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Abstract

We study the regularity of a porous medium equation with nonlocal diffusion
effects given by an inverse fractional Laplacian operator. The precise model is
ut = ∇·(u∇(−∆)−1/2u). For definiteness, the problem is posed in {x ∈ RN , t ∈
R} with nonnegative initial data u(x, 0) that are integrable and decay at infinity.
Previous papers have established the existence of mass-preserving, nonnegative
weak solutions satisfying energy estimates and finite propagation, as well as
the boundedness of nonnegative solutions with L1 data, for the more general
family of equations ut = ∇ · (u∇(−∆)−su), 0 < s < 1.

Here we establish the Cα regularity of such weak solutions in the difficult
fractional exponent case s = 1/2. For the other fractional exponents s ∈ (0, 1)
this Hölder regularity has been proved in [5]. The method combines delicate
De Giorgi type estimates with iterated geometric corrections that are needed
to avoid the divergence of some essential energy integrals due to fractional
long-range effects.

∗University of Texas; caffarel@math.utexas.edu
†Universidad Autónoma de Madrid; juanluis.vazquez@uam.es

1



1 Introduction

This paper is devoted to study the regularity properties of nonnegative weak solutions
of a model of porous medium equation that includes nonlocal effects through an
integral operator of fractional Laplacian type, thus allowing to account for long-range
effects. In [6] we have introduced the following concrete model

(1.1) ut = ∇ · (u∇p), p = (−∆)−su, 0 < s < 1 ,

posed for x ∈ RN , N ≥ 2, and t > 0, with initial conditions

(1.2) u(x, 0) = u0(x), x ∈ RN ,

where u0 is a nonnegative and integrable function in RN decaying as |x| → ∞. We
will refer to Equation (1.1) as the FPME (for fractional porous medium equation),
but we remind the reader that another natural candidate to the denomination of
fractional porous medium equation has been recently introduced and studied in the
literature, see [15, 16], and both models have quite different properties, cf. [21].

We have proved existence of nonnegative weak solutions for the Cauchy problem
(1.1)-(1.2), enjoying a number of additional properties. The long-time behaviour of
such solutions was described in a second paper [7] using an entropy method that
leads to a fractional obstacle problem for the asymptotic profile. In a more recent
paper with F. Soria [5] we have addressed the questions of boundedness and Hölder
regularity of such solutions. Boundedness was established for all exponents 0 < s < 1
with a clean estimate of the form

(1.3) sup
x∈Rn

|u(x, t)| ≤ C t−α‖u0‖γL1(Rn)

with precise exponents α = N/(N+2−2s), γ = (2−2s)/(N+2−2s) (as corresponds
to dimensional analysis), and a constant C that depends only on N and s ∈ (0, 1).
For s = 1/2 the exponents are α = N/(N + 1) and γ = 1/(N + 1).

Concerning regularity, we found in [5] a Cα modulus of continuity for all exponents
s ∈ (0, 1), s 6= 1/2, for bounded, nonnegative, and integrable weak energy solutions
defined in a strip of space-time.

The proof of the Cα result in the range 0 < s < 1/2 uses a number of techniques
that are becoming classical in the study of regularity of nonlocal diffusion problems,
but the process is long and delicate since we must take into account the nonlinearity
with possible degeneracy, as well a the long range interaction carried by the kernel of
the fractional operator.
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The regularity result in the case 1/2 < s < 1 is more difficult due to the last
mentioned effect and the method proposed in [5] uses a geometrical transformation
to absorb the uncontrolled growth of one of the integrals that appear in the iterated
energy estimates on which the regularity method is based. In other words, we control
the possible divergences using transport.

The case s = 1/2. It appeared as a borderline case for those methods and was
left out in previous papers since it needs a new version of the technique that takes
some space and involves quite careful iterative constructions. It is the purpose of
this paper to perform the proof of Hölder regularity in such critical case in full detail.
Therefore, in the sequel we will concentrate on the Cauchy problem for equation (1.1)
with exponent s = 1/2. We may write the equation as

(1.4) ut +∇ · (uv) = 0, v = −∇(−∆)−1/2u,

posed for x ∈ RN , N ≥ 1, and t > 0, with initial condition (1.2). Since we are
interested in regularity, and in view of estimate (1.3), we assume without loss of
regularity that u is bounded. Moreover, the velocity field can be written in the present
case as v = −Ru, where R is the Riesz transform with components Rk = ∂k(−∆)−1/2

(and symbol iξk/|ξ|). In terms of singular integrals we may write

(1.5) vk(x, t) = cN P.V.

∫
(xk − yk)u(y, t)

|x− y|N+1
dy , k = 1, 2, · · · , N,

with cN = 1/(πωN−1) = Γ((N + 1)/2)π−(N+1)/2. Here is our main result:

Theorem 1.1 Let u ≥ 0 be a bounded weak energy solution of equation (1.4) with
initial data u0 that is a nonnegative and integrable function in RN decaying exponen-
tially as |x| → ∞, and assume that u defined in a space-time domain S = RN× [0, T ].
Then u is Cα continuous in any subdomain Q ⊂ RN × [τ, T ] with some Hölder expo-
nent α(N, s) ∈ (0, 1) and a constant that depends also on the bound for u0 in L1(RN)
and the minimal time τ of Q.

This completes the Cα regularity result for all s ∈ (0, 1). The main novelty is
as follows: in the most delicate situation, the degenerate case where u approaches
zero, we perform a careful iteration analysis that combines consecutive applications
of scaling and a geometrical transformation. The end result of Hölder regularity
is derived from the estimate of the size of the solution oscillation in a sequence of
shrinking and distorted cylinders.
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It is interesting to recall that the fractional Laplacian exponent s = 1/2 is the most
natural case in the whole family s ∈ (0, 1), both for the number and interest of the
applications in different scientific contexts, and for the simplicity of the definition in
the sense of Caffarelli-Silvestre extension, [4]. However, this is precisely the case where
we encounter the biggest difficulties in the regularity theory. This is maybe due to
the fact that the net order of differentiation of the diffusive term, ∇· (u∇(−∆)−1/2u),
is just 1, which makes it formally the same order as the convective equations, see
(1.4). The conclusion of this paper is, roughly speaking, that the diffusive character
is still dominant.

It is interesting to compare the present paper with the paper [8] by Vasseur and one
of the authors where boundedness and regularity is established for the geostrophic
model

(1.6) ∂tu+ v · ∇u+ (−∆)1/2u = 0 ,

with ∇ · v = 0. There are two main differences: the convective velocity is not
necessarily divergence-free in our case, and the last term in our model is nonlinear
and degenerate since we can write our equation as ∂tu + v · ∇u + u(−∆)1/2u = 0.
This explains maybe the very involved analysis that we will have to perform.

We refer to the above-mentioned papers and [20] for motivation and background on
fractional porous medium equations. For basic information on fractional Laplacians
see e.g. [14, 17, 19]. On the other hand, the case N = 1 of our equation is a bit special.
The equation can be written as ut + (H(u)u)x = 0 where H(u) denotes the Hilbert
transform of u. This simpler case was treated in [13, 12, 2] in a problem coming
from dislocation theory, and in [1, 10, 11] as a simplified model in fluid mechanics.
Our result applies to that 1D case with minor modifications in the proofs, see further
comments at the end of the paper.

Organization. We collect the necessary preliminaries in Section 2 and present the
strategy of proof in Section 3, where the similarities and differences with the cases
covered in [5] are explained. Putting this into effect, Sections 4 to 6 contain the main
lemmas that will be needed in versions adapted to the case s = 1/2, and Section 7
reviews the iterative procedure to regularity already introduced in [5]. This is done
with the detail needed to prepare the reader for the modifications that are needed to
avoid divergent integrals. After the presentation of the transport correction method
used for s > 1/2 (Section 8), the main contribution of the paper is presented in Sec-
tion 9: it is an iterative method with geometrical transport corrections which allows
to obtain convergent and controlled integrals for the regularity estimates near a de-
generate point (i. e., where the solution vanishes in some sense); it involves successive
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corrections based on a sequence of cutoffs, plus summation of all the corrections via
a geometrical series estimate. Three short last sections add different complements:
one for the non-degenerate case, which is easier; one for the equation in 1D, which
has some peculiarities, and one for general data, that recalls the extension of a result
proved in [5].

