific to their business

model. In our approach we will be looking at the problem from the perspective of pension funds.

This is specifically important when counterparties fail to perform on their obligations. In the

rest of the paper we simply refer to these entities as GCMs.

The goal of this paper is to asses how stability and system risk change when moving from

OTC derivatives markets to central clearing.
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The remainder of the paper is organized as follows. Section 2 gives a brief description of the

OTC derivatives markets and CCPs. We look closely to the some characteristics of the OTC

derivatives of our interest. Costs and risks related to central clearing are further discussed in

the same section. In section 3, our model of the derivatives system and the various network

topologies is considered. Section 4 contains a brief discussion of the central clearing mechanisms

we implement in our model and how they relate to practice. The default dynamics and contagion

effects are explained in section 5. Comparative statistics of the simulation experiment and the

analyses is given in section 6. Section 7 concludes.

5



2. OTC derivatives and the realities of central clearing

The gross notional amount outstanding of OTC derivatives was estimated at $639 trillion

in the second quarter of 2012 by the Bank for International Settlements (BIS). To put this

number into perspective, the world GDP amounted to a total of $71 trillion in 2012.1 The total

notional value of derivatives has witnessed a spectacular growth the past decade attaining an

increase of around 600% in volume size as shown in Figure 2.1. The gross market value and the

gross credit exposure are estimated by the BIC at $25 trillion (3.9 % of gross notional amount)

and $3.7 trillion (0.6% of gross notional amount), respectively. These number represent the

total OTC derivatives market capitalization. Figure 2.2 shows the split of risk categories in

this market with the interest rate derivatives representing the largest category. The size of the

interest rate derivatives is estimated around $494 trillion at the end of the second quarter of

2012, comprising more than 77% of the notional amount outstanding. The credit default swap

market, criticized for aggravating the global financial crises, only comprised 4.2% of the notional

amount outstanding of OTC derivatives. Figure 2.3 depicts the categorization of interest rate

derivatives by currency. The notional amount outstanding of interest rate derivatives at the

end of the first quarter of 2012 in Euros and US Dollars equalled $178,667 billion and $164,024

billion, respectively.
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Figure 2.1

Gross notional amount outstanding of OTC derivatives. Source: BIS, November 2012

The sheer size of the OTC derivatives market and the leverage arising from the use of

derivatives result in huge revenues and profits, especially for a select few systemically important

financial institutions (SIFIs) capable of exploiting the opaque nature of OTC derivatives. How-

ever, as the global financial crisis has made clear without a doubt, the other side of the coin

is that adverse price movements may easily compromise the financial stability of these institu-

tions as well as the entire financial system. The envisioned centralized clearing counterparties

(CCPs) are important components meant to mitigate system risk and to make the opaque OTC

market more transparent for market participants and especially regulators. Further, CCPs are

1IMF World Economic Outlook, Coping with High Debt and Sluggish Growth, October 2012, Table A1
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Figure 2.2

OTC derivatives by type. Source: BIS, November 2012
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Notional amounts of interest rate derivatives by currency. Source: BIS, November 2012

expected to reduce risk exposures among market participants, increase liquidity of the market,

reduce transaction fees of each counterparty and improve the efficiency of the capital market.

It should be noted however that CCPs are for-profit institutions, thus possibly embodying a

inherent weakness in a central clearing system.

CCPs themselves are possible sources of credit risk to their clearing members (GCMs) and

hence to the entire financial system. Therefore, it is crucial to improve effectiveness of CCPS’

risk control, limit their risk exposures and minimize potential losses in case of defaults of the

participants. CCPs manage risks by holding margins and default fund contributions of the

clearing members. When a clearing member defaults, these margins and default fund contribu-

tions are utilized to cover losses. Whether these losses are incurred by other GCMs depends

on the segregation model of the collateral. If the collateral and margins are held in omnibus

accounts, then the non-defaulting GCMs are also at risk of having their contributions utilized
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by the CCP. In fact, all GCMs are indirectly exposed to each other through a CCP, so that one

GCM’s default can lead to the insolvency of other (healthy) members. A CCP maintains zero

exposure to GCMs at all times and most, if not all, contracts remain in force after a default.

This, combined with one GCM’s default, can result in a cascade of defaults of other GCMs. For

instance, in case a large GCM defaults, the CCP needs to transfer the defaulter’s portfolio, by

e.g., auctioning the defaulter’s contractual obligations to other GCMs, to keep the CCP hedged.

Clearing members are obliged to participate in such an auction or in any other measure the

CCP might undertake. This can result in a liquidity pressure and possible market collapse of

initially financially healthy clearing members. This is exactly one of the hypothesis that we will

test and confirm with our simulations.

Clearing via CCPs comes with additional costs and risks. First of all, these are the additional

liquidity costs for the clearing members, arising from the need to post margins and default fund

contributions. Some authors argue that, by going from OTC to central clearing of derivatives,

the credit risk is essentially replaced by the liquidity risk. Furthermore, central clearing is es-

sentially a protection mechanism where risks are pooled. This kind of risk sharing can create

costs in the form of distorted incentives, when information imperfections are present. Moral

hazard can arise (or become more prominent) on various levels of the clearing mechanism: on

the side of CCPs (e.g., a riskier way of operating if a bailout is assured), and also on the side of

GCMs (e.g., ”free riding” by GCMs with riskier trade profiles and adverse selection). However,

for simplicity, we will not take this moral hazard risk into account in this paper.

Possibly the most pronounced benefit of the central clearing is the increased netting oppor-

tunities. This benefit is maximized when a single standardized product is cleared by a single

CCP. Moving many different and complex derivatives towards centralized clearing may reduce

netting opportunities. Again, for the sake of tractability, we will ignore this effect and assume

in our model that a CCP only clears a limited set of highly liquid derivatives.

The pervasive scale and scope effects of CCPs will fundamentally influence the way the

clearing sector evolves, having competitive and systemic risk implications. With respect to com-

petitive evolution, scale and scope effects will result in the survival of a small number of large

CCPs. CCPs have strong natural monopoly characteristics. It is therefore likely that CCPs will

raise anti-trust concerns. This tendency towards the dominance of clearing by a small number

of large CCPs will make these entities highly systemically important. The failure of a domi-

nant CCP would have potentially catastrophic effects. Regulatory and legislative interventions

that hinder the rise of a few dominant CCPs will, on the other hand, prevent from realizing all

risk-reducing benefits of scale. Regulators and legislators will face difficult trade-offs in their

oversight of CCPs. Jurisdictional considerations are likely to result in the survival of multiple,

under-scaled or under-diversified CCPs. Several major jurisdictions have already made it clear

that they will require products traded there (or by firms located in those jurisdictions) to be

cleared also there. This jurisdictional fragmentation will prevent market participants from fully

taking advantage of the potential scale and scope benefits CCPs can offer. It will also compli-

cate coordination between CCPs, especially in the event of a crisis. Moreover, clearing across

jurisdictions poses complicated legal issues, especially insofar as bankruptcy laws are concerned.

Again, regulators and legislators (and market participants) will face difficult trade-offs when
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determining the best legal and jurisdictional arrangements for CCPs.

A variety of risk management practices are available to CCPs, such as:

• Initial margin setting. Initial margins are typically determined as a percentage of a deriva-

tive’s notional. CCPs set and review initial margin levels periodically. Other factors that

may affect the necessary amount of collateral requested by a CCP are the size of a clearing

member, its risk profile and concentration levels.

• Variation margin setting. CCPs monitor its members’ positions continuously, to determine

variation margins and risks associated with all the trades. Clearing members are subject

to margin calls when the value of their positions deteriorates.

• Default fund contribution. CCPs require their clearing members to contribute to the

default fund. The assets in default fund are used in case the initial margin is not enough

to bear all the losses due to the default of a clearing member. CCPs will often base default

fund contributions on prevailing market conditions and existing margin requirements. A

general rule of thumb is that this fund should cover the residual losses of the two largest

clearing members.

• Monitoring of clearing members. CCPs also must monitor the financial condition of their

members and their operational capability during default. Further, personnel is required

to be fully conversant with clearing procedures and capable of evaluating the financial

conditions of complex financial entities. CCPs may involve audits in monitoring their

clearing members.

• Concentration risk monitoring. Highly concentrated positions pose particularly great risks

for CCPs. Clearing members with a highly concentrated position in a product, or a class

of related products, may lead to extreme losses in case of adverse price movements. Di-

versification effects between products become limited and wrong way risk (i.e., the corre-

lation between the exposure and the creditworthiness) becomes more prominent. In such

case, defaults are more likely, but also CCPs might face greater difficulty in replacing

these concentrated positions or transferring them to the non-defaulting clearing members.

Therefore, CCPs will charge higher margins on concentrated positions or restrict certain

trades of their clearing members.
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3. Modelling the financial system

Our main objective in this paper is to assess whether central clearing mechanisms stabilize

the financial system and how they impact the participating parties, i.e., GCMs. To study the

contagion of defaults and losses with and without central clearing, our model must capture

the characteristic dynamics of the real financial system. When developing our model, we were

inspired by several studies that implement a network approach to analyze default cascades in

financial systems.

3.1 Network representations of the financial system

First, we introduce some notation. The financial system is represented by a numbered set

of nodes (financial institutions) N = {1, 2, . . . , n} and the set of possible edges (links between

financial institutions) N ×N . A random graph E ⊂ N ×N is generated by the function F (Θ),

which we specify later. A realization of E is represented by the adjacency matrix A(E)(N×N):

A =



A1,1 · · · A1,j · · · A1,n

...
. . .

...
. . .

...

Ai,1 · · · Ai,j · · · Ai,n
...

. . .
...

. . .
...

An,1 · · · An,j · · · An,n


. (3.1)

Loops are not allowed in our system, as these would have zero net effect. So we impose the

restriction Ai,j = 0 if i = j. Any two nodes i and j, i 6= j linked by an edge in graph E are

represented by Ai,j = 1 and zero otherwise. The system is described by a directed graph, so

that each edge has a direction associated with it. If Ai,j = 1 then there is an exposure between

parties i and j, with i being long and j short in a particular financial position. Note that a

cross-directional relation between any two parties is possible by the above definition. Later on,

when constructing balance sheets, we will net such positions to retain the net exposure of each

party i to counterparty j.

