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Abstract

While there is considerable work on change point analysis in univariate time
series, more and more data being collected comes from high dimensional multi-
variate settings. This paper investigates change point detection procedures using
projections and develops asymptotic theory for how full panel (multivariate) tests
compare with both oracle and random projections. This is done by considering
an analogous concept to asymptotic relative efficiency termed high dimensional
efficiency. This provides the rate at which the change can get smaller with dimen-
sion while still being detectable. The effect of misspecification of the covariance
on the power of the tests is investigated, because in many high dimensional sit-
uations estimation of the full dependency (covariance) between the multivariate
observations in the panel is often either computationally or even theoretically
infeasible. It is shown that if information concerning the direction of change is
available, then projecting in this direction is always advantageous over the use of
a panel statistic, in terms of size and power, particularly when the covariance is
misspecified. Even if the change is not known, the projection method achieves a
better power as long as the difference between the true change and the direction
of the projection is small. The features of the tests are quantified in theory and
simulations indicate that these results are indicative of small sample behaviour.
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1 Introduction

There has recently been a renaissance in research for statistical methods for change
point problems [Horváth and Rice, 2014]. This has been driven by applications where
non-stationarities in the data can often be best described as change points in the data
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1 Introduction

generating process [Eckley et al., 2011, Frick et al., 2014, Aston and Kirch, 2012b].
However, data sets are now routinely considerably more complex than univariate time
series classically studied in change point problems [Page, 1954, Robbins et al., 2011,
Aue and Horváth, 2013, Horváth and Rice, 2014], and as such methodology for de-
tecting and estimating change points in a wide variety of settings, such as multivariate
[Horváth et al., 1999, Ombao et al., 2005, Aue et al., 2009b, Kirch et al., 2014+] func-
tional [Berkes et al., 2009, Aue et al., 2009a, Hörmann and Kokoszka, 2010, Aston and
Kirch, 2012a] and high dimensional settings [Bai, 2010, Horváth and Hušková, 2012,
Chan et al., 2012, Cho and Fryzlewicz, 2014+] have recently been proposed.

Instead of looking at more and more complicated models, this paper uses a simple
mean change setting to illustrate how the power is influenced in high dimensional
settings. The results and techniques can subsequently be extended to more complex
change point setting as well as different statistical frameworks, such as two sample
tests. We make use of the following two key concepts: Firstly, we investigate a class
of tests based on projections. Secondly, we consider contiguous changes where the size
of the change tends to zero as the sample size and with it the number of dimensions
increases leading to the notion of high dimensional efficiency. This concept is closely
related to Asymptotic Relative Efficiency (ARE) (see Lehmann [1999, Sec. 3.4] and
Lopes et al. [2011] where ARE is used in a high dimensional setting).

The aims of the paper are threefold: Firstly, we will investigate the asymptotic prop-
erties of tests based on projections as a plausible way to include prior information into
the tests. Secondly, by using high dimensional efficiency, we consider several projec-
tion tests (including oracle and random projections as benchmarks) and compare them
with the efficiency of existing tests that take the full covariance structure into account.
Finally, as in all high dimensional settings, the dependency between the components of
the series can typically neither be effectively estimated nor even uniquely determined
(for example if the sample size is less than the multivariate dimension) unless restric-
tions on the covariance are enforced. By considering the effect of misspecification of
the model covariance on the size as well as efficiency we can quantify the implications
of this for different tests.

Highest efficiency can only be achieved under knowledge of the direction of the change.
In fact, data practitioners, in many cases, explicitly have prior knowledge in which
direction changes are likely to occur. It should be noted at this point, that changes in
mean are equivalent to changes of direction in multivariate time series. In frequentist
testing situations, practitioners’ main interest is in test statistics which have power
against a range of related alternatives while still controlling the size. For example, an
economist may check the performance of several companies looking for changes caused
by a recession. There will often be a general idea as to which sectors of the economy
will gain or lose by the recession and therefore a good idea, at least qualitatively, as to
what a change will approximately look like (downward resp. upward shift depending
on which sector a particular company is in) if there is a change present. Similarly,
in medical studies, it will often be known a-priori whether genes are likely to be co-
regulated causing changes to be in similar directions for groups of genes in genetic
time series.

Incorporating this a-priori information about how the change affects the components
by using corresponding projections leads to a considerable power improvement if the
change is indeed in the expected direction. It is also important that, as in many cases
the a-priori knowledge is qualitative, the test has higher power than standard tests not
only for that particular direction but also for other directions close by. Additionally,
these projections lead to tests where the size is better controlled if no change is present.
However, if such prior information is not reliable, it is important to be able to quantify
the loss over tests which do not assume such information. In addition, while the prior
information itself might be reliable, inherent misspecification in other parts of the
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model, such as the covariance structure, will have a detrimental effect on detection,
and it is of interest to quantify this as well.

The results in this paper will be benchmarked against taking the simple approach of
using a random projection in a single direction to reduce the dimension of the data.
Random projections are becoming increasingly popular in high dimensional statistics
with applications in Linear Discriminant Analysis [Durrant and Kabán, 2010] and two
sample testing [Lopes et al., 2011, Srivastava et al., 2014]. This is primarily based on
the insight from the Johnson-Lindenstrauss lemma that an optimal projection in the
sense that the distances are preserved for a given set of data is independent of the
dimension of the data [Johnson and Lindenstrauss, 1984] and thus random projections
can often be a useful way to perform a dimension reduction for the data [Baraniuk
et al., 2008]. However, in our context, we will see that a random projection will not
work as well as truly multivariate methods, let alone projections with prior knowledge,
but can only serve as a lower benchmark.

We will consider a simple setup for our analysis, although one which is inherently the
base for most other procedures, and one which can easily be extended to complex
time dependencies and change point definitions using corresponding results from the
literature [Kirch and Tadjuidje Kamgaing, 2014a, Kirch and Tajduidje Kamgaing,
2014b]. For a set of observations Xi,t, 1 6 i 6 d = dT , 1 6 t 6 T , the change point
model is defined to be

Xi,t = µi + δi,T g(t/T ) + ei,t, 1 6 i 6 d = dT , 1 6 t 6 T, (1.1)

where E ei,t = 0 for all i and t with 0 < σ2
i = var ei,t < ∞ and g : [0, 1] → R is

a Riemann-integrable function. Here δi,T indicates the size of the change for each
component. This setup incorporates a wide variety of possible changes by the suitable
selection of the function g, as will be seen below. For simplicity, for now it is assumed
that {ei,t : t ∈ Z} are independent, i.e. we assume independence across time but
not location. If the number of dimensions d is fixed, the results readily generalise to
situations where a multivariate functional limit theorem exists as is the case for many
weak dependent time series. If d can increase to infinity with T , then generalizations
are possible if the {ei,t : 1 6 t 6 T} form a linear process in time but the errors are
independent between components (dependency between components will be discussed
in detail in the next section). Existence of moments strictly larger than two is needed
in all cases. Furthermore, the developed theory applies equally to one- and two-sample
testing and can be seen as somewhat analogous to methods for multivariate adaptive
design [Minas et al., 2014].

The change is given by ∆d = (δ1,T , . . . , δd,T )T and the type of alternative is given by
the function g in rescaled time. While g is defined in a general way, it includes as
special cases most of the usual change point alternatives, for example,

• At most one change (AMOC): g(u) =

{
0 0 ≤ u ≤ θ
1 θ < u ≤ 1

• Epidemic change (AMOC): g(u) =

 0 0 ≤ u ≤ θ1

1 θ1 < u < θ2

0 θ2 < u ≤ 1

The form of g will influence the choice of test statistic to detect the change point. As
in the above two examples in the typical definition of change points the function g is
modelled by a step function (which can approximate many smooth functions well). In
such situations, test statistics based on partial sums of the observations have been well
studied [Csörgő and Horváth, 1997]. It will be shown that statistics based on partial
sums are robust (in the sense of still having non-zero power) to a wide variety of g.
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The model in (1.1) is defined for univariate (d = 1), multivariate (d fixed) or panel
data (d → ∞). We will consider the latter two, as these are of most interest in the
high dimensional setting. In particular, the panel data (also known as “small n large
p” or “high dimensional low sample size”) setting is able to capture very well the
small sample properties in situations where d is comparable or even larger than T
using asymptotic considerations. It is this asymptotic framework that really enables a
thorough investigation of the properties of various tests, as the rates at which various
vanishing alternatives can be detected give an indication into the detection ability
of the tests. In particular we will consider if tests are of the same order, aT ∼ bT ,
which means that two constants c, C (independent of the dimension) exist such that
c 6 aT

bT
6 C as the dimension increases. However, many of our results, particularly

for the proposed projection tests, are also qualitatively valid in the multivariate or d
fixed setting.

The paper proceeds as follows. In Section 2, the use of projections for detecting changes
is investigated, particularly in terms of their size and power. In addition, the effect of
the misspecification of the covariance structure on the tests will be investigated. In
Section 3, the projection based statistics will be compared with the panel based change
point statistics already suggested in Horváth and Hušková [2012], both in terms of
control of size and power properties, particular with relation to the (mis)specification
of the dependence structure. Section 4 concludes with some discussion of the different
statistics proposed, while Section 5 gives the proofs of the results in the paper. In
addition, rather than a separate simulation section, simulations will be interspersed
throughout the theory. This is because many of the finite sample simulations give
considerable intuition into the resulting asymptotic properties which are derived. In
all cases the simulations are based on 1000 repetitions of i.i.d. normally distributed
data for each set of situations, and unless otherwise stated the number of time points
is T = 100 with the change (if present) occurring half way through the series. Except
in the simulations concerning size itself, all results are empirically size corrected to
account for the size issues for the multivariate (panel) statistic that will be seen in
Figure 2.1.

2 Change Points and Projections

2.1 Projections

In model (1.1), the change ∆d = (δ1,T , . . . , δd,T )T is always a one-dimensional object
no matter the number of components d. This observation suggests that knowing the
direction of the change ∆d in addition to the underlying covariance structure can
significantly increase the signal-to-noise ratio. In fact, under (1.1) it holds

〈Xd(t),pd〉 = 〈µ,pd〉+ 〈∆d,pd〉g(t/T ) + 〈et,pd〉,

where Xd(t) = (X1,t, . . . , Xd,T )T , µ = (µ1, . . . , µd)
T and et = (e1,t, . . . , ed,t)

T . This
representation shows that the projected time series exhibits the same behavior as
before as long as the change is not orthogonal to the projection vector. Furthermore,
the power is the better the larger 〈∆d,pd〉 and the smaller the variance of 〈et,pd〉
is. Consequently, an optimal projection in terms of power depends on ∆d as well as
Σ = var e1. In applications, certain changes are either expected or of particular interest
e.g. an economist looking at the performance of several companies expecting changes
caused by a recession will have a good idea which companies will profit or lose. This
knowledge can be used to increase the power in directions close to the search direction
pd while decreasing it for changes that are close to orthogonal to it. Using projections
can furthermore robustify the size of the test under the null hypothesis with respect
to misspecification and estimation error.
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2 Change Points and Projections

In order to qualify this informal statement, we will consider contiguous changes for
several change point tests, where ‖∆d‖ → 0 but with such a rate that the power of the
corresponding test is strictly between the size and one. Unlike for classical asymptotic
efficiency, the information about detection power with respect to the dimension is con-
tained in the rates, which will subsequently be called high dimensional efficiency. This
high dimensional efficiency allows us to quantify and compare the power gain obtained
by projections in comparison to statistics that use the full multivariate information.
These results are confirmed by simulations using relatively small sample sizes. Fur-
thermore, the general message holds true far beyond the particular test statistic or
even this particular model, namely that (appropriate) projections can help stabilize
size and at the same time increase the power for change point tests.

