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Abstract

In this paper, we show that quantum memory for qudit states encoded in a
single photon pulsed optical field has a conceptually simple modular realization
using only passive linear optics and coherent feedback. We exploit the idea that
two decaying optical cavities can be coupled in a coherent feedback configuration to
create an internal mode of the coupled system which is isolated and decoherence-free
for the purpose of qubit storage. The qubit memory can then be switched between
writing/read-out mode and storage mode simply by varying the routing of certain
freely propagating optical fields in the network. It is then shown that the qubit
memories can be interconnected with one another to form a qudit quantum memory.
We explain each of the phase of writing, storage, and read-out for this modular
quantum memory scheme. The results point a way towards modular architectures
for complex compound quantum memories.
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1 Introduction and Background

Quantum memories that can store classical and/or quantum information are of fundamen-
tal importance in various anticipated quantum information technologies. For example, in
quantum communication, quantum memories can be used to store entangled photons and
form part of a quantum repeater for long distance distribution of entanglement [1]. In
particular, optical quantum memories that operate based on light-matter interaction, have
emerged as attractive candidate realizations of quantum memories [2].

Experimental technologies for optical quantum memories can take on different forms,
including optical delay lines, optical cavities, and trapped atomic ensembles; see [2] for a
review of recent developments in optical quantum memories and [3] for their prospective
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applications, such as on-demand single photon sources. A class of optical quantum mem-
ories based on atomic ensembles are photon-echo memories, which includes the so-called
gradient-echo memories (GEM) (also going by the name controlled reversible inhomo-
geneous broadening (CRIB)). Modelling of GEM as an infinite cascade of passive open
quantum harmonic oscillators has been reported in [4], using the formalism of quantum
stochastic differential equations [5, 6] and the series product for Markovian open quantum
systems [7]. Theoretical work has characterized the form of the wavepacket required for
perfect absorption of a single photon optical state by a two-level system, the so-called ris-
ing exponential pulse [8]. An experiment reported in [9] demonstrates that, in the regime
of low average photon numbers, a single atom has a higher excitation probability when
driven by a coherent state with a rising exponential envelope. Following this, a recent
study of linearly coupled networks of open quantum harmonic oscillators (realized as op-
tical cavities or as a collective description of an atomic ensemble) as quantum memories
[10] has lead to the formulation of the so-called zero-dynamics principle for perfect storage
of a single photon optical state in this class of memories. This principle allowed a simple
derivation of the form of the single photon wavepacket for perfect absorption by this class
of memories. It turns out that the wavepacket is also of rising exponential type, as in
[8]. The present work is partly inspired by the linear quantum memory models studied
in [4, 10].

Quantum memories as quantum systems are very fragile and are susceptible to un-
wanted interactions with its ambient environment, resulting in destruction of superpo-
sition states prepared in that system, a phenomena known as decoherence. It is widely
accepted that some form of control, be it open-loop control techniques such as dynamical
decoupling, optimal control theory, etc, or quantum feedback control techniques, will be
essential to the operation of emerging complex quantum technologies [11]; see [12, 13] for
recent surveys of quantum control. In the context of quantum memories, in [14] dynam-
ical decoupling has been used to increase the storage time of classical light in an atomic
ensemble. One form of quantum feedback control is coherent feedback [15], in which an-
other quantum system, a quantum controller, is attached in a feedback interconnection
with the controlled system without the intervention of any measurements in the feedback
loop. To date, various theoretical proposals of coherent feedback for different applications
[16, 17], as well as experimental demonstrations [18], have been reported in the literature.
Coherent feedback will play a key role in this work as an enabling tool.

In this paper, we propose three principles that lead to a modular architecture for quan-
tum memories that store qudit states encoded in pulsed optical fields. The first principle
is to create a decoherence-free subsystem from two open optical cavity systems, even
though individually none of them have a decoherence-free subsystem, by interconnecting
them in coherent feedback loop. (After the completion of this work we became aware that
Yamamoto had earlier independently arrived at the same idea [19]. However, our inter-
connection differs from the Type-1 and Type-2 interconnections studied in [19]). Storage
of light in optical cavities is noted to suffer from limited efficiency due to a trade-off be-
tween short cycle of the cavities and long storage, suggesting they may not be suitable
as quantum memories [2]. However, the fact that two optical cavities can be connected
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in feedback to create a decoherence-free subsystem that, in the ideal situation, is com-
pletely protected from decoherence, has not been exploited before. This suggests that
the full potential of optical cavities as quantum memories has yet to be explored. The
second principle is that the system of two cavities can be readily switched from writing
mode and storage mode for a qubit memory by merely rerouting some propagating fields
that interconnect them (with the light being stored in the decoherence free subsystem).
Finally, the third principle is that the basic quantum memory formed using the first and
second principles from a module of which several can be connected together to form a
compound quantum memory for storing qudit states.

The paper exploits the interplay between decoherence-free subsystems, passive linear
models of quantum memories, and certain fundamental notions from modern control
theory [20, 10]. It is also partly motivated by a theory of coherent feedback control
for disturbance attenuation [17] that was subsequently confirmed in a tabletop quantum
optics experiment in [21]. Coherent light was injected into one mirror of a bow-tie (optical)
cavity, referred to as the plant, with two partially transmitting mirrors. The cavity plant
is coupled in a feedback interconnection to another bow-tie cavity acting as a coherent
feedback controller. When the controller cavity is appropriately designed, broadband
destructive interference is engineered resulting in light being blocked out of one of the
plant mirrors. This type of control strategy is relevant for quantum memories to minimize
leakage of the stored state out of the memory, in accordance with the zero-dynamics
principle in [10].