The in- and out-degrees of each node represent the number of incoming and outgoing links,

respectively. The out-degree δ+(i) and in-degree δ−(i) of node i are given by the following

expressions:

δ+(i) =
∑
j∈N\i

Ai,j(E), (3.2)

δ−(i) =
∑
j∈N\i

Aj,i(E). (3.3)

The in- and out-degrees enable us to specify the size of each node and determine whether a

specific agent is a net creditor (δ−(i) > δ+(i)) or net debtor (δ+(i) > δ−(i)). We characterize

the network by weighted links, the weights indicating the total exposures each party has to its
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counterparties:

W =



W1,1 · · · W1,j · · · W1,n

...
. . .

...
. . .

...

Wi,1 · · · Wi,j · · · Wi,n

...
. . .

...
. . .

...

Wn,1 · · · Wn,j · · · Wn,n


(3.4)

with

W =

{
Wi,j ≥ 1 for i 6= j and Ai,j = 1,

Wi,j = 0 otherwise.
(3.5)

From (3.5) it follows that δ+(i) =
∑

j∈N\i
1Wi,j>0 and δ−(i) =

∑
j∈N\i

1Wj,i>0. The way we specify

weights is described below.

The paper by Allen and Gale (2001) - one of the earliest works on financial networks - stud-

ied financial contagion in complete networks. The study focused on the dynamics of only four

fully connected counterparties, whcih represents a so-called complete network. They concluded

that a fully connected and homogeneous network results in an increased system stability. Vari-

ous later works, for instance Markose (2012), have criticized this approach as being unrealistic

and thus giving rise to a misleading presumption that a monotonic relationship exist between

an increased connectivity and system stability. Many subsequent papers also utilize complete

networks and assume (in the absence of information on bilateral positions) that interbank ac-

tivities are completely dispersed within the system. Upper and Worms (2002) adapt an entropy

maximizing algorithm to simulate bilateral exposures in the German interbank market. Degryse

and Nguyen (2004) and Lelyveld and Liedorp (2006) similarly conducted their research on the

stability of the Belgian and Dutch banking system, respectively.

The next step in complexity from complete networks are random graphs. Erdős and Rényi

(1959) was one of the earliest theoretical studies on characteristics of random graphs. In an

Erdős-Rényi graph, each edge l ∈ N×N is present independently of other edges with probability

p. Hence, the presence of each link in such a graph is governed by the Bernoulli distribution with

parameter p, resulting in the so-called homogeneous network . The so-called Poisson random

graph is a generalization of the standard Erdős-Rényi graph. It is obtained in the following

way. Let n be the number of nodes and pn the connection probability , i.e., the probability

that l ∈ E ⊂ N ×N , where graph E is an arbitrary subset of the set of possible edges N ×N .

Let pn = λ/n, where λ is a constant. Note that pn → 0 as n → ∞. Note furthermore that

the in-degree δ−(i) and out-degree δ+(i) for 0 ≤ i ≤ n are binomial random variables with

parameters n and pn. It is well-known that under these assumptions the binomial distribution

is well approximated by the Poisson distribution. That is, for fixed x ∈ N,(
n

x

)
pxn(1− pn)n−x → e−λ

λx

x!
as n→∞.

In our study, we will employ Poisson random network, as it is more tractable.

The paper of Nier et al. (2008) performs a numerical study of financial stability and the

model employed there is based on random graphs: a homogeneous Erdős-Rényi graph and
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a more realistic model, which introduces a “tiered structure”. Banks are divided in ‘small’

and ‘large’, where the probabilities of being connected are determined in such a way that large

banks have a higher probability of being connected. Gai and Kapadia (2010) use a homogeneous

Erdős-Rényi random graph as their model of the financial system and show that such financial

systems exhibit robust-yet-fragile tendency. A similar study by Gai et al. (2011) consider two

network configurations: a homogeneous random graph and a highly concentrated graph (known

as a geometric network). They show that greater complexity and concentration aggravates the

spread of a funding contagion.

Some recent studies have found that the financial system has the so-called core-periphery

structure (also called a ”small world network”), which is not captured by random Erdős-Rényi

graphs, even when allowing for tiering or high concentration. Craig and Pieter (2010) find that

the so-called block model captures generic relations in a two-tiered network:

Ã =

[
CC CP

PC PP

]
(3.6)

The smaller block (subgraph) CC represents highly connected (complete) structure of the sub-

network between the core financial institutions. This subgraph tends to be complete as all

institutions in the core are typically linked to one another. Likewise, institutions in the periphery

that are unlikely to be linked to other institutions in their class make up the (larger) PP block

of the graph. CP and PC blocks represent the relations between financial institutions in the

core and the periphery. The adjacency matrix Ã with k core institutions and n− k institutions

in the periphery has the form

Ã =



0 1 · · · 1

Ãi,j ∈ {0, 1}1 0
. . .

...
...

. . .
. . . 1

1 · · · 1 0

0 · · · 0

Ãi,j ∈ {0, 1}
...

. . .
...

0 · · · 0


(3.7)

A typical property of a small world network is a low average path length, meaning that

the distance between any two nodes is very small compared to the network size. However, this

property alone is not sufficient to characterize small world networks. The short path length

property also applies to complete networks by definition (complete networks have the shortest

possible average path length possible, i.e., the path length equal to one). This property also

holds for random graphs, see Watts and Strogatz (1998). An extra property that sets small

world networks apart is related to the so-called clustering coefficient of nodes. Random net-

works are characterized by a low clustering coefficient, unlike small world networks, where the

clustering coefficient remains bounded away from zero. Small world networks are widely used

in many applications, for example, they are a perfect model for airline transportation networks,

which have a few big and extremely well-connected hubs (such as Chicago O’Hare or Atlanta

international airports in the US or Frankfurt airport in Europe).
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Recall that here we are mainly concerned with modelling the financial system from the

point of view of the OTC derivatives markets (in particular, interest rate swap markets). From

this viewpoint, financial systems, particularly in developed markets, are typical examples of

core-periphery, or small-world networks. There are just a few big ”core” financial institutions,

highly connected to each other (large investment banks such as JPMorgan, Morgan Stanely

and GoldmanSachs in the US, Barclays and HSBC in the UK, Deutsche Bank in Germany),

which are net sellers of interest rate swaps, while a very large group of (typically smaller)

financial institutions, such as pension and mutual funds, insurance companies, are the buyers of

interest rate swaps. So our main focus in this paper will be on core-periphery networks, as we

believe these represent the typical financial system in the most realistic way. However, there are

indications that not all financial systems are small networks. For example, Cont et al. (2010)

observe that the Brazilian financial system is not a small world network. So we will also consider

in our study standard random graphs (Erdős-Rényi graphs) and their variation with a tiered

structure.

3.2 Constructing random and core-periphery networks

A random Erdős-Rényi graph is characterized by in-degrees and out-degrees of each node

(nodes represent GCMs or counterparties) which are governed by a Poisson distribution in the

limit (n→∞) with parameter λ = (n− 1) · p, p ∈ (0, 1) and network size n of our choosing. A

second variation with a tiering structure is considered where nodes are split into two groups, a few

nodes of highly connected large GCMs and many nodes of small GCMs with a few connections.

Let L ⊂ N be the numbered set of large GCMs and S ⊂ N the numbered set of small GCMs,

with L∪S = N and L∩S = �. Further, |L| = nl < ns = |S| and nl + ns = n = |N |. To derive

a distribution for the simulation of the tiered network structure, we impose the restriction that

the total number of links should be equal ex ante. Note that δ+(i) ∼ Pois(λ) for i ∈ N holds by

definition and thus E[δ+(i)] = λ. We assumed that the in-degree and out-degree of each node

are governed by the same distribution law from which follows that the total number of links in

our network equals ∑
i∈N

E[δ+(i)] = n · λ, (3.8)

as δ+(i) are identically independent distributed variables (IID). Looking back at the tiered

network structure where the δ+(i) need to be specified separately for each node class. We want

to connect our network in such a way that the total number of links is equal to 3.8. This ensures

that the simulation result are comparable in both settings. We keep the assumption in the

tiered network structure that δ+
l (i) ∼ Pois(λ+

l ) and δ−l (i) ∼ Pois(λ−l ) for i ∈ L are similarly

distributed. Likewise, δ+
s (i) ∼ Pois(λ+

s ) and δ−s (i) ∼ Pois(λ−s ) for i ∈ S so that λ+
l = λ−l = λl

and λ+
s = λ−s = λs. Let pl > p be the probability that a link is extant from a large GCM to an

arbitrary GCM and ps < p the probability of a link from a small GCM to an arbitrary GCM.

Thus, λl = (n−1) ·pl and λs = (n−1) ·ps by definition. Finally, using the fact that δ+(i) ∼ IID

13



and that 3.8 must hold, we must solve the following equation for pl and ps:∑
i∈L

E[δ+
l (i)] +

∑
i∈S

E[δ+
s (i)] =

∑
i∈N

E[δ+(i)]

⇒ l · λl + s · λs = n · λ
⇒ l · (n− 1) · pl + s · (n− 1) · ps = n · (n− 1) · p

This equation of two unknowns is solved for a fixed p̃l ∈ (0, 1):

p̃s =
n · p− l · p̃l

s
, p̃l > p. (3.9)

To wire our graph we perform the following steps ensuring the right distribution of the in-

and out-edges.

Algorithm 1: For a fixed set of parameters Θ = {n, l, p, p̃l, p̃s}

(i) Draw n independent samples (δ̄+(i), δ̄−(i)), ∀i ∈ L ∪ S.

(ii) The network is wired by taking out for each node i, δ̄+(i) and randomly wiring it with the

remaining unpaired nodes j 6= i.

(iii) A loop for i = 1, . . . , n results in that all nodes are connected.