In order to be able to prove asymptotic results for change point statistics based on
projections even if d → ∞, we need to make the following assumptions on the un-
derlying error structure. This is much weaker than the independence assumption as
considered by Horváth and Hušková [2012]. Furthermore, we do not need to restrict
the rate with which d grows. If we do have restrictions on the growth rate in particular
for the multivariate setting with d fixed, these assumptions can be relaxed and more
general error sequences be allowed.

Assumption A. 1. Let η1,t(d), η2,t(d), . . . independent with E ηi,t(d) = 0, var ηi,t(d) =
1 and E |ηi,t(d)|ν 6 C < ∞ for some ν > 2 and all i and d. For t = 1, . . . , T we
additionally assume for simplicity that (η1,t(d), η2,t(d), . . .) are identically distributed
(leading to data which is identically distributed across time). The errors within the
components are then given as linear processes of these innovations:

el,t(d) =
∑
j>1

al,j(d)ηj,t(d), l = 1, . . . , d,
∑
j>1

al,j(d)2 <∞

or equivalently in vector notation et(d) = (e1,t(d), . . . , ed,t(d))T and aj(d) = (a1,j(d), . . . , ad,j(d))T

et(d) =
∑
j>1

aj(d)ηj,t(d).

The following three cases of different dependency structures are very helpful in under-
standing different effects that can occur and will be used as examples throughout the
paper:

Case C. 1 (Independent Components). The components are independent, i.e. aj =
(0, . . . , sj , . . . , 0)T the vector which is sj > 0 at point j and zero everywhere else, j 6 d,
and aj = 0 for j > d+ 1. In particular, each channel has variance

σ2
j = s2

j .

Case C. 2 (Fully Dependent Components). There is one common factor to all com-
ponents, leading to completely dependent components, i.e. a1 = Φd = (Φ1, . . . ,Φd)

T ,
aj = 0 for j > 2. In this case,

σ2
j = Φ2

j .

Case C. 3 (Mixed Components). The components contain both an independent and
dependent term. Let aj = (0, . . . , sj , . . . , 0)T the vector which is sj > 0 at point j and
zero everywhere else, and ad+1 = Φd = (Φ1, . . . ,Φd)

T , aj = 0 for j > d+ 2. Then

σ2
j = s2

j + Φ2
j

This mixed case allows consideration of dependency structures between cases C.1 and
C.2.

Of course, many other dependency structures are possible, but these three cases give
insight into the cases of no, complete and some dependency respectively. In particular,
as the change is always one dimensional, taking a one dimensional form of dependency,
as in cases C.2 and C.3, still allows somewhat general conclusions to be drawn.
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2 Change Points and Projections

2.2 Change point statistics

Standard statistics such as the CUSUM statistic are based on partial sum processes, so
in order to quantify the possible power gain by the use of projections we will consider
the partial sum process of the projections, i.e.

Ud,T (x) = 〈ZT (x),pd〉 =
1√
T

bTxc∑
t=1

〈Xd(t),pd〉 −
1

T

T∑
j=1

〈Xd(j),pd〉

 , (2.1)

ZT,i(x) =
1

T 1/2

bTxc∑
t=1

Xi,t −
bTxc
T

T∑
t=1

Xi,t

 , (2.2)

where Xd(t) = (X1,1, . . . , Xd,T )T .

Different test statistics can be defined for a range of g in (1.1), however, assuming that
g 6≡ 0, the hypothesis of interest is

H0 : ∆d = 0

versus the alternative

H1 : ∆d 6= 0.

Test statistics are now defined in order to give good power characteristics for a particu-
lar g function. For example, the classic AMOC statistic for univariate and multivariate
change point detection is based on Ud,T (x)/τ(pd), with

τ2(pd) = pTd var (e1(d)) pd. (2.3)

Typically, either the following max or sum type statistics are used

max
16k6T

w(k/T )

∣∣∣∣Ud,T (k/T )

τ(pd)

∣∣∣∣ , 1

T

T∑
k=1

w(k/T )

∣∣∣∣Ud,T (k/T )

τ(pd)

∣∣∣∣ ,
where w > 0 is continuous (which can be relaxed) and fulfills (2.9) (confer e.g. the
book by Csörgő and Horváth [1997]). The choice of weight function w(·) can increase
power for certain locations of the change points [Kirch et al., 2014+].

For the epidemic change, typical test statistics are given by

max
16k1<k26T

1

τ(pd)
|Ud,T (k2/T )− Ud,T (k1/T ) |,

or

1

T 2

∑
16k1<k26T

1

τ(pd)
|Ud,T (k2/T )− Ud,T (k1/T ) |.

In the next section we first derive a functional central limit theorem for the process
Ud,T (x), which implies the asymptotic null behavior for the above tests. Then, we
derive the asymptotic behavior of the partial sum process under contiguous alterna-
tives to obtain the high dimensional efficiency for projection statistics. This efficiency
provides information as to how small changes can be in comparison to the dimension
while still being detectable.
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2 Change Points and Projections

2.3 Asymptotic behavior of Change point tests based on projections

In this section, we derive the asymptotic behavior of change point tests based on
projections under rather general assumptions. We will see that the size behavior is very
robust with respect to deviations from the assumed underlying covariance structure.
The power on the other hand turns out to be less robust but more so than statistics
taking the full multivariate information into account.

2.3.1 Null Asymptotics

In the following theorem d can be fixed but it is also allowed that d = dT →∞, where
no restrictions on the rate of convergence are necessary.

Theorem 2.1. Let model (1.1) hold. Let pd be a possibly random projection indepen-
dent of {ei,t : 1 6 t 6 T, 1 6 i 6 d}. Furthermore, let pTd cov(e1(d))pd 6= 0 (almost
surely), which means that the projected data is not degenerate with probability one.

a) Under Assumption A.1 and if {pd} is independent of {ηi,t(d) : i > 1, 1 6 t 6 T},
then it holds under the null hypothesis{

Ud,T (x)

τ(pd)
: 0 6 x 6 1 |pd

}
D[0,1]−→ {B(x) : 0 6 x 6 1} a.s., (2.4)

where B(·) is a standard Brownian bridge.

b) For i.i.d. error sequences {et(d) : t = 1, . . . , d}, et(d) = (e1,t(d), . . . , ed,t(d))T with
an arbitrary dependency structure across components, and if E |e1,t(d)|ν 6 C <∞
for all t and d as well as

‖pd‖21
pTd cov(et)pTd

= o(T 1−2/ν) a.s., (2.5)

where ‖a‖1 =
∑d
j=1 |aj |, then (2.4) holds.

The assertions remain true if τ2(pd) is replaced by τ̂2
d,T such that for all ε > 0

P

(∣∣∣∣∣ τ̂2
d,T

τ2(pd)
− 1

∣∣∣∣∣ > ε

)
→ 0 a.s. (2.6)

Assumption (2.5) is always fulfilled for the multivariate situation with d fixed or if
d is growing sufficiently slowly with respect to T as the left hand side of (2.5) is
always bounded by

√
d if pTd cov(e)pd/‖pd‖2 is bounded away from zero. Otherwise,

the assumption may hold for certain projections but not others. However, in this case,
it is possible to put stronger assumptions on the error sequence such as in a), which
are still much weaker than the usual assumption for panel data, that components
are independent. In these cases projection methods hold the size asymptotically, no
matter what the dependency structure between components is and without having to
estimate this dependency structure.

This is in contrast to the multivariate statistic which suffers from considerable size dis-
tortions if this underlying covariance structure is estimated incorrectly. The estimation
of the covariance structure is a difficult problem in higher dimensions in particular since
an estimator for the inverse is needed with additional numerical problems arising. The
problem becomes even harder if time series errors are present, in which case the long-
run covariance rather than the covariance matrix needs to be estimated [Hörmann and
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Kokoszka, 2010, Aston and Kirch, 2012b, Kirch et al., 2014+]. While the size of the
projection procedure is unaffected by the underlying dependency across components,
we will see in the next section that for optimal power we need not only to know the
change ∆d but also the inverse of the covariance matrix. Nevertheless the power of
projection procedures turns out to be more robust with respect to misspecification
than a size-corrected panel statistic, that takes the full multivariate information into
account.

The following lemma shows the consistency of two different estimators for τ(pd) under
the null hypothesis. The second one is typically still consistent in the presence of
one mean change which usually leads to a power improvement in small samples. An
analogous version can be defined for the epidemic change situation. However, it is
much harder to get an equivalent correction in the multivariate setting because the
covariance matrix determines how different components are weighted, which in turn
has an effect on the location of the maximum. This problem does not arise in the
univariate situation, because the location of the maximum does not depend on the
variance estimate.

Lemma 2.2. Consider

τ̂2
1,d,T (pd) =

1

T

T∑
j=1

(
pTd et(d)− 1

T

T∑
i=1

pTd et(d)

)2

(2.7)

as well as

τ̂2
2,d,T (pd) =

1

T

k̂d,T∑
j=1

pTd ej(d)− 1

T

k̂d,T∑
i=1

pTd ei(d)

2

+

T∑
j=k̂d,T+1

pTd et(d)− 1

T

T∑
i=k̂d,T+1

pTd ei(d)

2
 ,

(2.8)

where k̂d,T = arg max
t=1,...,T

Ud,T (t/T ).

a) Under the assumptions of Theorem 2.1 a) both estimators (2.7) as well as (2.8)
fulfill (2.6).

b) Under the assumptions of Theorem 2.1 b), then estimator (2.7) fulfills (2.6) under
the assumption

‖pd‖21
pTd cov(et)pTd

= o(T 1−2/min(ν,4)) a.s.,

while estimator (2.8) fulfills it under the assumption

‖pd‖21
pTd cov(et)pTd

= o(T 1−2/min(ν,4)(log T )−1) a.s.,

The following theorem gives the null asymptotic for the simple CUSUM statistic for
the at most one change, other statistics as given in Section 2.2 can be dealt with along
the same lines.

