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The Petrov type I condition for the solutions of vacuum Einstein equations in both of the nonrelativistic
and relativistic hydrodynamic expansions is checked.We show that it holds up to the third order of the nonrelati-
vistichydrodynamicexpansionparameter, but it is violated at the fourthorder even ifwechoose ageneral frame.
On the other hand, it is found that the condition holds at least up to the second order of the derivative expan-
sion parameter. Turn the logic around, through imposing the Petrov type I condition andHamiltonian constraint
on a finite cutoff surface, we show that the stress tensor of the relativistic fluid can be recovered with correct
first order and second order transport coefficients dual to the solutions of vacuum Einstein equations.
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I. INTRODUCTION

The holographic duality between gravity and one lower
dimensional fluid has attracted much attention over the past
years. There exist two kinds of prescriptions for the dual
fluid. One is the membrane paradigm which describes a
fluid living on the stretched horizon of a black hole [1–5],
and the other is the AdS/fluid duality which describes a
certain conformal fluid living on the anti–de Sitter (AdS)
boundary [6–11]. It is expected that there exists some
connection between the two descriptions [12–14]. This
motivates the authors in [15] to consider the gravitational
fluctuations confined inside a finite cutoff surface outside a
horizon, and in this case the dual fluid lives on this
hypersurface. The Dirichlet condition on the cutoff surface
and the regularity on the horizon are imposed. This
procedure has also been generalized to the asymptotically
flat [16,17] and de Sitter [18] spacetimes.
The authors of [16] have shown that for every solution of

the incompressible Navier-Stokes equations in pþ 1
dimensions, there exists a unique corresponding solution
of vacuum Einstein equations in pþ 2 dimensions. On the
cutoff surface, the extrinsic curvature is given by the stress
tensor of the Navier-Stokes fluid. A systematical method to
reconstruct the solution of vacuum Einstein gravity to an
arbitrary order has been presented in both of the non-
relativistic and relativistic hydrodynamic expansions
[19–22]. It is interesting to note that, instead of imposing
the regularity condition on the horizon, imposing the Petrov
type I condition on a hypersurface in near-horizon limit is
alternatively introduced in [23]. The Petrov type I condition
just gives pðpþ 1Þ=2 constraints on the extrinsic curvature
(or say, the Brown-York stress tensor Tab of the dual fluid),

which leads to pþ 1 independent variables. These varia-
bles are exactly the degrees of freedom of a fluid in pþ 1
dimensions. They have shown that combining the Petrov
type I condition with Hamiltonian and momentum con-
straints can lead to the incompressible Navier-Stokes
equation for the dual fluid on the cutoff surface in the
near-horizon limit. Some further generalizations and
discussions can be seen in [24–31].
Notice that if one considers the mathematically equiv-

alent solution of vacuum Einstein equations in the non-
relativistic hydrodynamic expansion with parameter ϵ,
the Petrov type I condition holds up to order of ϵ2. An
interesting question is whether the solution of vacuum
Einstein equations satisfies the Petrov type I condition to
higher orders. It is found in [32] that the condition holds up
to order ϵ3 and is broken at order ϵ4. However, those
violated terms contain only the third order terms of the
derivative expansion parameter ∂ if an improved frame is
taken. This motivates us to check the Petrov type I
condition for the solution of vacuum Einstein equations
in the relativistic hydrodynamic expansion. It turns out that
the condition indeed holds up to the second order of the
derivative expansion parameter ∂, by using the vacuum
solution available to this order in [20].

II. PETROV TYPE I SPACETIME IN THE
NONRELATIVISTIC HYDRODYNAMIC

EXPANSION

Let us start with the pþ 2 dimensional Rindler metric

ds2 ¼ gðrÞμν dxμdxν ¼ −rdτ2 þ 2dτdrþ dxidxi; ð1Þ
where xμ ¼ ðr; τ; xiÞ, and i ¼ 1; 2;…; p. A spacetime
is at least Petrov type I if for some choice of frame,
CðlÞiðlÞj ≡ lμmi

αlνmj
βCμανβ ¼ 0 at each point [33,34].