Figure 3.1(a) and 3.1(b) show an example of a random homogeneous network and a network

with a tiering structure, respectively. Both networks consist of n = 25 nodes and p is kept fixed

at 0.2. Equation 3.9 is solved for p̃l = 0.5 and l = d0.1 ·ne to obtain the network given in 3.1(b).

The size of each node is determined based on the average number of edges. This average is

obtained from the in- and out-degree of each node: δ+s (i)+δ−s (i)
2 . A completely random network

has homogeneous nodes (ex ante) as the distribution of δ+
s (i) and δ−s (i) is the same. In contrast,

a tiered network structure has l large nodes and s = n− l smaller ones (ex ante). This effect is

not clearly visible for the simulated networks in figure 3.1 as n is quite small. We can remark

that more nodes appear to be of similar size in figure 3.1(a), where the number of ‘large’ nodes

(the larger the bluer a node) and small nodes (the smaller the redder a node) appears to be

divided evenly. Figure 3.1(b) on the other hand shows a network were a fewer large nodes and

many smaller nodes are present. We would expect for n = 25 to obtain 3 clearly large nodes

and 22 smaller ones, which appears to be true more or less. To get a clearer picture of this

fact, we increase the size of the network by taking n = 100. A simulated random network and a

network with tiering is shown in figure 3.2. 3.2(a) shows that the node sizes are more or less of

comparable size with a few exceptions since the in- and out-degrees are stochastic. Figure 3.2

clearly shows to types of nodes, the 10 (0.1 ·n) larger and the remaining 90 smaller ones, unlike

the homogeneous network.

3.2.1 Core-Periphery Structure

The second type of network we consider in our simulations is a core-periphery structured

network. The blockmodel given in 3.6 capture the generic relations in a two tiered network. Our

aim is to simulate a network taking into consideration some restriction we impose particularly

on the size of the financial system. We want this to be kept fixed in all cases, keeping in mind
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Figure 3.1

Erdős-Rényi Graphs: The simulated networks consist of n = 25 nodes and the wiring probability p is

kept fixed for both the random network (left) and the random tiered network (right).
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(a) Random: p = 0.2
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(b) Tiered Structure: pl = 0.5, ps = 0.16

Figure 3.2

Erdős-Rényi Graphs: The simulated networks consist of n = 100 nodes. The wiring probability is kept

at p = 0.2 to make comparison with the smaller networks (n = 25) possible.
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(a) Random p = 0.2
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(b) Tiered Structure pl = 0.5, ps = 0.17

that each link represents a cash flow or mutual exposures the GCMs face. We achieved this for

the random network by equation 3.8. Opposite to this approach, we now impose the restriction

that the total weight of all links, as given in equation 3.4, should ex-ante be the same for all

networks. Further, GCMs in the periphery are not allowed to be connected to each other as

mentioned earlier. Finally, an extra restriction is needed to ensure that large GCMs control a

certain fraction x of the total market. This is achieved by setting up equation 3.10 and 3.11

and solving for pl and ps which can be uniquely determined given the fact that we have two
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equations and two unknowns.

p · n · (n− 1) = pl · l · (n− 1) + ps · s · (n− 1) (3.10)

pl · l · (n− 1) =
x

1− x
· ps · s · (n− 1) (3.11)

⇒ pl =
p · n · x

l
(3.12)

⇒ ps =
p · n · (1− x)

s
(3.13)

The parameters n, l and p for number of GCMs, number of large GCMs and the probability of

occurrence of every possible edge as given for the Erdős-Rényi graph, respectively, are kept fixed

to make all networks comparable. Equation 3.10, which was derived in the previous section,

ensures that the expected number of links in the random Erdős-Rényi network equals the total

weight in the core-periphery tiered network. We ascertain that the large and small GCMs make

up the right fraction of the total market size by equation 3.11.

We adjust the wiring algorithm in such a way that all these restrictions are satisfied in the

following way:

Algorithm 2: For a fixed set of parameters Θ = {n, l, p, p̃l, p̃s}

(i) Draw n independent samples (δ̄+(i), δ̄−(i)), ∀i ∈ L ∪ S.

(ii) Nodes are numbered and ranked so that

δ̄+ =

δ̄+(1)

...

δ̄+(l)

δ̄+(l + 1)

...

δ̄+(n)





Large Nodes

Small Nodes

δ̄−(1)

...

δ̄−(l)

δ̄−(l + 1)

...

δ̄−(n)




= δ̄−

(iii) Take a free out-stub δ̄+(i) for i > l and randomly wire it to a node with a free in-stub

δ̄−(j) for j ≤ l until δ̄+(i) = 0 for i > l.

(iv) Repeat the previous step but now by coupling the free in-stubs δ̄−(i) for i > l with a

random out-stub δ̄+(i) for i ≤ l until δ̄−(i) = 0 for i > l.

(v) Finally, all remaining nodes are randomly linked to each other until either δ̄+ = 0 or

δ̄− = 0.
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δ̄+(1)

...

δ̄+(l)

δ̄+(l + 1)

...

δ̄+(n)





step v

step iii step iv

δ̄−(1)

...

δ̄−(l)

δ̄−(l + 1)

...

δ̄−(n)




Figure 3.3(a) and 3.3(b) show an instance of a tiered random network and a core-periphery

tiered network, respectively. Figure 3.1(b) is duplicated in figure 3.3(a) to make the difference

between random networks and core-periphery structured networks distinct. Once more, the

network consists of n = 25 nodes, representing 25 GCMs. As mentioned before, the random

tiered network is constructed by keeping p = 0.2 fixed and solving equation 3.9 for p̃l = 0.5

and l = d0.1 · ne. The core-periphery tiered network is constructed by solving equation 3.10

and equation 3.11 for p = 0.2, x = 0.8, l = d0.1 · 25e = 3, from which we obtain p̃l and p̃s.

Large GCMs in the core are much clearly distinguishable from the small GCMs in the periphery

as can be noticed from figure 3.3(b) compared to 3.3(a). We notice that the different node

sizes representing the large GCMs and the small GCMs are much more distinct even for small

networks. Likewise, the linkage between the different nodes is much orderly. Small GCMs

are mostly connected to only one core GCM and do not have any connections mutually unlike

large GCMs satisfying the blockmodel given by equation 3.6. This effect is even more clearly

Figure 3.3

Core-Periphery Structure: The simulated networks consist of n = 25 nodes. Equation 3.9, 3.12 and 3.13

are solved for the same wiring probability p to make both graphs comparable.
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(a) Tiered Structure

1

2

3

10

14

16

18

19

21

22

25

7

8

12

13

15

20

23

4

5

6

9

11

17

24

(b) Core-Periphery Structure

visible when considering a larger network with more nodes as shown in figure 3.4. Once again,

figure 3.2(b) is duplicated in 3.4(a) to make the difference between random networks and core-

periphery structured networks distinct. Large GCMs have a higher connectivity to each other

in figure 3.4(b) compared to the network in 3.4(a). In contrast, small GCMs in the periphery

are only connected to GCMs in the core in 3.4(b) unlike the ones in 3.4(a). Finally, the size

17



difference is more persistent in the core-periphery tiered network in figure 3.4(b) compared to

the tiered random network in 3.4(a).

Figure 3.4

Core-Periphery Structure: The simulated networks consist of n = 100 nodes. Equation 3.9, 3.12 and 3.13

are solved for the same wiring probability p to make both graphs comparable.
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3.3 Balance sheets

In order to study the impact of central clearing of OTC derivatives we need a simple repre-

sentation of the GCMs and consequently the derivatives market as a whole. This is achieved by

modifying the proposed model of a banking system by Nier et al. (2008) to satisfy the charac-

teristics of our system. The balance sheets are then simulated in a consistent manner, for each

realisation of our network, as to ensure that the balance sheet identities and aggregate balance

sheet identities are satisfied. Our main objective herein is to determine the assets and capital

each GCM has available. Assets can be posted as collateral and capital functions as buffer for

GCMs if any losses arise. Likewise, the portfolio mix of each GCM that will be the basis of

our simulation experiment needs to be defined. Any losses arising in our system are caused by

adverse ‘price’ movements leading to losses for these portfolios.

As mentioned earlier, the notional amount outstanding of interest rate derivatives was esti-

mated to be around 7 times the size of the world GDP by the BIS. This size difference is taken

into account by first deciding on the size of the interbank system. By the interbank system we

refer to the cash flows between the GCMs which directly follow from the simulated links in our

networks.

An individual GCM’s assets, denoted by A, include the fixed assets AF , liquid assets AL,and

the interbank assets AIA. We do not make any distinction between fixed and liquid assets, to

which we will simple refer to as foreign assets in short, and simply assume that GCMs have

recourse to these assets for margin calls when the need arises. The interbank assets are assumed

to be secured and hence do not lead to any aggravation of losses if a GCM defaults, i.e. fails to

perform on its contractual obligations towards the CCP or its counterparties in a bilateral OTC
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market, within the interbank system as we are only interested in the default dynamics within

the OTC derivatives market. Thus, for GCM i, we have Ai = AFi +ALi +AIAi , for 1 ≤ i ≤ n.

An individual GCM’s liabilities, denoted by L, include the GCM’s capital LC (which we will

refer to simply as c in later sections), deposits LD and interbank liabilities LIL. Thus, for GCM

i, we have Li = LCi + LDi + LILi , for 1 ≤ i ≤ n. Obviously, for all GCMs it holds that Ai = Li
as the two sides need to balance out. A stylized balance sheet is given in table 3.1.

Assets Liabilities

Fixed Assets AFi Capital LCi

Liquid Assets ALi Deposits LDi

Interbank Assets AIAi Interbank Liabilities AILi

Table 3.1

Stylized balance sheet of an individual GCM

All balance sheet components are determined endogenously depending on the simulated net-

work except for the total size of foreign assets AFL = AF + AL =
n∑
i=1

(
AFi +ALi

)
which we use

to initialize the construction of the balance sheets. Our first step is thus to decide on the total

size of the aggregated foreign assets in the system which we arbitrarily fix at an amount Ξ ∈ N.

All our results are reported in relative terms so that any specific choice of Ξ has no significance.