Notations. As a general rule, we will use the notations of paper [5]. Thus, (−∆)s

with 0 < s < 1 denotes the fractional powers of the Laplace operator defined on the
Schwartz class of functions in RN by Fourier transform, and extended in a natural
way to functions in the Sobolev space H2s(RN). The inverse operator is denoted by
Ls = (−∆)−s and can be realized by convolution

Lsu = Ls ? u, Ls(x) = c(N, s)|x|−N+2s.

Ls is a positive self-adjoint operator. We will write Hs = L1/2
s which has kernel Ls/2.

For s = 1/2 we simply write L = (−∆)−1/2, H = (−∆)1/4. For functions that depend
on x and t, convolution is applied for every fixed t with respect to the space variables.
We then use the abbreviated notation u(t) = u(·, t).
For a measurable u ≥ 0 and for k > 0 we denote by u+

k = (u− k)+ = max{u− k, 0},
and u−k = min{u − k, 0} in such a way that u+

k ≥ 0 ≥ u−k , the supports of u+
k and

u−k agree only on points where u = 0, and also u = k + u+
k + u−k . We will use similar

notations: u+
ϕ = (u−ϕ)+, u−ϕ = (u−ϕ)− when ϕ is a function and not just a constant,

and then we may split u as follows: u = ϕ + u+
ϕ + u−ϕ . The notation |Ω| means the

Lebesgue measure of the set Ω.

2 Preliminaries. Existence and basic estimates

From now on we will concentrate on the Cauchy problem with exponent s = 1/2. We
may write the equation in the form (1.4). We will also write equation (1.4) in the
form

(2.1) ut = ∇ · (u∇p), p = Lu := (−∆)−1/2u,

and call p the pressure of the solution. The two forms are clearly equivalent. We
work on dimensions N ≥ 2 and extend the results to dimension N = 1 in Section 11.

Concept of solution. We will work in the class of weak nonnegative solutions that
have some additional properties. In the present situation we start with a slightly
polished version of the definition of [6] since our solutions will always be bounded.
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• By a weak solution of Problem (1.4)-(1.2) defined in a space-time domain QT =
RN × (0, T ) with initial data u0 ∈ L1(RN) ∩ L∞(RN) we understand a nonnegative
function u ∈ L1(QT ) ∩ L∞(QT ), such that Lu = (−∆)−1/2(u) ∈ L1(QT ), and the
identity

(2.2)

∫∫
u (ηt −∇L(u) · ∇η) dxdt+

∫
u0(x) η(x, 0) dx = 0

holds for all continuously differentiable test functions η in QT that are compactly
supported in the space variable and vanish near t = T .

Existence of solutions. The following results have been proved in [6]: For any
u0 ∈ L∞(RN) ∩ L∞(RN), u0 ≥ 0, and such that

(2.3) u0(x) ≤ Ae−a|x| for some A, a > 0 ,

there exists a weak solution u ≥ 0 of Equation (1.4) with initial data u0. Moreover,
for all t > 0 we have the conservation of mass:

(2.4)

∫
RN

u(x, t) dx =

∫
RN

u0(x) dx,

as well as the L∞ bound: ‖u(t)‖∞ ≤ ‖u0‖∞. The constructed solution decays expo-
nentially as |x| → ∞. According to the smoothing effect formula (1.3), it decays also
in time like O(t−N/(N+1)) for large times.

Other properties of the constructed solutions. Here are some of the most useful
properties that are known.

• Translation invariance. The equation is invariant under translations in space and
time, and this property reflects on the set of weak solutions.

• Scaling. Moreover, the equation is invariant under a subgroup of the group of
dilations in (u, x, t), and this implies a scaling property for the set of solutions. To be
precise, if u(x, t) is a weak solution as described in the existence theorem, with initial
data u0(x), and A,B,C are positive constants, then û(x, t) = Au(Bx,Ct) is again a
weak solution on the condition that C = AB. It has initial data û0(x) = Au0(Bx).

• Finite propagation: Compactly supported initial data u0(x) give rise to solutions
u(x, t) that have the same property for all positive times, i.e., the support of u(·, t) is
contained in a finite ball BR(t)(0) for any t > 0.
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• A standard comparison result for parabolic equations does not work in general.
This is one of the main technical difficulties in the study of the equation.

Energy Properties. The boundedness and regularity analysis performed in [5]
uses in an essential way regularity properties that go beyond the definition of weak
solution, but they are satisfied by the solutions constructed in [6]. We call them energy
properties since they involve bilinear forms and integrals of (fractional) derivatives.

• The first energy inequality holds in the form

(2.5)

∫ t

0

∫
RN

|∇(−∆)−1/4u|2 dxdt+

∫
RN

u(t) log(u(t)) dx ≤
∫
RN

u0 log(u0) dx ,

This estimate allows to control (uniformly in t) the norm of u in W 1/2,2 and implies
compactness in space for the solutions.

• The second energy estimate of [6] says that for all 0 < t1 < t2 <∞
(2.6)∫ t2

t1

∫
RN

u |Ru|2 dxdt+
1

2

∫
RN

|(−∆)−1/4u(t2)|2 dx ≤ 1

2

∫
RN

|(−∆)−1/4(u(t1)|2 dx .

This estimate is not so important in a context in which solutions are integrable and
bounded. More important is the following observation.

• General energy property. Bilinear form. (i) The proofs of the basic lemmas
will use energy inequalities of the following form: for any F smooth and such that
f = F ′ is bounded and nonnegative, we have for every 0 ≤ t1 ≤ t2 ≤ T∫

F (u(t2)) dx−
∫
F (u(t1)) dx = −

∫ t2

t1

∫
∇[f(u)]u∇p dx dt =

−
∫ t2

t1

∫
∇h(u)∇(−∆)−1/2u dx dt ,

where p = (−∆)−1/2u and h is a function satisfying h′(u) = u f ′(u). A natural
candidate for h(u) is u or a truncation of it, so that f(u) must be a logarithm or a
variant of it, as we will see below. We can write the last integral as a bilinear form

(2.7)

∫
∇h(u)∇(−∆)−1/2u dx = B(h(u), u)

and this bilinear form B is defined on the Sobolev space W 1,2(RN) by

(2.8) B(v, w) = CN

∫∫
∇v(x)

1

|x− y|N−1
∇w(y) dx dy,

7



where N (x, y) = CN |x − y|−(N−1) is the kernel of operator (−∆)−1/2. After some
well-known transformations, we also have

(2.9) B(v, w) = C ′N

∫∫
(v(x)− v(y))

1

|x− y|N+1
(w(x)− w(y)) dx dy .

It is known that B(u, u) is an equivalent norm for the fractional Sobolev space
W 1/2,2(RN). A number of basic properties of operator B are listed in [5], and we
refer the reader to that reference when they are needed.

(ii) In our basic lemmas we use a variant where f depends also on x in a smooth
way, see Subsection 4.1. The above inequalities are assumed to hold for such test
functions.

Note. The solutions for which we derive the regularity result enjoy such properties
and we call them weak energy solutions. We will always assume that we are dealing
with such class of weak solutions, i.e. they are bounded, integrable in space and obey
the energy estimates.

