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Abstract. Let M be a closed simply connected smooth manifold. Let Fp be the finite
field with p elements where p > 0 is a prime integer. Suppose that M is an Fp-elliptic
space in the sense of [FHT91]. We prove that if the cohomology algebraH∗(M,Fp) cannot
be generated (as an algebra) by one element, then any Riemannian metric on M has an
infinite number of geometrically distinct closed geodesics. The starting point is a classical
theorem of Gromoll and Meyer [GM69]. The proof uses string homology, in particular the
spectral sequence of [CJY04], the main theorem of [McC87], and the structure theorem
for elliptic Hopf algebras over Fp from [FHT91].

1. Introduction

We work over a ground field F and use F as the coefficients of homology and cohomology.
Our main applications are in the case where this ground field is the finite field Fp with p
elements, where p > 0 is a prime integer.

Let HL∗(M) denote the string homology algebra of a closed, simply connected manifold
M . String homology is a graded commutative F algebra defined as follows. Let LM be
the free loop space of M . In [CS99], Chas and Sullivan define the string product

Hp(LM)⊗Hq(LM) → Hp+q−n(LM)

where n is the dimension of M . This product is studied from the point of view of homotopy
theory in [CJ02]. The string homology algebra is defined by setting HLs(M) = Hs+n(LM ;F)
and using the string product to define the product. It is proved that this string product
makes HL∗(M) into a graded commutative F algebra in both [CS99] and [CJ02].

Our main result about string homology is the following theorem. In the statement ΩX
refers to the based loop space of X .

Theorem 1.1. Let M be a simply connected, closed manifold. Suppose there is a constant
C and an integer K such that

∑
i≤n

dimHi(ΩM ;Fp) ≤ CnK .

Let K0 be the minimal exponent which can occur in this bound. Then the string homology
algebra HL∗(M ;Fp) contains a polynomial algebra P over Fp on K0 + 1 generators and
HL∗(M ;Fp) is a finitely generated free module over P .
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If H∗(ΩM ;Fp) satisfies the growth hypotheses in the statement of this theorem, then we
say that H∗(ΩM ;Fp) has polynomial growth. The main application of this theorem is the
following result.

Theorem 1.2. Let M be a simply connected, closed manifold. Suppose H∗(ΩM ;Fp) has
polynomial growth and the algebra H∗(M ;Fp) cannot be generated by one element. Then
for any metric on M , there is an infinite number of geometrically distinct closed geodesics
on M .

To obtain this result from Theorem 1.1 we use the Gromoll - Meyer theorem relating
closed geodesics and the topology of the free loop space. A metric on M defines a function,
the energy function, on LM given by

γ 7→

∫
S1

〈γ′(t), γ′(t)〉 dt.

If γ : S1 → M is a closed geodesic parametrized by arc length then γ is a critical point of
the energy function, as is the loop γn defined by γn(z) = γ(zn). Furthermore every critical
point of the energy function is of the form γn where γ is a closed geodesic parametrised by
arc length [B56].

The circle S1 acts on LM by rotating loops and the energy function is S1-invariant. It
follows that any closed geodesic γ parametrised by arc length generates an infinite number
of critical S1 orbits of the energy function. In general these orbits will not be isolated but
if there are only a finite number of geometrically distinct closed geodesics these orbits will
be isolated.

We use the following terminology for graded vector spaces. If each Vi is finite dimensional
we say V has finite type. If V has finite type then we say it has finite dimension if dimVi

is zero for all but a finite number of i, infinite dimension if dimVi is non-zero for an
infinite number of i, and doubly infinite dimension if the sequence of numbers dimVi is
unbounded. Note that doubly infinite dimension is the same as polynomial growth with
minimal exponent at least 2. Using Morse-Bott theory, Gromoll and Meyer showed in
[GM69] that the relation between critical points of the energy function and closed geodesics
leads to the following theorem.

Theorem 1.3. Let M be a simply connected closed manifold. If H∗(LM ;F) has doubly
infinite dimension for some field F, then for any metric on M there is an infinite number
of geometrically distinct closed geodesics on M .