Corollary 2.3. Let the assumptions of Theorem 2.1 be fulfilled and τ̂(pd) fulfill (2.6)
under the null hypothesis, then for all x ∈ R it holds under the null hypothesis

P

(
max

16k6T
w2(k/T )

U2
d,T (k/T )

τ̂2(pd)
6 x

∣∣∣pd)→ P

(
max

06t61
w2(t)B2(t) 6 x

)
a.s.

P

 1

T

∑
16k6T

w2(k/T )
U2
d,T (k/T )

τ̂2(pd)
6 x

∣∣∣pd
→ P

(∫ 1

0

w2(t)B2(t) dt 6 x

)
a.s.
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Figure 2.1: Size of tests as the degree of dependency between the components increases.
As can be seen, all the projection methods, Oracle, Quasi-Oracle, Pre-
Oracle and Random projections defined in Section 2.4 maintain the size
of the tests. Those based on using the full information as described in
Section 3 have size problems as the degree of dependency increases. The
simulations correspond to Case C.3 with sj = 1,Φj = φ, j = 1, . . . , d with
d = 200, where φ is given on the x-axis).

for any continuous weight function w(·) with

lim
t→0

tαw(t) <∞, lim
t→1

(1− t)αw(t) for some 0 6 α < 1/2,

sup
η6t61−η

w(t) <∞ for all 0 < η 6
1

2
. (2.9)

As can be seen in Figure 2.1, regardless of whether the variance is known or estimated,
the projection methods all maintain the correct size even when there is a high degree
of dependence between the different components (the specific projection methods and
indeed the non-projection methods will be characterised in Section 2.4 below). The
full tests, where size is not controlled, will be discussed in Section 3.

2.3.2 Asymptotic absolute high dimensional efficiency

As usual in statistics, large enough alternatives, i.e. large enough changes, will be
detected by all statistics with the restriction that the change is not orthogonal to the
projection vector for the projection method. In asymptotic theory this corresponds to
fixed changes, where ‖∆‖ = c 6= 0, for which the test has asymptotic power one.
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2 Change Points and Projections

To understand the small sample power of different statistics such asymptotics are
therefore not suitable. Instead we consider the asymptotics for local or contiguous
alternatives, meaning that we consider ‖∆‖ → 0 with such a rate that the test statistic
has not power one asymptotically but is unbiased, i.e. the power is (strictly) larger
than the size asymptotically. This notion is related to absolute relative efficiency: If
the rate, with which changes can disappear is the same for all statistics of interest,
and the limit distribution under the null is the same, then the additive shift in the
limit distribution under those contiguous alternatives gives the absolute efficiency of
the statistic (confer Noethers theorem for the case of a standard normal limit). In
our setup, we obtain different contiguous rates for different statistics so that it is no
longer the additive constant that is of interest but rather the rate with respect to d,
that shows which statistic has the better power.

Theorem 2.4. Denote

E2
1 (∆d,pd) :=

‖∆d‖2‖pd‖2 cos2(α∆d,pd)

τ2(pd)
=
|〈∆d,pd〉|2

τ2(pd)
, (2.10)

where τ2(pd) is as in (2.3) and αu,v is the (smallest) angle between u and v. Under
the assumptions of Theorem 2.1 either a) or b) above on the errors respectively pd, it
holds for the projection procedure:

a) If
√
TE1(∆d,pd)→∞ a.s., then{

Ud,T (x)

τ(pd) sd
√
T E1(∆d,pd)

: 0 6 x 6 1 |pd
}
D[0,1]−→

{∫ x

0

g(t) dt− x
∫ 1

0

g(t) dt : 0 6 x 6 1

}
a.s.,

where sd = sgn(∆T
d pd).

b) If
√
TE1(∆d,pd)→ C1 > 0 a.s., then{

Ud,T (x)

τ(pd)
− sdC1

(∫ x

0

g(t) dt− x
∫ 1

0

g(t) dt

)
: 0 6 x 6 1 |pd

}
D[0,1]−→ {B(x) : 0 6 x 6 1} a.s.,

where as in a) sd = sgn(∆T
d pd).

c) If
√
TE1(∆d,pd)→ 0 a.s., then{

Ud,T (x)

τ(pd)
: 0 6 x 6 1 |pd

}
D[0,1]−→ {B(x) : 0 6 x 6 1} a.s.

Corresponding assertions in a P -stochastic sense follow from the subsequence-principle
if the assertion on the contiguous rate hold only in a P -stochastic sense.

We will call the rate E1(∆d,pd) high dimensional efficiency as the above theorem
shows that this is the rate with which changes can disappear such that appropriate
tests have power strictly between the size and one. This can be seen via the term on
the right-hand side of part a) of the theorem, which determines which type of statistic,
e.g. maxima or sum type statistic with respective weights, has highest power for a given
g. As this behavior is the same whether a projection or the full information is used,
we concentrate on the high dimensional efficiency in this work. Similarly, one could
consider local or contiguous changes, where not the size of the change ‖∆d‖ disappears
asymptotically but rather the duration of the change. We excluded this case by using
the rescaled time version of the change by the function g. Particularly for multiple
changes it makes sense to allow for the duration of the changes to get increasingly
smaller asymptotically [Frick et al., 2014]. As the dependence on this type of change
is the same for the projection, in both the multivariate as well as the panel statistic,
as long as the same type of functional of the combined partial sum process is used,

10



2 Change Points and Projections

this does not give any additional insight in comparing the power of these statistics.
However, some preliminary investigations suggest that while in the case of the second
choice, using projections based on principle component analysis similar to Aston and
Kirch [2012a] can be advantageous, this is not true for the setting discussed in this
paper.

As an example, we state in a corollary that the weighted CUSUM-statistic has asymp-
totic power one for any non-constant g if the TE2

1 (∆d,pd)→∞. If additionally there
exists exactly one change, the corresponding change point estimator is consistent in
rescaled time.

Corollary 2.5. Let the assumptions of Theorem 2.4 a) hold.

a) It holds for a weight function w(·) as in Corollary 2.3 and any c > 0

P

(
max

06x61
w2(k/T )U2

d,T (k/T ) > c |pd
)
→ 1 a.s.,

if w2(x)
(∫ x

0
g(t) dt− x

∫ 1

0
g(t) dt

)2

6= 0. This shows in particular that for w(x) > 0

for 0 < x < 1 any deviation from a stationary mean is detected by this statistic
with asymptotic power one if TE2

1 (∆,pd)→∞.

b) Under the alternative of one abrupt change, i.e. g(x) = 1{x>ϑ} for some 0 < ϑ < 1,
the estimator

ϑ̂T =

⌊
arg maxkU

2
d,T (k/T )

T

⌋

is consistent for the change point in rescaled time, i.e.

P
(∣∣∣ϑ̂T − ϑ∣∣∣ > ε |pd

)
→ 0 a.s.

An analogous statement holds, if the arg max of w2(k/T )U2
d,T (k/T ) is used instead

and w2(x) ((x− ϑ)+ − x(1− ϑ))
2

has a unique maximum at ϑ, which is the case for
many standard weight functions such as w(t) = (t(1− t))−β for some 0 6 β < 1/2.

In the next section we will further investigate the high dimensional efficiency and see
that the power depends essentially on the angle between Σ1/2pd and the ’standardized’
change Σ−1/2∆ if Σ is invertible. In fact, the smaller the angle the larger the power.
Some interesting insight will also come from the situation where Σ is not invertible by
considering case C.2 above.

2.4 Oracle and random projections

In this section, we will further investigate the power gain obtained by projections – in
particular, we will that the power depends only on the angle between the used projec-
tion and the change both properly scaled with the underlying covariance structure.

The highest power is obtained by o = Σ−1∆d as the next theorem shows, which will
be called the oracle projection. This oracle is equivalent to a projection after first
standardizing the data on the ’new’ change Σ−1/2∆d. In order to have a reasonable
benchmark, we will compare this power to a scaled random projection rd,Σ = Σ−1/2rd,
where rd is a random projection on the d-dimensional unit sphere. This is equivalent
to a random projection onto the unit sphere after standardizing the data. Both pro-
jections depend on Σ which is usually not known so that it needs to be estimated.

11



2 Change Points and Projections

The latter is rather problematic in particular in high dimensional settings without
additional parametric or sparsity assumptions (see Zou et al. [2006], Bickel and Levina
[2008] and Fan et al. [2013] including related discussion). Furthermore, it is actually
the inverse that needs to be estimated which results in additional numerical problems
if d is large. For this reason we check the robustness of the procedure with respect to
not knowing or misspecifying Σ in a second part of this section

In Section 3 we will compare the power of the above projections with a procedure
taking the full information into account. To this end we will use a panel data setting
where d → ∞ as T → ∞ because then the full power information (including the
information about d) is in the rates, whereas in the multivariate approach for d fixed
it is harder to quantify as the information about d enters the asymptotic distribution
in terms of different scales of the limit distribution. We will show that we lose an order
d1/4 in terms of high dimensional efficiency between the oracle and the full panel data
statistic and another d1/4 between the panel and the random projection.

2.4.1 Correctly scaled projections

The following proposition characterizes which projection yields an optimal high di-
mensional efficiency associated with the highest power.

Proposition 2.6. If Σ is invertible, then

E1(∆,pd) = ‖Σ−1/2∆d‖ cos(αΣ−1/2∆d,Σ1/2pd). (2.11)

Proposition 2.6 shows in particular, that after standardizing the data, i.e. for Σ =
Id, the power depends solely on the cosine of the angle between the oracle and the
projection (see Figure 2.2).

From the representation in this proposition it follows immediately that the ’oracle’
choice for the projection to maximize the high dimensional efficiency is o = Σ−1∆d as
it maximizes the only term which involves the projection namely cos(αΣ−1/2∆d,Σ1/2pd).
Therefore, we define:

Definition 2.1. The projection o = Σ−1∆d is called oracle if Σ−1 exists. Since the
projection procedure is invariant under multiplications with non-zero constants of the
projected vector, all non-zero multiples of the oracle have the same properties, so that
they correspond to a class of projections.

By Proposition 2.6 the oracle choice leads to a high dimensional efficiency of E1(∆d,o) =
‖Σ−1/2∆d‖.

Another way of understanding the Oracle projection is the following: If we first
standardize the data, then for a projection on a unit (w.l.o.g.) vector the variance
of the noise is constant and the signal is given by the scalar product of Σ−1/2∆
and the (unit) projection vector, which is obviously maximized by a projection with
Σ−1/2∆/‖Σ−1/2∆‖ which is equivalent to using pd = Σ−1∆ as a projection vector
for the original non-standardized version.