3 Strategy to prove Hölder regularity

Our concern in this paper is the local regularity of weak solutions. The result we
want to prove has been stated as Theorem 1.1. Let us review here the strategy
and main tools. Since the equation is space- and time-invariant we may assume that
T1 < T2 = 0, and then we may study the regularity around x = 0 and t = 0. The basic
ideas of the proof of regularity were proposed in [5] and are as follows: On the one
hand, we will prove some basic De Giorgi-type oscillation lemmas that say that the
oscillation of the solution u shrinks in a certain way when we restrict the domain with
a certain scale. To be precise, we will rely on the iterated application of three basic
lemmas, so-called oscillation reduction lemmas. These technical results need only be
proved for bounded nonnegative weak solutions defined in a strip SR = [−R, 0]×RN .
We denote by ΓR the parabolic cylinder [−R, 0] × BR(0). By parabolic we mean
at this point space-time subset. One of the lemmas controls the decrease of the
supremum of the solution once we restrict the size of the parabolic neighborhood of
(0, 0), from say Γ4 into a smaller cylinder like Γ1. Another one implies that under
suitable assumptions the solution separates from zero in the same type of cylinders.
A third one improves the first result so as to obtain a real alternative between going
a bit down and a bit up. This is what is needed to make the iteration possible and
efficient.
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The possibility of efficient iteration depends on a second ingredient, the scaling prop-
erty of the equation, that allows to renormalize the solution through the transforma-
tion

(3.1) û(x, t) = Au(Bx,Ct)

with A,B > 0 free parameters, and C = AB (since s = 1/2). Using this property,
after every step of application of the oscillation reduction result, we renormalize the
solution defined in Γ1 into a scaled out solution defined in Γ4 and we start a new
application of the oscillation lemmas. In this way, we will show that the oscillation of
the solution u decays with a fixed geometric rate in a family of space-time cylinders
shrinking also geometrically to a point.

• This program was successfully implemented for s < 1/2 in paper [5] but it turned out
to be insufficient for s ≥ 1/2. A first difference in the situation is that the reduction
of oscillation of the basic lemmas (essentially, the first lemma) will also depend on
the spatial L1 norm of the solutions. Since this dependence gets worse with the
iterations because of the scalings, it has to be eliminated at some moment, and this
happens through a geometrical transformation of the domain using a moving frame
associated to some transport ideas that allow us to kill the integral term responsible
for the unwanted dependence. This delicate idea has been successful for s ∈ (1/2, 1)
as reflected in the final part of [5].

• However, the corrected method does not work for s = 1/2 because the integral
defining the change of coordinates, see formula (8.3), is in principle divergent (a
divergence of logarithmic type) at both ends, zero at infinity, and the previous method
corrects only the far field. We note that the problem arises only in the case where
successive iterations push the solution always down so that we end up focusing at a
point where u vanishes (degenerate case). The intuitive reason for this difficulty to
be anyway avoidable is that in such a situation the solution will be proved to be zero
at some point with some Hölder exponent and this will make the problematic integral
convergent at the origin. However, this is an argument a posteriori that has to be
justified.

The technical way out of the difficulty that we propose here for s = 1/2 consists of the
consecutive applications of scaling and a geometrical transformation, after separation
of the effect of the velocity integral near the origin of coordinates (i. e., near the point
under study). In the process a number of reductions of the domain are needed in a
consecutive form, and they must be strictly controlled in order to arrive at the desired
Hölder regularity estimate. The delicate analysis is explained in full detail in Sections
8 and 9, and it is the aim of the present paper.
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Before going into this analysis we need to review the basic lemmas which support
the proof, and we will devote the next sections to this task. We refer to [5] for more
details on the derivation of the lemmas, which is done there for all s ∈ (0, 1). In
the present shortened version we concentrate on the points of interest for the final
sections.

4 The first oscillation reduction lemma

The first of the three basic lemmas deals with the question of “lowering the maximum”
of a solution when we shrink the domain in a convenient way and the appropriate
assumptions are met. It has been worked out in full detail in [5] thinking of the case
s < 1/2. Special attention has to be paid to the difficulties of the case s = 1/2
since the lack of integrability of the kernel at infinity means that we have to modify
the argument. The statement is formally almost the same as the lemma in [5], the
difference lies in the additional dependence of the constants on L1 information of the
data. Recall the notations of Section 3. Our solution u ≥ 0 is bounded above in
the strip S4 = Rn × [−4, 0] in a precise way, and we must also assume that M1 =
sup{‖u(·, t)‖L1(RN ) : t ∈ (−4, 0)} is bounded. We write Γ4 = B4(0)× [−4, 0].

Lemma 4.1 Let u ≥ 0 be an energy weak solution of (1.1) with s = 1/2. Given
µ ∈ (0, 1/2) and ε0 small enough, there exists δ > 0 (depending possibly on µ, ε0, s, N ,
and M1) such that, if we assume that
(i) the solution u is bounded above in the strip S4 = Rn × [−4, 0] by

(4.1) Ψ(x) = 1 + (|x|ε − 2)+, 0 < ε < ε0 ,

and (ii) u is mostly below the level 1/2 in Γ4 in the sense that

(4.2) |{u > 1/2} ∩ Γ4| ≤ δ|Γ4| ,

then we have a better upper bound for u inside a smaller cylinder:

(4.3) u|Γ1
≤ 1− µ .

Roughly speaking, “being mostly below 1/2 in space-time measure pulls down the
supremum in a smaller nested cylinder”, and this happens in a quantitative form.
Note that for this lemma δ can be chosen as a non-increasing function of µ with
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δ(1/2+) = 0. Also, ε can be chosen as small as we want by sacrificing the gain
in oscillation, i. e., the final Hölder exponent. We also remark that the size of the
cylinders can be changed, though this affects the values of δ if the new sizes do not
conform with the parabolic scaling. Finally, the levels u = 1/2 and u = 1 are taken
by convenience, any pair of levels 0 < Ml < Mu will do, though in principle the value
of δ will change.

• Let us review the proof in order to recall the most important tools and formulas,
and the final details that need attention. The basic idea in the proof of the result is a
particular kind of “localized energy inequalities” that will be iterated in the De Giorgi
style to obtain the reduction on the maximum in a smaller domain. Localization is
obtained by using a suitable sequence of cutoff functions, which leads in the limit to
the stated result.

In order to deduce the necessary energy inequalities we use integration by parts
formulas and analysis of the kernels. A main role is played by the bilinear form B(v, w)
as defined above with kernel K(x) = c|x|−(N+1). Moreover, we put L(x) = c1|x|−N+1

so that ∆L = K. We will repeatedly use the following equivalent form, based on
(2.9),

(4.4) B(u, v) =

∫∫
(u(x)− u(y))K(x− y)(v(y)− v(x)) dxdy.

4.1. An energy formula. We consider a sequence of cutoffs ϕ(x) that have the
form of downward perturbations of the level u = 1 within a region containing the
unit ball B1(0), and they also have an “outer wing” rising up above the 1-level for
larger values of |x| to be able to keep a global control of the dilations of u. An explicit
choice suitable for our purposes will be done below. We only need to know at this
stage that the cutoff function ϕ is smooth, lies above 1/2 everywhere, and also that
u ≤ ϕ for all |x| ≥ 3 for all times −4 ≤ t ≤ 0.

We use the function η = log((u/ϕ)∨ 1) = log(g) as a test function in the weak form
of the equation, which is allowed in our definition of weak energy solution. Note that

g :=
u

ϕ
∨ 1 = 1 +

(u− ϕ)+

ϕ
= 1 +

u+
ϕ

ϕ
,

where u+
ϕ = (u − ϕ)+ according to the notation introduced at the end of the Intro-

duction. Note that g ≥ 1 and g > 1 iff u > ϕ. According to our assumptions, u+
ϕ and

g − 1 have compact support in the ball of radius 3. We will split u as

u = u+
ϕ + ϕ+ (u− ϕ)− ,
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where we write (u − ϕ)− = (u − ϕ) ∧ 0 = u−ϕ . Notice that with this notation we
have u−ϕ ≤ 0. A detailed argument of paper [5] shows that we have the following basic
identity for T1 < T2 ≤ 0:

(4.5)


∫
ϕ(g log g + 1− g) |T2 dx+

1

2

∫ T2

T1

B(u+
ϕ , u

+
ϕ ) dt+

1

2

∫ T2

T1

B(u+
ϕ , u

−
ϕ ) dt

=

∫
ϕ(g log g + 1− g) |T1 dx−

1

2

∫ T2

T1

B(u+
ϕ , ϕ) dt+

∫ T2

T1

Q(u+
ϕ , u) dt ,

where

Q(u+
ϕ , u) dt :=

∫∫
u+
ϕ (x)

∇ϕ(x)

ϕ(x)
∇xL(x− y)[u(y)− u(x)]dxdy .