Notation. ı =
√
−1, ∗ denotes the conjugate of a complex number or the adjoint/Hermitian

conjugate of a Hilbert space operator. If X = [Xjk] is a matrix of complex numbers or
Hilbert space operators then X∗ = [X∗kj], X

# = [X∗jk], and X> = [Xkj]. tr(·) denotes the
trace of a matrix or an operator.

2 Realization of a basic qubit quantum memory

We begin by illustrating the basic principles for a single qubit quantum memory using
passive linear optics and coherent feedback. This will form the basic modular component
that will be extended to a qudit quantum memory in the next section.

The state to be stored is encoded in a “flying” continuous-mode single photon qubit
of the form |ψ〉 = α|Ω〉+β|1ξ〉, with |α|2 + |β|2 = 1. Here |Ω〉 denotes the vacuum state of
the field (i.e., the vacuum vector on the Fock space of the field) and |1ξ〉 is a continuous-
mode single photon state with temporal wavepacket ξ satisfying

∫∞
−∞ |ξ(s)|

2ds = 1 [22].

It is given by |1ξ〉 = B∗(ξ)|Ω〉, where B∗(ξ) =
∫∞
−∞ ξ(s)b(s)

∗ds and b(t) is quantum white
noise satisfying the commutation relation [b(t), b∗(s)] = δ(t− s) [23, 24, 7, 11]. Note that
B(ξ) satisfies the single mode oscillator commutation relation [B(ξ), B∗(ξ)] = 1 and the
temporal wavepacket ξ gives the probability of detecting a single photon at time t as∫ t
−∞ |ξ(s)|

2ds.

Consider two optical cavities with two partially transmitting mirrors which, following
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Figure 1: (color online) The plant (top) and controller optical cavities with two pairs of
input and output ports.

[17], we refer to as the “plant”, denoted with a subscript p, and the “controller”, denoted
by the subscript c; see Fig. 1. Each optical cavity j ∈ {p, c} has two pairs of input
and output ports (physically realized as partially transmitting mirrors) through which a
propagating optical field can enter and leave the cavity. Optical fields can enter through
the top port labelled with the subscript (j, 1) and exit through the output port labelled
with the same subscript, and through the bottom port labelled with the subscript (j, 2)
and exit through the output port labelled with the same subscript. The field entering
through the port (j, k) has annihilation operator B(j,k)(t) =

∫ t
0
bin,(j,k)(s)ds, while the

field exiting the same port has annihilation field operator Y(j,k)(t) =
∫ t
0
bout,(j,k)(s)ds, with

bin,(j,k)(t) (resp., bout,(j,k)(t) ) the associated quantum white noise process for the incoming
(resp., outgoing) field into (resp., out of) port (j, k).

With the index j ∈ {c, p}, the Heisenberg-Langevin equation in a rotating frame with
respect to the cavities’ resonance frequency (taken to be identical for both cavities) for the
plant and controller is given by the well-known quantum stochastic differential equation
(QSDE)∗, see [5, 6, 25, 23, 24]:

daj = −γj
2
ajdt−

√
κj,1dB(j,1) −

√
κj,2dB(j,2),

dY(j,1) =
√
κj,1ajdt+ dB(j,1),

dY(j,2) =
√
κj,2ajdt+ dB(j,2),

where γj = κj,1+κj,2 is the total decay rate for cavity j, aj is the cavity mode for the plant
(j = p) or controller (j = c) satisfying the canonical commutation relations [aj, ak] = 0
and [aj, a

∗
k] = δjk, with δjk denoting the Kronecker delta.

Set the parameters of the two optical cavities to be identical: κc,j = κp,j =
√
γ/2

for j = 1, 2 and hence γc = γp = γ. Consider first the interconnection of the plant and
controller as shown inside the solid box in Fig. 2 (b). We call this Qubit Configuration 2.
Note that in the figure we have introduced an additional input field Baux and an associated
output field Yaux to help make clear and explicit the rerouting of optical fields in the qubit

∗We will often omit the time variable t for simplicity.
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Figure 2: (color online) The two configurations of a qubit memory module consisting of
the plant and controller optical cavities, (a) Qubit Configuration 1 (left), and (b) Qubit
Configuration 2.

network when the configuration is switched to Qubit Configuration 1 on the left of the
figure. The rerouting occurs inside the small dashed dotted green colored boxes in both
configurations. The interconnected system then has two outputs Y(p,2)(t) (at the bottom)
and Y(c,2)(t) (on the right).

The Heisenberg-Langevin equation of the closed-loop system in Qubit Configuration
2 is (see Appendix A)[

dap
dac

]
=

[
−γ/2 −γ/2
−γ/2 −γ/2

] [
ap
ac

]
dt−

[ √
γ/2

√
γ/2√

γ/2
√
γ/2

] [
dB(c,1)

dB(p,1)

]
, (1)[

dY(p,2)
dY(c,2)

]
=

[ √
γ/2

√
γ/2√

γ/2
√
γ/2

] [
ac
ap

]
dt+

[
dB(c,1)

dB(p,1)

]
. (2)

Now, observe that the matrix

A2 =

[
−γ/2 −γ/2
−γ/2 −γ/2

]
,

has eigenvalues 0 and −γ. That is, A2 has one eigenvalue on the imaginary axis, see
Fig. 3 (b), and since the closed-loop system is a passive linear quantum system it follows
from [26, Lemma 2], see also [27, Lemma 3.1 and 3.2], that the system is simultaneously
uncontrollable and unobservable (we refer the reader to the Appendix B for an overview
of passive linear quantum systems and Appendix C for the notions of controllability and
observability from modern control theory). It then follows from the result of [20] that the
closed-loop system possesses a decoherence free subsystem (DFS). The physical intuition
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Figure 3: (color online) Location of closed-loop eigenvalues : (a) in writing/read-out stage,
z+ = (−1 +