So, if we know Σ and want to maximize power close to a particular search direction
sd of our interest, we should use the scaled search direction sΣ,d = Σ−1sd as a
projection.

Because the cosine falls very slowly close to zero, the power will be good if the search
direction is not too far off the true change. From this, one could get the impression
that even a scaled random projection rΣ,d = Σ−1/2rd may not do too badly, where
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Figure 2.2: Power of tests as the angle between the search direction and the oracle
increases. As can be seen, the search projection method decreases similarly
to cosine of the angle, while the random projection and Horváth -Hušková
tests as introduced in Section 3 are given for comparison. (Here Σd = Id,
d = 200, and ∆d = 0.05 1d, corresponding to Case C.1).

rd is a uniform random projection on the unit sphere. This is equivalent to using a
random projection on the unit sphere after standardizing the data, which also explains
the different scaling as compared to the oracle or the scaled search direction, where
the change ∆d is also transformed to Σ−1/2∆d by the standardization. However, since
for increasing d the space covered by the far away angles is also increasing, the high
dimensional efficiency of the scaled random projection is not only worse than the oracle
by a factor

√
d but also by a factor d1/4 than a full multivariate or panel statistic which

will be investigated in detail in Section 3.

Such a random projection is the opposite of the oracle in the sense that absolutely no
information about a possible change ∆d is used for the projection, while for the oracle
the full and true information about ∆d is available and used.

The following theorem shows the high dimensional efficiency of the scaled random
projection.

Theorem 2.7. Let the alternative hold, i.e. ‖∆d‖ 6= 0. Let rd be a random uniform
projection on the d-dimensional unit sphere and rΣ,d = Σ−1/2rd, then for all ε > 0
there exist constants c, C > 0, such that

P

(
c 6 E2

1 (∆d, rΣ,d)
d

‖Σ−1/2 ∆d‖2
6 C

)
> 1− ε.

Such a random projection on the unit sphere can be obtained as follows: LetX1, . . . , Xd

be i.i.d. N(0,1), then rd = (X1, . . . , Xd)
T /‖(X1, . . . , Xd)

T ‖ is uniform on the d-dimensional
unit sphere [Marsaglia, 1972].

Comparing the high dimensional efficiency of the scaled random projection with the
one obtained for the oracle projection (confer Proposition 2.6) it becomes apparent
that we lose an order

√
d. In Section 3 we will see that the panel statistic taking the

full multivariate information into account has a contiguous rate just between those
two losing a power d1/4 in comparison to the oracle but gaining d1/4 in comparison
to a scaled random projection. The finite sample nature of this can be clearly seen
in Figure 2.3 where a change that can be detected for the oracle with constant power
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Figure 2.3: Power of the tests as d increases with a fixed sample size (T = 100). Here
‖∆d‖ = const.and Σd = Id, i.e. ‖Σ−1/2∆d‖ = const., corresponding to
Case C.1. This gives roughly constant power for fixed angle projection
tests (as ‖∆d‖ is constant), while results in decreasing power for both the
panel statistic test and random projections as predicted by theory.

as d increases rapidly loses power for the panel statistic as introduced in Section 3 as
well as for the random projection.

Let us now have a look at the situation if Σ is not invertible hence the above oracle
does not exist. To this end, let us consider Case C.2 above – other non-invertible
dependent situations can essentially be viewed in a very similar fashion, but become
a combination of the two scenarios below.

Case C. 2 (Fully dependent Components). In this case Σ = ΦdΦ
T
d is a rank 1 matrix

and not invertible. Consequently, the oracle as in Definition 2.1 does not exist. To
understand the situation better, we have to distinguish two scenarios:

(i) If Φd is not a multiple of ∆d we can transform the data into a noise-free sequence
that only contains the signal by projecting onto a vector that is orthogonal to Φd

(cancelling the noise term) but not to ∆d. All such projections are in principle
equivalent as they yield the same signal except for a different scaling which is not
important if there is no noise present. Consequently, all such transformations
could be called oracle projections.

(ii) On the other hand if ∆d is a multiple of Φd, then any projection cancelling the
noise will also cancel the signal. Projections that are orthogonal to Φd hence
by definition also to ∆d will lead to a constant deterministic sequence hence to
a degenerate situation. All other projections lead to the same (non-degenerate)
time series except for multiplicative constants and different means (under which
the proposed change point statistics are invariant by definition) so all of them
could be called oracles.

The following interpretation also explains the above mathematical findings: In this
situation, all components are obtained from one common factor {ηt} with different
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(a) Angle between ∆d and Φ = 0 radians
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(b) Angle between ∆d and Φ = π/8 radians
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(c) Angle between ∆d and Φ = π/4 radians
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Figure 2.4: Power of tests as the angle between the change and the direction of de-
pendency increases. As can be seen, if the change lies in the direction of
dependency, then all methods struggle, which is in line with the theory of
Section 2.4. However, if the change is orthogonal to the dependency struc-
ture the projection method works regardless of whether the dependency is
taken into account or not. H&H Sigma and Var as in Section 3 represent
the panel tests taking into account the true or estimated variances of the
components. All results are empirically size corrected to account for the
size issues seen in Figure 2.1. (sj = 1, Φj = φ, j = 1, . . . , d with d = 200,

‖∆d‖ = 0.05
√
d, corresponding to Case C.3), with φ as given on the x-axis.

weights according to Φd i.e. they move in sync with those weights. If a change is
proportional to Φd it could either be attributed to the noise coming from {ηt} or from
a change, so it will be difficult to detect as we are essentially back in a duplicated
one-dimensional situation and no additional information about the change can be
obtained from the multivariate situation. However, if it is not proportional to Φ,
then it is immediately clear (with probability one) that a change in mean must have
occurred (as the underlying time series no longer moves in sync). This can be seen to
some extent in Figure 2.4, where the different panels in the figure mimic the different
scenarios as outlined above (with a large value of φ being close to the non-invertible
situation).
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2 Change Points and Projections

2.4.2 Misscaled projections with respect to the covariance structure

The analysis in the previous section requires the knowledge or a precise estimate of
the inverse of Σ. However, in many situations such an estimate may not be feasible
or too imprecise due to one or several of the below reasons, where the problems get
worse due to the necessity for inversion

• If d is large in comparison to T statistical estimation errors can accumulate and
identification may not even be possible [Bickel and Levina, 2008].

• The theory can be generalized to time series errors but in this case the covariance
matrix has to be replaced by the long-run covariance (which is proportional to
the spectrum at 0) and is much more difficult to estimate [Aston and Kirch,
2012b, Kirch and Tadjuidje Kamgaing, 2012].

• Standard covariance estimators will be inconsistent under alternatives as they are
contaminated by the change points. Consequently, possible changes have to be
taken into account, but even in a simple at most one change situation it is unclear
how best to generalize the standard univariate approach as in (2.8) as opposed
to (2.7) to a multivariate situation as the estimation of a joint location already
requires an initial weighting for the projection (or the multivariate statistic).
Alternatively, component-wise univariate estimation of the change points could
be done but require a careful asymptotic analysis in particular in a setting with
d→∞.

• If d is large, additional numerical errors may arise when inverting the matrix
[Higham, 2002, Ch 14].

We will now investigate the influence of misspecification or estimation errors on the
behavior of a misscaled oracle oM = M−1∆d in comparison to the misscaled ran-
dom projection rM,d = M−1/2rd, where we only assume that the assumed covariance
structure M is symmetric and positive definite and model A.1 is fulfilled.

The next theorem quantifies the high dimensional efficiency of the misscaled random
projection by generalizing Theorem 2.7 to the misscaled situation.

Theorem 2.8. Let the alternative hold, i.e. ‖∆d‖ 6= 0. Let rd be a random projec-
tion on the d-dimensional unit sphere and rM,d = M−1/2rd be the misscaled random
projection. Then, there exist for all ε > 0 constants c, C > 0, such that

P

(
c 6 E2

1 (∆d, rM,d)
tr
(
M−1/2ΣM−1/2

)
‖M−1/2∆d‖2

6 C

)
> 1− ε,

where tr denotes the trace.

We are now ready to prove the main result of this section stating that the high di-
mensional efficiency of a misscaled oracle can never be worse than the corresponding
misscaled random projection.

Theorem 2.9. Let Assumption A.1 hold. Denote the misscaled oracle by oM =
M−1∆d, then

E2
1 (∆d,oM ) >

‖M−1/2∆d‖2

tr(M−1/2ΣM−1/2)

where tr denotes the trace and equality holds iff there is only one common factor which
is weighted proportional to ∆d,
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Because it is often assumed that components are independent and it is usually fea-
sible to estimate the variances of each component, we consider the correspondingly
misscaled oracles, which are scaled with the identity matrix (pre-oracle) respectively
with the diagonal matrix of variances (quasi-oracle). The quasi-oracle is of particular
importance as it uses the same type of misspecification as the panel statistic discussed
in Section 3 below.

Definition 2.2. (i) The projection po = ∆d is called pre-oracle.

(ii) The projection qo = Λ−1
d ∆d = (δ1/σ

2
1 , . . . , δd/σ

2
d)T , Λd = diag(σ2

1 , . . . , σ
2
d) is

called quasi-oracle, if σ2
j > 0, j = 1, . . . , d.

As with the oracle, these projections should be seen as representatives of a class of
projections.

The following proposition shows that in the important special case of uncorrelated
components, the (quasi-)oracle and pre-oracle are of the same order if the variances in
all components are bounded and bounded away from zero. The latter assumption is
also needed for the panel statistic below and means that all components are on similar
scales. In addition, the quasi-oracle is even in the misspecified situation always better
than an unscaled random projection.

Proposition 2.10. Assume that all variances are on the same scale, i.e. there exist
c, C such that 0 < c 6 σ2

i < C <∞ for i = 1, . . . , d.

a) Let Σ = diag(σ2
1 , . . . , σ

2
d), then

c2

C2
E2

1 (∆d, qo) 6 E2
1 (∆d, po) 6 E2

1 (∆, qo) = ‖Σ−1/2∆d‖2.

b) Under Assumption A.1, it holds

E2
1 (∆d, qo) >

c2

C2

‖∆d‖2

tr(Σ)
.

We are now able to turn to our standard examples:

Case C. 1 (Independent components). If the components are uncorrelated, each with
variance σ2

i , i.e. Σ1 = diag(σ2
1 , . . . , σ

2
d), we get

tr(Σ1) =

d∑
j=1

σ2
j ,

which is of order d if 0 < c 6 σ2
j 6 C < ∞. Proposition 2.10, Theorem 2.7 and

Theorem 2.8 show that in this situation both the high dimensional efficiency of the
pre- and (quasi-)oracle are of an order

√
d better than the correctly scaled and unscaled

random projection.