If π1(M) is finite, then we can apply this theorem to the universal cover M̃ of M . If
π1(M) is infinite and π1(M) has an infinite number of conjugacy classes, then LM has an
infinite number of components. Given a metric on M we can choose a minimiser of the
energy function in each component of LM and it follows that this metric has an infinite
number of geodesics [BaThZ81]. This leaves the case where π1(M) is infinite but only has
a finite number of conjugacy classes. Very little is known about this case [BngHi84].

In [V-PS76] Sullivan and Vigue-Poirrier took up the case where F = Q and, as an
application of the theory of minimal models in rational homotopy, proved the following
theorem.
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Theorem 1.4. SupposeM is a closed, simply connected manifold and the algebraH∗(M ;Q)
is not generated by one element. Then H∗(LM ;Q) is doubly infinite.

The second ingredient in the proof of Theorem 1.2 from Theorem 1.1 is the following
theorem from [McC87].

Theorem 1.5. Let X be a simply connected space such that the algebra H∗(X ;Fp) cannot
be generated by one element. Then H∗(ΩX ;Fp) is doubly infinite.

The main idea which led to this paper is to use string homology with coefficients in Fp

to convert Theorem 1.5 into a result about string homology. The first step in this process
is to use the spectral sequence of [CJY04] to relate string homology and the homology of
the based loop space. The second is to use the structure theorems for elliptic Hopf algebras
over Fp from [FHT89] to control the input into this spectral sequence.

This paper is set out as follows. In §2 we deal with those aspects of string homology our
main results require. The primary objective in §2 is to prove Theorem 2.1. In §3 we give
applications of Theorem 2.1. For example we explain how this theorem applies to the main
examples of [McCZ]. In §4 we summarise the results from [FHT89] we need and complete
the proof of the main theorems. Finally in §5 we give applications of the main theorem to
homogeneous spaces.

Both authors would like to acknowledge the support of the Isaac Newton Institute in
Cambridge during the Grothendieck-Teicmuller Groups, Deformation and Operads (GDO)
programme in 2013 where this project began.

2. String homology

In [CJY04, Theorem 1], it is shown that there is a multiplicative second quadrant spectral
sequence (Es,t

r , ds,tr ) with
ds,tr : Es,t

r → Es−r,t+r−1
r

Es,t
2 = H−s(M)⊗Ht(ΩM)

and converging to HL∗(M).
Here second quadrant means that Es,t

r is zero if s > 0 or t < 0. Multiplicative means
that each term Es,t

r is a bigraded algebra, ds,tr is a bigraded derivation of the product, and
the E∞ term of the spectral sequence is the bigraded algebra associated to a filtration of
HL∗(M). The edge homomorphism h : HL∗(M) → E0,∗

∞ ⊆ H∗(ΩM) is the natural algebra
homomorphism h : HL∗(M) → H∗(ΩM). This give us a method of relating the algebras
H∗(ΩM) and HL∗(M).

The simplest way to think of this spectral sequence is to use the string topology spectrum
S(M) = LM−TM introduced in [CJ04]. The skeletal filtration of M induces a filtration of
LM using the evaluation map LM → M , and this in turn induces a filtration of S(M).
The spectral sequence is the spectral sequence obtained from this filtration of S(M).

Our main application of this spectral sequence is the following theorem.

Theorem 2.1. Let M be a closed oriented manifold. Then HL∗(M ;Fp) contains a poly-
nomial algebra over Fp on k generators if and only if the centre of H∗(ΩM ;Fp) contains a
polynomial algebra over Fp on k generators.
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The first step is to prove the following lemma.

Lemma 2.2. LetM be a closed manifold. The kernel of the ring homomorphism h : HL∗(M) →
H∗(ΩM) is a nilpotent ideal.

Proof. Let

0 = F−n−1 ⊆ F−n ⊆ · · · ⊆ F 0 = HL∗(M)

be the (negatively indexed) filtration of HL∗(M) coming from the CJY spectral sequence.
Here n is the dimension of the manifold M . Then

F−iF−j ⊆ F−i−j

and so (F−1)n+1 = 0. The proposition follows since F−1 is exactly the kernel of the edge
homomorphism of this spectral sequence. �

Next we give a very simple but very useful lemma.