Here l, k, mi are the pþ 2 Newman-Penrose-like
vector fields which obey lμlμ ¼ kμkμ ¼ 0, lμkμ ¼ 1,
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gμνmi
μmj

μ ¼ δij and all other products vanish. One can
show that the whole Rindler spacetime (1) is Petrov type I
with the frame chosen as [23]

mi ¼ ∂i;
ffiffiffi

2
p

l ¼ ∂0 − n;
ffiffiffi

2
p

k ¼ −∂0 − n; ð2Þ

where ∂0 ¼ ∂τ=
ffiffiffi

r
p

and n ¼ ffiffiffi

r
p ∂r þ ∂0.

On a timelike hypersurface Σc at r ¼ rc with a flat
induced metric γabdxadxb ¼ −rcdτ2 þ dxidxi, one can
define the pþ 1 velocity ua ¼ γvð1; viÞ, where γv is fixed
through γabuaub ¼ −1. Introducing the other parameter P
and regarding vi and P as slowly varying functions of
xa ¼ ðτ; xiÞ, one can consider the perturbations of the
metric (1) in nonrelativistic hydrodynamic limit [11,16]
that vi ∼ ∂i ∼ ϵ, P ∼ ∂τ ∼ ϵ2. The solution of vacuum
Einstein equations to an arbitrary order of ϵ can be
constructed through keeping the induced metric flat and
demanding the regularity on the horizon [19].
In order to check whether the solution to higher orders in

[19] is Petrov type I or not, we consider a frame by adding
higher order corrections to the zeroth order frame (2) as

ffiffiffi

2
p

l ¼ ∂0 − n0 þ lðϵÞ þ lðϵ2Þ þOðϵ3Þ;
ffiffiffi

2
p

k ¼ −∂0 − n0 þ kðϵÞ þ kðϵ2Þ þOðϵ3Þ;
m1 ¼ m0

1 þm1ðϵÞ þm1ðϵ2Þ þOðϵ3Þ;
mi0 ¼ ∂i0 þmi0ðϵÞ þmi0ðϵ2Þ þOðϵ3Þ; ð3Þ

where i0; j0 ¼ 2;…; p, and the two zeroth order normalized
spatial vectors are n0¼ðsinθÞn−ðcosθÞm1,m0

1¼ðcosθÞnþ
ðsinθÞm1. As there exists the rotational symmetry among
the mi vectors, this choice does not lose any generality.
Putting them and the Wely tensors of the spacetime with
higher order corrections [19] into CðlÞiðlÞj, we find that up
to ϵ2,

4CðlÞ1ðlÞ1 ¼ r−1ðsin θ − 1Þ2∂1v1;

4CðlÞ1ðlÞi0 ¼ ½r−1ðsin θ − 1Þ2 − 3r−1c ðsin2θ − 1Þ�∂ ½1vi0�;

4CðlÞi0ðlÞj0 ¼ r−1ðsin θ − 1Þ2∂ði0vj0Þ: ð4Þ

If demanding CðlÞiðlÞj vanishes at this order, sin θ ¼ 1 is
the only consistent solution, which just gives the frame at
the zeroth order (2). Taking into account of this, the relevant
possible choice of the first order corrections in (3) is
lτ
ðϵÞ ¼ 0, li

ðϵÞ ¼ λl
ffiffiffi

r
p

vi, m τ
iðϵÞ ¼ λmvi, where λm and λl

are arbitrary functions of r and rc. On the other hand, the
orthogonal normalization condition of the vectors up to
the first order of ϵ gives constraints that m j

iðϵÞ ¼ 0 and
m τ

iðϵÞ − vi=rc ¼ δijli
ðϵÞ. Putting them together we find that

the nonvanishing terms in CðlÞiðlÞj first appear at order ϵ4,

4CðlÞiðlÞj ¼ λlr−1c r½6λlvkωkðivjÞ þ 2vði∂2vjÞ − 4vk∂ðiωjÞk�
þ r−1c r∂2∂ðivjÞ þOðϵ5Þ: ð5Þ

As all these terms in (5) are independent and only one free
parameter λl is left, it is impossible to make CðlÞiðlÞj in (5)
vanish at ϵ4 for any choice of λl. We may need to consider
the possible higher order corrections to the velocity and
pressure like vi → vi þ δviðϵ3Þ, P → Pþ δPðϵ4Þ, but these
corrections can be absorbed into the arbitrary functions