The next case shows that high dimensional efficiency of misscaled oracles can indeed
become as bad as a random projection:

Case C. 2 (Fully dependend components). As already noted we have to distinguish
two cases:

(i) If ∆d is not a multiple of Φd, then the power depends on the angle of the
projection with Φd with maximal power for an orthogonal projection. So the
goodness of the oracles depends on their angle with the vector Φd.
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(ii) If ∆d is a multiple of Φd, the pre- and quasi-oracle are not orthogonal to the
change, hence they share the same high dimensional efficiency with any scaled
random projection as all random projections are not orthogonal to Φd with prob-
ability 1.

The following case is essentially a mixture between the above two cases and a typical
situation of how dependence between components can be introduced. Letting the
weights of the common factor increase we get closer and closer to the fully dependent
case C.2. For this reason, in addition to the following, we also illustrate the behavior
with finite sample simulations (see Figures 2.4 and 2.5).

Case C. 3 (Mixed case). Let aj = (0, . . . , sj , . . . , 0)T the vector which is sj > 0 at
point j and zero everywhere else, and ad+1 = Φd = (Φ1, . . . ,Φd)

T , aj = 0 for j > d+2.

Then Σ3 = diag(s2
1, . . . , s

2
d) + ΦdΦ

T
d and

tr(Σ3) =

d∑
j=1

s2
j +

d∑
j=1

Φ2
j . (2.12)

The high dimensional efficiency of the pre-oracle can become as bad as for the random
projection if the change ∆d is a multiple of the common factor Φd and there is a
substantial common effect. This is similar to Case C.2 (which can be seen as a limiting
case for increasing ‖Φd‖). Intuitively, the problem is the following: By projecting
onto the change, we want to maximize the signal i.e. the change in the projected
sequence while minimizing the noise. In this situation however, the common factor
dominates the noise in the projection as it essentially adds up in a linear manner, while
the uncorrelated components add up only in the order of

√
d (CLT). Now, projecting

onto ∆d = Φd maximizes not only the signal but also the noise, which is why we
cannot gain anything (but this also holds true for competing procedures as in Section
3 below).

More precisely, in C.3 it holds τ2( po) =
∑d
j=1 s

2
jδ

2
j +

(∑d
j=1 δjΦj

)2

. If additionally

∆d = kΦd, for some k > 0, we get the following high dimensional efficiency for the
pre-oracle by (2.10)

E1(∆d, po) =
‖∆d‖√∑d

i=1 s
2
i

(
δi
‖∆d‖

)2

+ ‖Φd‖2
.

The high dimensional efficiency for the unscaled random projection is given by (confer
Theorem 2.8 and (2.12))

‖∆d‖√∑d
j=1 s

2
j + ‖Φd‖2

.

As soon as sj ,Φj are of the same order, i.e. 0 < c 6 sj ,Φj 6 C < ∞ for all j, the
pre-oracle behaves as badly as the unscaled random projection. The same holds for the
quasi-oracle under the same assumptions. Interestingly, however, in this particular
situation, even the oracle is of the same order as the random projection if the sj are
of the same order, i.e. 0 < c 6 sj < C < ∞. More precisely we get (for a proof we
refer to the Section 5)

E1(∆d,o) =
‖∆d‖√

1 +
∑d
j=1

Φ2
j

s2j

√√√√√∑d
j=1

δ2j
s2j∑d

j=1 δ
2
j

. (2.13)
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(a) No Dependency - φ = 0

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

||

P
o

w
e

r

Oracle

Pre-Oracle

Quasi-Oracle

Random

H&H Sigma

H&H Var

(b) φ = 0.5
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(c) φ = 1

Figure 2.5: Power of tests as the dependency increases. The covariance structure be-
comes closer to degenerate across the three graphs, but in all cases the
pre-oracle and quasi-oracle still outperform random projections, although
they become closer as the degeneracy increases. Here different variances
are used across components, namely si = 0.5 + i/d, Φi = φi, i = 1, . . . , d,
d = 200, angle(Φ,∆d)=π/4, corresponding to Case C.3, and size of change
as given on the x-axis (multiplied by

√
d).

Figure 2.4 shows simulations which confirm the underlying theory in finite samples.

On the other hand, if ∆d is orthogonal to Φd, then the noise from Φd cancels for the
pre-oracle projection and we get the rate

E1(∆d, po) =
‖∆d‖√∑d

i=1 s
2
i

(
δi
‖∆d‖

)2
,

which is of the order ‖∆d‖2 if the sj are all of the same order. Anything between
those two cases is possible and depends on the angle between ∆ and Φd (again see
Figures 2.4 and 2.5 for finite sample simulations).

The following interpretation also explains the above mathematical findings: In situa-
tion C.3, each component has a common factor {ηt} weighted according to Φd plus
some independent noise. If a change occurs in sync with the common factor it will be
difficult to detect as in order to get the correct size, we have to allow for the random
movements of {ηt} thus increasing the critical values in that direction. In directions
orthogonal to it, we only have to take the independent noise into account which yields
comparably smaller noise in the projection. In an economic setting, this driving factor
could for example be thought of as an economic factor behind certain companies (e.g.
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3 Power comparisons with change point tests for panel data

ones in the same industry). If a change occurs in those companies proportional to this
driving factor it will be difficult to distinguish a different economic state of this driving
factor from a mean change that is proportional to the influence of this factor.

We will see in Section 3 that the same statement holds true if we use a panel data (or
multivariate) statistic (which can also be seen in Figures 2.4 and 2.5). As a matter
of fact, the high dimensional efficiency of the misspecified panel statistic (i.e. where
the statistic but not the critical values are constructed under the wrong assumption of
independence between components) will be of the same order as a random projection
for any choice Φd with ΦT

d Φd ∼ d, irrespective of the direction of any change that
might be present.

3 Power comparisons with change point tests for panel
data

In this section, we will compare the power of the above projection tests with corre-
sponding CUSUM tests that take the full multivariate information into account. First
statistics of this type were developed for the multivariate setting with d fixed [Horváth
et al., 1999]. The multivariate change point statistic (using the full multivariate in-
formation and no additional knowledge about the change) for the at most one mean
change is given as a weighted maximum or sum of the following quadratic form

VMd (x) = ZT (x)TAZT (x)T , (3.1)

where ZT (x) = (ZT,1(x), . . . , ZT,d(x))T is defined as in (2.2). The usual choice is
A = Σ−1, where Σ is the covariance matrix of the multivariate observations. The
weighting with Σ−1 has the advantages that it (a) leads to a pivotal limit and (b)
the statistic can detect all changes no matter what the direction. The second remains
true for any positive definite matrix A, the first also remains true for lower rank
matrices with a decorrelation property of the errors, where this latter approach is
essentially a projection (into a lower-dimensional space) as discussed in the previous
sections. For an extensive discussion of this issue for the example of changes in the
autoregressive structure of time series we refer to Kirch et al. [2014+]. The choice
A = Σ−1 corresponds to the correctly scaled case, while the misscaled case corresponds
to the choice A = M−1.

However, this multivariate setup is not very suitable for the theoretic power compari-
son we are interested in because the limit distribution (a sum of d squared Brownian
bridges with covariance matrix Σ1/2AΣ1/2) still depends on d as well as the possible
misspecification. Therefore, a comparison needs to take both the rates, the additive
term and the noise level (which depends also on the misspecification of the covariance)
present in the limit distribution into account. For the panel data settings on the other
hand, where d→∞, all the information about d is contained only in the rates rather
than the limit distribution as in the previous sections. This makes the results inter-
pretable in terms of the high dimensional efficiency. The panel null limit distribution
differs from the one obtained for the projections but they are at least on the same
scale, and not dependent on d nor the covariance structure Σ. Furthermore, the panel
statistic is strongly related to the multivariate statistic so that the same qualitative
statements can be expected, which is confirmed by simulations (results not shown).

We will now introduce the statistic for detecting changes in the mean introduced by
Horváth and Hušková [2012]. Unlike in the above theory for projections, it is necessary
to assume independence between components. Because the proofs are based on a
central limit theorem across components, they cannot be generalized to uncorrelated
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3 Power comparisons with change point tests for panel data

(but dependent) data. For this reason, we cannot easily derive the asymptotic theory
after standardization of the data. This is different from the multivariate situation,
where this can easily be achieved.

We are interested in a comparison of the high dimensional efficiency for correctly
specified covariance, i.e.A = Σ−1, in addition to a comparison in the misspecified case,
A = M−1. The latter has already been discussed by Horváth and Hušková [2012] to
some extent. To be precise, a common factor is introduced as in C.3 and the limit of the
statistic (with A = Λ−1) under the assumption that the components are independent
(i.e. Λ being a diagonal matrix) is considered. Because of the necessity to estimate
the unknown covariance structure for practical purposes, the same qualitative effects
as discussed here can be expected if a statistic and corresponding limit distribution
were available for the covariance matrix Σ.

3.1 Asymptotic behavior for panel change point tests for
independent panels

The above multivariate statistics have been adapted to the panel data setup under the
assumption of independent components by Bai [2010] for estimation as well as Horváth
and Hušková [2012] for testing. Those statistics are obtained as weighted maxima or
sum of the following (univariate) partial sum process

Vd,T (x) =
1√
d

d∑
i=1

(
1

σ2
i

Z2
T,i(x)− bTxc(T − bTxc)

T 2

)
, (3.2)

where ZT,i is as in (2.2) and σ2
i = var ei,1.

The following theorem gives a central limit theorem for this partial sum process (under
the null) from which null asymptotics of the corresponding statistics can be derived.
It was proven by Horváth and Hušková [2012, Theorem 1], under somewhat more
general assumptions allowing in particular for time series errors (in the form of lin-
ear processes). While this makes estimation of the covariances more difficult and less
precise as long-run covariances need to be estimated, it has no effect on the high di-
mensional efficiency. Therefore, we will concentrate on the i.i.d. (across time) situation
in this work to keep things simpler purely in terms of the calculations.

Theorem 3.1. Let Model (1.1) hold with {ei,t : i, t} independent (where the important
assumption is the independence across components) such that var ei,t > c > 0 for all

i and lim supd→∞
1
d

∑d
i=1 E |ei,t|ν < ∞ for some ν > 4. Furthermore, let d

T 2 → 0.
Then, it holds under the null hypothesis of no change

Vd,T (x)
D[0,1]−→

√
2(1− x)2W

(
x2

(1− x)2

)
,

where W (·) is a standard Wiener process.

The following theorem derives the high dimensional efficiency in this setting.

Theorem 3.2. Consider

E2
2 (∆d) =

1√
d
‖Σ−1/2∆d‖2.