√
3/2)γ and z− = (−1−

√
3/2)γ, and (b) in storage stage, one eigenvalue at

z = −γ and another at the origin.

behind this is clear. Since the system is passive, the cavities will absorb the energy of
the incoming optical field and there will either be persistent oscillations with constant
energy present, or the cavities eventually lose all the energy they have absorbed. The
former is the case when A has an eigenvalue on the imaginary axis, corresponding to the
resonance frequency of some cavity mode, while the latter is when all its eigenvalues are in
the left half plane. In the former case this means energy can be trapped inside the cavity
indefinitely, as long as the energy is stored in the appropriate mode. We have showed
that coherent feedback can be used to make the oscillator system have this behaviour, and
identified the associated storage mode. To clarify this, we shall now proceed to explicitly
show the DFS. Note that A2 has the decomposition

A2 = U

[
−γ 0
0 0

]
U∗,

with U the unitary matrix:

U =
1√
2

[
1 1
1 −1

]
.

Introduce the new rotated modes ãp and ãc as[
ãp
ãc

]
= U∗

[
ap
ac

]
.

That is, ãp = 1√
2
(ap + ac) and ãc = 1√

2
(ap − ac). Moreover, since U is unitary, ãp and ãc

satisfy the same commutation relations as ac and ap. It follows now that the closed-loop
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Heisenberg-Langevin equation for the new rotated modes is[
dãp
dãc

]
=

[
−γ 0
0 0

] [
ãp
ãc

]
dt−

[ √
γ
√
γ

0 0

] [
dB(c,1)

dB(p,1)

]
,[

dY(p,2)
dY(c,1)

]
=

[ √
γ 0√
γ 0

] [
ãp
ãc

]
dt+

[
dB(c,1)

dB(p,1)

]
. (3)

and we clearly see that ãc is completely decoupled from ãp and the external optical fields
B(c,1) and B(p,1), so this mode represents a decoherence-free subsystem. Moreover, notice
that ãc also does not appear at all in the outputs Y(p,2) and Y(c,1), a reflection that the
zero-dynamics principle proposed in [10] is holding. This principle, which is based on the
energy balance identity from [4], states that for perfect storage in a quantum memory
there should be nothing more at the output ports other than vacuum fluctuations.

We can now describe the three stages of the memory operation. In the time interval
[t0, t1] (t0 < t1) a quantum state is written into the system via port (p, 1). At time
t1 < t ≤ t2 the quantum state is stored in the decoherence-free mode ãc as defined above.
Finally, in the read-out stage starting at time t2, the state inside the memory is read-out
through the port (c, 1).

2.1 Writing stage (t0 ≤ t ≤ t1)

The optical cavities are connected according to Qubit Configuration 1 in the time interval
t0 ≤ t ≤ t1 and initialized in the ground state |0p〉|0c〉 with no photons in either the
p or c cavities. In this configuration, the output Y(p,1)(t) of the plant is passed as the
input B(c,2)(t) of the controller, B(c,2)(t) = Y(p,1)(t), the output Y(c,2)(t) of the controller
is passed as the input B(p,2)(t) of the plant, while the output Y(p,2) of the plant is passed
as the input B(c,1) of the controller. Notice that this connection is merely a double pass
scheme through both cavities: first a pass through cavity p then a pass through cavity c
followed by a second pass through cavity p and concluded by a final second pass through
cavity c. A continuous-mode optical field state |ψ〉 = α|Ω〉+β|1ξ〉 with a certain temporal
wavepacket ξ is injected through the port (p, 1). The wavepacket ξ is chosen so that this
state will get stored in the decoherence-free mode. To see what this wavepacket is, we
look at the evolution of the modes ãp and ãc as defined previously, but now under Qubit
Configuration 1. In this configuration, the Heisenberg-Langevin equation is then (see
Appendix A) [

dap
dac

]
=

[
−γ −γ/2
−3γ/2 −γ

] [
ap
ac

]
dt−

[ √
2γ√
2γ

]
dBp,1,

Yc,1 =
[ √

2γ
√

2γ
] [ ap

ac

]
dt+ dBp,1.

Let A1 be

A1 =

[
−γ −γ/2
−3γ/2 −γ

]
.
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This matrix has two eigenvalues z± = −γ ±
√

3γ/2 that are all on the left half plane
(i.e. all real part of the eigenvalues are negative), so A1 is a Hurwitz matrix, see Fig. 3
(a). Again, since the system is passive the system is both controllable and observable.
Therefore, this interconnection cannot have a decoherence free subsystem. From this we
can immediately obtain the Heisenberg evolution equation for the modes ãp and ãc:[

dãp
dãc

]
=

[
−2γ −γ/2
γ/2 0

]
︸ ︷︷ ︸

Ã1

[
ãp
ãc

]
dt−

[ √
2γ
0

]
︸ ︷︷ ︸

B̃1

dBp,1,

Yc,1 =
[ √

2γ 0
]︸ ︷︷ ︸

C̃1

[
ãp
ãc

]
dt+ dBp,1.