Lemma 2.3. Suppose M is a closed, simply connected manifold of dimension n. Let C be
the centre of the algebra H∗(ΩM ;Fp). Then for any x ∈ C

xpn−2

∈ im(h : HL∗(M ;Fp) → H∗(ΩM ;Fp)).

Proof. Because h is the edge homomorphism in the CJY spectral sequence we know that
an element y ∈ H∗(ΩM ;Fp) = E0,∗

2 is in the image of h if and only if it is an infinite cycle

in this spectral sequence. Let x ∈ H∗(ΩM ;Fp) = E0,∗
2 be a central element. Now x may

or may not be a cycle for d2 in the CJY spectral sequence. But d2 is a derivation and x is
central so it follows that

d2x
p = pxp−1d2x.

Since the ground field is Fp we have that d2x
p = 0. It may or may not be the case

that xp is a cycle for d3 but the same argument shows that xp2 = (xp)p is a cycle for
d3. Because M has dimension n, dr = 0 for r ≥ n + 1. Since M is simply connected
H1(M ;Fp) = Hn−1(M ;Fp) = 0. It follows that there are at most n−2 differentials on E0,∗

2

that could be non-zero, starting with d2. Repeating this argument at most n − 2 times
shows that xpn−2

∈ E0,∗
2 is an infinite cycle and it follows that xpn−2

is in the image of
h. �

We will also need the following result of [FTV].

Theorem 2.4. The image of h : HL∗(M ;Fp) → H∗(ΩM ;Fp) is contained in the centre of
H∗(ΩM,Fp).

To prove Theorem 2.1 we simply combine the previous three results.

Proof of Theorem 2.1. The kernel of h : HL∗(M ;Fp) → H∗(ΩM ;Fp) is a nilpotent ideal,
and the image of h is contained in the centre of H∗(ΩM ;Fp). So if HL∗(M ;Fp) contains
a polynomial algebra on k generators, then so does the centre of H∗(ΩM ;Fp). On the
other hand, if the centre of H∗(ΩM ;Fp) contains the polynomial algebra Fp[x1, . . . , xk],
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then Lemma 2.3 shows that every element of the sub-algebra of the E2-term of the CJY
spectral sequence

Fp[(x1)
pn−2

, . . . , (xk)
pn−2

] ⊂ H∗(ΩM ;Fp) = E0,∗
2

is an infinite cycle. It follows that HL∗(M ;Fp) contains a polynomial algebra on k gener-
ators. �

3. Applications of Theorem 2.1

3.1. Sphere bundles over spheres. Let Q = Q2n,e denote the sphere bundle

S2n−1 → Q → S2n

with Euler class e ∈ Z. We choose an orientation of S2n to identify the Euler class with
an integer. We prove the following result.

Proposition 3.1. If e 6= 0, for any metric on Q = Q2n,e, there is an infinite number of
closed geodesics on Q.

Notice that a sphere bundle over a sphere M not of the form Q2n,e with e 6= 0 has its
rational cohomology ring generated by more than one element. Therefore the theorem of
Sullivan and Vigué - Poirrier, Theorem 1.4 shows that any metric on M has an infinite
number of closed geodesics. However, Q2n,e is a rational homology sphere if e 6= 0.

Proof of Proposition 3.1. Choose a prime p such that p divides e. Standard basic calcula-
tions in algebraic topology show that

H∗(Q;Fp) = E[a2n−1, b2n], and H∗(ΩQ;Fp) = P [u2n−2, v2n−1].

Here E denotes the exterior algebra over Fp and P the polynomial algebra over Fp. The
subscripts are the degrees of the elements. If p = 2, then the algebra P [u2n−2, v2n−1] is
not graded commutative since v22n−1 6= 0. However the centre of H∗(ΩQ;Fp) is precisely
P [u2n−2, v

2
2n−1]. Theorem 2.1 shows that HL∗(Q) contains a polynomial algebra on two

generators and so H∗(LQ;Fp) has doubly infinite dimension. The Gromoll-Meyer theorem
shows that for any metric on Q, there is an infinite number of distinct closed geodesics. �

3.2. The Grassmannian of oriented two planes in R2n+1. Let G+
2 (R

2n+1) denote the
Grassmannian of oriented 2-planes in R2n+1. Recall the following two calculations from
the theory of characteristic classes.