Next, the size of the interbank system AIA is determined as a percentage of the total aggre-

gated foreign assets. By definition we have

AIA =
n∑
i=1

AIAi =
n∑
i=1

LILi = LIL.

Note that AIAi = LILi does not have to hold. We determine AIA as a percentage ΘI of Ξ, the

aggregated amount of foreign assets, with ΘI ≤ 0.5. The interbank assets and liabilities of

individual GCMs are then determined in a straightforward manner by considering any arbitrary

network. As mentioned earlier, each network is described by its adjacency matrix as given in

equation 3.1 and equation 3.7 for a random and a core-periphery structured network, respec-

tively. The weights of each link are consequently captured by the weight matrix W in equation

3.4. Dividing AIA by the sum of all the entries of the weight matrix W gives us the size w of

the cash flow of any link with a weight equal to 1 as given in equation 3.14.

w =
AIA

n∑
i=1

n∑
j=1

Wi,j

. (3.14)

The interbank assets and liabilities of each individual GCM are then determined as follows:

AIAi = w ·
n∑
j=1

Wi,j (3.15)

LILi = w ·
n∑
j=1

Wj,i (3.16)
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The foreign assets of each GCM is the next balance sheet component we determine from

the interbank assets, liabilities and Ξ. We require the foreign assets to be no less than the net

interbank assets, meaning AFLi ≥ max{0, LILi − AIAi }. This is achieved in two steps. Our first

step is to increase AFLi for all GCMs who’s lending exceeds its borrowing so that the balance

sheets balances out:

ÃFLi =

{
LILi −AIAi if AIAi ≤ LILi ,

0 otherwise

The second step is to distribute the remaining Ξ̃ = Ξ −
n∑
i=0

ÃFLi among all GCMs. In other

words,

˜̃AFLi =
Ξ̃

n
.

We adjust the way we allocate Ξ̃ for the core-periphery tiered network as to not diminish the

difference in size between the large GCMs and small ones in the following way:

˜̃AFLi =


x

Ξ̃

l
for large GCMs

(1− x)
Ξ̃

s
for small GCMs

(3.17)

This adjustment better reflects the size difference between GCMs, which further affects the

remaining components of the balance sheet we still need to determine. The foreign assets of

each GCM are thus equal to

AFLi = ÃFLi + ˜̃AFLi . (3.18)

A solution for the first step is always guaranteed to exist because of the restriction ΘI ≤ 0.5

introduced earlier.

The steps above completely determine the assets side of the balance sheet. The last two

components of the balance sheets on the liability side are obtained from the asset side in a

straightforward manner. The capital of each GCM is assumed to be a fixed proportion of the

asset side. Let Θγ ∈ (0, 1) be the net worth of any GCM (We keep Θγ fixed for all GCMs) so

that

LCi = Θγ · (AFLi +AIAi ), (3.19)

for 1 ≤ i ≤ n. The deposits LDi are finally determined as a balancing component so that

AFLi +AIAi = LCi + LDi + LILi

⇒ LDi = AFLi +AIAi − LCi − LILi , (3.20)

for 1 ≤ i ≤ n. This completes the construction of all components of the balance sheet.

3.3.1 Portfolio Mix

The next step is to determine the portfolio mix of each individual GCM. The balance sheets

were simulated in such a way that they reflect the relative size of the GCMs by determining the
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interbank liabilities and assets based on the number of connections, their weight and their size

class as given in equation 3.15, 3.16 and 3.17, respectively. Hence we can infer the relative size

of the portfolio of any given GCM by taking into account the relative size of its assets.

We assume that M types of contracts are traded in our system. Each GCM hold a certain

number of contracts of each type relative to its own relative size within the system, say ∆i,m

for i = 1, . . . , n and m = 1, . . . ,M . Hence, each GCM holds ∆i =
M∑
i=1

∆i,m contracts in total.

Further, each contract consists of two legs, a floating leg and a fixed leg, since we will focus

specifically on interest rate swaps (IRSs). Furthermore, we assume that a GCM does not hold

both a floating leg and a fixed leg at the same time of a particular contract. The changes in

prices would otherwise cancel each other out. Hence, the portfolio of each GCM i is described

by ∆i,m,k for i = 1, . . . , n, m = 1, . . . ,M and k ∈ F = {Floating, F ixed}.

Our aim is to determine ∆i,m,k in such a way that all the characteristics above are satisfied.

We first discuss the case where our network is completely random as is the case for Erdős-Rényi

graphs. All GCMs are in this case ex-ante of equal size. Each GCM holds a specific number of

contracts ∆i,m,k, which we decide on arbitrarily. Next we assume that each GCM has a 50%

chance of holding a fixed leg or floating leg of each specific contract, i.e. we select a set of GCMs

holding the fixed leg and the rest holds the floating leg. The last step is then to decide on the

counterparties. This is done by randomly selecting for each GCM another GCM that functions

as counterparty. The last selection step is of more importance when a bilateral OTC market is

simulated, which is used to compare the result when central clearing is introduced. Later on we

will see that keeping track of the counterparties can be useful when a CCP fails and the need

arises to go back to a bilateral OTC market.

The procedure above is slightly adjusted to take size differences of the GCMs in tiered

networks into account. The total number of contracts in the whole system equals

∆ =

n∑
i=1

M∑
m=1

∑
k∈F

∆i,m,k.

We allocate ∆L = x∆ to the large GCMs and ∆S = (1− x)∆ to the rest. ∆L and ∆S are then

equally divided over the M contract types. This gives us the right ∆L,i,m,k for the large GCMs

and ∆S,i,m,k for the rest.

Each portfolio has a value that needs to be modelled. This is achieved by summing up the

values of all contract held by a GCM. As it is not our aim to dwell to much on this subject, we

opt for a simple model to obtain a starting point for our simulation experiment. The value of

each IRS contract for a counterpartie with a long position, paying floating and receiving fixed,

is the difference between the value of both legs represented by bonds.

Vt,fix,m = Bt,fix,m −Bt,fl,m, (3.21)

where Bt,fix,m and Bt,fl,m stand for the value of the fixed leg and floating leg at time t ≥ 0,

respectively. With a slight abuse of notation, V G
0 stands for the gross value of an IRS and Vi,t

the value of the portfolio of GCM i at time step t. Likewise, the value of the IRS contract for
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a party with a short position, paying fixed and receiving floating, is the difference between the

value of the floating leg and fixed leg, thus Vt,fl,m = −Vt,fix,m. The value of swap m is then

given as a function of yt,m, the yield at time t:

Vt,fix,m = f(yt,m)

Lastly we compute the price changes by considering the (modified) duration D∗ as follows:

∆B = −BD∗∆y (3.22)

The last step in our modelling is to model the trading exposure between the n counterparties

and the cleared exposures the CCP faces. For the sake of simplicity, we assume that each of the

M IRSs can be modelled by a their own Wiener process Wt,m,

drt = µ̂mdt + σ̂mdW

for i = 1, . . . ,M . Our approach is to model the price jump of each contract at time t given the

duration of each contract, the tenor Tm and yield y0,m for m = 1, . . . ,M . Given the returns rt,

for t ≥ 0, we calculate the yields yt as

yt = yt−1e
rt ,

for t ≥ 1, from which we obtain

∆yt = yt − yt−1.

The initial margins, variation margins and default fund contribution can be derived from the

swap contracts value at any time t > 0. The initial margins are determined as fixed contribution

Θα a GCM has to make for each contract it hold. Thus, the total funds GCM i has to deposit

in the margin account is given by

ΘαV
G

0

(
M∑
m=1

∑
k∈F

∆i,m,k

)
= ΘαV

G
t (∆i) , (3.23)

Where V G
t , at t = 0, is the gross notional value of the contracts at initiation. Since all contracts

have the same face value, we do not need to differentiate between specific contracts. We only

need to know how many contracts each party holds to determine the initial margins.

The default fund contribution is trickier to determine. Since we want to keep our model as

simple as possible, we opt for a straightforward approach. The default fund contribution

f
(
Θβ,Θα, V

G
t (·)

)
(3.24)

is a function of both the initial margin contribution Θα and the gross notional value of the

portfolio. The specific form is given later on.

Finally, the variation margins are the extra funds a GCM has to deposits when it faces

negative price movements. These are determined from the swap value given in equation 3.21 at

each time step t > 0 and can either be positive or negative depending on the portfolio value.
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Lastly, the complete balance sheet is given in table 3.2, where the margins are taken into

account by a separate account. That is, to take into account the fact that these funds are

actually not available to the GCM in case of default or when a CCP utilizes these assets to

cover for residual losses. Counterparties in a bilateral OTC market on the other hand do have

access to these assets. Furthermore, these parties do not need to contribute to a default fund

and do not face the risk of having there assets utilized to cover for residual losses of contagion

defaults for instance.

Assets Liabilities

Fixed Assets AFi Capital LCi

Interbank Assets AIAi Interbank Liabilities LILi

Liquid Assets ALi Deposits LDi
Margins Mi

Table 3.2

Stylized balance sheet of an individual GCM
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4. Central Clearing Mechanisms

Our aim in this paper is to assess the impact on the financial system of clearing of OTC

derivatives in extreme scenarios. CCPs aim to not only reduce the likelihood of financial crises

but also reduce contagion by employing several requirements for GCMs and risk management

methods. These safeguards are meant to not only protect GCMs but also to avoid any spillover

of losses to the system. We stress that it is not our aim to address the issue in how far CCPs are

able to mitigate risks and avoid defaults by means of their risk management methods. The main

focus of this paper is to compare how losses will affect the system in extreme scenarios and how

far the risk sharing mechanisms are capable of softening the losses to the financial system or if

they might end up aggravating these losses in these extreme scenarios. For instance, SwapClear,

an LHC.Clearnet global clearing service for IRSs and currently clearing more than 50% of the

global notional market, applies a number of layers of protection in a default scenario to meet

the obligations of the defaulter. A so called Default Waterfall, as shown in figure 4.1, is set

up to cover for any losses and to ensure the performance of cleared IRSs. CCPs will request

margin (collateral) to cover potential losses if a member would default. Variation margin are

requested when the net present value of the outstanding trades moves in such a way that the

initial margins are not sufficient to cover the exposure. The default fund contribution is the next

protection layer meant to cover any losses not covered by the margin calls. Finally, the CCPs

capital is utilized if needed as a final measure to cover any residual losses. In the remainder of

this chapter we treat some of these risk sharing mechanisms and risk management methods and

their application in our model. We discuss in short how we apply the default fund contribution

in our model. Calculations for the variation margins were given in the previous chapter. We

expand on how we decide on the parameters of equation 3.23 and equation 3.24. Further, we

Figure 4.1

Robust default waterfall as applied by SwapClear1

discuss how we deal with the margins and default fund contribution deposited with the CCP

and the principle of novation that is one of the main devices the CCP employs to mitigate risk.