We will think of the LHS as the basic energy of this calculation, and the RHS as the
terms still to be controlled.

4.3. Cutoff functions, control of the RHS and final goal

At this moment we make a convenient choice of the sequence of cutoffs in order to
better tackle the RHS and rest of the proof of the lemma. Though only some simple
bounds on the functions and their derivatives are used, a practical choice used in [5]
is as follows:

(4.6) ϕk(x) = min{1 + (|x|ε − 2)+, ϕk(x)}, ϕk(x) =
7

8
+
|x|2

16
− 1

2
4−k ,

for some small ε > 0 and k = 1, 2, . . . Note that ϕk ≥ ϕk−1. The following remark
will be important: at points where ϕk < 1 we have

ϕk = ϕk−1 +
1

2
4−k.

We also have
inf ϕk = ϕk(0) > 1/2 for k ≥ 1.

Moreover, ϕ∞(x) ≤ 1 precisely for |x| ≤
√

2 and ϕ1(x) < 1 for |x| < 2. This
means in particular that ϕk(x) = 1 + (|x|ε − 2)+ for |x| ≥ 2, k ≥ 1. Moreover,
ϕ∞(x) = (|x|2 + 14)/16 ≤ 15/16 for |x| ≤ 1.

A more general version of the same construction takes

(4.7) ϕk = 1− 1

2C
+
|x|2

4C
− 1

2
C−k
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with C possibly larger than 4. In that case 1− ϕ∞(x) ≥ 1/4C for |x| ≤ 1.

For the rest of this proof we write u+
k = (u−ϕk)+ ≥ 0, u−k = (u−ϕk)− ≤ 0 with this

choice of ϕk. Notice that the support of u+
k is contained in the ball of radius 2 as a

consequence of assumption (4.1).

We are ready to tackle the RHS of Identity (4.5) with this choice of test functions.
One part will be controlled by a small multiple of the present energy, i. e., we will
absorb it into the LHS of (4.5). The rest will be bounded above by a large multiple
of |{u+

k > 0}| (we recall that the notation |.| means the Lebesgue measure of the set).

4.4. Estimate of the remaining B term

This part does not differ from [5]. We start the process with B2 = B(u+
k , ϕk). By

inspecting the integral we easily get

B2 ≤ γB(u+
k , u

+
k ) +

1

γ
B∗(ϕk, ϕk) ,

for every γ > 0, where B∗(ϕk, ϕk) indicates that the integral is performed only on the
set where either x or y belong to {u+

k > 0}. That is,

B∗ =

∫∫
[χ{u+k >0}(x) + χ{u+k >0}(y)]K(x− y)(ϕk(x)− ϕk(y))2.

For γ small, then γB(u+
k , u

+
k ) is absorbed into the LHS (into the energy). Now, using

that
|ϕk(x)− ϕk(y)| ≤ C min(1, |x− y|),

and the size of the kernel K, we arrive to the estimate

B∗ ≤ C|{u+
k > 0}| ≤ C42k

∫
{u+k >0}

(u+
k−1)2dx

The last inequality follows by Chebyshev’s inequality, since uk−1 ≥ 4−k/2 whenever
u+
k > 0. The resulting expression is good for our later purposes.

4.5. Analysis of the Q terms

Let us finally examine the last term in (4.5), a source of trouble for this paper. It
also has a bilinear structure. Indeed,∫∫

u+
k (x)

∇ϕk(x)

ϕk(x)
∇L(x− y)[u(x)− u(y)] dxdy := Q(u+

k , u)

= Q(u+
k , u

+
k ) +Q(u+

k , ϕk) +Q(u+
k , u

−
k ) = Q1 +Q2 +Q3 .
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Note however that the “kernel” that is involved is not symmetric due to the presence
of terms with ϕk. The study of the contribution of each of the three terms is again
split into the close-range and far-field interactions, represented by the integrals where
(x−y) lies in a given ball around the origin, or alternatively in its complement. In that
sense we note that ∇L satisfies |∇L| ≤ c|x − y|K(x, y). As in [5], the contribution
of the first two terms in the RHS is either absorbed into the LHS or estimated as
smaller than

C2k

∫ t2

t1

∫
{u+k >0}

(u+
k−1)2 dxdt.

• The last term in this analysis needs closer scrutiny since it is the source of the
special difficulties for s ≥ 1/2. We have

(4.8) Q3 = Q(u+
k , u

−
k ) = −

∫∫
u+
k (x)

∇ϕ(x)

ϕ(x)
∇L(x− y)u−k (y) dxdy.

To estimate the integral on the set where |x−y| ≤ η is small, we use that |∇L(x−y)| ≤
C|x − y|K(x − y) and then Q(u+

k , u
−
k ) is bounded by a small fraction of B(u+

k , u
−
k )

(remember that we have proved that this term has the correct sign). We can therefore
get this part absorbed by the LHS of the energy identity.

• Finally, we need to consider the integral Q3 for |x − y| > η. This is the delicate
case.Indeed, this is the only place where the restriction s < 1/2 was quite useful in
our previous paper. We can solve the difficulty by making use of the known fact that
u(x, t) is an L1 function in x, uniformly in t. Since ∇L(x − y)u−k (x) is bounded for
large |y|, we get∣∣∣∣∫∫ u+

k (x)
∇ϕ(x)

ϕ(x)
∇L(x− y)u−(y) dxdy

∣∣∣∣
≤ C‖u(·, t)‖1

(∫
u+
k (x)dx

)
≤ Ck‖u(·, t)‖1

(∫
{u+k >0}

(u+
k−1(x))2dx

)
.

and we know that ‖u(·, t)‖1 ≤M1. But we warn the reader that this idea is a partial
solution and will run into difficulties later when we perform repeated iterations and
rescaling.
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4.6. Summary. Putting all these estimates into (4.5), we obtain for s = 1/2 (or
any s ∈ (0, 1)) and t1 < t2 ≤ 0 the following energy inequality:

(4.9)



∫
(u+

k (t2))2

ϕk
dx+

1

2

∫ t2

t1

B(u+
k , u

+
k ) dt

≤ 2

∫
(u+

k (t1))2

ϕk
dx+ (C2k + CM1)

∫ t2

t1

∫
{u+k >0}

(u+
k−1)2 dxdt ,

where C is a universal constant that only depends on s (here s = 1/2) and the
dimension N . We will have to pay attention to this dependence on ‖u(t)‖1 later, but
in this first derivation of the lemma it allows us to continue and conclude. In the
application to the iteration to follow next, the ti will be chosen in dependence of k.

4.7. Iteration and end of proof of Lemma 4.1

This concluding argument follows the De Giorgi style and is done as in [5]. Since
this step is important and not long we recall it for convenience. We define the “total
energy function for the truncated solution” u+

k as

(4.10) Ak = sup
Tk≤t≤0

∫
(u+

k )2(t) dx+

∫ 0

Tk

B(u+
k , u

+
k ) dt,

where Tk = −2(1 + 2−k), k = 0, 1, · · · . Notice that ϕk lies between 1/2 and 1 at
the points where u+

k is not zero. From (4.9) with k ≥ 1, and taking arbitrary values
t2 = t ≥ Tk and t1 = t′ ∈ [Tk−1, Tk] we have

(4.11) Ak ≤ 4 inf
t′∈[Tk−1,Tk]

∫
(u+

k )2(t′) dx+ C2k

∫ 0

t′

∫
{u+k >0}

(u+
k−1)2 dxdt = I + II .

Taking averages in t′ we arrive at the inequality

inf
t′∈[Tk−1,Tk]

∫
(u+

k )2(t′) dx ≤ 1

Tk − Tk−1

∫ Tk

Tk−1

∫
(u+

k )2(t′) dxdt′

≤ 2k
∫ Tk

Tk−1

∫
(u+

k )2(t′) dxdt′.

