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Abstract

There is an increasing need for algorithms that can accurately detect changepoints in long time-series, or equivalent,

data. Many common approaches to detecting changepoints, for example based on penalised likelihood or minimum

description length, can be formulated in terms of minimising a cost over segmentations. Dynamic programming

methods exist to solve this minimisation problem exactly, but these tend to scale at least quadratically in the

length of the time-series. Algorithms, such as Binary Segmentation, exist that have a computational cost that

is close to linear in the length of the time-series, but these are not guaranteed to find the optimal segmentation.

Recently pruning ideas have been suggested that can speed up the dynamic programming algorithms, whilst still

being guaranteed to find true minimum of the cost function. Here we extend these pruning methods, and introduce

two new algorithms for segmenting data, FPOP and SNIP. Empirical results show that FPOP is substantially faster

than existing dynamic programming methods, and unlike the existing methods its computational efficiency is robust

to the number of changepoints in the data. We evaluate the method at detecting Copy Number Variations and

observe that FPOP has a computational cost that is competitive with that of Binary Segmentation.

Keywords: Breakpoints, Dynamic Programming, FPOP, SNIP, Optimal Partitioning, pDPA, PELT, Segment

Neighbourhood.

1 Introduction

Often time series data experiences multiple abrupt changes in structure which need to be taken into account if the

data is to be modelled effectively. These changes known as changepoints (or equivalently breakpoints) cause the

data to be split into segments which can then be modelled seperately. Detecting changepoints, both accurately and

efficiently, is required in a number of applications including financial data (Fryzlewicz, 2012), climate data (Killick

et al., 2012; Reeves et al., 2007), EEG data (Lavielle, 2005) and the analysis of speech signals (Davis et al., 2006).

In Section 7 of this paper we look at detecting changes in DNA copy number in tumour microarray data. Regions

in which this copy number is amplified or reduced from a baseline level can relate to tumorous cells and detection

1



of these areas is crucial for classifying tumour progression and type. Changepoint methods are widely used in this

area (Zhang and Siegmund, 2007; Olshen et al., 2004; Picard et al., 2011) and moreover tumour microarray data has

been used as a basis for benchmarking changepoint techniques both in terms of accuracy (Hocking et al., 2013) and

speed (Hocking et al., 2014).

Many approaches to estimating the number and position of changepoints (e.g. Braun et al., 2000; Davis et al., 2006;

Zhang and Siegmund, 2007) can be formulated in terms of defining a cost function for a segmentation. They then

either minimise a penalised version of this cost, which we call the penalised minimisation problem; or minimise the

cost under a constraint on the number of changepoints, which we call the constrained minimisation problem. If the

cost function depends on the data through a sum of segment-specific costs then the minimisation can be done exactly

using dynamic programming (Auger and Lawrence, 1989; Jackson et al., 2005). However these dynamic programming

methods have a cost that increases at least quadratically with the amount of data. This large computational cost is

an increasingly important issue as every larger data sets are needed to be analysed.

Alternatively, much faster algorithms exist that provide approximate solutions to the minimisation problem. The

most widely used of these approximate techniques is Binary Segmentation (Scott and Knott, 1974). This takes a

recursive approach, adding changepoints one at a time. With a new changepoint added in the position that would

lead to the largest reduction in cost given the location of previous changepoints. Due to its simplicity, Binary

Segmentation is computationally efficient, being roughly linear in the amount of data, however it only provides an

approximate solution and can lead to poor estimation of the number and position of changepoints (Killick et al.,

2012). Variations of Binary Segmentation, such as Circular Binary Segmentation (Olshen et al., 2004) and Wild

Binary Segmentation (Fryzlewicz, 2012), can offer more accurate solutions for slight decreases in the computational

efficiency.

A better solution, if possible, is to look at ways of speeding up the dynamic programming algorithms. Recent work

has shown this is possible via the pruning of the solution space. Killick et al. (2012) present a technique for doing

this which we shall refer to as inequality based pruning. This forms the basis of their method PELT which can be

used to solve the penalised minimisation problem. Rigaill (2010) develop a different pruning technique, functional

pruning, and this is used in their pDPA method which can be used to solve the constained minisation problem. Both

PELT and pDPA are optimal algorithms, in the sense that they find the true optimum of the minimisation problem

they are trying to solve. However the pruning approaches they take are very different, and work well in different

scenarios. PELT is most efficient in applications where the number of changepoints is large, and pDPA when there

are few changepoints.

The focus of this paper is on these pruning techniques, with the aim of trying to combine ideas from PELT and

pDPA. This leads to two new algorithms, FPOP and SNIP. The former uses functional pruning to solve the penalised

minisation problem, and the latter uses inequality based pruning to solve the constrainted minisation problem. We

further show that FPOP always prunes more than PELT. Empirical results suggest that FPOP is efficient for large

data sets regardless of the number of changepoints, and we observe that FPOP has a computational cost that is even

competitive with Binary Segmentation.

The structure of the paper is as follows. We introduce the constrained and penalised optimisation problems for

segmenting data in the next section. We then review the existing dynamic progamming methods and pruning

approaches for solving the penalised optimisation problem in Section 3 and for solving the constrained optimisation

problem in Section 4. The new algorithms, FPOP and SNIP, are developed in Section 5, and compared empirically

and theoretically with existing pruning methods in Section 6. We then evaluate FPOP empirically on both simulated

and CNV data in Section 7. The paper ends with a discussion.
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2 Model Definition

Assume we have data ordered by time, though the same ideas extend trivially to data ordered by any other attribute

such as position along a chromosome. Denote the data by y = (y1, . . . , yn). We will use that notation that, for

s ≥ t, the set of observations from time t to time s is yt:s = (yt, ..., ys). If we assume that there are k changepoints

in the data, this will correspond to the data being split into k + 1 distinct segments. We let the location of the

jth changepoint be τj for j = 1, . . . , k, and set τ0 = 0 and τk+1 = n. The jth segment will consist of data points

yτj−1+1, . . . , yτj . We let τ = (τ0, . . . , τk+1) be the set of changepoints.