1http://www.swapclear.com/service/risk-management.html
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Lastly, we expand on how a failure of the CCP is treated in our model.

4.1 Default Fund Contribution

GCMs are obliged to contribute to a default fund. This fund is maintained by the CCP to

cover any residual losses arising from counterparty failures after claiming the collateral posted

as initial and variation margins by defaulting counterparties. Such losses can arise from extreme

changes in the values of the defaulted portfolios. There are various ways in determining the

required contribution. This contribution is sometimes set equal to a fixed percentage of initial

margins. The general approach is to base the amount required on a stress-test. An instance is

where this stress-test consists of using worst case scenario’s of the participant’s initial margin

requirements in combination with a default of the two largest members and theoretical market

scenario’s.

We find various definitions for how the required contribution is determined. One of the mem-

bership criteria of SwapClear2 states that “all Clearing Members will be required to contribute,

in cash, to the segregated SwapClear Default Fund, the amount of which will be based upon:

1) A minimum Default Fund contribution of £10 million per Clearing Member.

2) Risk weighted contribution calculated by taking an averaging period for initial margin”.

It further states that “SwapClear Clearing Members will be obliged to provide additional un-

funded Default Fund contributions limited to one unfunded assessment per member default to a

maximum of three in six months.” An extensive treatment of how these requirements are calcu-

lated can be found in the Default Fund Rules (March 2013)3 published by LCH.Clearnet. In line

with what was mentioned earlier, “On each business day, the Clearing House will determine a

“Combined Loss Value” in respect of each of the 60 preceding business days. The Combined Loss

Value in respect of a particular day will be the sum of the largest and the second largest stress

- testing loss incurred on that day in relation to Swap Clear Business (for a given scenario).”

It further states that “SwapClear Segregated Fund Amount” is the largest of the 60 Combined

Loss Values determined, as described above, plus 10%. There are of course more details men-

tioned in the document Default Fund Rules (March 2013) to which we refer the interested reader.

The least complicated description for the required amount of the default fund contribution

is a fixed percentage of initial margins. A GCM’s contribution was set to 10% of initial margins

or £2 million, whichever of the two is larger. As it is not our aim in this paper to overcomplicate

matters we simply assume in our model that the default fund contribution equals

Θβ = 10%. (4.1)

Whether this assumption is sufficient to mitigate residual losses of the 2 biggest GCMs is a

completely different issue, which deserves separate investigation and is rather irrelevant for our

analysis.

2http://www.swapclear.com/service/becoming-a-member.html
3http://www.lchclearnet.com/rules and regulations/ltd/
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4.2 Margins

Initial margins are calculated on every cleared and every to be cleared IRS. These margins

(collateral) have to be posted before an IRS is cleared with the CCP. For instance, SwapClear

determines initial margins in such a way that in the event of a default of a GCM it covers the

potential losses that would have occurred on the portfolio within recent history and is set at

the portfolio’s observed worst-case-five-day loss over the last five years. A Value at Risk (VaR)

model is applied to calculate the initial margins. This is a historical simulation using a 5 year

history of market scenarios and a 100 % confidence level. To allow hedging of a defaulter’s

portfolio a 5 day holding period is applied. Losses that may have occurred on the portfolio

during market events occuring more than five years ago are stress tested against the default

fund.

Figure 4.2

(Source: lchclearnet.com) An example showing the difference between the purpose of the variation margins

and the initial margins. Variation margins are closely related to the price movements under normal trade

and market conditions. Initial margins are specifically meant to cover any possible losses the CCP might

face in case of a default under normal market conditions.4

Figure 4.2 shows how initial margins are applied to cover adverse price movements that oc-

cur after the default of a GCM. The variation margins cover any adverse price movement prior

to the default unlike the initial margins. Hence, the initial margins cover any potential losses

the CCP might face in a circumstance where it is faced with closing out or transferring the de-

faulter’s portfolio within a certain (short) time period. Similarly, only normal market conditions

are considered for determining the required initial margins since the default fund is designed

to cover stressed market conditions. As our model does not include these effects we opt for a

simple representation of Θα. We assume that the CCP requests initial margins from all GCMs

4http://www.lchclearnet.com/images/lch%20clearnet%20ltd%20-%20initial%20margin%202012 tcm6-44535.pdf
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equal to 10% of the notional principle value of a swap contract. Thus, each GCM is obliged to

post collateral equal to 10% of the total notional principle value of its portfolio as initial margins.

The variation margins are directly computed from the price movements, which are directly

calculated within the model at each time point t ≥ 0. Since this is the case, we need no extra

assumptions to determine these values.

4.3 Novation and Netting

Once two parties have agreed to a trade, which happens directly between banks or via

brokers, these matched trades reach the CCP. The CCP subsequently takes the responsibility of

clearing these trades. The original trades are under bilateral agreements for the two parties, e.g.

their International Swaps and Derivatives Association (ISDA) agreement. The CCP replaces the

original contracts between the original counterparties with two new contracts; one between the

buyer’s GCM and the CCP, and another between the CCP and the seller’s GCM. By stepping

into the trade, the CCP effectively becomes the only legal entity that the GCMs need to be

concerned with as they do not have any exposure to their original counterparty any more.

Figure 4.3 shows an example of how this works. In a bilateral system all parties are exposed to

one another. In contrast, The CCP is exposed to all parties, while each party does not have any

exposure any more to the original counterparties, but only to the CCP.

Figure 4.3

Two clearing systems are shown. The left one is a bilateral clearing system

while the right one clearing system via CCP.

As novation occurs at a large scale, trades are netted. Thereby reducing the number of open

positions and increasing capital efficiency. To see how this works we look at the example given

in figure 4.4. Consider an economy with three parties, GCM 1,2 and 3 and one security traded,

say A. GCM 1 has agreed to two trades; one with GCM 2 and one with GCM 3. GCM 1 sells

security A to GCM 2 and agrees to the same trade between GCM 3 with an opposite position.

The novated trades are shown in the figure 4.4. It is obvious that the CCP has no exposure to

GCM 1 when all its trades are netted as shown in situation B in figure 4.4. CCPs greatly reduce

operational risks, operations costs and financing costs through netting. Not only is this effect

maximized when novation occurs at large scale, but also when trades are more standardized, for

obvious reasons.

This example might not translate directly to an implementation in our simulation exercise,

since we assumed that GCMs do not hold both legs of the same IRS. It is however of interest
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Situation A

CCP

GCM 1

GCM 2 GCM 3

Long Security A

Short A

Long A

Short Security A

Situation B

CCPGCM 2 GCM 3
Short A

Long A

Figure 4.4

Situation A shows the novated trades before netting. Situation B shows the exposures when obligations

are netted

to consider the situation where the CCP might have to transfer the portfolios of more than one

defaulter. As the transactions of each GCM can not be set off against each other at market

values by the CCP since it still has to fulfil its obligations with the non defaulting counterpar-

ties. It is however possible to set off any contracts against each other in case of more than one

default without the need to transfer these contract (or portfolios). This would be the case in

the example given in figure 4.4 if both GCM 2 and GCM 3 would default at the same time.

Even in light of the fact that these parties were not each others counterparties, the CCP would

still be able to net these transactions. This method can limit the exposure of the CCP when

more than one default occurs at the same time and somewhat relieve the financial system of

any residual losses resulting from the transfer of the defaulter’s portfolios. We apply a similar

approach in our simulation exercise where contracts are set off against each other when more

than one default is registered whenever possible.

4.4 Omnibus Account

CCPs vary considerably in the way the segregation of assets (collateral) is handled. The

segregation model employed by the CCP strongly affects the risk associated with a default faced

by the non defaulters. Depending on the segregation model a GCM (or its client) can be exposed

to a GCM, a GCM and other clients, the CCP or any combination of the above.

Some CCPs keep GCM and their customers assets in segregated accounts, but all customer

assets are all held in an omnibus account. If a default of a customer (GCM functions as broker

for its customers) leaves a deficit in its account balance owed the CCP, while the GCM has

insufficient capital to cover the deficit, non-defaulting customers are at risk to the GCM and
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hence the CCP to utilize their assets in the omnibus account to honour the monies owed by the

customers of other GCMs. A more extreme case would be a segregation model where all assets

are held in an omnibus account. This means that all GCMs are at risk of having the CCP utilize

the monies in their accounts to cover for any residual losses of a defaulting GCM (or customer).

Since we only consider GCMs in our model it is of course trivial to opt for the second model.

4.5 CCP Failure

Historically, CCPs have defaulted. One of the first, albeit not exactly a CCP, was the New

York Gold Exchange Bank. Two defaults of large gold speculators lead to the failure of the New

York Exchange Bank. A more recent case, was the Casisse de Liquidation failure in 1974 and

the Kuala Lampur Commodity Clearinghouse failure in 1893. The 1987 stock market crash, re-

ferred to as the “black Monday”, led to the failure of the Hong Kong Futures Excahnge Clearing

Corporation.

The CCP could default on its obligation if all its resources are exhausted (Margins, Default

Fund and its own capital) as a result of GCMs failing to perform on their contractual obliga-

tions. CCPs are designed to reduce system risk but in reality, CCPs may become a node of

concentration. This would make the CCP the most basic case of ‘too big to fail’.