Observing that u+
k (x) > 0 implies u+

k−1(x) > u+
k (x) + 4−k/2, we realize that both, I

and II, have the same flavor, and that in fact we have the estimate

(4.12) Ak ≤ Ck

∫ 0

Tk−1

∫
{u+k−1>4−k/2}

(u+
k−1)2 dxdt ,
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for a possibly larger constant C.

The next step uses the following Sobolev embedding inequality

(4.13)

(∫
up dx

)2/p

≤ C‖u‖2
H1/2

for some p > 2 depending on r ∈ (0, 1) and N . C depends also on r and N . Actually,
p = 2N/(N − 1) > 2, when N ≥ 2. Using this exponent and applying the inequality
to u+

k−1 we get ∫
(u+

k−1)p dx ≤ C
[
B(u+

k−1, u
+
k−1)

]p/2
.

Take θ = 2/p and define q = (1− θ)2 + θp. Then∫
{u+k−1>4−k/2}

(u+
k−1)2 dx ≤ 4(k+1)(q−2)

∫
(u+

k−1)q dx

≤ 4(k+1)(q−2)

(∫
(u+

k−1)2 dx

)(1−θ)(∫
(u+

k−1)p dx

)θ
≤ C4k(q−2)

(∫
(u+

k−1)2 dx

)(1−θ)

B(u+
k−1, u

+
k−1)

Integration in time t along the interval [Tk−1, 0] gives us from inequality (4.12) and
the previous estimate a recurrence relation of the form

Ak ≤ Ck

(
supTk−1≤t≤0

∫
(u+

k−1)2(t) dx

)1−θ

·
∫ 0

Tk−1

B(u+
k−1, u

+
k−1) dt

≤ CkA(1−θ)
k−1 Ak−1 = CkA1+τ

k−1,

with τ = 1 − θ > 0 and a possibly larger constant C. It is well-known that this
iterative sequence converges if A1 is small enough (depending on the constant C
appearing in the inequality. Applying this observation to our case we conclude that if
we take δ very small, then the iteration starts well so that the sequence Ak converges
and then A∞ = 0, which means that u ≤ η∞ and this in turn implies that u ≤ 7/8
for |x| ≤ 1. We thus get the result in the Lemma statement with µ = 1/8.

Remarks. 1) The obtained δ and µ depend on the bound sup{‖u(t)‖1 : t ∈ (−T, 0)}.
This dependence has to be eliminated later by a subtle new method.

2) A simple modification of ϕ∞ would give other values of µ ∈ (0, 1/2), of course
with a different estimate of the maximum allowed value for δ. The proof also shows
that the time size T = 4 can be replaced by any other number and the iteration will
work with a different value for δ (and the same values for µ and ε).
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5 The second basic lemma. Pulling up from zero

A similar oscillation reduction result applies from below. The proof is technically
different since the equation is degenerate at u = 0. The idea is that if u is very
often far from zero in Γ4 then in a smaller, suitably nested cylinder u stays uniformly
away from zero. The technical version explains how “being above 1/2 most of the
space-time, pulls the solution up away from zero”.

Lemma 5.1 Under the same assumptions set before Lemma 4.1, given µ0 ∈ (0, 1/2)
there exists δ > 0 (depending possibly on µ0, ε0, s, and N) such that if u satisfies

(5.1) |{u ≥ 1/2} ∩ Γ4| ≥ (1− δ)|Γ4| ,

then u|Γ1
≥ µ0.

Again, δ is a non-increasing function of µ0. Let δ0 = δ(1/4), that is, when µ0 = 1/4.
It is important to remark that this result does not depend at all on the boundM1 =
sup{‖u(·, t)‖L1(RN ) : t ∈ (−4, 0)}.
The proof of Lemma 5.1 does not differ from the case s < 1/2 done in [5]. A

more elaborate version of this lemma will be needed in the second alternative of the
iteration procedure.

6 The third oscillation reduction lemma

We still need to recall another ingredient before we attack the regularity issue by
means of a suitable iteration. Indeed, we have to improve Lemma 4.1 by showing
that, in order to get a uniform reduction of the maximum in a smaller ball it is not
necessary to ask that u ≤ 1/2 “in most of” Γ4, but only “some of the time”. Most
precisely, we must replace the sentence “most of the space-time” of Lemma 4.1 by
“in some set of positive measure”.

Lemma 6.1 (“Some of the space-time below 1/2, pulls down from 1”) Assume as
before that 0 < s < 1/2 and u is trapped between 0 and Ψ in S4. Besides, assume
now that

(6.1) |{u < 1/2} ∩ Γ4| ≥ δ0|Γ4|,

with δ0 defined as above. Then u|Γ1
≤ 1− µ′, for some µ′(δ0).

17



Notice that this new lemma applies only in one direction, reducing the oscillation
from above. As in the classical porous media, we cannot expect this lemma to hold
in the “pulling-up” case, due to the property of finite propagation (existence of so-
lutions with compact support), a consequence of the degeneration of the equation.
Nevertheless, this one-sided improvement will be enough to prove that the oscillation
decays dyadically as explained shortly below.

The proof of this result is long and delicate but offers no difference with the one
contained in Sections 9 and 10 of paper [5], using the so-called lemma on intermediate
values. The precise version that is proved there is as follows. Let us fix some notation.
For λ small enough w, we define for any ε > 0

ψε,λ(x) = ((|x| − 1/λ4/s)ε − 1)+ if |x| ≥ λ−4/s,

and zero otherwise.

Lemma 6.2 Given ρ > 0 there exist ε > 0 and µ1 such that for any solution of the
FPME in RN × (−4, 0) satisfying

(6.2) 0 ≤ u ≤ 1 + ψε,λ,

and assuming that

(6.3) |{u < ϕ0} ∩ (B1 × (−4,−2))| > ρ ,

then we have

(6.4) sup
B1×(−1,0)

u ≤ 1− µ1.

Note: In the next section we will take ρ equal to δ0 as defined after the statement of
Lemma 5.1.

7 Iteration Procedure. Alternatives

The actual proof of the Hölder regularity result stated in Theorem 1.1 is based on
the application of the three basic lemmas, following the iterative process outlined in
Section 3. We will review these steps only briefly since they have been explained in
[5]. But the already announced difficulties motivate serious modifications that are
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the main contribution of the present paper. We will leave this delicate part for a later
section.

The process works in an iterative way with two main alternatives. We want to take
any point P0 = (x0, t0) ∈ RN × (0,∞) and prove that u is Cα around P0 with an
exponent that depends only on N , and a Hölder constant that depends also on the
L∞ norm of u and a lower bound on t0, t0 ≥ 4τ > 0.

Let us enter into some details: We have assume that our solution is bounded. By
scaling we may also assume that 0 ≤ u(x, t) ≤ 1 in RN × (0, T ). Moreover, again
by scaling we may assume that T > t0 > 5. It will be then convenient to make a
space-time translation and put P0 = (0, 0) assuming that the domain of definition of
u contains the strip S4 = RN × [−4, 0].

Consider now a positive constant K < 1/4 such that the growth of the outer wings
is controlled as follows:

(7.1)
1

1− (µ1/2)
ψλ,ε(Kx) ≤ ψλ,ε(x).

The coefficient K depends only on λ, µ1 and ε > 0. The parameters are as in the last
section. The iteration that we will perform offers two possibilities.

• Alternative 1. Regularity at a degenerate point. Suppose that we can apply Lemma
6.2 repeatedly because the lowering of the oscillation may be assumed to happen
always from above. We consider then the sequence of functions defined in the strip
S4 = RN × (−4, 0) by

(7.2) uj+1(x, t) =
1

1− (µ1/4)
uj(Kx,K1t), K1 =

K2−2s

1− (µ1/4)
.