The statistical problem we are considering is how to infer both the number of changepoints and their locations. The

specific details of any approach will depend on the type of change, such as change in mean, variance or distribution,

that we wish to detect. However a general framework that encompasses many changepoint detection methods is to

introduce a cost function for each segment. The cost of a segmentation can then be defined in terms of the sum of

the costs across the segments, and we can infer segmentations through minimising the segmentation cost.

Throughout we will let C(yt+1:s), for s ≤ t, denote the cost for a segment consisting of data points yt+1, . . . , ys. The

cost of a segmentation, τ1, . . . , τk is then

k∑
j=0

C(yτj+1:τj+1
). (1)

The form of this cost function will depend on the type of change we are wanting to detect. One generic approach to

defining these segments is to introduce a model for the data within a segment, and then to let the cost be minus the

maximum log-likelihood for the data in that segment. If our model is that the data is independent and identically

distributed with segment-specific parameter µ then

C(yt+1:s) = min
µ

s∑
i=t+1

− log(p(yi|µ)). (2)

In this formulation we are detecting changes in the value of the parameter, µ, across segments.

For example if µ is the mean in Normally distributed data, with known variance σ2, then the cost for a segment

would simply be

C(yt+1:s) =
1

2σ2

min
µ

s∑
i=t+1

yi − 1

s− t

s∑
j=t+1

yj

2
 , (3)

which is just a quadratic error loss. We have removed a term that does not depend on the data and is linear in segment

length, as this term does not affect the optimal segmentation. Note we will get the same optimal segmentation for

any choice of σ > 0 using this cost function.

2.1 Finding the Optimal Segmentation

If we knew the number of changepoints in the data, k, then we could infer their location through minimising (1) over

all segmentations with k changepoints. Normally however k is unknown, and also has to be estimated. A common

approach is to define

Ck,n = min
τ

 k∑
j=0

C(yτj+1:τj+1
)

 , (4)
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the minimum cost of a segmenting data y1:n with k changepoints. As k increases we have more flexibility in our

model for the data, so often Ck,n will be monotonically decreasing in k and estimating the number of changepoints

by minimising Ck,n is not possible. One solution is to solve (4) for a fixed value of k which is either assumed to be

known or chosen separately. We call this problem the constrained case.

If k is not known, then a common approach is to calculate Ck,n and the corresponding optimal segmentations for

a range of values, k = 0, 1, . . . ,K, where K is some chosen maximum number. We can then estimate the number

of changepoints by minimising Ck,n + f(k, n) over k for some suitable penalty function f(k, n). The most common

choices of f(k, n), for example SIC (Schwarz, 1978) and AIC (Akaike, 1974) are linear in k

If the penalty function is linear in k, with f(k, n) = βk for some β > 0 (which may depend on n), then we can

directly find the optimal number of changepoints and segmentation by noting that

min
k

[Ck,n + βk] = min
k,τ

 k∑
j=0

C(yτj+1:τj+1)

+ βk

= min
k,τ

 k∑
j=0

C(yτj+1:τj+1) + β

− β. (5)

We call the minimisation problem in (5) the penalised case.

In both the constrained and penalised cases we need to solve a minimisation problem to find the optimal segmentation

under our criteria. There are efficient dynamic programming algorithms for solving each of these minimisation prob-

lems. For the constrained case this is achieved using the Segment Neighbourhood Search algorithm (see Section 4.1),

whilst for the penalised case this can be achieved using the Optimal Partitioning algorithm (see Section 3.1).

Solving the constrained case offers a way to get optimal segmentations for k = 0, 1, . . . ,K changepoints, and thus

gives insight into how the segmentation varies with the number of segments. However, a big advantage of the

penalised case is that it incorporates model selection into the problem itself, and therefore is often computationally

more efficient when dealing with an unknown value of k.

2.2 Conditions for Pruning

The focus of this paper is on methods for speeding up these dynamic programming algorithms using pruning methods.

The pruning methods can be applied under one of two conditions on the segment costs:

C1 The cost function satisfies

C(yt+1:s) = min
µ

s∑
i=t+1

γ(yi, µ),

for some function γ(·, ·), with parameter µ.

C2 There exists a constant κ such that for all t < s < T ,

C(yt+1:s) + C(ys+1:T ) + κ ≤ C(yt+1:T ).

Condition C1 will be used by functional pruning (which is discussed in Sections 4.2 and 5.1). Condition C2 will be

used by the inequality based pruning (Section 3.2 and 5.2). Note that C1 is a stronger condition than C2. If C1

holds then C2 also holds with κ = 0.

For many practical cost functions these conditions hold; for example it is easily seen that for the negative log-likelihood

(2) C1 holds with γ(yt, µ) = − log(p(yt|µ)) and C2 holds with κ = 0.
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3 Solving the Penalised Optimisation Problem

We first consider solving the penalised optimisation problem (5) using a dynamic programming approach. The initial

algorithm, Optimal Partitioning (Jackson et al., 2005), will be discussed first before mentioning how pruning can be

used to reduce the computational cost.

3.1 Optimal Partitioning

Consider segmenting the data y1:t. Denote F (t) to be the minimum value of the penalised cost (5) for segmenting

such data, with F (0) = −β. The idea of Optimal Partitioning is to split the minimisation over segmentations into

the minimisation over the position of the last changepoint, and then the minimisation over the earlier changepoints.