Even if the chances of a failure of a CCP are remote at best, several resolution mechanism

have been proposed to address such a failure if one is to arise. Making the defaulted CCP’s

contracts bilateral is one of the proposed policy responses. This should be possible since a CCP

has a zero net position in every trade it clears. As mentioned earlier, for each contract there is

both a seller and a buyer. As each trade has been agreed on before it is novated, this means that

each buyer and seller of each contract with an open position with the CCP could be matched

exactly by creating bilateral contracts between the two parties. We opt in our simulation exer-

cise for this approach. Creating bilateral contracts between the two parties takes us back to a

bilateral OTC market. This enables us to take any residual losses after the failure of the CCP

into account. It is quite possible that the failure of a CCP leaves the GCMs in a very vulnerable

position, especially when all assets have been used up by the CCP while it was still operating.

Wrong way risk might play a considerable role in such a case too.
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5. Defaults and Loss Contagion

Our simulation experiments are constructed to investigate how shocks affect the financial

system. Our starting point is thus a first default, i.e. a fundamental default, that acts as a

cause of all possible contagion losses and contagion defaults. The way we set up the system

allows for more than one fundamental default. This follows from the fact that we simulate a

stochastic path for the value of each contract until a loss big enough leads to at least one default.

In other words, it is quite possible that a more than one GCM suffers enough losses on a certain

contract leading to two or more simultaneous defaults. The losses in both systems, a system

with central clearing and one without, can be compared by taking the same default event as a

starting point for all contagion losses and contagion defaults in both systems. This enables us

to compare the results obtained for both systems.

We need to make a few remarks about our approach in simulating defaults and the way the

CCP reacts to these losses. We treated in the previous section a few “defence mechanisms” the

CCP employs to mitigate default risk and to cover any residual losses the non-defaulting GCMs

may face. The methods take into consideration both the market conditions and the financial

health of each individual GCM. CCPs would most likely take sufficient measures when extreme

market conditions arise or extreme losses are faced by GCMs. A practical example would be

the default of one of the biggest players on the OTC derivatives market, Lehman Brother, in

September 2008 during the financial meltdown of 2007-2008. LHC.Clearnet was able to success-

fully manage Lehman Brother’s $9 trillion (Gross value) IRS default within the margins held

by the CCP. We stress that we do not take these effect into consideration in our model for the

sake of simplicity. As mentioned in the previous section, for each component of the protection

mechanisms employed by CCP, we opted for a simple implementation. Thus, our model sim-

ply compares the spread of contagion in a centralized system compared to a bilateral one in a

world where the transition form normal market conditions to extreme market conditions where

extreme losses are incurred by GCMs is almost instantaneously. We keep silent on how remote

the probability is of this happening and simple compute the losses in our system in such a setting.

As mentioned above, the fundamental default(s) is (are) the starting point of the any pos-

sible cascading losses. We briefly discuss the way we determine these defaults. Next we make

the distinction in how losses are spread within both system, a system with central clearing and

a system with bilateral trades. we first discuss how we treat losses in a system with central

clearing and how losses spread in this system. We then discuss how we handle a possible CCP

failure in our model. Lastly, we briefly discuss the spread of losses and contagion defaults in a

system with bilateral trades which completes the default dynamics in our model.

5.1 Fundamental Defaults

We mentioned in section 3.2.1 that each of the M IRSs are modelled by its own Wiener

process Wt,m. By simulating this process for each IRS and summing over the values of all

contracts in the portfolio held be a GCM we compute the portfolio value ∆i ∈ R. Figure 5.1
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shows an example of a simulated path of an arbitrary IRS m with a σ̂m of our choosing.
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Figure 5.1

An instance of a simulated path Vt,fix,m for a a given σ̂m. The value of the IRS is determined for each

0 ≥ t ≥ 1000. At t = 500 we inflate σ̂m to obtain a more volatile series.

The default fund contribution and initial margins are determined based on the portfolio and

not based on its value. The variation margins, εi,t(Vi,t), are however determined from the total

value of the portfolio. We do not need to consider each individual IRS. This means CCPs require

variation margins from each GCM with respect to its total position, ∆i < 0 for i = 1, . . . , n. A

GCM defaults if

Θα∆i + ΘβΘα∆i + εi,t > ci, (5.1)

and thus being unable to post collateral to cover its position. We simply simulate the values

Vi,t for i = 1, . . . , n and t > 0 until a first, or more, default(s). This approach allows us to

determine the exact exposure and posted collateral since these are computed for each GCM at

each time step. It is also possible to aggravate the losses incurred by GCMs by blowing up

Vi,t, by introducing extremer adverse price movements. We will especially look at the effect of

different shock sizes in our simulation experiments for small-world networks where the shock

size appears to have a non-linear effect on contagion.

5.2 Central Clearing and Loss Contagion

A fundamental default, or more than one, results in a loss equal to hi or
∑
i∈Ωu

hi, with Ωu the

set of contagion defaults in the uth round. This loss is first mitigated by the variation margins

and initial margins of the defaulted GCMs. If some residual losses persist, the initial margins of

the non-defaulting GCM are utilized to cover for these losses. This is the case since we assumed

that all assets are held in an omnibus account. Finally, the collateral in the default fund can be
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utilized if not all losses are covered for by the initial and variation margins.

IRS contracts of the defaulted parties are set off against each other if possible. Since the

CCP always maintains a zero net exposure to the GCMs. The CCP achieves this by transfer-

ring the contracts to financially healthy GCMs. In our simulation exercise we assume that all

non-defaulted parties are financially healthy, which is of course not always the case. It is quite

possible that an operating GCM is in danger of default. In our model the CCP demands after

the transfer of the IRSs a contribution as discussed earlier.

After the CCP has transferred all the IRSs of the defaulted parties, we compute the extra

collateral each GCM has to post in the second round. This can either be an extra contribution

to the default fund if this is eroded in the previous round or a simple margin call for all the

new contracts held by a specific GCM. If any GCM is unable to perform on its obligations, it

defaults, and the process is repeated. We stop this recursion when no contagion defaults are

found in a round.

5.2.1 CCP Failure and Transition to a Bilateral System

In view of the fact that the CCP can not refund the default fund more than ones, it is of

course possible that the CCP fails at a certain point. As mentioned earlier we simple carry

out a transition to a bilateral OTC market. GCMs become each other counterparties instead

of the CCP. All collateral of the GCMs held by the CCP is lost in this case and all further

computations are handled in line with our approach below.

5.3 Bilateral OTC Market and Loss Contagion

The losses in a bilateral OTC market are more straightforward compared to a system with

central clearing. Financial institutions now have to deal with counterparty credit risk. Coun-

terparty credit risk is the risk that a counterparty to an IRS will default prior to the expiration

of the contract. Thus not making all the payments required.

There are two cases we distinguish when a counterparty defaults as Pykhtin and Zhu (2007)

propose. The first case is were the contract value is positive for the party, say pension fund, at

the time of default. This party closes out its position by paying the defaulting counterparty the

market value of the contract and enters into a similar contract with another party and receives

the market value of the contract. The net loss in this case equals zero. The second case is

when the contract value is positive for the party. It now has to close its position while receiving

nothing in return from the defaulting counterparty. It enters into a similar contract with another

paying the market value. The loss now equals the contract’s market value. This means that the

total loss incurred by party i equals

si = E[Loss] =
∑
j∈Ωu

∑
i

max{Vi,j , 0}. (5.2)

32



Equation 5.2 states that the total loss party i incurs equals the sum of all contracts with positive

values with a defaulting counterparty j ∈ Ωu, with Ωu the set of defaulting counterparties. This

enables us to compute all losses incurred by the counterparties when defaults happen. Any

margins held by party i before the default of counterparty j ∈ Ωu is subtracted from the

aggregated losses incurred by party i given by equation 5.2. If

qi =
∑
j∈Ωu

qi,j (5.3)

is the total collateral held by party i, then the losses are given by

hi = |max{0, si − qi}|. (5.4)

The shock hi is absorbed by the capital ci of party i. If hi > ci, then the party defaults,

otherwise it withstands the shock. At each round we calculate all losses suffered by each party

and how many parties default. If new defaults happen we repeat the process above, otherwise

we obtain the total number of defaults and stop the simulation.
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6. Simulation Results

Recall that a range of networks were considered for modelling the financial network. We

considered a set of parameters to model our network and GCMs which were described by their

balance sheets. Our results are mainly of comparative nature. We compare the results obtained

for the same network with central clearing and with bilateral trades. Specific parameters are

varied in our simulation experiment to see how the results compare over a range of values. To

be more precise, we look specifically at how the resilience of both systems compares when we

vary the capitalization of GCMs. We further examine how concentration affects the capability

of shock absorption within the system. By concentration we mean the number of market par-

ticipants n in the network.

The first step in the simulation experiments is to generate a random graph. The second step

is to construct all the balance sheets and portfolios of the GCMs and CCP. Portfolio values are

simulated thereafter till we obtain a fundamental default. Next, the spread of the shock through

the system and contagion are calculated from which we obtain the overall number of defaults

and the total losses to the system. This Monte Carlo simulation experiment is conducted by

repeating these steps for 10.000 times. The analysis is subsequently based on the averages ob-

tained from these simulations.

6.1 Random Networks

The effect of the system size in terms of number of participants, i.e. concentration, on the

rate of default and the relative losses in the system is first investigated. The results for both

systems, with bilateral and central clearing, are compared. Figure 6.1(a) compares the obtained

default rates, given the number of participants n, for both systems. Figure 6.1(b) shows the

average capital loss given the number of participants n. The red line represents the results for

a system with bilateral clearing while the blue line represents the results of a system with a

CCP. The dotted lines show the range were 95 % of the observations lie. We let n grow until

the graphs stabilize, which is around n = 80 in this case.

Figure 6.1(a) shows the average default rates. The bilateral system does not appear to

benefit from an increasing number of market participants unlike a system with a CCP where

the diversification effect is apparent. The model for the OTC market was build based on the

assumption that the total foreign assets are kept fixed. This means that for more concentrated

markets, the size of each GCM is relatively smaller compared to the total size of the market.