Fðϵ3Þ
i and Fðϵ4Þ

τ in the metric [19], which do not make any
contribution to CðlÞiðlÞj up to ϵ4.
Notice that by setting λl ¼ −r−1 and taking r → rc, one

can recover the results in [32] that Petrov type I condition is
broken at ϵ4, unless some additional physical conditions,
such as the irrotational condition, are added. In particular, if
setting λl ¼ 0 in (5), only the term ∂2∂ðivjÞ with three
derivatives is left. This seemingly implies that the Petrov
type I condition will be violated at the third order ∂3 of the
derivative expansion. As no explicit solution of vacuum
Einstein equations is available up to ∂3 in the literature,
therefore we are here not able to show whether the Petrov
type I condition holds at the third order and even arbitrary
higher orders, although it is certainly of great interest to see
this. In the following section, we will only consider the
Petrov type I condition of the solution of vacuum Einstein
equations up to the second order in the derivative expansion.

III. PETROV TYPE I SPACETIME IN THE
RELATIVISTIC HYDRODYNAMIC EXPANSION

Introduce the parameter p ¼ ðrc − rhÞ−1=2, which will
turn out to be the pressure of the dual fluid, and rh is the
location of the Rindler horizon of the equilibrium solution.
Then keeping the induced metric flat and demanding the
regularity on the horizon, regarding ua and p as two slowly
varying functions of xa, one can obtain the solution of
vacuum Einstein equations to an arbitrary order by using
the derivative expansion. Up to the second order, the
solution can be written as [20]

ds2 ¼ gμνdxμdxν ¼ −2puadxadrþ gabdxadxb; ð6Þ

where gab ¼ gð0Þab þ gð1Þab þ gð2Þab ,

gð0Þab ¼ −p2ðr − rcÞuaub þ γab;

gð1Þab ¼ 2pðr − rcÞðuc∂c lnpuaub þ 2aðaubÞÞ;
gð2Þab ¼ 2ðr − rcÞ½ðKcdKcdÞuaub − 2uðahcbÞ∂dKd

c

−Ka
cKcb þ 2KcðaΩc

bÞ − 2hcahdbu
e∂eKcd�

þ p2ðr − rcÞ2
��

1

2
KcdKcd þ acac

�

uaub

þ 2uðahcbÞ½∂dKd
c − ðKcd þ ΩcdÞad� − ΩacΩc

b

�

þ p4ðr − rcÞ3
�

1

2
ΩcdΩcd

�

uaub: ð7Þ
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Here the transverse projector hab ¼ γab þ uaub, tensors
Kab ¼ hcahdb∂ðcudÞ, Ωab ¼ hcahdb∂ ½cud�, acceleration aa ¼
ub∂bua. And the constraint equations are

∂aua ¼ 2p−1KabKab þOð∂3Þ;
aa þ hba∂b lnp ¼ 2p−1hca∂bKb

c þOð∂3Þ: ð8Þ

Notice that hab can also be decomposed as mi
ami

b, where

mi
a ¼ δi

a þ r−1=2c uiδaτ þ ð1þ r1=2c γvÞ−1uiujδaj ; ð9Þ

a; b;… and i; j;… indices are raised (lowered) by γab and
δij, respectively. Denote n being the spacelike unit normal
of constant r hypersurface, u being the normalized pþ 2
velocity, and mi being the remaining orthonormal spatial
vectors. One then has gμν ¼ nμnν − uμuν þ δijmi

μmj
ν,

where n ¼ nr∂r þ na∂a, u ¼ ua∂a, mi ¼ mi
a∂a, and

nr ¼ p−1½1þ pðr − rcÞðp − 2uc∂c lnpÞ
þ ð−gð2Þcd þ gð1Þac g

ð1Þ
bd h

abÞucud�1=2;
na ¼ ðpnrÞ−1½ua þ 2pðr − rcÞaa þ gð2Þbc u

bhca�;