We can then use the fact that the minimisation over the earlier changepoints will give us the value F (τ∗) for some

τ∗ < t

F (t) = min
τ ,k

k∑
j=0

[
C(yτj+1:τj+1) + β

]
− β,

= min
τ ,k


k−1∑
j=0

[
C(yτj+1:τj+1

) + β
]

+ C(yτk+1:t) + β

− β,
= min

τ∗

min
τ ,k′

k′∑
j=0

[
C(yτj+1:τj+1

) + β
]
− β + C(yτ∗+1:t) + β

 ,

= min
τ∗
{F (τ∗) + C(yτ∗+1:t) + β} .

Hence we obtain a simple recursion for the F (t) values

F (t) = min
0≤τ<t

[F (τ) + C(yτ+1:t) + β] . (6)

The segmentations themselves can recovered by first taking the arguments which minimise (6)

τ∗t = arg min
0≤τ<t

[F (τ) + C(yτ+1:t) + β] , (7)

which give the optimal location of the last changepoint in the segmentation of y1:t.

If we denote the vector of ordered changepoints in the optimal segmentation of y1:t by cp(t), with cp(0) = ∅, then

the optimal changepoints up to a time t can be calculated recursively

cp(t) = (cp(τ∗t ), τ∗t ).

As equation (6) is calculated for time steps t = 1, 2, . . . , n and each time step involves a minimisation over τ =

0, 1, . . . , t− 1 the computation actually takes O(n2) time.

3.2 PELT

One way to increase the efficiency of Optimal Partitioning is discussed in Killick et al. (2012) where they introduce

the PELT (Pruned Exact Linear Time) algorithm. PELT works by limiting the set of potential previous changepoints

(i.e. the set over which τ is chosen from in the minimisation in equation 6). They show that if Condition C2 holds

for some κ, and if

F (t) + C(y(t+1:s)) + κ > F (s), (8)
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then at any future time T > s, t can never be the optimal location of the most recent changepoint prior to T .

This means that at every time step s the left hand side of equation (8) can be calculated for all potential values of

the last changepoint. If the inequality holds for any individual t then that t can be discounted as a potential last

changepoint for all future times. Thus the update rules (6) and (7) can be restricted to a reduced set of potential

last changepoints, τ , to consider. This set, which we shall denote as Rt, can be updated simply by

Rt+1 = {τ ∈ {Rt ∪ {t}} : F (τ) + C(y(τ+1):t) + κ ≤ F (t)}. (9)

This pruning technique, which we shall refer to as inequality based pruning, forms the basis of the PELT method.

As at each time step in the PELT algorithm the minimisation is being run over fewer values it would be expected

that this method would be more efficient than the basic Optimal Partitioning algorithm. In Killick et al. (2012) it

is shown to be at least as efficient as Optimal Partitioning, with PELT’s computational cost being bounded above

by O(n2). Under certain conditions the expected computational cost can be shown to be bounded by Ln for some

constant L < ∞. These conditions are given fully in Killick et al. (2012), the most important of which is that the

expected number of changepoints in the data increases linearly with the length of the data, n.

4 Solving the Constrained Optimisation Problem

We now consider solving the constrained optimisation problem (4) using dynamic programming. These methods

assume a maximum number of changepoints that are to be considered, K, and then solve the constrained optimisation

problem for all values of k = 1, 2, . . . ,K. We first describe the initial algorithm, Segment Neighbourhood Search

(Auger and Lawrence, 1989), and then an approach that uses pruning.

4.1 Segment Neighbourhood Search

Take the constrained case (4) which segments the data up to t, for t ≥ k + 1, into k + 1 segments (using k

changepoints), and denote the minimum value of the cost by Ck,t. The idea of Segment Neighbourhood Search is to

derive a relationship between Ct,k and Cs,k−1 for s < t:

Ck,t = min
τ

k∑
j=0

C(yτj+1:τj+1),

= min
τk

 min
τ1:k−1

k−1∑
j=0

C(yτj+1:τj+1
) + C(yτk+1:τk+1

)

 ,
= min

τk

[
Ck−1,τk + C(yτk+1:τk+1

)
]
.

Thus the following recursion is obtained:

Ck,t = min
τ∈{k,...,t−1}

[Ck−1,τ + C(yτ+1:t)] . (10)

If this is run for all values of t up to n and for k = 2, . . . ,K, then the optimal segmentations with 1, . . . ,K segments

can be acquired.

To extract the optimal segmentation we first let τ∗l (t) denote the optimal position of the last changepoint if we

segment data y1:t using l changepoints. This can be calculated as

τ∗l (t) = arg min
τ∈{l,...,t−1}

[Cl−1,τ + C(yτ+1:t)] .
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Then if we let (τk1 , . . . , τ
k
k ) be the set of changepoints in the optimal segmentation of y1:n into k + 1 segments, we

have τkk = τ∗k (n). Furthermore we can calculate the other changepoint positions recursively for l = k− 1, . . . , 1 using

τkl (n) = τ∗l (τkl+1).

For a fixed value of k equation (10) is computed for t ∈ 1, . . . , n. Then for each t the minimisation is done for

τ = 1, . . . , t − 1. This means that O(n2) calculations are needed. However, to also identify the optimal number of

changepoints this then needs to be done for k ∈ 1, . . . ,K so the total computational cost in time can be seen to be

O(Kn2).