The CCP benefits from this fact in two ways. First the incurred losses on average are smaller

for a larger system and the CCP can relatively utilize more assets to cover for residual losses.

This benefits do not appear in system with bilateral clearing. Defaulters transmit losses directly

to their counterparties in contrast to a system with CCPs.

Figure 6.1(b) shows the total capital losses in both systems. We first note that there appears

to be no linear relation between the default rates and average capital losses. The benefit from an
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Figure 6.1

Defaults as a function of n
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increase in market participants in both systems is however evident. Furthermore, there is once

again a significant advantage to central clearing of OTC derivatives. A consistent decrease in

losses when IRSs are cleared with a CCP is substantial. The system appears to be consistently

more resilient. Increased diversification benefits appear to get smaller for systems with more

market participants.

Figure 6.2 shows the probability of failure of the CCP for different concentration levels. We

find that the CCP benefits in a similar fashion as all the market participants when more GCMs

are present. The reason for this effect seems to be the same as mentioned above. The size of

the shocks for a system with more participants is relatively smaller and easily mitigated by the

CCP because of the relative higher capability of raising more funds to cover for residual losses.

Next, the resilience of the financial system given the capitalization of GCMs is investigated.

Figure 6.3(a) shows the default rates and figure 6.3(b) shows the capital losses. As expected, a

significant decrease in both default rates and capital losses is the result of larger buffer. GCMs

are capable of absorbing losses much better when more capital is kept as a buffer against shocks.

We find that the benefit of central clearing of IRSs appears to vanish when GCMs decide to

keep more capital to absorb any losses arising from the default of a counterparty.

A slightly lower average default rate is found when IRSs are cleared with CCP for 5% ≤
c ≤ 20%. A similar pattern is observed for the average capital losses in figure 6.3(b). There

appears to be no benefit to central clearing of OTC derivatives for c > 0.2, which is extremely

high compared to a more practical range of 0.05 ≤ c ≤ 0.08, where central clearing shows some,

perhaps small, benefits.

Figure 6.4 shows the probability of failure of the CCP given the buffer of the GCMs. The

results are in line with the average default rates obtained in this simulation experiment. We

noted that GCMs are able to withstands shocks much better given a higher capital buffer. This
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Figure 6.2
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obvious conclusion translates to a much smaller chance of the CCP getting into trouble for two

reasons. GCMS can much better mitigating any residual losses the CCP might have to cover

when unexpected losses are incurred, causing GCMs to less likely default as a result of contagion

because of the higher capital buffer. This leads to smaller of not any contagion defaults the CCP

has the handle.

Figure 6.3

Defaults as a function of c

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−2

0

2

4

6

8

10

12

Buffer c→

A
ve

ra
ge

 C
on

ta
gi

on
 D

ef
au

lts

 

 
Central Clearing
Bilateral

(a) Default rates
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(b) Average Total Capital Loss
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Figure 6.4
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6.2 Random Tiered Networks

6.2.1 Concentration and contagion

Simulation similar to the ones given in the previous section are repeated for random tiered

structured networks. Random tiered networks consist of two classes of GCMs, large and small

GCMs, unlike the random networks where all GCMs are ex ante of similar size. Figure 6.5(a)

and figure 6.5(b) show the average default rates and average capital losses, respectively. Similar

patterns are observed, like the ones obtained for the random network, for the average default

rates and average capital losses. However, the default rates are slightly lower for the random

tiered networks compared to the random networks. The default rates now decrease from an

average of 1.9 contagion defaults in a system with 20 GCMs to an average of 0.4 for a system

with 60 GCMs. In contrast, we obtained in figure 6.1(a) a default rate of 2 for a system with

n = 20 GCMs, stabilizing at an average default rate of 1.2 for a system with n > 60 GCMs.

However, we do not observe this significant decline in default rates for a bilateral system. The

average capital losses appears to lie somewhat at a lower level compared to the results for random

network.

We suspect that this effect is explained by the fact that a default of a small GCM in a random

tiered network is insignificant. This might lead to a smaller average default rate. This hypothesis

is investigated by only considering the average default rate when a large GCM defaults. Our

suspicion is that the average default rate will be considerably larger in this case. Figure 6.6(a)

and figure 6.6(b) show the average default rates and total losses from contagion, respectively.

As we suspected, the default rates show that there is a much higher contagion risk when a
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Figure 6.5

Defaults as a function of n
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(a) Default rates
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(b) Average Total Capital Loss

large GCM defaults. It is however quite interesting to see that the default rates when OTC

derivatives are centrally cleared are much higher which goes against our intuition. Nonetheless,

the losses in contrast are higher when a large GCM defaults compared to the results obtained

before, but still smaller when OTC derivatives are centrally cleared. Considering a system with

bilateral trades, losses are spread directly to the counterparties of the defaulter unlike a system

with a CCP where defaults and their residual losses are covered for by all market participants.

This latter leads on the one hand to a better management of the total losses suffered in the

system, but can put the smaller GCMs into financial distress much faster. This explains the

higher contagion defaults, but lower contagion losses on average. Cascades from failure of a

small GCM are highly unlikely, which dampens the default rates considerably, thus leading to

the results in figure 6.5.

Figure 6.6

Defaults as a function of n
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(a) Default rates
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Figure 6.7 shows the average probability of failure of the CCP in both settings, one where

all defaults are considered as the start of the contagion cascade and one where the cascades are

the result of the failure of a large GCM. The CCP benefits as we have seen earlier from a larger

number of participating GCMs. More GCMs lead to larger base to mitigate residual losses as

result of a stronger diversification effect.

Figure 6.7
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(a) CCP failure as a result from cascades from the failure

of an arbitrary GCM
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(b) CCP failure as a result from cascades from failure of

an arbitrary large GCM

6.2.2 Capitalization and contagion

We compare the effect of a higher capital buffer on contagion defaults and losses in figure

6.8 and 6.9. The results of cascades from the failure of a random GCM are given in figure 6.8

while the results of cascades from the failure of only large GCMs are given in figure 6.9. The

results shown in figure 6.8 are similar to the ones shown in figure 6.3. Central clearing of OTC

derivatives appears to have a somewhat more positive effect on the default rates on the range

0.04 ≤ c ≤ 0.1. The default rates of counterparties seem to be slightly higher on the same

interval when bilateral trades are considered for a tiered structured network. The CCP appears

to add some stability to the financial system in terms of default rates, but this does not appear

to translate to a lower average contagion loss when figure 6.8(b) and figure 6.3(b) are compared.

The results of the experiment with cascades from the failure of a large GCM, as given

in figure 6.9, show a surprising result. Central clearing of OTC derivatives appears to keep

contagion losses limited compared to a setting where OTC derivatives are bilaterally traded.

Notwithstanding this fact, the default rates do not appear to declining when a higher capital

buffer is kept by GCMs. Apparently, two factors lead to these results. Recall that we set up

our experiment in such a way that an event of a fundamental default would only transpire if

a counterparty (GCM) fails to perform on its obligations. This default only occurs when the

capital buffer becomes insufficient to absorb the losses on a portfolio. Adding to this that large

counterparties (GCMs) will only default when extreme losses accrue. Secondly, as observed
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Figure 6.8

Defaults as a function of c
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(a) Default rates
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earlier, smaller GCMs tend to experience greater duress when derivatives are centrally cleared

as a result of risk sharing. The bigger shock and additional vulnerability of the small GCMs

leads to the much higher default rates as confirmed by this simulation experiment.

Figure 6.9
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(a) Default rates
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(b) Average Total Capital Loss

Finally, figure 6.10 shows the results of the probability of failure of the CCP for both settings

considered above. Figure 6.10(a) shows that a higher capital buffer leads not only to a more

stable system as we have seen earlier for the random network, but also leads to very remote

probabilities that the CCP might fail as a result of a default of a GCM. As mentioned in the

previous section, GCMs are less likely to default as a result of contagion because of the higher

capital buffer. Therefore, simultaneously absorbing shocks they may face and mitigating any
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residual losses the CCP might have to cover in later default rounds. On the other hand, figure

6.10(b) shows the exact opposite result. The higher the capital buffer GCMs hold the higher

the probability the CCP might not be able to perform on its obligations. The reason is similar

to the one given above. A higher capital buffer means that large GCMs will only default when

losses are extremely high. This hold especially for large GCMs. To illustrate this, we take

the default probability of the CCP for a capital buffer of 15%. We find in figure 6.10(a) that

the conditional probability that a CCP might fail given a random default is almost equal to

zero. For the same point, we find in figure 6.10(b) that the conditional probability that a

CCP might fail when a large GCM defaults equals more than 25%. Given the fact that this

scenario is contained in the simulation experiment results shown in figure 6.10(a), means that

the probability of this happening is almost zero, but if this scenario occurs, in such case it might

have an extreme negative impact on the CCP and the financial system as a whole in term of

contagion of defaults. However, it should be noted that the contagion losses to the system as

shown in figure 6.9(b) are still lower when OTC derivatives are centrally cleared with a CCP.

Figure 6.10
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(a) CCP failure as a result from cascades from the failure

of an arbitrary GCM
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(b) CCP failure as a result from cascades from failure of

an arbitrary large GCM

6.3 Core-Periphery Tiered Structured Networks

6.3.1 Concentration and contagion

In the previous section we conducted simulation experiments to assess the impact of cen-

tral clearing of OTC derivatives on GCMs and the financial system in general. We specifically

considered random and tiered random networks. The core-periphery structured networks reflect

the topology of the financial system more realistically, which will be consider in the following

experiments.

Figure 6.11(a) and figure 6.11(b) show the average default rates in a system where OTC

derivatives are centrally cleared and bilateral cleared, respectively. We plot the average default
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rates for various shock sizes to see how the cascading failures compare in both systems. Unlike the

results for the random networks, it appears that central clearing has no benefit to the financial

system stability. Figure 6.11(b) shows that the average default rates are lower regardless of the

number of counterparties in the system. In contrast, we find a linear increase of the average

default rates in n in figure 6.11(a). For more extreme shocks, we find no difference in default

rates in both systems.