ua ¼ na; mi
a ¼ mi

a −
1

2
mi

bgð2Þbc h
ca: ð10Þ

Further one can construct the two null vectors as

ffiffiffi

2
p

lμ ¼ −nμ þ uμ;
ffiffiffi

2
p

kμ ¼ −nμ − uμ; ð11Þ

which obey lμkμ ¼ 1 and all other products with mi
μ

vanish. Along with the condition gμνm
μ
im

ν
j ¼ δij up to

order ∂2, one can obtain the pþ 2 Newman-Penrose-like
vector fields l;k;mi such that

gμν ¼ lμkν þ lνkμ þ δijmi
μmj

ν: ð12Þ

In this frame,
ffiffiffi

2
p

l ¼ nr∂r leads to the expression

PðrÞij ≡ 2CðlÞiðlÞj ¼ mi
amj

bPðrÞ
ab ; ð13Þ

where PðrÞ
ab ≡ nrhcanrhdbCrcrd. With the metric (6), we find

PðrÞ
ab ¼ − ðnrÞ2

�

1

2
hcahdb∂2

rg
ð2Þ
cd þ p2ΩacΩc

b

�

þOð∂3Þ;

ð14Þ

and considering gð2Þab in (7), we conclude PðrÞ
ab ¼ Oð∂3Þ,

which also indicates PðrÞij ¼ Oð∂3Þ. As a result, we have
shown that the solution (6) of vacuum Einstein equations is
Petrov type I at each point up to the second order ∂2 in the
derivative expansion.

IV. PETROV TYPE I CONDITION
ON THE CUTOFF SURFACE

We can project the Weyl tensor on the hypersurface Σc
and define Pij ≡ 2CðlÞiðlÞjjΣc

. In [23], Pij ¼ 0 is named as
Petrov type I condition and Pij can be rewritten in terms
of the extrinsic curvature Kab of Σc by employing the
Gauss-Codazzi equations. Notice thatKab can be expressed
in terms of the Brown-York stress tensor through
Tab ¼ 2ðKγab − KabÞ. We have Pij ¼ mi

amj
bPab where

4Pab ¼ hma hnb½ðTmcTnd − TmnTcdÞucud − TmcTc
n

− 4uc∂cTmn þ 4uc∂ðmTnÞc�
þ p−2½TðT þ pTcducudÞ þ 4puc∂cT�hab: ð15Þ

With the bulk metric in (6), the dual stress tensor can be
expanded in the following form:

Tab ¼ Tð0Þ
ab þ Tð1Þ

ab þ Tð2Þ
ab þOð∂3Þ; ð16Þ

and these terms are obtained in [20] as

Tð0Þ
ab ¼ phab;

Tð1Þ
ab ¼ ζ0ðuc∂c lnpÞuaub − 2ηKab;

Tð2Þ
ab ¼ p−1f½d1KabKab þ d2ΩabΩab þ d3ðuc∂c lnpÞ2

þ d4uc∂cðud∂d lnpÞ þ d5hcdð∂c lnpÞð∂d lnpÞ�uaub
þ ½c1KacKc

b þ c2KcðaΩc
bÞ þ c3ΩacΩc

b

þ c4hcahdb∂c∂d lnpþ c5Kabðuc∂c lnpÞ
þ c6ðhca∂c lnpÞðhdb∂d lnpÞ�g: ð17Þ

Here the first and second order transport coefficients are

ζ0 ¼ 0; η ¼ 1;

d1 ¼ −2; d2 ¼ d3 ¼ d4 ¼ d5 ¼ 0;

c1 ¼ −2; c2 ¼ c3 ¼ c4 ¼ c5 ¼ −c6 ¼ −4: ð18Þ

The momentum constraint 2GμbnμjΣc
¼ 0, which leads to

the conservation of the stress tensor ∂aTab ¼ 0, gives the
constraint equations (8), while the Hamiltonian constraint
2GμνnμnνjΣc

¼ 0 leads to 4H≡ pTabTab − T2 ¼ 0, which
can be viewed as the equation of state for the dual fluid. In
addition, one can show that the trace of the stress tensor
satisfies T ¼ ppþOð∂3Þ. Putting the stress tensor (16)
into the expression (15), we then obtain Pab ¼ Oð∂3Þ,
which of course implies Pij ¼ Oð∂3Þ. Thus we have shown
again that the Petrov type I condition Pij ¼ 0 is satisfied up
to ∂2 by using the stress tensor of the dual relativistic fluid.
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V. FROM PETROV TYPE I CONDITION
TO DUAL RELATIVISTIC FLUID