4.2 Pruned Segment Neighbourhood Search

Rigaill (2010) has developed techniques to increase the efficiency of Segment Neighbourhood Search using functional

pruning. These form the basis of a method called pruned Dynamic Programming Algorithm (pDPA). A more generic

implementation of this method is presented in Cleynen et al. (2012). Here we describe how this algorithm can be used

to calculate the Ck,t values. Once these are calculated, the optimal segmentation can be extracted as in Segment

Neighbourhood Search.

Assuming condition C1, the segment cost function can be split into the component parts γ(yi, µ), which depend on

the parameter µ. We can then define new cost functions, Costτk,t(µ), as the minimal cost of segmenting data y1:t into

k segments, with a most recent changepoint at τ , and where the segment after τ is conditioned to have parameter

µ. Thus for τ ≤ t− 1,

Costτk,t(µ) = Ck−1,τ +

t∑
i=τ+1

γ(yi, µ), (11)

and Costtk,t(µ) = Ck−1,t.

These functions, which are stored for each candidate changepoint, can then be updated at each new time step as for

τ ≤ t− 1

Costτk,t(µ) = Costτk,t−1(µ) + γ(yt, µ). (12)

By taking the minimum of Costτk,t(µ) over µ, the individual terms of the right hand side of equation (10) can be

recovered. Therefore, by further minimising over τ , the minimum cost Ck,t can be returned

min
τ

min
µ
Costτk,t(µ) = min

τ
min
µ

[
Ck−1,τ +

t∑
i=τ+1

γ(yi, µ)

]
,

= min
τ

[
Ck−1,τ + min

µ

t∑
i=τ+1

γ(yi, µ)

]
,

= min
τ

[Ck−1,τ + C(yτ+1:t)] ,

= Ck,t.

By interchanging the order of minimisation the values of the potential last changepoint, τ , can be pruned whilst

allowing for changes in µ. First we define the function Cost∗k,t(µ) as follows

Cost∗k,t(µ) = min
τ
Costτk,t(µ).
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Figure 1: Cost functions, Costk,τ (µ, t) for τ = 0, . . . , 46 and t = 46 and the corresponding C∗k(µ, t) (in bold) for

a change in mean using a least square cost criteria. Coloured lines correspond to Costk,τ (µ, t) that contribute

to C∗k(µ, t), with the coloured horizontal lines showing the intervals of µ for which each value of τ is such that

Costk,τ (µ, t) = C∗k(µ, t). Greyed out lines correspond to candidates which have previously been pruned, and do not

contribute to C∗k(µ, t).

We can now get a recursion for Cost∗k,t(µ) by splitting the minimisation over the most recent changepoint τ into the

two cases τ ≤ t− 1 and τ = t:

Cost∗k,t(µ) = min

{
min
τ≤t−1

Costτk,t(µ) , Costtk,t(µ)

}
= min

{
min
τ≤t−1

Costτk,t−1(µ) + γ(yt, µ) , Ck−1,t

}
,

which gives

Cost∗k,t(µ) = min
{
Cost∗k,t−1(µ) + γ(yt, µ) , Ck−1,t

}
.

The idea of pDPA is the use this recursion for Cost∗k,t(µ). We can then use the fact that Ck,t = minµ Cost
∗
k,t(µ) to

calculate the Ck,t values. In order to do this we need to be able to represent this function of µ in an efficient way.

This can be done if µ is a scalar, because for any value of µ, Cost∗k,t(µ) is equal to the value of Costτk,t(µ) for some

value of τ . Thus we can partition the possible values of µ into intervals, with each interval corresponding to a value

for τ for which Cost∗k,t(µ) = Costτk,t(µ).

To make the idea concrete, an example of Cost∗k,t(µ) is given in Figure 1 for a change in mean using a least square

cost criteria. Each Costτk,t(µ) is a quadratic function in this example. In this example there are 6 intervals of µ

corresponding to 5 different values of τ for which Cost∗k,t(µ) = Costτk,t(µ). The pDPA algorithm needs to just store

the 5 different Costτk,t(µ) functions, and the corresponding sets.

Formally speaking we define the set of intervals for which Cost∗k,t(µ) = Costτk,t(µ) as Setτk,t. The recursion for

Cost∗k,t(µ) can be used to induce a recursion for these sets. First define:

Iτk,t = {µ : Costτk,t(µ) ≤ Ck−1,t}. (13)
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Figure 2: Example of pDPA algorithm over two time-steps. On each plot we show individual Costτk,t(µ) functions

that are stored, together with the intervals (along the bottom) for which each candidate last changepoint is optimal.

In bold is the value of Cost∗k,t(µ). For this example t = 43 and we are detecting a change in mean (see Section 2).

(a) 4 candidates are optimal for some interval of µ, however at t = 44 (b), when the candidate functions are updated

and the new candidate is added, then the candidate τ = 43 is no longer optimal for any µ and hence can be pruned

(c).

Then, for τ ≤ t− 1 we have

Setτk,t =
{
µ : Costτk,t(µ) = Cost∗k,t(µ)

}
=

{
µ : Costτk,t−1(µ) + γ(yt, µ) = min

{
Cost∗k,t−1(µ) + γ(yt, µ), Ck−1,t

}}
.

Remembering that Costτk,t−1(µ) + γ(yt, µ) ≥ Cost∗k,t−1(µ) + γ(yt, µ), we have that for µ to be in Setτk,t we need

that Costτk,t−1(µ) = Cost∗k,t−1(µ), and that Costτk,t−1(µ) + γ(yt, µ) ≤ Ck−1,t. The former condition corresponds to

µ being in Setτk,t−1 and the second that µ is in Iτk,t. So for τ ≤ t− 1

Setτk,t = Setτk,t−1 ∩ Iτk,t.