Note that this time the uj’s are all of them solutions of the same equation. According
to the running assumption, and using (7.1), we can apply Lemma 6.2 at every step so
that we have uj(x, t) ≤ 1− µ1 in the cylinder Q1 = B1 × (−1, 0) for every j ≥ 1. In
view of the scaling (7.2), this would imply Hölder regularity around the point (0, 0),
where the solution necessarily takes the degenerate value u = 0 in a continuous way.
This process was justified for s < 1/2 in [5]. But this process has a problem when we
want to re-do the proof of the technical oscillation lemmas for s ≥ 1/2. In particular,
the constants in Lemma 4.1 depend on the mass of the solution and this one grows
unboundedly when performing successive rescalings, and this dependence propagates
to the lemmas of Section 6 that we are using. So the process deteriorates without
control.
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• Alternative 2. Regularity at points of positivity. It can also happen that after some
steps of the iteration the assumption on the measure of the set {uj > 1/2} made in
Lemma 6.2 fails. Then, we are in the situation where the oscillation is reduced from
below thanks to Lemma 5.1, which pulls the solution uniformly up from zero in a
smaller cylinder. Then the equation is no longer degenerate, because after that step
we have

0 < µ′ ≤ uj(x, t) ≤ 1,

in the cylinder B1 × (−1, 0). Scaling the situation we will be in the conditions of
the nondegenerate equation with diffusivity D(u) bounded above and below, so the
case can be treated as quasi-linear. This case was carefully examined in the paper [5],
where the proper modification of the proofs of the basic lemmas was discussed. In this
way we obtain Hölder regularity at a point P0 where u(P0) > 0 without modification
on the arguments of the mentioned paper. We make some more detailed comments
in Section 10.

8 Correcting the iteration process for s > 1/2

As we have already indicated, Alternative 1 above has a problem when we want
to re-do the proof of the basic oscillation lemmas for s ≥ 1/2. Indeed, we find a
convergence problem in the proof of Lemma 4.1; the bulk of the proof contained in
Section 4 works without modification, and an important difference was found only
in the last estimate of Subsection 4.4, regarding integral Q3 in an outer region. The
solution we have proposed in Subsection 4.4 was to make use of the extra fact that
u(x, t) is also an L1 function in x, uniformly in t, and use this get the bound on the
integral of the y terms in Q3, with integrand ∇L(x− y)u−k (x), since it is bounded for
large |y|. This solves the problem of ending the proof of Lemma 4.1, but then δ and
µ depend on M1 = supt ‖u(t)‖1 as we have shown.

However, in order to obtain the Cα regularity result we have seen in the preceding
Section 7 that we need to iterate this (and the other oscillation lemmas), we want to
rescale and repeat, and then the difficulty re-appears, because we will keep stretching
the variable u and the x axis, and therefore increasing the integral at every step, so the
constants will be ruined in the iteration. We need a way to control such behaviour.

It will be convenient to examine the whole part of Q(u+, u) that contains the diffi-
culty, i.e.,

(8.1)

∫∫
u+
k (x)

∇ϕk(x)

ϕk(x)
∇L(x− y)u(y) dxdy .
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As we dilate and repeat in the iteration scheme, the term ∇L(x− y)u(y) also starts
to build up as y tends to infinity. On the other hand, the integrability in y at infinity
is lost if 1 > s ≥ 1/2, since in that case ∇L decays like

|∇L| ∼ |y|−(N−2s+1)

and this is not good enough. However, the good news is that for all i, j

(8.2) ∂i∂jL ∼ |y|−(N+2−2s) ,

which is integrable as |y| → ∞. Noting that ∇L is integrable for y ∼ 0 if s > 1/2,
we conclude for such exponents that

V (x, t) := (∇L(x− y)) ∗y u(y, t)

has a bounded Hölder seminorm. Therefore, it would be enough to control it at just
a point, for instance at x = 0 (for an interval of times). Let us see next how this idea
was implemented in [5].

8.1 The transport approach for s > 1/2

The technical way to make use of the last observation is to perform by a change of
coordinates x′ = x − γ(t) that introduces a transport term to counter the difficult
term we are dealing with,

∫
∇L(y) Ψ(y)u(y) dy. To be precise, we define

(8.3) γ(t) =

∫ t

0

~v(t) dt, ~v(t) =

∫
∇L (y)u(y, t) dy ,

and we observe that |~v(t)| depends also on u, and that |~v(t)| ≤ C < ∞ since we are
assuming that u(y, t) is in L1

y, uniformly in t. Indeed, the value of ~v(t) = ~v(t;u) is
only controlled by the integral of u in space (what we call the mass of u(t)). Next,
we introduce change of variables

(8.4) (x, t) 7→ (x′, t′) := (x− γ(t), t) ,

and we write the equation for u with respect to the new variables, u(x, t) = ũ(x′, t′).
The RHS does not change since we are performing a space translation for fixed time.
However, the time derivative in the LHS transforms as follows:

ut(x, t) = ũt′(x− γ(t′), t′) + (∇x′u)(−γ′(t′)) = ũt′ − ~v · ∇x′ũ.
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(We hope the reader will not have problems with the primes: in γ′ it means derivative,
in x′, t′ it means new space and new time). The last term in the formula is what we
are aiming at. The equation takes the convection-diffusion form

(8.5) ũt − ~v · ∇x′ũ = ∇(ũ∇Lũ) .

In the sequel we will write t for t′ and u instead of ũ without fear of confusion. The
new space variable is still written x′. Next, we pass the term ~v · ∇u to the RHS and
multiply by log((u/ϕ)∨ 1), as we did in Section 4, to obtain the energy formula. We
observe that in this case the RHS contains an extra term of the form

I = −
∫∫
∇ log((u/ϕ) ∨ 1)~v(t)u(x′, t) dx′dt .

This integral must be computed only in the region where u > ϕ, and in that case
(u/ϕ) ∨ 1 = u/ϕ = 1 + (u+

k /ϕk), so that

I = −
∫
dt

∫
u>ϕk

∇u+
k ~v(t)dx′ +

∫
dt

∫
u>ϕk

u+
k

∇ϕ
ϕ

~v(t)dx′ = −I1 + I2

The first integral vanishes, and the second is precisely the troublesome term:

I2 =

∫
dt

∫
u>ϕk

dx
u+
k (x′)

ϕk(x′)
∇ϕk(x′)

∫
∇L(y′)u(y′, t) dy′ .

After this addition, the troublesome Q integral (8.1) now amounts to∫
dt

∫
u>ϕk

dx
u+
k (x′)

ϕk(x′)
∇ϕk(x′)

∫
(∇L(y′)−∇L(y′ − x′))u(y′, t) dy′ .

Using estimate (8.2) this is convergent and can be estimated without having recourse
to the L1 norm of the solution.

Note.- The disappearance of the bad term in the energy calculation in the new
variables can be easily predicted if we write the equation for ũ(x′, t) in the more
symmetrical form

(8.6) ũt +∇x′

(
ũ

(∫
{∇L(y − x′)−∇L(y)}(ũ(y)− ũ(x′)) dy

))
= 0 ,

to be interpreted in the same weak form, or weak energy form, as we have used for
u(x, t).
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In any case, this allows to prove Lemma 4.1 also for s ∈ (1/2, 1) if we work in the new
coordinates, and the constants involved in the result do not depend on the L1 norm of
the solution. The price to pay is that the slope of the distorted space variables does
depend on the u-integral. So, in the first step of the iteration process we have shown
how to transfer the difficulty from a numerical term to a geometrical distortion.

In order to sum up the result, let us introduce the bound M = 1 ∨ supt>0 ~v(t), that
depends only on u via the norm supt ‖u(·, t)‖1.

Lemma 8.1 Let 1/2 < s < 1 and let u be a solution of the FPME under the assump-
tions of Lemma 4.1. Let us perform the above change of variables so that ũ(x′, t′) is
defined in smaller cylinder QL where L = 4/(M + 1). Then the result of Lemma 4.1
is true for ũ, with conclusion holding in a smaller cylinder Q1/M ; δ may depend also
on M .

Thanks to (8.6), it is then immediate to see that the pull-up Lemma 6.1 are also
true if stated in the form that we have used for Lemma 8.1. A bit more of attention
to the details will show that the stronger reduction Lemma 6.2 also holds, since the
iterations do not change the scaling in space and time.