In this subsection we turn the logic around. Assuming
the Hamiltonian constraint and Petrov type I condition on a
finite cutoff surface, we will show that the stress tensor of
the dual fluid can be fixed up to the second order of the
derivative expansion, without using the details of the bulk
metric. The resulting stress tensor exactly matches the one
from the solution of vacuum Einstein equations.
Firstly, one can introduce an undetermined symmetric

stress tensor T̂ab, and it satisfies hbaT̂bcuc ¼ 0, where ua is
regarded as the relativistic fluid velocity. Then the stress
tensor can be decomposed as T̂ab ¼ euaub þ Πab, where

e≡ T̂abuaub; Πab ≡ hcahdbT̂cd: ð19Þ

The Hamiltonian constraint becomes H ¼ 0, where

4H≡ pðe2 þ ΠabΠabÞ − T̂2; ð20Þ

and T̂ ¼ −eþ Πabhab. The Petrov type I condition can be
generalized as Pab ¼ 0, where

4Pab≡−eΠab−ΠacΠc
b−4hcahdbðue∂eΠcdÞ−4ΠðachdbÞ∂duc

−4eKabþp−2½T̂ðT̂þpeÞþ4puc∂cT̂�hab: ð21Þ

Expanding the stress tensor in terms of the derivative
expansion parameter ∂ as

e ¼ eð0Þ þ eð1Þ þ eð2Þ þOð∂3Þ;
Πab ¼ Πð0Þ

ab þ Πð1Þ
ab þ Πð2Þ

ab þOð∂3Þ; ð22Þ

and we identify eð0Þ ¼ 0,Πð0Þ
ab ¼ phab from the zeroth order

Brown-York stress tensor in (17). Then through

Hð1Þ ¼ 0 ⇒ eð1Þ ¼ 0; ð23Þ

Pð1Þ
ab ¼ 0 ⇒ Πð1Þ

ab ¼ −2Kab; ð24Þ

we can fix the stress tensor at the first order. With these,

Hð2Þ ¼ 0 ⇒ eð2Þ ¼ −2p−1KabKab; ð25Þ

Pð2Þ
ab ¼ 0 ⇒ Πð2Þ

ab

¼ p−1½−2KacKc
b − 4KcðaΩc

bÞ − 4ΩacΩc
b

− 4hcahdb∂c∂d lnp − 4Kabðuc∂c lnpÞ
þ 4ðhca∂c lnpÞðhdb∂d lnpÞ�; ð26Þ

we can then fix the second order terms in the stress tensor.
In the above procedure we have chosen the isotropy gauge
that there is no higher order corrections to the pressure p.

Thus, up to the second order, we obtain the total stress
tensor of the dual relativistic fluid as

T̂ab ¼ eð2Þuaub þ phab þ Πð1Þ
ab þ Πð2Þ

ab : ð27Þ

It is identical to the Brown-York stress tensor in (16) which
is calculated from the whole metric (6).

VI. NEAR-HORIZON EXPANSION

The relativistic hydrodynamic expansion can also be
expressed in terms of the so-called alternative near-horizon
expansion [20]. First take a Weyl rescaling ds2 → λ2ds2,
where the scaling parameter λ is related to the cutoff rc as
λ ¼ r1=2c , then consider the relativistic hydrodynamic limit
~xa ¼ λxa and the rescaled metric d~s2 ¼ λ2ds2, we can reach
the metric in the near-horizon expansion with parameter
λ as

d~s2 ¼ ~gμνd~xμd~xν ¼ −2λ1 ~p ~uad~xad~r

þ ð~gð0Þab þ λ1 ~gð1Þab þ λ2 ~gð2Þab Þd~xad~xb; ð28Þ

where ~gð0Þab ; ~g
ð1Þ
ab ; ~g

ð2Þ
ab are just obtained from (7) by mapping

ðrc; r;p; uaÞ → ð~rc; ~r; ~p; ~uaÞ, and setting ~rc ¼ 1. With
similar operation on the dual stress tensor in (17), the
stress tensor ~Tabd~xad~xb ¼ λ2Tabdxadxb can be expressed

as ~Tab ¼ ~Tð0Þ
ab þ λ1 ~Tð1Þ

ab þ λ2 ~Tð2Þ
ab . Then all the previous

discussions can be redone in the near-horizon expansion

formulism. In particular, the dynamic equations ∂ ~a ~Tð0Þ
ab ¼ 0

for a perfect relativistic fluid appear as an attractor,
when λ → 0.