If this Setτk,t = ∅ then the value τ can be pruned, as Setτk,T = ∅ for all T > t.

If we denote the range of values µ can take to be D, then we further have that

Settk,t = D\

[⋃
τ

Iτk,t

]
,

where t can be pruned straight away if Settk,t = ∅.

An example of the pDPA recursion is given in Figure 2 for a change in mean using a least square cost criteria. The

left-hand plot shows Cost∗k,t(µ). In this example there are 5 intervals of µ corresponding to 4 different values of τ

for which Cost∗k,t(µ) = Costτk,t(µ). When we analyse the next data point, we update each of these four Costτk,t(µ)

functions, using Costτk,t+1(µ) = Costτk,t(µ) + γ(yt+1, µ), and introduce a new curve corresponding to a change-point

at time t + 1, Costt+1
k,t+1(µ) = Ck−1,t+1 (see middle plot). We can then prune the functions which are no longer

optimal for any µ values, and in this case we remove one such function (see right-hand plot).

pDPA can be shown to be bounded in time by O(Kn2). Rigaill (2010) further analyses the time complexity of

pDPA and shows it empirically to be O(Kn log n), further indications towards this will be presented in Section 7.

However pDPA has a computational overhead relative to Segment Neighbourhood Search, as it requires calculating
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and storing the Costτk,t(µ) functions and the corresponding sets Setτk,t. Currently implementations of pDPA have

only been possible for models with scalar segment parameters µ, due to the difficulty of calculating the sets in higher

dimensions. Being able to efficiently store and update the Costτk,t(µ) have also restricted application primarily

to models where γ(y, µ) corresponds to the log-likelihood of an exponential family. However this still includes a

wide-range of changepoint applications, including that of detecting CNVs that we consider in Section 7. The cost

of updating the sets depends heavily on whether the updates (13) can be calculated analytically, or whether they

require the use of numerical methods.

5 New Changepoint Algorithms

Two natural ways of extending the two methods introduced above will be examined in this section. These are,

respectively, to apply functional pruning (Section 4.2) to Optimal Partitioning, and to apply inequality based pruning

(Section 3.2) to Segment Neighbourhood Search. These lead to two new algorithms, which we call Functional Pruning

Optimal Partitioning (FPOP) and Segment Neighbourhood with Inequality Pruning (SNIP).

5.1 Functional Pruning Optimal Partitioning

Functional Pruning Optimal Partitioning (FPOP) provides a version of Optimal Partitioning (Jackson et al., 2005)

which utilises functional pruning to increase the efficiency. As will be discussed in Section 6 and shown in Section 7

FPOP provides an alternative to PELT which is more efficient in certain scenarios. The approach used by FPOP is

similar to the approach for pDPA in Section 4.2, however the theory is slightly simpler here as there is no longer the

need to condition on the number of changepoints.

We assume condition C1 holds, that the cost function, C(yτ+1:t), can be split into component parts γ(yi, µ) which

depend on the parameter µ. Cost functions Costτt can then be defined as the minimal cost of the data up to time t,

conditional on the last changepoint being at τ and the last segment having parameter µ. Thus for τ ≤ t− 1

Costτt (µ) = F (τ) + β +

t∑
i=τ+1

γ(yi, µ), (14)

and Costtt(µ) = F (t) + β.

These functions which only need to be stored for each candidate changepoint can then be recursively updated at

each time step, τ ≤ t− 1

Costτt (µ) = Costτt−1(µ) + γ(yt, µ). (15)

Given the cost functions Costτt (µ) the minimal cost F (t) can be returned by minimising over both τ and µ:

min
τ

min
µ
Costτt (µ) = min

τ
min
µ

[
F (τ) + β +

t∑
i=τ+1

γ(yi, µ)

]
,

= min
τ

[
F (τ) + β + min

µ

t∑
i=τ+1

γ(yi, µ)

]
,

= min
τ

[F (τ) + β + C(yτ+1:t)] ,

= F (t).

As before, by interchanging the order of minimisation, the values of the potential last changepoint, τ , can be pruned

whilst allowing for a varying µ. Firstly we will define the function Cost∗t (µ), the minimal cost of segmenting data

10



y1:t conditional on the last segment having parameter µ:

Cost∗t (µ) = min
τ
Costτt (µ).

We will update these functions recursively over time, and use F (t) = minµ Cost
∗
t (µ) to then obtain the solution of

the penalised minimisation problem. The recursions for Cost∗t (µ) are obtained by splitting the minimisation over τ

into τ ≤ t− 1 and τ = t

Cost∗t (µ) = min

{
min
τ≤t−1

Costτt (µ) , Costtt(µ)

}
,

= min

{
min
τ≤t−1

Costτt−1(µ) + γ(yt, µ) , Costtt(µ)

}
,

which then gives:

Cost∗t (µ) = min{Cost∗t−1(µ) + γ(yt, µ) , F (t) + β}.

To implement this recursion we need to be able to efficiently store and update Cost∗t (µ). As before we do this

by partitioning the space of possible µ values, D, into sets where each set corresponds to a value τ for which

Cost∗t (µ) = Costτt (µ). We then need to be able to update these sets, and store Costτt (µ) just for each τ for which

the corresponding set is non-empty.

This can be achieved by first defining

Iτt = {µ : Costτt (µ) ≤ F (t) + β}. (16)

Then, for τ ≤ t− 1, we define

Setτt = {µ : Costτt (µ) = Cost∗t (µ)}

= {µ : Costτt−1(µ) + γ(yt, µ) = min {Cost∗t−1(µ) + γ(yt, µ) , F (t) + β}}

Remembering that Costτt−1(µ) + γ(yt, µ) ≥ Cost∗t−1(µ) + γ(yt, µ), we have that for µ to be in Setτt we need that

Costτt−1(µ) = Cost∗t−1(µ), and that Costτt−1(µ) + γ(yt, µ) ≤ F (t) + β. The former condition corresponds to µ being

in Setτt−1 and the second that µ is in Iτt , so for τ ≤ t− 1

Setτt = Setτt−1 ∩ Iτt .