8.2 Analysis of the transport term in the iterations

When we try to perform again the iteration procedure of Section 7, one of the alter-
natives is repeated scaling around a degenerate point. In that case the iterations take
the form

(8.7) uj+1(x, t) =
1

1− (λ∗/4)
uj(Kx,K1t), K1 =

K2−2s

1− (λ∗/4)
.

that we may sum up as

u1(x1, t1) = Au(x, t), x1 = Bx, t1 = Ct.

where A > 1, B < 1 and C = B2−2sA, so that the same equation will be satisfied
after the change of scale. We propose here to do the same iteration for the solution
ũ in terms of the variables x′ and t. The equation will then take the modified form
(8.6), that will be satisfied again by the iterates, just as it is written. It is true that
the velocity ~v(t) will change from iteration to iteration according to the rule

(8.8) ~v1(t) =
C

B
~v(Ct) = B1−2s~v(Ct),
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which follows both from the geometric transformation, and from the definition of ~v in
(8.3). Therefore, after the first geometrical transformation such repeated iterations
conserve the same correspondence for all subsequent steps. In other words, the ge-
ometrical transformation done in the first step will hold for all remaining steps: if
the set of coordinates at that moment is (xn, tn), we obtain a set of newly distorted
coordinates (x′n, tn) by the formula

x′n(t) = xn(t)− γn(t), γ′v(t) = ~vn(t)

which is just a scaled version of the original transformation for n = 0. Summing
up, since the contractions in the upper bound for u happen with a constant rate
1 − µ in cylinders that shrink in space and time also with a fixed rate, we conclude
in a standard way Cα-regularity with respect to the transformed variables. But
since the coordinate transformation is done only once and is Lipschitz continuous,
this means the same type of Hölder regularity for u with respect to the original
coordinates (x, t). Of course, the Lipschitz constant of the transformation depends
on M1 = supt ‖u(t)‖L1

x
.

9 The transport approach for s = 1/2

The problem with the Q estimate in Lemma 4.1 was solved in Section 8 by means of
the change of variables described as transport approach. It allowed us to swallow the
conflicting term by means of a controlled geometrical distortion on the assumption
that s ∈ (1/2, 1). Unfortunately, this does not work for s = 1/2 because the integral
defining the relative velocity of the new coordinates in (8.3) is now given by the
expression

(9.1) ~v(t) =

∫
∇L (y)u(y, t) dy = C

∫
u(y, t) sign (y)

|y|N
dy ,

which is not necessarily bounded. It would be at t = 0 if we already knew that
u(0, 0) = 0 and moreover that there is a modulus of continuity of u(0, x) in x. But
this is precisely what we want to prove. Therefore, we have to work in an indirect way,
by using partial transport corrections in an iterative way. This happens as follows:
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9.1 Transport after isolating the origin

We go back to the beginning of the transport method, as introduced in the previous
section, but now we make a partition

∇L = (∇L)Ψ + (∇L)(1−Ψ) ,

with a smooth cutoff function 0 ≤ Ψ ≤ 1 such that Ψ ≡ 0 in Bε and Ψ ≡ 1 out
of B2ε, i. e., it eliminates a neighborhood of the origin. The term corresponding to
∇L(1−Ψ) is controlled by a small multiple of the “good term”∫∫

u+
ϕ (x)K(x− y)(u− ϕ)−(y) dxdy

since ∇L(1 − Ψ) = 0 outside B2ε and ∇L (1 − Ψ) ≤ |x − y|K(x − y) ≤ εK(x − y).
We now consider the term ∇LΨ. Again, we observe that

(9.2) ∂i∂jLΨ ∼ 1

(1 + |y|)N+1

(valid for all second derivatives), hence

V (x, t) := (∇LΨ(x, y, t)) ∗y u(y, t)

has a bounded Lipschitz seminorm. It will be enough to control it at just a point, for
instance at x = 0 (for an interval of times), since the spatial increments are already
under control.

We can now perform the coordinate change x′ = x−γ(t) that introduces a transport
term to eliminate the term

∫
∇L(y) Ψ(y)u(y) dy. To be precise, we define

(9.3) γ(t) =

∫ t

0

~v(t) dt, ~v(t) =

∫
∇LΨ(y)u(y, t) dy ,

and we observe that |~v(t)| ≤ C < ∞, since u(y, t) is in L1
y uniformly in t. Indeed,

the value of ~v(t) = ~v(t;u,Ψ) is only controlled by the integral of u in space (i. e., the
mass of u(t)). When we make the change of variables

(x′, t) = (x− γ(t), t) ,

and we write the equation with respect to the new variables, this does not change the
RHS. However, on the LHS we get

ut(x, t) = ũt(x− γ(t), t)− (∇ũx′u) γ′(t) = ũt −∇x′ũ · ~v .
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The equation becomes

(9.4) ũt +∇x′

(
ũ

(∫
{∇L(y − x′)−∇L(y)Ψ(y)}ũ(y) dy

))
= 0 ,

so that the kernel L(x − y) has been replaced by L̃(x, y) = L(x − y) + L(y)Ψ(y).
Let us see how this affects the energy estimates. If we pass ~v · ∇u to the RHS and
multiply by log((u/ϕ)∨ 1), as we did above to obtain in the energy formula, this one
will contain an extra term of the form

−
∫
dt

∫
dx∇ log((u/ϕ) ∨ 1)~v(t)u(x) = I.

The integral must be performed only when u > ϕ an in that case (u/ϕ)∨ 1 = u/ϕ =
1 + (u+

k /ϕk) so that

I = −
∫
dt

∫
u>ϕk

∇u+
k ~v(t)dx+

∫
dt

∫
u>ϕk

u+
k

∇ϕ
ϕ

~v(t)dx = −I1 + I2

The first integral vanishes and the second is the desired term:

I2 =

∫
dt

∫
u>ϕk

dx(u+
k (x)/ϕk(x))∇ϕk(x)

∫
∇L(y) Ψ(y)u(y, t) dy .

The troublesome integral in Q now becomes

Q∗ =

∫
dt

∫
u>ϕk

dx
u+
k (x′)

ϕk(x′)
∇ϕk(x′)

∫
[∇L(y′)Ψ(y′)−∇L(y′ − x′)]u(y′, t) dy′ ,

which is estimated in view of the decay rates (9.2) of the second derivatives of L, and
the fact that x′ is bounded. This correction simplifies the energy formula and allows
to prove the First Lemma in the new coordinates with constants that do not depend
on the L1 norm of the solution. The price to pay is that the slope of the distorted
space variables does depend on the sup of the L1 integral, as we have seen in the
previous section. So in the first step of the iteration it seems that this argument does
not any definitive improvement since all amounts to an estimate with worse constants.

9.2 The iteration. First step

It is convenient at this stage to take some notational steps since we are going to
produce a sequence of solutions uj in a nested sequence of domains Q̂j ⊂ Ŝj, but the
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estimates are going to be obtained after successive changes of coordinates, and we
need to carefully label them and their domains. We will use dots for new coordinates,
while the derivative in time of a function γ(t) is represented by γ̇(t).

We start with the standard cylinder Q̂1 = Q4(0, 0) included in the strip Ŝ1 := S4 =
RN × (−4, 0) and we label this original solution as u = u1. We assume that u1 ≤ 1

in Q̂1.

We introduce the first correcting speed ~v1(t), which is bounded by C1 (that depends
on the sup of the ‖u(t)‖1). We perform the change of coordinates defined by x′ = x−
γ1(t) with γ̇1(t) = ~v(t), given by (9.3). Time in not changed in this step. The resulting

space-time transformation is denoted by T1 = Q̂1 7→ Ŝ1. Due to the convective effect,
it will happen that T1(Q̂1) is not contained in Q̂1, hence we restrict the domain

to a reduced cylinder Q̂1,r (subindex r for reduced) in such a way that T1(Q̂1,r) ⊂
Ŝ1. Indeed, the target domain can be chosen to contain Q̂′1 = Q4/C′1

with C ′1 > 1
depending only on C1. We denote by u′1(x′, t) = u1(x, t) the transformation of function
u1 by T1 (primes indicate here new coordinates).