Let 1(t) denotes the Heaviside step function which takes the value 1 for t ≥ 0 and 0
for t < 0. Following the results in [10, Section 5.1], to write to the decoherence-free mode
ãc the wavepacket ξ must be of a rising exponential type (in general a rising exponential
with some envelope) given by the second component of the vector ν̃ = (ν̃1, ν̃2)

>,

ν̃(t) = −e−Ã
]
1(t1−t)C̃>1 1(t1 − t).

That is, ξ(t) = ν̃2(t).

Note that for perfect transfer of the single photon into a one photon Fock state in
the mode ãc, it is required that t0 = −∞. That is, the rising exponential should begin
in the infinite past and stop at t = t1. In practice, t0 has to be a finite but relatively
large negative number (relative to the cavity decay rate), and in this case there will be an
unavoidable and small probability that the mode does not perfectly absorb the incoming
state if t0 > −∞.

2.2 Storage stage (t1 < t < t2)

At time t = t1 the incoming state |ψ〉 has been transferred to the mode ãc. Immediately
after, the optical fields connecting the cavities are rerouted to make Qubit Configuration
2. Note that in this configuration, Baux(t) = B(c,1)(t) and Yaux(t) = Y(p,2)(t). The closed-
loop equation is as given by (1)-(2) for the modes ap and ac, and (3)-(3) for the rotated
modes ãp and ãc. Since the stored state is in the rotated mode ãc we will now see an
expression for the actual state in which the single photon state from the optical field is
actually stored. Now, consider two distinct oscillator modes a′1 and a′2 both initialized in
the vacuum state |01〉|02〉 having a Heisenberg evolution identical manner to ãp and ãc,
respectively: [

da′1
da′2

]
=

[
−γ 0
0 0

] [
a′1
a′2

]
dt

[ √
γ
√
γ

0 0

] [
dB(c,1)

dB(p,1)

]
.

If the wavepacket of the incoming field is ξ(t) = ν̃2(t) as given in Section 2.1 then as
shown in [10, Section 5.1], the modes a′1 and a′2 will converge in the steady-state (as
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t → ∞) to the state |01〉|12〉. That is, at steady-state mode a′1 contains no photon
and a′2 contains one photon. Now, let us return to the modes ãp and ãc. The modes
are initialized in the state |0p〉|0c〉 (no photons in the two cavities). Then in steady
state, identically to the modes a′1 and a′2, the system will be in the state |0̃p1̃c〉 with no
photons the mode ãp and one photon in ãc. This state is given by |0̃p1̃c〉 = ã∗c |0p〉|0c〉 =
1√
2
(a∗p−a∗c)|0p〉|0c〉 = 1√

2
|1p〉|0c〉− 1√

2
|0p〉|1c〉. Therefore, the one photon is actually stored

in an entangled state of the two cavities and this is the state that is preserved in Qubit
Configuration 2. Hence, the state |ψ〉 = α|Ω〉 + β|1ξ〉 from the field gets stored as the
state α|0p〉|0c〉+ β√

2
|1p〉|0c〉 − β√

2
|0p〉|1c〉.

2.3 Read-out stage (t2 < t)

To retrieve the stored state after t = t2, the internal optical fields are rerouted again to
restore the network to Qubit Configuration 1. The quantum state will leave through the
output port (c, 1) in the form of the state |ψ′〉 = α|0〉 + β|1ξ′〉, where the wavepacket ξ′

will now be a decaying exponential type of pulse given by the second component of the
vector

ν ′(t) = (ν ′1(t), ν
′
2(t))

> = eÃ
]
1(t−t2)C̃>1 1(t− t2).

That is, ξ′(t) = ν ′2(t), see [10, Section 5.3].

3 Modular scheme for a qudit quantum memory

In this section, we show how the qubit quantum memory developed in the previous section
forms the basic module for a qudit quantum memory. That is, we will demonstrate that n
single qubit modules can be connected together to form an n-level qudit memory to store
a single photon optical state of the form |ψ〉 = α0|Ω〉 +

∑n
k=1 αk|1ξk〉 (recall that |1ξk〉 =

B∗k(ξk)). Here, α0, α1, α2, . . . , αn are complex numbers satisfying
∑n

k=0 |αk|2 = 1, and
ξ1, ξ2, . . . , ξn are mutually orthogonal normalized temporal wavepackets,

∫∞
−∞ |ξj(s)|

2ds =

1 and
∫∞
−∞ ξj(s)

∗ξk(s)ds = δjk. Note that the qudit state can be used to encode both a
quantum state and a classical sequence (i.e., the complex amplitudes α0, α1, α2, . . . , αn).
However, since we can always write |ψ〉 = α0|Ω〉+

√
1− α2

0|1ξ〉 with |1ξ〉 a single photon
state with wavepacket ξ =

∑n
k=1

αk√
1−α2

0

ξk, it is enough to consider single photon input

fields of the form |ψ〉 =
∑n

k=1 βk|1ξk〉 with
∑n

k=1 |βk|2 = 1 since the state |Ω〉 can be stored
in the ground state of the oscillators, while |1ξ〉 stored in decoherence free modes. Thus
we focus on the latter form of |ψ〉 and come back to the original in Section 3.2

Each qubit memory module will be labelled as qubit memory j, with j = 1, 2, . . . , n.
Thus each qubit module can take on one of the two configurations of Fig. 2, correspond-
ing to the dashed and solid boxes. The plant and controller optical cavity modes for
module j are denoted as aj,p and aj,c, respectively. The left and top input ports to qubit
module j is labelled (j, p, 1) and (j, aux), respectively, while the right and bottom output
ports are labelled (j, c, k) (k = 1, 2 indicating the configuration of the qubit module) and
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Figure 4: (color online) The two configurations of a n-level qudit memory consisting of n
qubit memory modules, (a) Qudit Configuration 1 (top), and (b) Qudit Configuration 2
(bottom).