If this Setτt = ∅ then the value τ can be pruned, as then SetτT = ∅ for all T > t.

If we denote the range of values µ can take to be D, then we further have that

Settt = D\

[⋃
τ

Iτt

]
,

where t can be pruned straight away if Settt = ∅.

This updating of the candidate functions and sets is illustrated in Figure 3 where the Cost functions and Set intervals

are displayed across two time steps. In this example a change in mean has been considered, using a least squares

cost. The bold line on the left-hand graph corresponds to the function Cost∗t (µ) and is made up of 7 pieces which

relate to 6 candidate last changepoints. As the next time point is analysed the six Costτt (µ) functions are updated

using the formula Costτt+1(µ) = Costτt (µ) + γ(yt+1, µ) and a new function, Costt+1
t+1(µ) = F (t+ 1) + β, is introduced

corresponding to placing a changepoint at time t + 1 (see middle plot). The functions which are no longer optimal

for any values of µ (i.e. do not form any part of Cost∗t+1(µ)) can then be pruned, and one such function is removed

in the right-hand plot.
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Figure 3: Candidate functions over two time steps, the intervals shown along the bottom correspond to the intervals

of µ for which each candidate last changepoint is optimal. When t = 78 (a) 6 candidates are optimal for some

interval of µ, however at t = 79 (b), when the candidate functions are updated and the new candidate is added, then

candidate τ = 78 is no longer optimal for any µ and hence can be pruned (c).

Once again we denote the set of potential last changes to consider as Rt and then restrict the update rules (6) and

(7) to τ ∈ Rt. This set can then be recursively updated at each time step

Rt+1 = {τ ∈ {Rt ∪ {t}} : Setτt 6= ∅}. (17)

These steps can then be applied directly to an Optimal Partitioning algorithm to form the FPOP method and the

full pseudocode for this is presented in Algorithm 1.

5.2 Segment Neighbourhood with Inequality Pruning

In a similar vein to Section 5.1, Segment Neighbourhood Search can also benefit from using pruning methods. In

Section 4.2 the method pDPA was discussed as a fast pruned version of Segment Neighbourhood Search. In this

section a new method, Segment Neighbourhood with Inequality Pruning (SNIP), will be introduced. This takes the

Segment Neighbourhood Search algorithm and uses inequality based pruning to increase the speed.

Under condition (C2) the following result can be proved for Segment Neighbourhood Search and this will enable

points to be pruned from the candidate changepoint set.

Theorem 5.1 Assume that there exists a constant, κ, such that condition C2 holds. If, for any k ≥ 1 and t < s

Ck−1,t + C(yt+1:s) + κ > Ck−1,s (18)

then at any future time T > s, t cannot be the position of the last changepoint in the optimal segmenation of y1:T

with k changepoints.

Proof. The idea of the proof is to show that a segmentation of y1:T into k segments with the last changepoint at s

will be better than one with the last changepoint at t for all T > s.

12



Algorithm 1: Functional Pruning Optimal Partitioning (FPOP)

Input : Set of data of the form y1:n = (y1, . . . , yn),

A measure of fit γ(·, ·) dependent on the data and the mean,

A penalty β which does not depend on the number or location of the changepoints.

Let n =length of data, and set F (0) = −β, cp(0) = 0;

then let R1 = {0};
and set D = the range of µ;

Set00 = D;

Cost00(µ) = F (0) + β = 0;

for t = 1, . . . , n do

for τ ∈ Rt do
Costτt (µ) = Costτt−1(µ) + γ(yt, µ);

Calculate F (t) = minτ∈Rt(minµ∈Setτt [Costτt (µ)]);

Let τt = arg minτ∈Rt(minµ∈Setτt [Costτt (µ)]);

Set cp(t) = (cp(τt), τt);

Costtt(µ) = F (t) + β;

Settt = D;

for τ ∈ Rt do
Iτt = {µ : Costτt (µ) ≤ F (t) + β};
Setτt = Setτt−1 ∩ Iτt ;

Settt = Settt\Iτt ;

Rt+1 = {τ ∈ {Rt ∪ {t}} : Setτt 6= ∅};
Output: The changepoints recorded in cp(n).

Assume that (18) is true. Now for any s < T ≤ n

Ck−1,t + C(yt+1:s) + κ+ > Ck−1,s,

Ck−1,t + C(yt+1:s) + κ+ C(ys+1:T ) > Ck−1,s + C(ys+1:T ),

Ck−1,t + C(yt+1,T ) > Ck−1,s + C(ys+1,T ), (by C2).

Therefore for any T > s the cost Ck−1,t + C(yt+1,T ) > Ck,T and hence t cannot be the optimal location of the last

changepoint when segmenting y1:T with k changepoints.

Theorem 5.1 implies that the update rule (10) can be restricted to a reduced set over τ of potential last changes to

consider. This set, which we shall denote as Rk,t, can be updated simply by

Rk,t+1 = {v ∈ {Rk,t ∪ {t}} : Ck−1,v + C(yv+1,t) + κ < Ck−1,t}. (19)

This new algorithm, SNIP, is described fully in Algorithm 2.