(1) Suppose 2 is a unit in the coefficient field F. Then

H∗(G+
2 (R

2n+1);F) = P [x2]/(x
2n
2 ),

(2) H∗(G+
2 (R

2n+1);F2) = P [x2]/(x
n
2 )⊗ E(y2n).

So the algebra H∗(G+
2 (R

2n+1);Fp) can be generated by a single generator for p 6= 2, but in
the case p = 2 it requires at least two generators. Another standard calculation in algebraic
topology shows that

H∗(ΩG
+
2 (R

2n+1);F2) = E(u1)⊗ P [v2n−2]⊗ P [w2n−1] ∼= H∗(Ω(CP
n × S2n);F2).
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Evidently this contains a central polynomial algebra generated by two elements. The
following theorem follows from the Gromoll - Meyer theorem in the case of F2 coefficients.

Theorem 3.2. Any metric on G+
2 (R

2n+1) has an infinite number of closed geodesics.

3.3. The list of examples from [McCZ]. There is a list in [McCZ], based on the work
of [O63], consisting of one representative from each diffeomorphism class of homogeneous
spaces G/K, where G is a compact connected Lie group and K is a connected closed
subgroup, with two properties:

• G/K is not diffeomorphic to a sphere, a real, complex, or quaternionic projective
space, nor is it diffeomorphic to the Cayley projective plane.

• The algebra H∗(G/K;Q) is generated by one element;

In other words it is the list of examples of homogeneous spaces to which we we would like
to apply the theorem of Gromoll - Meyer, but cannot do so over the ground field Q. This
list contains two infinite families.

• The Stiefel manifold V2(R
2n+1) of two frames in R2n+1. This is a 2n − 1 sphere

bundle over S2n with Euler class 2, and Proposition 3.1 shows that any metric on
V2(R

2n+1) has an infinite number of geometrically distinct closed geodesics.
• The Grassmannian of oriented 2-planes in R2n+1. Theorem 3.2 shows that any
metric on this manifold has an infinite number of geometrically distinct closed
geodesics.

There are another 7 homogeneous spaces on this list. The first two are SU(2)/SO(3)
and Sp(2)/SU(2), and the other 5 are homogeneous spaces for G2. It is possible to go
through these 7 examples by direct calculations with loop spaces. However we will deal
with them in §5 as examples of our main theorem.

4. The proof of Theorem 1.1 and Theorem 1.2

We next need results contained in a series of inter-related papers by Félix, Halperin,
Lemaire, and Thomas on the homology of based loop spaces. We give a brief summary of
the results we need.

4.1. Elliptic Hopf algebras. Let Γ be a graded Hopf algebra over the ground field F.
The lower central series of Γ is the sequence

Γ = Γ(0) ⊃ Γ(1) ⊃ Γ(2) ⊃ · · · ⊃ Γ(n) ⊃ · · ·

where Γ(i+1) = [Γ,Γ(i)]. By definition Γ is nilpotent if Γ(s) = F for some s. Although the
definition of the Γ(i) depends only on the algebra structure of Γ, it is straightforward to
check that the Γ(i) are normal sub Hopf algebras of Γ.

We say that Γ is connected if Γi = 0 when i < 0 and Γ0 = F, and that Γ is finitely
generated if it is finitely generated as an algebra. From [FHT91a] we have the following
definition.

Definition 4.1. Fix a ground field F. A Hopf algebra Γ over F is elliptic if it is connected,
co-commutative, finitely generated, and nilpotent.
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Note that the only part of the definition of an elliptic Hopf algebra which refers to the
coproduct is the condition that it is co-commutative.

Here are some examples. In these examples we assume that the Hopf algebras in question
are connected and co-commutative over a fixed ground field F.

(1) If Γ is a finite dimensional Hopf algebra, then Γ is elliptic. To prove this first note
that since Γ is connected Γ(i) is i + 1 connected. Since Γ is finite dimensional it
follows that Γ(i) = F for sufficiently large i. So Γ is nilpotent. Since Γ is finite, it
is finitely generated.