(j, aux), respectively. However, keep in mind that in Qubit Configuration 2, we have that
B(j,aux)(t) = B(j,c,1)(t) and Y(j,aux)(t) = Y(j,p,2)(t).

The n-level qudit memory consisting of the n qubit memories can be in either of two
configurations, which we refer to as Qudit Configuration 1 and Qudit Configuration 2,
see Fig. 4. In Qudit Configuration 1, Fig. 4 (a), each qubit memory module is in Qubit
Configuration 1 (i.e, none of the qubits possess a decoherence-free subsystem) and they
are connected together in a cascade/series connection† [28, 29, 7, 30] with the output
Y(j,c,1) from qubit module j being passed as the input B(j+1,p,1) to qubit module j + 1, for
j = 1, 2, . . . , n− 1. On the other hand, in Qudit Configuration 2, Fig. 4 (b), the n qubit
memories are each in Qubit Configuration 2 (each qubit has decoherence-free mode) and
are isolated from one another (there is no connection between the qubit memory modules).
Therefore, the rotated modes ãj,c for each of the qubit modules in Qudit Configuration 2
are individually decoherence-free.

We now again describe the writing, storage, and read out stage for the n-level qudit
memory, which operates in an analogous way to the qubit modules.

†The theory for cascaded systems was initially introduced for optical cavities in [28, 29] and its
generalization to general Markovian input-output systems in terms of the series product and quantum
feedback network formalisms is given in [7] and [30], respectively.
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3.1 Writing stage (t0 ≤ t ≤ t1)

The qudit memory is in Qudit Configuration 1 and all qubit modules are initialized with
the p and c modes in their ground state. The single photon pulse |ψ〉 with temporal
wavepacket ξ =

∑n
j=1 αjξj is injected through the port for B1,p,1 in qubit module 1. The

“sub-wavepackets” ξ1, ξ2, . . . , ξn are chosen so that the associated single photon states
B∗(ξk)|Ω〉, k = 1, 2, . . . , n, will get stored in the decoherence-free modes. To see what
they should be, as in the qubit memory case, we look at the evolution of the modes ãj,p and
ãj,c in Qudit Configuration 1. In this configuration, the Heisenberg-Langevin equation for
ãn = (ã1,p, ã1,c, ã2,p, ã2,c, . . . , ãn,p, ãn,c)

> is

dãn =



−2γ −γ/2 0 0 . . . 0 0 0 0
γ/2 0 0 0 . . . 0 0 0 0
4γ 0 −2γ −γ/2 . . . 0 0 0 0
0 0 γ/2 0 . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
...

4γ 0 4γ 0 . . . −2γ −γ/2 0 0
0 0 0 0 . . . γ/2 0 0 0

4γ 0 4γ 0 . . . 4γ 0 −2γ −γ/2
0 0 0 0 . . . 0 0 γ/2 0


︸ ︷︷ ︸

Ãn,1

ãndt

−
[ √

2γ 0
√

2γ 0 . . .
√

2γ 0
√

2γ 0
]>︸ ︷︷ ︸

B̃n,1

dBp,1,

dYc,1 =
[ √

2γ 0
√

2γ 0 . . .
√

2γ 0
√

2γ 0
]︸ ︷︷ ︸

C̃n,1

ãndt+ dBp,1

Since Ãn,1 is lower 2 × 2 block triangular while all of the 2 × 2 block matrices on its
diagonal blocks are Hurwitz, it follows that Ãn,1 is also Hurwitz. Hence in this configura-
tion decoherence free modes do not exist. Now, as in the qubit case, to write the incoming
input quantum state into the modes ã1,c, ã2,c, . . . , ãn,c, it again follows from the results
of [10, Section 5.1] that the sub-wavepackets ξ1, ξ2, . . . , ξn must be set to even indexed
components ν̃2, ν̃4, . . . , ν̃2n of the vector ν̃ = (ν̃1, ν̃2, ν̃3, ν̃4, . . . , ν̃2n−1, ν̃2n)> given by

ν̃(t) = −e−Ã
]
n,1(t1−t)C̃>n,11(t1 − t).

That is, ξk(t) = ν̃2k(t) for k = 1, 2, . . . , n.

3.2 Storage stage (t1 < t < t2)

At time t = t1 the single photon state |ψ〉 =
∑n

k=1 βk|1ξk〉 has been written to the modes
ã1,c, ã2,c, . . . , ãn,c, and the optical fields are immediately rerouted so that the qudit memory

11



is in Qudit Configuration 2 (with each qubit module in Qubit Configuration 1). Each of
the single qubit modules are now decoherence-free with a single photon stored in the
decoherence free mode ãc. Let |0k,j〉 and |1k,j〉 denote the ground and one photon state
of the mode ak,j. Following the discussion in Section 2.2, the optical state is preserved
within the oscillators in the decoherence-free entangled state

∑n
j=1 βj ⊗nk=1 |φjk〉, with

|φjk〉 =

{
|0k,p〉|0k,c〉, if k 6= j,

1√
2
|1j,p〉|0j,c〉 − 1√

2
|0j,p〉|1j,c〉, if k = j

Coming back to optical states of the form |ψ〉 = α0|Ω〉 +
∑n

j=1 αj|ξj〉, the Fock vacuum
|Ω〉 will trivially be mapped to the ground state ⊗nj=1|0j,p〉|0j,c〉, so that |ψ〉 gets stored in
the entangled state α0 ⊗nj=1 |0j,p〉|0j,c〉+

∑n
j=1 αj ⊗nk=1 |φjk〉.