VII. HIGHER CURVATURE GRAVITY

For asymptotically flat spacetime in higher curvature
gravity, the effect of the Gauss-Bonnet term with coef-
ficient α is studied in [35,36]. With the solutions found

there, we find that PðrÞij ¼ Oð∂3Þ, because the correction to
the metric from the Gauss-Bonnet term appears only at
order ∂2, and the factor in front of the relevant terms

hcahdbδg
ð2Þ
cd ∝ αðr − rcÞ, the latter will not make any con-

tribution to (14) up to order ∂2. Furthermore the dual stress
tensor whose second order transport coefficients with the
Gauss-Bonnet term correction can also be recovered
through the Petrov type I condition in the same way as
in the present paper [37].

VIII. WITH A NEGATIVE COSMOLOGICAL
CONSTANT

In this case, the solution of Einstein equations will
be asymptotically AdS [38–42], and we find that PðrÞij ¼
grrma

im
b
jCrarb ∼ Oð∂Þ under a similar frame as that in this

paper. However, notice that the near-horizon limit grr → 0
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leads to PðrÞij → 0, which indicates a close relation between
the Petrov type I condition and the membrane paradigm. In
particular, the ratio of shear viscosity over entropy density,
η=sjrh ¼ ½1 − 2ðpþ 1Þðp − 2Þα�=4π at the horizon, can
also be extracted through imposing Petrov type I condition
directly [37]. Here α is the Gauss-Bonnet coefficient. And
higher order transport coefficients can also be obtained. In
addition, a so-called AdS/Ricci flat correspondence has
been proposed recently in [43,44], which can map asymp-
totically AdS black brane solutions [10] to asymptotically
flat solutions [20], and the dual stress tenor of Rindler fluid
(16) can be obtained exactly from the one of AdS fluid up
to second order in derivative expansion. Thus, it would be
interesting to see whether there exists a corresponding
condition in the whole AdS or more general space-
time [45,46].
To summarize, we have shown that the whole spacetime

is Petrov type I for the solution of vacuum Einstein
equations in the nonrelativistic hydrodynamic expansion
up to the third order ϵ3, but it is violated at ϵ4 unless some
additional condition is imposed [32]. While in the relativ-
istic hydrodynamic expansion, it holds at least up to the
second order ∂2. As no explicit solution of vacuum Einstein
equations is available up to ∂3 in the literature, we are here
not able to show whether the whole spacetime is Petrov
type I at the third order and even arbitrary higher orders in
the derivative expansion. However, we can go a further
step. The solution of vacuum Einstein equations up to ϵ4 in
the nonrelativistic hydrodynamic expansion can be cap-
tured by that in the relativistic hydrodynamic expansion up
to ∂3 [19]. If the whole spacetime is Petrov type I at order
∂3, it will also be Petrov type I at ϵ4 in the nonrelativistic
hydrodynamic expansion. Our calculation in the nonrela-
tivistic expansion indicates that in general, the Petrov type I
condition will be violated at the third order ∂3 of the
relativistic hydrodynamical expansion parameter.

Turn the logic around, we have shown that imposing the
Petrov type I condition and Hamiltonian constraint on a
finite cutoff surface, the stress tensor of the dual relativistic
fluid can be fixed up to the second order of the derivative
expansion. The resulting stress tensor identically matches
the one calculated from the solution of vacuum Einstein
equations. As pointed out in [23], the Petrov type I
condition is expected to be equivalent to the regularity
condition on the future horizon of the spacetime, and it
gives the constraint on the dual theory from gravity. We
have indeed shown that imposing the Petrov type I
condition is mathematically much simpler than imposing
the regularity requirement, because one no longer needs
to solve the perturbation equations of bulk gravity. Notice
that the boundary condition on the horizon has to be
imposed for the perturbations in the gravity/fluid duality,
we therefore conclude that the Petrov type I condition
would indeed play an important role in this aspect.
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