Let the assumptions of Theorem 3.1 on the errors be fulfilled, which implies in partic-
ular that Σ = diag(σ2

1 , . . . , σ
2
d), then the following assertions hold
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3 Power comparisons with change point tests for panel data

a) If
√
T E2(∆d)→∞, then{

Vd,T (x)

T D2
d,T (∆)

: 0 6 x 6 1 |pd

}
D[0,1]−→

{(∫ x

0

g(t) dt− x
∫ 1

0

g(t) dt

)2

: 0 6 x 6 1

}

b) If
√
T E2(∆d)→ D1, then

Vd,T (x)
D[0,1]−→

√
2(1− x)2W

(
x2

(1− x)2

)
+

(∫ x

0

g(t) dt− x
∫ 1

0

g(t) dt

)2

D2
1.

c) If
√
T E2(∆d)→ 0, then

{Vd,T (x) : 0 6 x 6 1 |pd}
D[0,1]−→

√
2(1− x)2W

(
x2

(1− x)2

)
a.s.

Equivalent assertions to Corollary 2.5 can be obtained analogously.

Comparing this high dimensional efficiency with the ones given in Theorem 2.4, Propo-
sition 2.6 as well as Theorem 2.7, we note that the high dimensional efficiency of the
full multivariate statistic is an order d1/4 worse than for the oracle but a d1/4 better
than the scaled random projection (also see Figure 2.3). By Theorem 2.4 we also get
an impression on how wrong our assumption on ∆d can be and still get a better effi-
ciency than with the full multivariate information.We can see the finite sample nature
of this phenomena in Figure 2.2.

3.2 Asymptotic behavior for panel change point tests under
dependence between Components

We now turn again to the misspecified situation, where we use the above statistic in
a situation where components are not uncorrelated. Following Horváth and Hušková
[2012], we consider the mixed case C.3 for illustration. The next proposition derives
the null limit distribution for that special case. It turns out that the limit as well as
convergence rates depend on the strength of the contamination by the common factor.

Theorem 3.3. Let Case C.3 hold with ν > 4, 0 < c 6 si 6 C <∞ and Φ2
i 6 C <∞

for all i and some constants c, C and consider Vd,T (x) defined as in (3.2), where
σ2
i = var ei,1 but the rest of the dependency structure is not taken into account. The

asymptotic behavior of Vd,T (x) then depends on the behavior of

Ad :=

d∑
i=1

Φ2
i

σ2
i

.

a) If Ad/
√
d→ 0, then the dependency is negligible, i.e.

Vd,T (x)
D[0,1]−→

√
2(1− x)2W

(
x2

(1− x)2

)
,

where W (·) is a standard Wiener process.

b) If Ad/
√
d→ ξ, 0 < ξ < 1, then

Vd,T (x)
D[0,1]−→

√
2(1− x)2W

(
x2

(1− x)2

)
+ ξ (B2(x)− x(1− x)),

where W (·) is a standard Wiener process and B(·) is a standard Brownian bridge.
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c) If Ad/
√
d→∞, then

√
d Vd,T (x)

Ad

D[0,1]−→ B2(x)− x(1− x),

where {B(x) : 0 6 x 6 1} is a standard Brownian bridge.

Because Ad in the above theorem is not feasible for estimation, this result cannot
be used to construct test statistics with asymptotically correct size. On the other
hand, it indicates that using the limit distribution from the previous section to derive
critical values will result in asymptotically wrong sizes if a stronger contamination
by a common factor is present. The simulations in Figure 2.1 also confirm this fact
and show that the size distortion can be enormous. It does not matter whether the
variance of the components in the panel statistic takes into account the dependency or
simply uses the noise variance (Figure 2.1(a)), or whether a change is accounted for or
not in the estimation (Figure 2.1(b)-(c)). This illustrates, that the full panel statistic
is very sensitive with respect to deviations from the assumed underlying covariance
structure in terms of size.

In the situation of a) and b) above, the dependency structure introduced by the com-
mon factor is still small enough asymptotically to not change the high dimensional
efficiency as given in Theorem 3.2, which is analogous to the proof of Theorem 3.2.
Therefore, we will now concentrate on situation c) in the below proposition, which is
the case where the noise coming from the common factor does not disappear asymp-
totically.

Theorem 3.4. Consider the contiguous alternative sequence

E2
3 (∆d) =

1

Ad
∆T
d diag

(
1

s2
1 + Φ2

1

, . . . ,
1

s2
d + Φ2

d

)
∆d.

Let the assumptions of Theorem 3.3 on the errors be fulfilled and Ad/
√
d → ∞, then

the following assertions hold

a) If
√
T E3(∆d)→∞, then{

Vd,T (x)

T E3(∆)
: 0 6 x 6 1 |pd

}
D[0,1]−→

{(∫ x

0

g(t) dt− x
∫ 1

0

g(t) dt

)2

: 0 6 x 6 1

}

b) If
√
T E3(∆d)→ D2, then

Vd,T (x)−D2 R̃T (x)
D[0,1]−→ B2(x)− x(1− x) +

(∫ x

0

g(t) dt− x
∫ 1

0

g(t) dt

)2

D2
2,

where sup06x61 |R̃T (x)| = OP (1).

c) If
√
T E3(∆d)→ 0, then

{Vd,T (x) : 0 6 x 6 1 |pd}
D[0,1]−→ B2(x)− x(1− x) a.s.

The next corollary shows that the quasi oracle (which is scaled with diag
(

1
s21+Φ2

1
, . . . , 1

s2d+Φ2
d

)
analogously to the panel statistic) has always at least as good a rate as the panel statis-
tic. Additionally, the panel statistic becomes as bad as the corresponding (diagonally)
scaled random projection if Ad/d → A > 0, which is typically the case if the depen-
dency is non-sparse and non-negligible.
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4 Conclusions

Corollary 3.5. Let the assumptions of Theorem 3.3 on the errors be fulfilled, then
the following assertions hold:

a) The high dimensional efficiency of the quasi-oracle is always at least as good as
the one of the misspecified panel statistic, i.e. with Σ = diag(σ2

1 , . . . , σ
2
d) + ΦΦT ,

Λd = diag(σ2
1 , . . . , σ

2
d), it holds

E2
1 (∆d, qo) >

∆T
d Λ−1

d ∆d

1 +Ad
,

where equality holds iff ∆d ∼ Φ.

b) If Ad/d → A > 0, then the high dimensional efficiency of the panel statistic is as
bad as a randomly scaled projection, i.e.

E2
3 (∆d) =

∆T
d Λ−1

d ∆d

d
(Ad + o(1)).

In particular, for Ad/d → A > 0 the misscaled panel statistic is always as bad as the
random projection, this only holds for the misscaled (quasi-) projection if ∆d ∼ Φ.
This effect can be clearly see in Figures 2.4 and 2.5, where in all cases H&H Sigma
refers to the panel statistic using known variance, and H&H Var uses an estimated
variance.

4 Conclusions

The primary aims of this paper were to introduce projection based statistics into the
analysis of change points in high dimensions and compare and contrast these with
the panel based statistics that are currently available. In summary, the following
two assertions were proven: First, a suitable projection will substantially increase the
power of detection but at the cost of a loss in power if the change is at a large angle
away from the projection vector. Second, projections are more robust compared to
the panel based statistic with respect to misspecification in the covariance structure
both in terms of size and power.

One of the main tools for the comparison of the different tests in this paper is the
use of relative efficiency rates, particularly the concept of high dimensional efficiency.
This essentially allows a comparison of the magnitude of changes that can be detected
asymptotically as the number of dimensions increases. All the tests in the paper are
benchmarked against random projections. Because the space covered by far away
angles increases rapidly with the dimension, the power of these becomes very poor
in higher dimensions rendering random projections useless in practice for detecting
change points. The panel statistic [Bai, 2010, Horváth and Hušková, 2012] test works
well in situations where the panels are independent across dimension, and there is
little to no information about the direction of the change. However, as soon as depen-
dency is present, the size properties of these statistics become difficult and their high
dimensional efficiencies mimic those of random projections. Misspecification of the
covariance structure can be problematic for all tests. However, if the direction of the
likely change is known, then it is always preferable to use the corresponding projection
(scaled with the assumed covariance structure), rather than either the panel statistic
or a random projection, regardless of whether the covariance is misspecified or not.

This results in this paper raise many questions for future work. It would be of con-
siderable interest to determine whether projections can be derived using data driven
techniques, such as sparse PCA, for example, and whether such projections would be
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5 Proofs

better than random projections. Preliminary work suggests that this may be so in
some situations but not others. Further many multiple change point procedures use
binary segmentation or related methods to find the multiple change points, so much
of the work here would apply equally in suitably defined sub intervals which are then
assumed to contain at most one change. In addition, all the results here have been
assessed with respect to choosing a single projection for the test which is optimal if
the direction of the change is known. However, in some situations only qualitative
information is known or several change scenarios are of interest. Then, it could be
very beneficial to determine how best to combine this information into testing proce-
dures based on several projections, where a standard subspace approach may not be
ideal as the information about the likely direction of changes is lost. Finally, while the
framework in this paper concentrates on tests with a given size, as soon as a-priori in-
formation is considered, then it is natural to ask whether related Bayesian approaches
are of use, and indeed quantifying not only the a-priori direction of change, but also
its uncertainty, prior to conducting the test is a natural line of further research.

5 Proofs

Proof of Theorem 2.1. We need to prove the following functional central limit
theorem for the triangular array of projected random variables Yt,d =

∑d
j=1 pj(d)ej,t(d)

given the (possibly random) projection pd = (p1(d), . . . , pd(d))T : 1√
Tτ2(pd)

bTxc∑
t=1

Yt,d : 0 6 x 6 1 |pd

 D[0,1]−→ {W (x) : 0 6 x 6 1} a.s.,

(5.1)

where {W (·)} denotes a standard Wiener process.