(2) If Γ is commutative, then Γ is elliptic if and only if Γ is finitely generated.
(3) Let L be a Lie algebra. Let U(L) be the universal enveloping algebra of L. This

becomes a Hopf algebra by defining the coproduct to be the unique coproduct which
makes the elements of L primitive. Then U(L) is an elliptic Hopf algebra if and
only if L is a finitely generated nilpotent Lie algebra.

The structure theorem for elliptic Hopf algebras proved in [FHT91a] tells us that essen-
tially these examples generate the class of all elliptic Hopf algebras by taking extensions.

Theorem 4.2. Let F be a field and let Γ be a connected, finitely generated, co-commutative
Hopf algebra over F.

• If F has characteristic zero, then Γ is elliptic if and only if Γ = U(L) where L is a
finitely generated, nilpotent Lie algebra over F.

• If F has characteristic p 6= 0, then Γ is elliptic if and only if it contains a finitely
generated, central sub Hopf algebra C, such that Γ//C is a finite.

The statement of the second clause of the theorem is not quite the same as the statement
(ii) in Theorem B of [FHT91a] but it is easily seen to be equivalent to it. From [MM65] we
know that Γ is isomorphic to C ⊗ Γ//C as a C algebra. Since C is finitely generated and
commutative it follows from a theorem of Borel [MM65] that as an algebra C is isomorphic
to P ⊗A, where P is a polynomial algebra over F in a finite number of variables and A is a
finite dimensional algebra. It follows that Γ is isomorphic to P ⊗A⊗Γ//C as a P module.
Since both A and Γ//C are finite dimensional it follows that Γ is a finitely generated free
module over P . This is the condition given in [FHT91a].

4.2. Depth and the Gorenstein condition. Let A be a graded augmented algebra over
the ground field F. We will assume that A is connected. We can form the vector spaces

Exti,jA (F, A).

The depth of A, depthA, is defined as follows:

depthA = inf{s | Exts,∗A (F,A) 6= 0}.

If n = depthA, then Exts,tA (F, A) = 0 for s < n and there is an integer t such that
Extn,tA (F, A) 6= 0. In particular the depth of A could be infinite, and this means that
Exts,tA (F, A) = 0 for all (s, t).

The graded algebra A is Gorenstein if there is a pair of integers (n,m) such that

• Exts,tA (F, A) = 0 if (s, t) 6= (n,m),
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• Extn,mA (F, A) = F.

The definition of depth and the Gorenstein condition first appear in classical commutative
ring theory.

It is straightforward to check that,

• depthA⊗ B = depthA+ depthB,
• A⊗B is Gorenstein if and only if both A and B are Gorenstein.

In the case of a polynomial algebra F[x] with one generator of degree k

Ext1,k
F[x](k,F[x]) = F, Exts,t

F[x](F,F[x]) = 0 (s, t) 6= (1, k).

In the case where A = F[x]/(xn) is a truncated polynomial algebra with generator of degree
k then

Ext
0,−k(n−1)
A (F, A) = F, Exts,tA (F, A) = 0 (s, t) 6= (0,−k(n− 1)).

The most elementary method for doing these calculations is to use the minimal resolution
of F over F[x] and the minimal resolution of F over F[x]/(xn). It follows that both the
algebras F[x] and F[x]/(xn) are Gorenstein, and

depthF[x] = 1, depthF[x]/(xn) = 0.

The following lemma is contained in [FHT88] (see Proposition 1.7).

Lemma 4.3. Suppose A is an infinite tensor product of algebras. Then the depth of A is
infinite.

Suppose Γ is a connected Hopf algebra that is commutative as an algebra. By a theorem
of Borel [MM65, Theorem 7.11], it follows that Γ is isomorphic as an algebra to a tensor
product of polynomial algebras and truncated polynomial algebras. If Γ is not finitely
generated then Lemma 4.3 shows that Γ has infinite depth. If Γ is finitely generated, then
it has finite depth and it is isomorphic to P ⊗ A where P is a polynomial algebra with
m = depth Γ variables and A is a finite tensor product of truncated polynomial algebras.
This proves Theorem 4.2 in the case where Γ is commutative. One way to think of the
proof of 4.2 is that it works by reducing the general case to the commutative case by using
the condition that Γ is nilpotent.