3.3 Read-out stage (t2 < t)

To retrieve the stored state after t = t2, the internal optical fields are rerouted again to re-
store it to Qudit Configuration 1. The quantum state will leave through the output port of
Y(n,c,2) of qubit module n, which is the rightmost module in the cascade. Analogous to the
discussion in Section 2.3, using the results from [10, Section 5.3], the output wavepacket
will be of the form |ψ′〉 = α0|Ω〉+

∑n
k=1 αkB

∗(ξ′k)|Ω〉, where the sub-wavepacket ξ′k is the
2k-th component of the vector ν ′ given by

ν ′(t) = (ν ′1(t), ν
′
2(t), . . . , ν

′
2n(t))>

= eÃ
]
n,1(t−t2)C̃>n,11(t− t2).

That is, ξ′k(t) = ν ′2k(t) for k = 1, 2, . . . , n.

4 Discussion

Although we focused on storage of a propagating single photon wavepacket, the scheme
here can also store propagating optical coherent states of the form |f〉 = eB

∗(f)−B(f) =

e
∫∞
−∞(f(s)b(s)∗−f(s)∗b(s))ds, in an analogous manner. Here, f =

∑n
k=1 αkfk, where the fk’s

are square-integrable, ‖fk‖2 =
∫∞
−∞ |fk(s)|

2ds < ∞ for k = 1, 2, . . . , n, and mutually or-

thogonal,
∫∞
−∞ fj(s)

∗fk(s)d = δjk, so that also f is square-integrable and
∫∞
−∞ |f(s)|2ds =∑n

k=1 ‖fk‖2. The details for coherent state write/storage/read-out we leave to the reader
as it follows mutatis mutandis from the single photon case using the results of [10]. How-
ever, note that unlike single photon states, optical coherent states only contain classical
information encoded in the coefficients α2, α1, . . . , αn.

Our proposed scheme is dependent on the controller and optical cavities being identi-
cal. Deviation of the parameters of each cavity from this ideal situation inevitably leads
to some leakage of the stored quantum state from the memory. In any case, practical
quantum memories cannot be expected to hold a quantum state indefinitely, but only
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long enough to complete an information processing task. However, there are ways to
mitigate this in order to slow down the leakage. One possible approach is to insert a
disturbance attenuating controller in the style of [17] between the free output port (c, 2)
and input port (aux) in Qubit Configuration 2 (Fig. 2 (b)). The effect of imperfections
in the implementation to performance of the memory scheme, and possible methods to
reduce these effects, deserve further investigation but is beyond the scope of the present
paper which aims only to give an exposition of the key ideas. One could also consider
questions such as, what would be an optimal architecture of the quantum memory with
respect to its robustness to various imperfections in its realization? These are further
open topics to be studied in the future.

5 Conclusion

In this paper, we have shown that one can build a modular quantum memory structure
for quantum and/or classical information encoded in single photon or coherent field states
using only linear optics and coherent feedback. Three key ideas underlie our proposal: (i)
creation of a decoherence-free subspace by coherent feedback, (ii) distinct configurations
for passive optical cavities can be set up for writing/read-out and storage, and switching
among these configurations can be achieved by merely rerouting the optical fields that
interconnect the cavities, and (iii) qubit memories can be interconnected to form qudit
memories. A decoherence-free configuration is used for storage while a non-decoherence-
free configuration allows “opening up” the cavities for writing-in the quantum state of the
optical field and for retrieving a stored state. We give a concrete architecture of a qubit
quantum memory that can store a qubit encoded in an optical field state and show they
can be interconnected to form a qudit memory unit. Thus, our approach presents a way
to construct complex quantum memories by interconnecting simpler quantum memory
components.
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Appendices

A The Network Calculations

For Markovian open quantum systems driven by n vacuum noise inputs, the model is
specified by a triple

G ∼ (S, L,H)

referred to as the set of Hudson-Parthasarathy coefficients, or more prosaically as the
“SLH”. Their roles are to describe the input-to-output scattering S = [Sjk] of the external
noise fields bk (t), the coupling L = [Lj] of the noise to the system, and the internal
Hamiltonian H of the system respectively.

The SLH formalism for quantum Markov models deals with the category of models

S =

 S11 · · · S1n
...

. . .
...

Sn1 · · · Snn

 , L =

 L1
...
Ln

 , H.
These may be assimilated into the model matrix

V =

[
−1

2
L∗L− iH −L∗S
L S

]

=


−1

2

∑
j L
∗
jLj − iH −

∑
j L
∗
jSj1 · · · −

∑
j L
∗
jSjm

L1 S11 · · · S1n
...

...
. . .

...
Ln Sn1 · · · Snn



=


V00 V01 · · · V0m

V10 V11 · · · V1n
...

...
. . .

...
Vn0 Vn1 · · · Vnn

 .
The system with Hilbert space h driven by n independent Bose quantum processes

with Fock space F will have a unitary evolution V (t) on the space h ⊗ F where V (t) is
the solution to the quantum stochastic differential equation [5]

dV (t) = {(Sjk − δjk)⊗ dΛjk(t) + Lj ⊗ dB∗j (t)

−L∗jSjk ⊗ dBk(t)− (
1

2
L∗kLk + iH)⊗ dt}V (t)

with initial condition V (0) = I. (We adopt the convention that repeated Latin indices
imply a summation over the range 1, · · · , n.) Formally, the Bose noise can be thought of as
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arising from quantum white noise processes bk(t) satisfying a set singular of commutation
relations

[bj(t), bk(s)
∗] = δjkδ(t− s),

with

Bj(t) =

∫ t

0

bj(s)ds, B∗j (t) =

∫ t

0

bj(s)
∗ds,

Λjk(t) =

∫ t

0

bj(s)
∗bk(s)ds.