The proof for tightness is analogous to the one given in Theorem 16.1 of Billingsley
[1968] as it only depends on the independence across time (which also holds condition-
ally given pd due to the independence of pd and {et(d)}). Similarly, the proof for the
convergence of the finite dimensional distributions follows the proof of Theorem 10.1
in Billingsley [1968], where we need to use the Lindeberg-Levy-version of the univari-
ate central limit theorem for triangular arrays. More precisely, we need to prove the
Lindeberg condition given by

E

(
Y 2

1,d

τ2(pd)
1{Y1,d/τ(pd)>ε

√
T} |pd

)
→ 0 a.s.

for any ε > 0. The following Lyapunov-type condition implies the above Lindeberg
condition:

E

(∣∣∣∣ Y1,d

τ(pd)

∣∣∣∣ν |pd) = E

(∣∣∣∣pTd e1(d)

τ(pd)

∣∣∣∣ν |pd) = o(T ν/2−1) a.s., (5.2)

where ν > 2 as given in the theorem. Let

p̃d =
pd√

pTd cov e1(d)pd

,

then the above Lyapunov condition is equal to

E
(∣∣p̃Td e1(d)

∣∣ν |pd) = o(T ν/2−1) a.s.
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In the situation of a) cov e1(d) =
∑
j>1 aj(d)aTj (d) and we get by the Rosenthal

inequality (confer e.g. Lin and Bai [2010, 9.7c])

E

∣∣∣∣∣∣
n∑

j=m

p̃Td aj(d)ηj,1(d)

∣∣∣∣∣∣
ν

|pd


6 O(1)

n∑
j=m

∣∣p̃Td aj(d)
∣∣ν E |ηj,1(d)|ν +O(1)

 n∑
j=m

(
p̃Td aj(d)

)2
var ηj,1(d)

ν/2

,

where the right-hand side is bounded for any m,n with a bound that does not depend
on T or d and converges to zero for m,n→∞ as E |ηj(d)|ν 6 C hence var ηj(d) 6 1+C
and by definition of p̃d it holds

∑n
j=m |p̃Td aj(d)|2 6 p̃Td cov e1(d) p̃d 6 1, hence also

|p̃Td aj(d)|ν 6 |p̃Td aj(d)|2 and
∑n
j=m |p̃Td aj(d)|ν 6 1.

Consequently, the infinite series exists in an Lν-sense with the following uniform (in
T and d) moment bound

E
(∣∣p̃Td e1(d)

∣∣ν |pd) = O(1) = o(T ν/2−1) a.s. (5.3)

To prove the Lyapunov-condition under the assumptions of b) we use the Jenssen-
inequality which yields

E
(∣∣p̃Td e1(d)

∣∣ν |pd) = ‖p̃d‖ν1 E

((
d∑
i=1

|p̃i,d|
‖p̃d‖1

|ei,1(d)|

)ν
|pd

)

6 ‖p̃d‖ν1
d∑
i=1

|p̃i,d|
‖p̃d‖1

E |ei,1(d)|ν 6 C

 ‖pd‖1√
pTd cov(e1(d))pTd

ν

= o(T ν/2−1) a.s.

(5.4)

Proof of Lemma 2.2. With the notation of the proof of Theorem 2.1 both estima-
tors (as functions of pd) fulfill (j = 1, 2)

τ̂2
j,d,T (pd)

τ2(pd)
= τ̂2

j,d,T (p̃d).

First by the independence across time we get by the van Bahr-Esseen inequality (confer
e.g. Lin and Bai [2010, 9.3 and 9.4]) for some constant C > 0, which may differ from
line to line,

Epd

∣∣∣∣∣∣
b∑

j=a+1

((
p̃Td ej(d)

)2 − 1
)∣∣∣∣∣∣
ν/2

6 C(b− a)max(1,ν/4) Epd

∣∣∣(p̃Td e1(d)
)2 − 1

∣∣∣ν/2
6 C (b− a)max(1,ν/4) max

(
1,Epd

∣∣p̃Td e1(d)
∣∣ν)

6

C(b− a)max(1,ν/4) a.s., in a),

C(b− a)max(1,ν/4) max

(
1,

(
‖pd‖1√

pTd cov e1(d)pd

)ν)
, in b),

(5.5)

by (5.3) resp. (5.4), where Epd denotes the conditional expectation given pd. An
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application of the Markov-inequality now yields for any ε > 0

P

 1

T

∣∣∣∣∣∣
T∑
j=1

((
p̃Td ej(d)

)2 − 1
)∣∣∣∣∣∣ > ε

∣∣∣pd


6

{
C
εν/2

T−ν/2+max(1,ν/4) a.s., in a),
C
εν/2

T−ν/2+max(1,ν/4)o(T ν/2−ν/min(ν,4)) a.s., in b),

→ 0 a.s.

Similar arguments yield

P

 1

T

∣∣∣∣∣∣
T∑
j=1

p̃Td ej(d)

∣∣∣∣∣∣ > ε
∣∣∣pd

→ 0 a.s.

proving a) and b) for τ̂2
1,d,T (pd).

From (5.5) it follows by Theorem B.1 resp. B.4 in Kirch [2006]

Epd max
16k6T

∣∣∣∣∣∣
k∑
j=1

((
p̃Td ej(d)

)2 − 1
)∣∣∣∣∣∣
ν/2

6


CTmax(1,ν/4)(log T )

(4−ν)+ν
2(4−ν) a.s., in a),

CTmax(1,ν/4)(log T )
(4−ν)+ν
2(4−ν) max

(
1,

(
‖pd‖1√

pTd cov e1(d)pd

)ν)
, in b),

→ 0 a.s.

An application of the Markov inequality now yields for any ε > 0

P

 max
16k6T

1

T

∣∣∣∣∣∣
k∑
j=1

(
(
(
p̃Td ej(d)

)2 − 1
)∣∣∣∣∣∣ > ε

∣∣∣pd
→ 0 a.s.

By the independence across time it holds
T∑

j=k+1

((
p̃Td ej(d)

)2 − 1
)

: 1 6 k 6 T

 L
=


T−k∑
j=1

((
p̃Td ej(d)

)2 − 1
)

: 1 6 k 6 T

 ,

which implies

P

 max
16k6T

1

T

∣∣∣∣∣∣
T∑

j=k+1

((
p̃Td ej(d)

)2 − 1
)∣∣∣∣∣∣ > ε

∣∣∣pd
→ 0 a.s.

Similar assertions can be obtained along the same lines for max16k6T
1
T

∣∣∣∑k
j=1 p̃Td ej(d)

∣∣∣
as well as max16k6T

1
T

∣∣∣∑T
j=k+1 p̃Td ej(d)

∣∣∣, which imply the assertion for τ̂2
2,d,T (pd).

Proof of Corollary 2.3. By an application of the continuous mapping theorem
and Theorem 2.1 we get the assertions for the truncated maxima resp. the sums over
[τT, (1−τ)T ] for any τ > 0 towards equivalently truncated limit distributions. Because
we assume independence across time (with existing second moments) the Hájek-Rényi
inequality yields for all ε > 0

P

(
max

16k6τT
w(k/T )

∣∣∣∣∣
k∑
t=1

p̃Td et(d)

∣∣∣∣∣ > ε
∣∣∣pd)→ 0 a.s.

P

(
max

(1−τ)T6k6
w(k/T )

∣∣∣∣∣
T∑

t=k+1

p̃Td et(d)

∣∣∣∣∣ > ε
∣∣∣pd)→ 0 a.s.
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as τ → 0 uniformly in T , where the notation of the proof of Theorem 2.1 has been
used. This in addition to an equivalent argument for the limit process shows that the
truncation is asymptotically negligible proving the desired results.

Proof of Theorem 2.4. Under alternatives it holds

Ud,T (x)

τ(pd)
=
Ud,T (x; e)

τ(pd)
+ sgn(∆T

d pd)
√
T E1(∆d,pd)

 1

T

bTxc∑
i=1

g(i/T )− bTxc
T 2

T∑
j=1

g(j/T )

 ,

where Ud,T (x; e) is the corresponding functional of the error process. By Theorem 2.1
it holds{

Ud,T (x; e)

τ(pd)
: 0 6 x 6 1 |pd

}
D[0,1]−→ {B(x) : 0 6 x 6 1} a.s.

Furthermore, by the Riemann-integrability of g(·) it follows

sup
06x61

∣∣∣∣∣∣ 1

T

bTxc∑
i=1

g(i/T )− bTxc
T 2

T∑
j=1

g(j/T )−
(∫ x

0

g(t) dt− x
∫ 1

0

g(t) dt

)∣∣∣∣∣∣→ 0.

Putting everything together yields the assertions of the theorem.

Proof of Corollary 2.5. An application of Theorem 2.4 a) yields for any τ > 0

max
τ6k/T61−τ

w2(k/T )
U2
d,T (k/T )

τ2(pd)

= T E2
1 (∆d,pd)

(
sup

τ6x61−τ
w2(x)

(∫ x

0

g(t) dt− x
∫ 1

0

g(t) dt

)2

+ oPpd
(1)

)
a.s.,

where Ppd denotes the conditional probability given pd. This implies assertion a),

because by assumption supτ6x61−τ w
2(x)

(∫ x
0
g(t) dt− x

∫ 1

0
g(t) dt

)2

> 0 for some

τ > 0, so that the above term becomes unbounded asymptotically. In the situation of
b) it follows similarly (where the uniformity at 0 and 1 follows by the assumptions on
the rate of divergence for w(·) at 0 or 1)

sup
0<x<1

w2(x)

∣∣∣∣∣ U2
d,T (x)

τ2(pd)T E2
1 (∆d,pd)

− ((x− ϑ)+ − x(1− ϑ))
2

∣∣∣∣∣ = oPpd
(1) a.s.,

which implies assertion b) by standard arguments on noting that

ϑ̂T = arg max
06x61

w2(x)
U2
d,T (x)

τ2(pd)T E2
1 (∆d,pd)

, ϑ = arg max
06x61

w2(x) ((x− ϑ)+ − x(1− ϑ))
2
.

Proof of Proposition 2.6. The assertion follows from

τ2(pd) = pTd Σpd = ‖Σ1/2pd‖2,
|〈∆d,pd〉| = (Σ−1/2∆d)

T (Σ1/2pd) = ‖Σ−1/2∆d‖ ‖Σ1/2pd‖ cos(αΣ−1/2∆d,Σ1/2pd).

Proof of Theorem 2.7. Let Xd = (X1, . . . , Xd)
T be N(0,Id), then by Marsaglia

[1972] it holds rd
L
= (X1, . . . , Xd)

T /‖(X1, . . . , Xd)
T ‖ and it follows by (2.10)

E2
1 (∆d,Σ

−1/2rd)
d

‖Σ−1/2∆d‖2
L
=

∣∣∣XT
d Σ−1/2 ∆d

‖Σ−1/2∆d‖

∣∣∣2
XT
dXd

EXT
dXd
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Since the numerator has a χ2
1 distribution (not depending on d), there exist for any

ε > 0 constants 0 < c1 < C1 <∞ such that

sup
d>1

P

c1 6

∣∣∣∣∣XT
d Σ−1/2 ∆d

‖Σ−1/2∆d‖

∣∣∣∣∣
2

6 C1

 > 1− ε.

Furthermore, the denominator has a χ2
d-distribution divided by its expectation, con-

sequently an application of the Markov-inequality yields for any ε > 0 the existence of
0 < C2 <∞ such that

sup
d>1

P

(
XT
dXd

EXT
dXd

> C2

)
6 ε.

By integration by parts we get E
(
XT
dXd

)−1

6 2/d for d > 3 so that another ap-

plication of the Markov-inequality yields that for any ε > 0 there exists c2 > 0 such
that

lim sup
d→∞

P

(
XT
dXd

EXT
dXd

6 c2

)
6 ε,

completing the proof of the theorem by standard arguments.