We can now apply the first and third lemmas to the modified equation satisfied by
u′1 to get a reduction of the upper bound of u′1 in a quarter domain Q̂′1/4. We get

u′1 ≤ 1−µ in Q̂′1/4. Note that this means that u1(x, t) ≤ 1−µ in Q̂1,s = T −1
1 (Q̂′1/4),

which has the shape of a cylinder with base B1/C1 ; however, it is not a vertical cylinder
but one with curved director line slanted in the direction of the line x = γ1(t) with
γ′1(t) = ~v1(t).

9.3 Second step of the iteration: new reduction

We proceed with the new correction. We pass to a new moving frame, a further
correction to the transformation we have already done to produce u′1 from u1, so that
we can apply the reduction lemmas. We thus put

u′2(x′2, t2) = u2(x2, t2) ,

and x′2 is obtained from x2 after the change of variables that takes into account the
velocity ~v2. Let us call this correspondence T2. Now

dx′2
dt2
− 1

A

dx′

dt
= v(t2, u2,Φ)− v2(t2, u2,Φ(y/B)) = v12(t2).

The correction in the slant of the image cylinder when referred to the standard scaling
of Q̂′1/4 is thus the relative speed ~v12 that is uniformly bounded, even the original
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Figure 1: Left: sizes of the extension. Right: Starting the second step of the iteration
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speed ~v1 has been amplified, but we need not worry about it. We make the corrected
change of variables T2 with suitable cylinders that shrink from Q4 in a controlled way.
The starting estimate is u′2 ≤ 1 in that cylinder.

We can now apply the first and third lemmas to get a reduction of the upper bound
of u′2 in a quarter domain Q̂′2/4. We get u′2 ≤ 1 − µ in Q̂′2/4. Note that this means

that u2(x, t) ≤ 1 − µ in Q̂2,s = T−2
2 (Q̂′2/4), which has the shape of a cylinder with

base a ball, but not a vertical cylinder since it has a curved director line slanted in
the direction of the line x = γ2(t) with γ′2(t) = ~v2(t).

In the non-scaled domains, i. e., after undoing scaling (9.5) and transformation T1,
the estimate piles up two contractions (1 − µ)2 in a smaller slanted domain, whose
inclination is v1 plus Av12. Observe the factor A < 1 in the new term, derived by
taking advantage of the size reduction of the first step; this is what will help us in
summing the iterations.

9.4 Further steps and conclusion of the first alternative

New correcting speeds can be calculated for the subsequent iterations and all of them
will be bounded by the same constant when calculated in the domain obtained after
scaling and passing to the corresponding moving frame. The scaling has the form

(9.5) uk(xk, tk) = Auk+1(xk+1, tk+1), xk+1 = Bxk, tk+1 = Ttk

with A = 1 − µ, B > 1 and T = BA as before. We will perform in every step of
the iteration the corresponding change of variables immediately after the scaling. If
the set of coordinates at that moment is (xk, tk), we obtain a set of newly distorted
coordinates (x′k, tk) by the formula

x′k(t) = xk(t)− γk(tk), dγk/dtk = ~vk

but the change with respect to applying scaling to the previous moving frame will be
a correction speed ~vk−1,k that is uniformly bounded as we have shown in the second
step. We can then reduce the domain by a certain factor C1 to make it fit into the
distortion of the standard Q4, apply the reduction lemmas and conclude that in a
much smaller domain (but always the same proportion) we get uk(xk, tk) ≤ 1− µ.

Undoing the k scalings and k relative transformations we arrive at a small slanted
cylinder in the original variables Q̂k, with sizes Lk ∼ B−k in space and Tk ∼ (AB)−k

in time. In such sequence of cylinders the solution u(x, t) satisfies u ≤ (1 − µ)k and
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the slant has accumulated a speed that is bounded by

Ck = C1 +
k∑
1

CAk

and only C1 depends on an L1 norm. We conclude that Ck is uniformly bounded as
k →∞.

In this way we conclude that at a degenerate point where u(x0, t0) the solution has
the Cα estimates in a backward parabolic neighborhood with an α that depends on
the constants that we have been carrying around, in the end functions of N . Of
course, the constant in the Hölder seminorm depends on the L∞ and L1 norms of the
solution in the strip S where we do the calculations, in the end on the L1 norm of
the initial data, but this can be derived from the scaling group of the equation. This
is what gives the Cα regularity.

Comment. We have performed a very detailed, step by step construction of the
process, but the crux of the new argument can be expressed in simpler words. The
convergence of the corrections relies on the possibility of finding a sequence of cylinders
that shrink more in one direction that in the other (less in time than in space) in
the original coordinates. This has to be combined with a sequence of geometrical
distortions based on iterated cutoffs. Thus, we are keeping the same ratio of dilations
in all the iterations, but the Hölder continuity could be obtained even if we relax that
requirement on the condition of keeping a geometrical series behaviour and a longer
time than space scale.

10 The second alternative

Another alternative in the iteration procedure of Section 7 happens when in one of
steps we reduce the oscillation by below by using Lemma 5.1, so that we pull the
solution away from zero. Therefore, we get a situation where the solution is bounded
between two positive constants 0 < Ml < Mu in the reference cylinder. The technical
details of Alternative 1 work the same way in this case and we only have to choose
the sense of the oscillation reduction, applying it from above or below, depending
on the solution being above or below the middle value of the strip most of the time.
Note that in Lemma 4.1 the solution never sees the degenerate part of the equation,
due to the nature of the cut off.
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Indeed, this case is easier since from the moment we apply the lemma where the
solution is pulled up we have uniform ellipticity in the iterations, we will be even
converging along the iterations to an equation with constant diffusivity coefficient.
This variant of the analysis has also been discussed in detail in the paper [5], and
the precise modification has been performed in Sections 7 of that paper, hence we
may leave the details to the reader. This ends the proof of Theorem 1.1 for s = 1/2,
after recalling as technical tool the modification of the energy calculation performed
in Section 7 of [5].

11 The one-dimensional case

We have assumed throughout the paper N ≥ 2 since the case N = 1 has some
peculiarities worth commenting. As we have already indicated in our first paper [6],
the functional treatment of the equation and its kernels is very similar for s < 1/2
but for s = 1/2 we find that L(x− y) = c log(x− y) which is unbounded at infinity.
The way out of the difficulty is to avoid the consideration of the pressure and work
always with the derivatives ∇xL(x − y)u(y) that actually appear in the equation,
and involve no growth at infinity. This implies some work in revising all the proofs
above, but the main result will still hold.

On the other hand, the 1-dimensional theory has alternative existence proofs and
very good extra mathematical properties. Thus, Biler, Karch and Monneau study
this equation in [2] as a model for dislocation and find that the integrated version
admits viscosity solutions that are unique and admit comparison. On the other
hand, Carrillo, Ferreira and Precioso [9] apply transportation methods and show
that the solution can be obtained as a gradient flow in the space P2 of probability
measures with bounded second moment, which implies that the maps u0 7→ u(t) form
a contraction semigroup. Such properties are not proved in the multidimensional case
N ≥ 2.

12 Extension of the existence theory

After these results, we can extend the existence theory to all nonnegative and inte-
grable initial data. This was already consider in [5] for s 6= 1/2.
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Theorem 12.1 For every u0 ∈ L1(RN), u0 ≥ 0, there exists a continuous weak
solution of the FPME (1.4) in the following sense: there exists a function u(x, t),
continuous and nonnegative in Q = Rn × (0, T ) such that

u ∈ L∞(0,∞ : L1(RN) ∩ L∞(RN × (τ,∞) for all τ > 0 ,

K(u) ∈ L1(0, T : W 1,1
loc (Rn)), u∇K(u) ∈ L1(QT )

and the identity

(12.1)

∫∫
u (ηt −∇K(u) · ∇η) dxdt+

∫
u0(x) η(x, 0) dx = 0

holds for all continuously differentiable test functions η in QT that are compactly
supported in the space variable and vanish near t = T .

The proof does not depart from the one performed in [5]. Taking this proof into
account we may eliminate the boundedness condition from the assumptions on the
solutions in our main theorem by just asking the the initial data are integrable. On the
other hand, once we have a theory for integrable data we can extend it to nonnegative
Radon measures as initial data as in done in [18].
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