The relevance of depth and Gorenstein to topology comes from results in [FHLT89] and
[FHT88], which we state as the following theorem.

Theorem 4.4. Let X be a simply connected finite complex.

(1) The Hopf algebra H∗(ΩX ;F) has finite depth. In fact, depthX ≤ LSCatX, where
LSCatX denotes the Lyusternik-Schnirelman category of X.

(2) If the Hopf algebra H∗(ΩX ;F) is Gorenstein, then X is a Poincaré duality space.

In [FHT88] Félix, Halperin and Thomas extend the Gorenstein condition to differential
graded algebras and show that a finite complex X is a Poincaré duality space if and only
if the cochain algebra S∗(X ;F) is a Gorenstein differential graded algebra. While it is true
that if H∗(X ;F) is Gorenstein then so is S∗(X ;F) the reverse implication is not true – see
Examples 3.3 of [FHT88].
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If X is a finite complex, then we know that H∗(ΩX ;F) has finite type and finite
depth. The following theorem gives some useful practical ways to deduce, in addition,
that H∗(ΩX ;F) is elliptic. For the proof see Theorem C of [FHT91a].

Theorem 4.5. Suppose Γ is a connected, cocommutative Hopf algebra over F of finite type
and Γ has finite depth. Then the following are equivalent:

(1) Γ is elliptic,
(2) Γ is nilpotent,
(3) Γ has polynomial growth,
(4) Γ is Gorenstein.

4.3. The proof of Theorem 1.1. If M is a closed, connected, oriented manifold of finite
dimension, then H∗(ΩM ;Fp) is connected and cocommutative, and it has finite type and
finite depth. We are assuming it has polynomial growth. It follows from Theorem 4.5
that H∗(ΩM ;Fp) is elliptic. Therefore, from Theorem 4.2, it is a finitely generated free
module over a central sub-algebra P that is a polynomial algebra on a finite number, say
l, variables. It follows that H∗(ΩM ;Fp) has polynomial growth with exponent l − 1 and
indeed l − 1 is the minimal exponent which can occur in the inequality for polynomial
growth. In the notation of Theorem 1.1, l − 1 = K0. This proves Theorem 1.1.

4.4. The proof of Theorem 1.2. It follows from Theorem 4.2 that if Γ is an elliptic Hopf
algebra over Fp, then Γ is doubly infinite if and only if the centre of Γ contains a polynomial
algebra on two generators. Now let M be a simply connected closed manifold satisfying
the hypotheses of Theorem 1.2. Then, as in the proof of Theorem 1.1, it follows that
H∗(ΩM ;Fp) is an elliptic Hopf algebra. Suppose in addition that the algebra H∗(M ;Fp)
cannot be generated by one element. From Theorem 1.5, it follows that H∗(ΩM ;Fp) is
doubly infinite and so the centre of H∗(ΩM ;Fp) contains a polynomial algebra on two
generators. By theorem 2.1 it follows that HL∗(M ;Fp) contains a polynomial algebra on
two generators and therefore H∗(LM,Fp) is doubly infinite. The Gromoll - Meyer theorem,
Theorem 1.3, completes the proof.

5. Application to homogeneous spaces.

The following theorem is example 3.2 in [FHT93]:

Theorem 5.1. Let G be a simply connected, compact Lie group and K, a connected, closed
subgroup of G. Then the homogeneous space G/K is Fp elliptic for any prime p.

The proof uses the fibration

ΩG → Ω(G/K) → K

for which the fundamental group π1(K) acts trivially on the groups H∗(ΩG;Fp). Then
a Leray-Serre spectral sequence argument may be applied because K and ΩG are both
elliptic and hence have polynomial growth.

Now return to the list from [McCZ]. The 7 examples of homogeneous spaces in this list
not covered by Theorems 3.1 and 3.2 are Fp elliptic spaces for any prime p by Theorem
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5.1. Furthermore, in each case, there is a prime p such that the cohomology algebra of the
homogeneous space cannot be generated by a single element. Therefore by Theorem 1.2
any metric has an infinite number of geometrically distinct closed geodesics.
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