Proof of Theorem 2.8. Let Xd = (X1, . . . , Xd)
T be N(0,Id), then as in the proof

of Theorem 2.7 it holds

E2
1 (∆,M−1/2rd)

tr(M−1/2ΣM−1/2)

‖M−1/2∆d‖2
L
=

∣∣∣XT
d M−1/2 ∆d

‖M−1/2∆d‖

∣∣∣2
XT
d M−1/2ΣM−1/2Xd

tr(M−1/2ΣM−1/2)

.

The proof of the lower bound is analogous to the proof of Theorem 2.7 by noting that
(A = M−1/2ΣM−1/2)

E XTAX = E

d∑
i,j=1

ai,jXiXj =

d∑
i,j=1

ai,jδi,j =

d∑
i=1

ai,i = tr(A).

For the proof of the upper bound, first note that by a spectral decomposition it holds

XTM−1/2ΣM−1/2X

tr(M−1/2ΣM−1/2)

L
=

d∑
j=1

αjX
2
j , for some 0 < αd 6 . . . 6 α1,

d∑
j=1

αj = 1.

From this we get on the one hand by the Markov inequality

P

 d∑
j=1

αjX
2
j 6 c

 6 P (α1X
2
1 6 c) 6

(
c

α1

)1/4

E(|X2
1 |−1/4),

where E(|X2
1 |−1/4) = Γ(1/4)/(21/4

√
π) exists (as can be seen using the density for a

χ2
1-distribution). On the other hand it holds for any c 6 1/2 by another application

of the Markov inequality

P

 d∑
j=1

αjX
2
j 6 c

 6 P

∣∣∣∣∣∣
d∑
j=1

αjX
2
j − 1

∣∣∣∣∣∣ > 1/2

 6 8

d∑
i=1

α2
i 6 8α1.
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By chosing c = min(1/2, (E(|X2
1 |−1/4))−4/8 ε5) we finally get

sup
0<αd6...6α1,

∑d
i=1 αi=1

P

 d∑
j=1

αjX
2
j 6 c


6 sup

0<αd6...6α1,
∑d
i=1 αi=1

min

(
ε

(
ε

8α1

)1/4

, 8α1

)
6 ε,

completing the proof.

Proof of Theorem 2.9. By the Cauchy-Schwarz inequality

τ2(M−1∆d) = ∆T
d M−1

∑
j>1

aja
T
j M−1∆d =

∑
j>1

(aTj M−1∆d)
2 6

∑
j>1

aTj M−1aj ∆T
d M−1∆d

= tr

M−1/2
∑
j>1

aja
T
j M−1/2

 ∆T
d M−1∆d,

which implies the assertion by (2.10).

Proof of Proposition 2.10. Assertion a) follows from

|〈∆d, po〉|2 =

(
d∑
i=1

δ2
i,T

σ2
i

σ2
i

)2

> c2

(
d∑
i=1

δ2
i,T

σ2
i

)2

= c2 |〈∆d, qo〉|2 ,

τ2( po) =
T
po Σ po =

d∑
i=1

δ2
i,T

σ2
i

σ4
i 6 C2 |〈∆d, qo〉| .

Concerning b) first note that by the Cauchy-Schwarz inequality with Λ = diag(σ2
1 , . . . , σ

2
d)

τ2( qo) =
∑
j>1

(∆T
d Λ−1aj)

2 6 ∆T
d Λ−2∆d

∑
j>1

aTj aj 6
∆T
d ∆d

c2
tr(Σ).

This implies assertion b) by (2.10) on noting that

|∆T
d Λ−1∆d|2 >

|∆T
d ∆d|2

C2
.

Proof of Equation 2.13. By Proposition 2.6 it holds for ∆d = kΦd

E2
1 (∆d,o) = ‖Σ−1/2∆d‖2 = ∆T

d (D + ΦdΦ
T
d )−1∆d,

where D = diag(s2
1, . . . , s

2
d)
T . Hence

∆T
d (D + ΦdΦ

T
d )−1∆d = (D−1/2∆d)

T
(
Id + (D−1/2Φd)(D

−1/2Φd)
T
)−1

D−1/2∆d

=
(D−1/2∆d)

TD−1/2∆d

1 +D−1/2ΦT
dD

−1/2Φd

,

where the last line follows from the fact that D−1/2∆d = kD−1/2Φd is an eigenvector
of Id + (D−1/2Φd)(D

−1/2Φd)
T with eigenvalue 1 + (D−1/2Φd)

TD−1/2Φd hence also
for the inverse of the matrix with inverse eigenvalue.

Proof of Theorem 3.2. Similarly as in the proof of Theorem 2.4 it holds

ZT,i(x) = ZT,i(x; e) + δi,T
√
T

 1

T

bTxc∑
j=1

g(j/T ) +
bTxc
T 2

T∑
j=1

g(j/T )

 ,

30



5 Proofs

where ZT,i(x; e) is the corresponding functional for the error sequence (rather than
the actual observations). From this it follows

Vd,T (x) = Vd,T (x; e) + T E2
2 (∆d)

(∫ x

0

g(t) dt− x
∫ 1

0

g(t) dt+ o(1)

)
+RT (x),

where RT (x) is the mixed term given by

RT (x) =
2
√
T√
d

d∑
i=1

δi,T
σ2
i

ZT,i(x; e)

(∫ x

0

g(t) dt− x
∫ 1

0

g(t) dt+ o(1)

)
which by an application of the Hájek -Rényi inequality (across time) yields

P

(
sup

06x61
|RT (x)| > c

)
= O (1)

1

c2
T

1

d

d∑
i=1

δ2
i

σ2
i

= OP (1)
1

c2
√
d
T E2(∆d).

From this the assertions follow by an application of Theorem 3.1.

Proof of Theorem 3.3. The proof follows closely the proof of (28) – (30) in Horváth
and Hušková [2012] but where we scale diagonally with the true variances. We will give
a short sketch for the sake of completeness. The key is the following decomposition

Vd,T (x)

=
1√
d

d∑
i=1

 s2
i

s2
i + Φ2

i

1

T

bTxc∑
t=1

ηi,t(d)− bTxc
T

T∑
t=1

ηi,T (d)

2

− bTxc (T − bTxc)
T 2


+

2√
d

 d∑
i=1

Φisi
s2
i + Φ2

i

1√
T

bTxc∑
t=1

ηi,t(d)− bTxc
T

T∑
t=1

ηi,T (d)

 1√
T

bTxc∑
t=1

ηd+1,t(d)− bTxc
T

T∑
t=1

ηd+1,t(d)


+

1

T

bTxc∑
t=1

ηd+1,t(d)− bTxc
T

T∑
t=1

ηd+1,t(d)

2

1√
d
Ad.

The first term converges to the limit given in a). To see this, note that the proof of
the Lyapunov condition in Horváth and Hušková [2012] following equation (39) still
holds because s2

i /(s
2
i + Φ2

i ) is uniformly bounded from above by assumption (showing
that the numerator is bounded) while again by assumption

1

d

d∑
i=1

s4
i

(s2
i + φ2

i )
2
> D > 0,

showing that the denominator is bounded. Similarly, the proof of tightness in Horváth
and Hušková [2012] (equations (43) and following) remains valid. The asymptotic
variance remains the same under a) and b) because by assumption∣∣∣∣∣1d

d∑
i=1

s4
i

(s2
i + Φ2

i )
2
− 1

∣∣∣∣∣ 6 3

d
Ad → 0.

The middle term in the above decomposition is bounded by an application of the Hájek
-Rényi inequality

P

 sup
0<x<1

1√
d

∣∣∣∣∣∣
d∑
i=1

Φisi
s2
i + Φ2

i

1√
T

bTxc∑
t=1

ηi,t(d)− bTxc
T

T∑
t=1

ηi,T (d)

∣∣∣∣∣∣ > D


= O(1)

1

d

d∑
j=1

φ2
i s

2
i

(s2
i + φ2

i )
2

= O(1)
1

d
Ad,
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which converges to 0 for a) and b) – for c) we multiply the original statistic by
√
d/Ad,

which means this term is multiplied with d/A2
d leaving us with 1/Ad which converges to

0 ifAd/
√
d→∞. Similarly, we can bound 1√

T

(∑bTxc
t=1 ηd+1,t(d)− bTxcT

∑T
t=1 ηd+1,t(d)

)
,

showing that the middle term is asymptotically negligible. The assertions now follow
by an application of the functional central limit theorem for

1
T

(∑bTxc
t=1 ηd+1,t(d)− bTxcT

∑T
t=1 ηd+1,t(d)

)2

.

Proof of Theorem 3.4. The proof is analogous to the one of Theorem 3.2 on noting

that E2
3 (∆d) =

√
d

Ad
E2

2 (∆d) and σ2
i = s2

i +Φ2
i by using Theorem 3.3 c) above. Concern-

ing the remainder term R̃T (x) note that ei,t = siηi,t + Φiηd+1,t, so that the remainder
term can be split into two terms. The first term can be dealt with analogously to

the proof of Theorem 3.2 and is of order OP

(√
1
Ad

TE3(∆d)
)

, while for the second

summand we get by an application of the Cauchy-Schwarz-inequality

sup
06x61

∣∣∣∣∣∣ 1

Ad

d∑
i=1

δiφi
σ2
i

bTxc∑
t=1

ηd+1,t −
bTxc
T

T∑
t=1

ηd+1,t

∣∣∣∣∣∣ = OP (
√
T )

√√√√∑d
i=1

δ2i
σ2
i

Ad

= O

(√
T E2

3 (∆d)

)
.

Proof of Corollary 3.5. By an application of the Cauchy-Schwarz inequality it
holds

∆T
d Λ−1

d ΣΛ−1
d ∆d =

d∑
i=1

δ2
i,T

s2
i

(s2
i + Φ2

i )
2

+

(
d∑
i=1

δi,TΦi
s2
i + Φ2

i

)2

6
d∑
i=1

δ2
i,T

σ2
i

(
1 +

d∑
i=1

Φ2
i

σ2
i

)
= ∆T

d Λ−1
d ∆d (1 +Ad),

which implies assertion a) on noting that

E2
1 (∆d, qo) =

(∆T
d Λ−1

d ∆d)
2

∆T
d Λ−1

d ΣΛ−1
d ∆d

.

b) This follows immediately from Theorem 2.8 since by 0 < c 6 s2
j 6 C < ∞ as well

as as Φ2
i 6 C, it follows that

‖∆d‖2 ∼∆T
d diag

(
1

s2
1 + Φ2

1

, . . . ,
1

s2
d + Φ2

d

)
∆d.
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