Conditions guaranteeing unitarity are S = [Sjk] is unitary, L = [Lj] is bounded, and H
bounded self-adjoint.

The Network Rules

The rules for construction arbitrary network architectures were derived in [30].

# 1 The Parallel Sum Rule

If we have several quantum Markov models with independent inputs then they may
be assembled into a single SLH model, see Fig. 5.

Figure 5: (color online) Several SLH models run in parallel: they correspond to one single
SLH model.

�nj=1 (Sj, Lj, Hj) =


 S1 0 0

0
. . . 0

0 0 Sn

 ,
 L1

...
Ln

 , H1 + · · ·+Hn

 .

Note that the components need not be distinct - that is, observables associated with
one component are not assumed to commute with those of others. In this case the defi-
nition is not quite so trivial as it may first appear.
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# 2 The Feedback Reduction Rule

If we wish to feed an output back in as an input, we obtain a reduced model as depicted
in Fig. 6.

Figure 6: (color online) We feed selected outputs back in as inputs to get a reduced
model. Here the unitary gain T is taken to be the adjacency matrix η describing the port
connections.

We write the operators (S, L,H) of the network as

S =

[
Sii Sie

Sei See

]
, L =

[
Li

Le

]
.

The feedback reduced model matrix may be conveniently expressed as

F
(
V, η−1

)
αβ
, Vαβ + Vαi (η − Vii)

−1 Viβ

for α, β ∈ {0, e}, where η is the (unitary) adjacency matrix

ηsr =

{
1, if (s, r) is an internal channel,
0, otherwise.

Here the “gain” η is the set of instructions as to which internal output port gets connected
up to which internal input port. We, of course, have η = 1 if we match up the labels of
the input and output ports according to the connections, however, it is computationally
easier to work with a general labeling and just specify the adjacency matrix. The reduced
model matrix Vred obtained by eliminating all the internal channels is determined by the
operators

(
Sred, Lred, Hred

)
given by

Sred = See + Sei (η − Sii)
−1 Sie,

Lred = Le + Sei (η − Sii)
−1 Li,

Hred = H +
∑
i=i,e

Im
{
L∗jSji (η − Sii)

−1 Li

}
.

# 3 Construction
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If, for instance, we wished to determine the effective SLH model for the network shown
in Fig. 7, then we would proceed as follows: first of all we disconnect all the internal
lines, this leaves us with an “open-loop” description where all the components are have
independent inputs and outputs, and at this stage we use the parallel sum to collect all
these components into a single open-loop quantum Markov component; the next step is
to make the connections and this involves feeding selected outputs back in as inputs from
the open-loop description, and to this end we use the feedback reduction formula. This
process has recently been automated using a workflow capture software QHDL [31] and
[32].

Figure 7: (color online) An arbitrary quantum feedback network.

The Two Cavities as an Open Loop

The plant and controller form a combined 4-input 4-output system as depicted in Fig.
8 below. Separately they are given by

Figure 8: (color online) The plant cavity and controller cavity before the routing connec-
tions are made.

(Sp, Lp, Hp) =

([
1 0
0 1

]
,

[ √
γ
2
ap√

γ
2
ap

]
, 0

)
,
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and

(Sc, Lc, Hc) =

([
1 0
0 1

]
,

[ √
γ
2
ac√

γ
2
ac

]
, 0

)
.

The corresponding open loop system is their parallel sum

V =


−γ

2

(
a∗pap + a∗cac

)
−
√

γ
2
a∗p −

√
γ
2
a∗p −

√
γ
2
a∗c −

√
γ
2
a∗c√

γ
2
ap 1 0 0 0√

γ
2
ap 0 1 0 0√

γ
2
ac 0 0 1 0√

γ
2
ac 0 0 0 1


Qubit Configuration 1

The following pairs (s, r) consisting of an output port s and an input port r are to be
connected:

(1, 4) , (4, 2) , and (2, 3) .

The adjacency matrix is then

η =

 η12 η13 η14
η22 η23 η24
η42 η43 η44

 =

 0 0 1
0 1 0
1 0 0

 .
Applying the feedback reduction rules yields[

−γ
2

(
a∗pap + a∗cac

)
−
√

γ
2
a∗p√

γ
2
ac 0

]
+

[
−
√

γ
2
a∗p −

√
γ
2
a∗c −

√
γ
2
a∗c

0 1 0

] 0 0 1
0 1 0
1 0 0

−
 0 0 0

1 0 0
0 0 1

−1  √γ
2
ap 1√

γ
2
ap 0√

γ
2
ac 0


=

[
−γa∗pap − γa∗cac − 1

2
γaca

∗
p − 3

2
γa∗cap −

√
2γ(ap + ac)

∗
√

2γ(ap + ac) 1

]
from which we see that L1 =

√
2γ(ap + ac) and the complex damping is

K1 = −γa∗pap − γa∗cac −
1

2
γaca

∗
p −

3

2
γa∗cap

≡
[
a∗p, a

∗
c

]
A1

[
ap
ac

]
,

with A1 as defined in Section 2.1.

Qubit Configuration 2
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The following pairs (s, r) consisting of an output port s and an input port r are to be
connected:

(1, 4) , and (3, 2) .