6 Comparisons Between Pruning Methods

Functional and inequality based pruning both offer increases in the efficiency in solving both the penalised and

constrained problems, however their use depends on the assumptions which can be made on the cost function.
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Algorithm 2: Segment Neighbourhood with Inequality Pruning (SNIP)

Input : Set of data of the form y1:n = (y1, . . . , yn),

A measure of fit C(·) dependent on the data (needs to be minimised),

An integer, K, specifying the maximum number of changepoints to find,

A constant κ that satisfies: C(yt+1:s) + C(ys+1:T ) + κ ≤ C(yt+1:T ).

Let n =length of data;

Set C0,t = C(y1:t), for all t ∈ {1, . . . , n};
for k = 1, . . . ,K do

Set Rk,k+1 = {k}. for t = k + 1, . . . , n do

Calculate Ck,t = minv∈Rk,t(Ck−1,v + C(yv+1:t));

Set Rk,t+1 = {v ∈ {Rk,t ∪ {t}} : Ck−1,v + C(yv+1,t) + κ < Ck−1,t};

Set τk,1 = arg minv∈Rk,n(Ck−1,v + C(yv+1,n));

for i = 2, . . . , k do

Let τk,i = arg minv∈Rk−i,τk,i−1
(Ck−1,v + C(yv+1,τk,i−1

));

Output: For k = 0, . . . ,K: the total measure of fit, Ck,n, for k changepoints and the location of the

changepoints for that fit, τ k,(1:k).

Inequality based pruning is dependent on the assumption C2, while functional pruning requires the slightly stronger

condition C1. Furthermore, inequality based pruning has a large computational overhead, and is currently only

feasible for detecting a change in a univariate parameter.

If we consider models for which both pruning methods can be implemented, we can compare the extent to which

the methods prune. This will give some insight into when the different pruning methods would be expected to work

well. To explore this in Figures 4 and 5 we look at the amount of candidates stored by functional and inequality

based pruning in each of the two optimisation problems.

As Figure 4 illustrates, PELT prunes very rarely; only when evidence of a change is particularly high. In contrast,

FPOP prunes more frequently keeping the candidate set small throughout. Figure 5 shows similar results for the

constrained problem. While pDPA constantly prunes, SNIP only prunes sporadically. In addition SNIP fails to

prune much at all for low values of k.

Figures 4 and 5 give strong empirical evidence that functional pruning prunes more points than the inequality based

method. In fact it can be shown that any point pruned by inequality based pruning will also be pruned at the same

time step by functional pruning. This result holds for both the penalised and constrained case and is stated formally

in Theorem 6.1.

Theorem 6.1 Let C(·) be a cost function that satisfies condition C1, and consider solving either the constrained or

penalised optimisation problem using dynamic programming and either inequality or functional pruning.

Any point pruned by inequality based pruning at time t will also have been pruned by functional pruning at the same

time.

Proof. We prove this for pruning of optimal partitioning, with the ideas extending directly to the pruning of the

Segment Neighbourhood algorithm.

For a cost function which can be decomposed into pointwise costs, it’s clear that condition C2 holds when κ = 0 and
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Figure 4: Comparison of the number of candidate changepoints stored over time by FPOP (purple) and PELT

(orange). Averaged over 1000 data sets with changepoints at t = 20, 40, 60 and 80.

hence inequality based pruning can be used. Recall that the point τ (where τ < t, the current time point) is pruned

by inequality based pruning in the penalised case if

F (τ) + C(yτ+1:t) ≥ F (t),

Then, by letting µ̂τ be the value of µ such that Costτt (µ) is minimised, this is equivalent to

Costτt (µ̂τ )− β ≥ F (t),

Which can be generalised for all µ to

Costτt (µ) ≥ F (t) + β.

Therefore equation (16) holds for no value of µ and hence Iτt = ∅ and furthermore Setτt+1 = Setτt ∩ Iτt = ∅ meaning

that τ is pruned under functional pruning.

7 Empirical evaluation of FPOP

As explained in Section 6 functional pruning leads to a better pruning in the following sense: any point pruned by

inequality based pruning will also be pruned by functional pruning. However, functional pruning is computationally

more demanding than inequality based pruning. We thus decided to empirically compare the performance of FPOP

to PELT, pDPA and Binary Segmentation (Binseg).

To do so, we implement FPOP for the quadratic loss in C++. More precisely, we consider the quadratic cost (3). We

assess the runtimes of FPOP on both real microarray data as well as synthetic data. All algorithms were implemented

in C++. For pDPA and Binary Segmentation we had to input a maximum number of changepoints to search for,

which we denote K as before.

Note that the Binary Segmentation heuristic is computationally extremely fast. That is because its complexity is on

average O(n logK). Furthermore, it relies on a few fairly simple operations and hence the constant in front of this
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Figure 5: Comparison of the number of candidate changepoints stored over time by pDPA (teal) and SNIP (green)

at multiple values of k in the algorithms (going from left to right k = 2, 3, 4, 5). Averaged over 1000 data sets with

changepoints at t = 20, 40, 60 and 80.

big O notation is expected to be quite low. For this reason we believe that Binary Segmentation is good reference

point in terms of speed and we do not think it is possible to be much faster. However, unlike the other algorithms,

Binary Segmentation is not guaranteed to find the optimal segmentation. For a fuller investigation of the loss of

accuracy that can occur when using Binary Segmentation see Killick et al. (2012).

7.1 Speed benchmark: 4467 chromosomes from tumour microarrays

Hocking et al. (2014) proposed to benchmark the speed of segmentation algorithms on a database of 4467 problems

of size varying from 25 to 153662 data points. These data come from different microarrays data sets (Affymetrix,

Nimblegen, BAC/PAC) and different tumour types (leukaemia, lymphoma, neuroblastoma, medulloblastoma).