Figure 6.11
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(a) Central Clearing
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(b) Bilateral

The capital losses are given in figure 6.12(a) and 6.12(b), for a system with CCP and one

without, respectively. Central clearing of OTC derivative appears to have some benefit when the

losses are considered instead of the default rates. The simulation experiment shows that for very

large shocks we obtain similar results in both systems. CCPs however appear to keep these losses

limited over a considerable range in our simulation experiment, where we see a linear increase in

losses when bilateral trades are considered. It is quite clear that the results in this setting where

very large GCMs in the core and small GCMs in the periphery lead to a decrease in benefits

of central clearing. The relative size of large GCMs translates to an increased complexity in

managing contagion by the CCP in core-periphery structured networks. We further suspect that

the linear increase in default rates is caused by large number of small GCMs defaulting as the

result of one large GCM. Regarding bilateral clearing, defaulting counterparties in the core will

most likely lead to a considerable spread of losses to other counterparties in the core because

of their high interconnectivity. These parties have bigger capital buffers and hence are more

capable of withstanding larger shock. This may explain the lower default rates in figure 6.12(b).

Smaller GCMs get affected much faster when IRSs are centrally cleared.

The probability of failure of the CCP is given in figure 6.13. Again, unlike the results we

obtained for the random network, we find a higher probability of failure of the CCP as n grows.

This leads us to conclude that large GCMs in the core can lead to considerable losses despite

centrally clearing of OTC derivatives. Their high market capitalization decreases netting benefits

and reduces diversification effects considerably.
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Figure 6.12

Average Total Capital Loss
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(b) Bilateral

Figure 6.13
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Considering the default rates and contagion losses from the failure of a large GCM, we obtain

the results shown in figure 6.14 and figure 6.15. The results look similar to the ones obtained
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in the previous section for the random tiered networks. Central clearing of OTC derivatives

does not lead to lower default rates but does lead to limited contagion losses to the financial

system as a whole. Figure 6.15(a) shows that the benefit of central clearing is evident when

more GCMs participate in the clearing system. Central clearing of OTC derivatives reduces the

default rate quite significantly for n > 80, thus leading to a noticeable more stable system in

spite of the fact that more extreme shocks are introduced. Remarkably, the CCP is still able

to cover the residual losses. This jump not only confirms the non-linearity between the average

default rates and contagion losses, but also shows how complex the relationship between default

rate and concentration can be even when only one parameter is varied.

Figure 6.14
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(b) Default rates (Bilateral)

Figure 6.15

Average Total Capital Loss

20

40

60

80

100

0
0.2

0.4
0.6

0.8
1

0.2

0.4

0.6

0.8

1

System Size n→Shock size

A
ve

ra
ge

 C
ap

ita
l L

os
s 

(C
en

tr
al

 C
le

ar
in

g)

(a) Central Clearing

20
40

60
80

100

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

System Size n→Shock size

A
ve

ra
ge

 C
ap

ita
l L

os
s 

(B
ila

te
ra

l)

(b) Bilateral
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The probabilities of failure of the CCP as a result of contagion from the default of a core

GCM are shown in figure 6.16. The results are comparable to the experiment result shown in

figure 6.13, where contagion from an arbitrary default is considered. The most notable result we

obtain from this experiment is that if the shock is big enough, the CCP will most surly get into

trouble, unlike the case shown in figure 6.13, where we obtained high probabilities of failure but

these probabilities do not converge to 1. These results show that too big too fail GCMs in the

core still negatively affect the financial system even when OTC derivatives are centrally cleared

if the losses are big enough.

Figure 6.16
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6.3.2 Capitalization and contagion

Lastly, simulation experiments are carried out on the impact of capitalization on the con-

tagion of defaults and losses. Figure 6.17 and figure 6.18 show the average contagion default

rates and average capital losses, respectively. The results appear to be in line with our intuition

and with the results obtained for the random networks. A higher capital buffer leads to a much

more stable system and limits both the default rates as the losses considerably. c = 15%, which

is significantly high compared to more practical rang of c < 0.08, is sufficient to dampen the

contagion from defaults. Central clearing of OTC derivatives appears to have a slight benefit

over a system where IRSs are bilaterally traded. Figure 6.17(a) shows that the default rates

drop slightly faster when IRSs are centrally cleared combined with a higher capital buffer held
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by GCMs.

Figure 6.17
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(b) Bilateral

Figure 6.18
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(b) Bilateral

Figure 6.20 shows the probability of failure given the aggregate capitalization. These results

are in conformity with the statistics for the random tiered network. The CCP benefits from

a higher capitalization of GCMs, since any residual losses are much better covered by GCMs.

Contagion defaults and losses are thus much lower. This relieves both GCMs and the CCP from

residual losses in later default rounds.

The analyses is completed by considering contagion from the default of a core GCM. The

results are based on the same simulation experiment as before except that only fundamental
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Figure 6.19
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defaults of core GCMs are taken into consideration. The results are given in figure 6.20 and

figure 6.21. A higher capitalization of GCMs appears to stabilize the system considerably as we

have seen before. Recall that contagion in a random tiered network was prominent regardless

of the aggregate capitalization, as shown in figure 6.9. In contrast, we find that contagion from

the default of a core GCM does not appear to have such an effect on the system either with

or without a CCP when a core periphery tiered structured network is considered. Our analysis

suggests that the specific network structure leads to such different effects of contagion. Large

counterparties in random tiered networks have a high linkage to other large counterparties as

to small counterparties alike. This is not the case for core periphery structured networks where

counterparties are strongly connected to other counterparties in the core but only have a few

connections to counterparties in the periphery. On average, contagion spreads more easily to

many small counterparties when a large counterparty defaults in random networks. In a core

periphery structured network, the default of a core counterparty will lead to a large spill over

of losses to other counterparties in the core. Only if the shock is big enough to lead to more

defaults in the core, will small counterparties eventually be affected on a large scale. It could

be said that a considerable amount of counterparties in the periphery is shielded from losses

by their counterparty in the core unlike the random tiered network where this is not the case.

This explains why the contagion default rates and losses are much lower in a core-periphery

structured network with bilateral clearing. A higher capitalization of GCMs (counterparties)

means a higher capitalization of core GCMs (counterparties) and hence a stable financial system
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with or without central clearing.

Figure 6.20
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(b) Bilateral

Figure 6.21
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Lastly, the failure rates of the CCP given the aggregate capitalization of the system are given

in figure 6.22. CCPs benefit considerably from higher capital buffers held by GCMs. We find

that the failure rates stabilize for c > 15% for different shock sizes. However, a sharp jump in

failure rates for ‘moderate’ to large shock sizes is in contrast to the results in figure 6.19. Core

GCMs with a large buffer can withstand large shocks, but when a default happens, the CCP

appears to be unable to cover for these losses. This however does not lead to a complete system

break down as long as other core GCMs have a buffer that is enough the absorb any contagion

losses as we have shown in figure 6.20(a) and 6.21(a).
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Figure 6.22

Probability of CCP Failure
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7. Conclusions

This paper examines how central clearing of OTC derivatives impactss systemic risk and

contagion in financial systems. We consider a set of network topologies, which are typically used

to analyse financial systems. We distinguish between Erdős-Rényi networks and small-world

networks. Our aim was to keep the model as simple as possible on the one hand, but also as

close to reality as possible on the other. For this purpose, we applied simplified versions of many

clearing mechanisms available to CCPs.

We analysed how the system risk and contagion behave when different network configura-

tion are considered and how these depend on concentration and capitalization of the market

participants. Our analysis is comparative in nature, as our main purpose was to assess in how

far CCPs mitigate system risk (or perhaps aggravate losses), compared to the current situation

of bilateral OTC derivatives markets. Our approach of considering interest rate swaps and per-

turbing the yield curve enabled us to simulate both fundamental defaults (which are the cause

of contagion), as well as exposures within the system in one single step. Contagion defaults and

losses were subsequently determined in a recursive way.

We have shown that the effect of the central clearing on the financial system is complex and

highly non-linear. The first part of the analysis focused on random networks, where all parties

are similarly connected and are of similar size. The CCP successfully mitigates system risk in

such a setting, in terms of both contagion default rates and capital losses. This setting, however,

does not represent financial networks in a realistic way: financial institutions are generally of

different sizes and different degree of connectedness.

A more realistic setting is characterized by tiering, i.e., introducing a small number of large

and highly connected financial institutions. Overall, it seems that also in this setting the CCP

is capable of reducing counterparty credit risk. However, when a fundamental default affects

a large financial institution, we find that, in presence of CCP, contagion default rates are sig-

nificantly higher than for a bilateral market. On the other hand, total capital losses are still

lower in presence of CCP: this follows from the fact that higher default rates are caused by

many defaulting smaller clearing members, which are disproportionately sacrificed in the event

of market stress.

Finally, a core-periphery structured network is implemented, representing the most realistic

setting. In this case, the size and connectedness of financial institutions differ even more, so

we find that the CCP has much more trouble reducing counterparty risk. Small counterparties

in a bilateral OTC market are not directly affected by contagion when they are shielded away

from the rest of the market. This follows from the fact that these parties are generally only

connected to one counterparty in the core and none in the periphery. In contrast, central clear-

ing translates to a much wider spread of contagion to small institutions in the periphery, which

subsequently instigates a high default rate when losses from a large clearing member are too

big for the CCP to handle. Capital losses still appear to be somehow limited by the CCP, even

when this extreme case is considered. To mitigate this effect, a ”social cost” of default must be
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introduced into a financial system.

The impact of central clearing of OTC derivatives on system risk is complex and a net-

work structure heavily affects how defaults propagate through the system. In how far the CCP

successfully mitigates system risk depends on which financial institutions first experience fun-

damental defaults. If a large financial institution defaults due to some fundamental reason,

such as an adverse shock to the interest rates, small financial institution suffer much more from

contagion - the effect which is further exacerbated by the central clearing. So it appears that

for the sake of financial system stability it is more useful to concentrate regulatory efforts on

core/large financial institutions.
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