Applying the feedback reduction rules yields −γ
2

(
a∗pap + a∗cac

)
−
√

γ
2
a∗p −

√
γ
2
a∗c√

γ
2
ap 0 0√

γ
2
ac 0 0


+

 −√γ
2
a∗p −

√
γ
2
a∗c

1 0
0 1

([ 0 1
1 0

]
−
[

0 0
0 0

])−1 [ √γ
2
ap 1 0√

γ
2
ac 0 1

]

=

 −1
2
γ
(
a∗pap + a∗cac + a∗cap + a∗pac

)
−
√

2γ(ap + ac)
∗ −

√
2γ(ap + ac)

∗
√

2γ(ap + ac) 0 1√
2γ(ap + ac) 1 0


from which we see that

S2 =

[
0 1
1 0

]
,

L2 =

[ √
2γ(ap + ac)√
2γ(ap + ac)

]
and the complex damping is

K2 = −1

2
γ
(
a∗pap + a∗cac + a∗cap + a∗pac

)
≡

[
a∗p, a

∗
c

]
A2

[
ap
ac

]
,

A2 is as defined in Section 2.2.

B Passive open linear quantum input-output systems

Here we briefly describe the dynamics of passive linear quantum (input-output) systems
using the formalism of quantum stochastic differential equations. In the quantum optical
setting, they basically model networks of optical cavities that are connected together by
optical fields. For further details, see, e.g., [33, 26].

Consider a collection of n distinct open quantum harmonic oscillators a1, a2, . . . , an
satisfying the canonical commutation relations [aj, a

∗
k] = δjk. The oscillators have in-

ternal quadratic Hamiltonian of the form H =
∑n

j,k=1(ωjka
∗
jak + c + h.c.), for some

complex constants ωjk and c, and h.c. denotes hermitian conjugate. The oscillators
are coupled in a Markovian manner to m external optical fields described by the quan-
tum white noise processes b1(t), b2(t), . . . , bm(t) from Appendix A, with all the fields in
the vacuum state. The coupling is of the form of the interaction Hamiltonian Hint(t) =∑n

j=1

∑m
k=1(−ıKjka

∗
jbk(t) + h.c.) for some complex coupling constants Kjk. Quanta may
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also be transferred from field k to field j via the exchange process Λjk(t), also intro-
duced in Appendix A, parameterised by a complex unitary m × m matrix S [5, 25].
Let a = (a1, a2, . . . , an)>, Kj = [ Kj1 Kj2 . . . Kjm ]>, Sjk = [Sjk]j,k=1,...,m, and K =
[ K1 K2 . . . Kn ]. In the interaction picture with respect to the free field dynamics,
and working in units with ~ = 1, the joint evolution of the oscillators and the fields is
given by a unitary propagator U(t) satisfying the QSDE

dV (t) =

(
−
(
ıH − 1

2
a∗K∗Ka

)
dt+ dB(t)∗Ka

− a∗K∗SdB(t)∗ + Tr((S − I)>dΛ(t))

)
V (t),

with initial condition V (0) = I. Here, Bj(t) =
∫ t
0
bj(s)ds, B(t) = [B1(t), B2(t), · · · , Bm(t)]>,

and Λ(t) = [Λjk(t)]j,k=1,2,...,m.

The Heisenberg evolution a(t) = V (t)∗aV (t) of the operators in a is given by the
QSDE

da(t) = −(ıΩ +K∗K/2)a(t)dt−K∗dB(t),

where Ω = [ωjk]j,k=1,2,...,n, with ωkj = ω∗jk. The input fields B(t) immediately after
interaction with the system becomes the output field Y (t) = U(t)∗B(t)U(t) satisfying

dY (t) = Ka(t)dt+ SdB(t).

C Controllability and Observability

Consider a complex linear (time invariant state-space) system described by the differential
equation

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),

with A ∈ Cn×n, B ∈ Cn×m, C ∈ Cp×n and D ∈ Cp×m.

The Cn-valued function x is called the state of the system (state here is in the sense
of dynamical systems theory, not in the sense of quantum mechanics), u is a Cm-valued
function that is the input to the system, and y(t) is a Cp-valued function that is the
output of the system. The dimension n of x(t) is called the state-space dimension of the
system. The control system is said to be controllable if for any time 0 < tf < ∞ and
any state x(tf ) ∈ Cn there is a piecewise-continuous u that will bring the system from
state x(0) at time t = 0 to x(tf ) at t = tf . Suppose now that there is no input, u is
the zero function, and the initial state x(0) is unknown. Then the system is said to be
observable if for any time T > 0 the initial state can be determined from observing y over
the interval [0, T ]. Controllability and observability are fundamental properties of linear
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control systems and an important result in modern control theory is an explicit necessary
and sufficient criterion for verifying these properties. It can be shown that a system is
controllable if and only if the controllability matrix C defined by

C = [ B AB . . . An−1B ]

is full rank, and it is observable if and only if the observability matrix O defined by

O = [ C∗ A∗C∗ . . . (A∗)n−1C∗ ]∗.

is full rank.

The transfer function G(s) of a linear system is a Cp×m-valued complex function
defined by:

G(s) = C(sI − A)−1B +D.

Conversely, given a Cp×m-valued complex function G, a linear system of some dimension
n is said to be a realization of G if it has G as its transfer function. A linear system that
is a realization of G is said to be minimal if it has the smallest state-space dimension
n among all linear systems that have G as their transfer function. Controllability and
observability are intimately related to minimality: a realization of G is minimal if and
only if the realization is controllable and observable.

For further details on the contents of this section, see texts on modern control theory
such as [34].
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