We compared FPOP to several other segmentation algorithms: pDPA (Rigaill, 2010), PELT (Killick et al., 2012),

and Binary Segmentation (Binseg). For such data, we expect a small number of changes and for all profiles we ran

pDPA and Binseg with a maximum number of changes K = 52.

We used the R system.time function to measure the execution time of all 4 algorithms on all 4467 segmentation

problems. The R source code for these timings is in benchmark/systemtime.arrays.R in the opfp project repository

on R-Forge: https://r-forge.r-project.org/projects/opfp/

It can be seen in Figure 6 that in general FPOP is faster than PELT and pDPA, but about two times slower

than Binseg. Note that system.time is inaccurate for small times due to rounding, as pointed out in Figure 6

middle and right. For these small profiles we also assessed the performances of FPOP, PELT and Binseg using the

microbenchmark package and confirmed that FPOP is faster than PELT. For these small problems we were surprised

to observe that FPOP exhibited about the same speed as Binseg (microbenchmark results figure not shown).

7.2 Speed benchmark: simulated data with different number of changes

The speed of PELT, Binseg and pDPA depends on the underlying number of changes. For pDPA and Binseg the

relationship is clear as to cope with a larger number of changes one need to increase the maximum number of changes

to look for K. For a fixed size signal the runtime dependency is expected to be in O(logK) for Binseg and in O(K)

for pDPA.
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Figure 6: (Left) Runtimes of FPOP, PELT, pDPA and Binseg as a function of the length of the profile using on the

tumour micro array benchmark. (Middle) Runtimes of PELT and FPOP for the same profiles. (Right) Runtimes of

Binseg and FPOP for the same profiles.
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Figure 7: Runtimes as a function of the true number of changepoints. (Left) For FPOP, PELT, pDPA and Binseg

and n = 2× 105 (Right) For Binseg and FPOP and n = 107

For PELT the relationship is less clear, however we expect pruning to be more efficient if there is a large number of

changepoints. Hence for a fixed size signal we expect the runtime of PELT to improve with the underlying number

of changes.

Based on Section 6 we expect FPOP to be more efficient than PELT and pDPA. Thus it seems reasonable to expect

FPOP to be efficient for the whole range of K. This is what we empirically check in this section.

To do that we simulated Gaussian signal with 200000 data points and varied the number of changes and timed the

algorithms for each of these signals. We then repeat the same experience for signals with 107 and timed FPOP and

Binseg only. The R source code for these timings is in benchmark/systemtime.simulation.R in the opfp project

repository on R-Forge: https://r-forge.r-project.org/projects/opfp/.

It can be seen in Figure 7 that FPOP is always faster than pDPA and PELT. Interestingly for both n = 2× 105 and

107 it is faster than Binseg for a true number of changepoints larger than 500.
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7.3 Accuracy benchmark: the neuroblastoma data set

Hocking et al. (2013) proposed to benchmark the changepoint detection accuracy of segmentation models by using

annotated regions defined by experts when they visually inspected scatterplots of the data. The neuroblastoma data

are a set of 575 copy number microarrays of neuroblastoma tumours, and each chromosome is a separate segmentation

problem. The benchmark is to use a training set of n annotated chromosomes to learn a segmentation model, and

then quantify the annotation error on a test set. Let d1, . . . , dn be the number of data points to segment on each

chromosome in the training data set, and let y1 ∈ Rd1 , . . . ,yn ∈ Rdn be the vectors of noisy data for each chromosome

in the training set.

Both PELT and pDPA have been applied to this benchmark by first defining β = λdi for all i ∈ {1, . . . , n}, and then

choosing the constant λ that maximises agreement with the annotated regions in the training set.

Since FPOP computes the same segmentation as PELT, we obtain the same error rate for FPOP on the neuroblas-

toma benchmark. As shown on http://cbio.ensmp.fr/~thocking/neuroblastoma/accuracy.html, FPOP (fpop)

achieves 2.2% test error. This is the smallest error across all algorithms that have been tested.

8 Discussion

We have introduced two new algorithms for detecting changepoints, FPOP and SNIP. A natural question is which of

these, and the existing algorithms, pDPA and PELT, should be used in which applications. There are two stages to

answering this question. The first is whether to detect changepoints through solving the constrained or the penalised

optimisation problem, and the second is whether to use functional or inequality based pruning.

The advantage of solving the constrained optimisation problem is that this gives optimal segmentations for a range of

numbers of changepoints. The disadvantage is that solving it is slower than solving the penalised optimisation prob-

lem, particularly if there are many changepoints. In interactive situations where you wish to explore segmentations of

the data, then solving the constrained problem is to be preferred (Hocking et al., 2014). However in non-interactive

scenarios when the penalty parameter is known in advance, it will be faster to solve the penalised problem to recover

the single segmentation of interest.

The decision as to which pruning method to use is purely one of computational efficiency. We have shown that

functional pruning always prunes more than inequality based pruning, and empirically have seen that this difference

can be large, particularly if there are few changepoints. However functional pruning can be applied less widely. Not

only does it require a stronger condition on the cost functions, but currently its implementation has been restricted

to detecting changes in a uni-variate parameter from a model in the exponential family. Even for situations where

functional pruning can be applied, its computational overhead per non-pruned candidate is higher.

Our experience suggests that you should prefer functional pruning in the situations where it can be applied. For

example FPOP was always faster than PELT for detecting a change in mean in the empirical studies we conducted,

the difference in speed is particularly large in situations where there are few changepoints. Furthermore we observed

FPOP’s computational speed was robust to changes in the number of changepoints to be detected, and was even

competitive with, and sometimes faster than, Binary Segmentation.
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