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ABSTRACT. In this paper we complete our understanding of the role played by the lim-
iting (or residue) function in the context of mod-Gaussian convergence. The question
about the probabilistic interpretation of such functions was initially raised by Marc Yor.
After recalling our recent result which interprets the limiting function as a measure of
"breaking of symmetry" in the Gaussian approximation in the framework of general
central limit theorems type results, we introduce the framework of L1-mod-Gaussian
convergence in which the residue function is obtained as (up to a normalizing factor)
the probability density of some sequences of random variables converging in law after
a change of probability measure. In particular we recover some celebrated results due
to Ellis and Newman on the convergence in law of dependent random variables arising
in statistical mechanics. We complete our results by giving an alternative approach to
the Stein method to obtain the rate of convergence in the Ellis-Newman convergence
theorem and by proving a new local limit theorem. More generally we illustrate our
results with simple models from statistical mechanics.

In memoriam, Marc Yor.

1. INTRODUCTION

Let (Xn)n∈N be a sequence of real-valued random variables. In the series of papers
[JKN11, DKN11, KN10, KN12, FMN13], we introduced the notion of mod-Gaussian
convergence (and more generally of mod-convergence with respect to an infinitely di-
visible law φ):

Definition 1. The sequence (Xn)n∈N is said to converge in the mod-Gaussian sense with
parameters tn → +∞ and limiting (or residue) function θ if, locally uniformly in R,

E[eitXn ] e
tn t2

2 = θ(t) (1 + o(1)),

where θ is a continuous function on R with θ(0) = 1.

A trivial situation of mod-Gaussian convergence is when Xn = Gn + Yn is the sum
of a Gaussian variable of variance tn and of an independent random variable Yn that
converges in law to a variable Y with characteristic function θ. More generally Xn can
be thought of as a Gaussian variable of variance tn, plus a noise which is encoded
by the multiplicative residue θ in the characteristic function. In this setting, θ is not
necessarily the characteristic function of a random variable (the residual noise). For
instance, consider

Xn =
1

n1/3

n

∑
i=1

Yi,
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where the Yi are centred, independent and identically distributed random variables
with convergent moment generating function. Then a Taylor expansion of E[eitY]
shows that (Xn)n∈N converges in the mod-Gaussian sense with parameters n1/3 Var(Y)
and limiting function

θ(t) = exp
(

E[Y3] (it)3

6

)
,

which is not the characteristic function of a random variable, since it does not go to
zero as t goes to infinity. In 2008, during the workshop "Random matrices, L-functions
and primes" held in Zürich, Marc Yor asked the second author A. N. about the role of the
limiting function θ. In [KNN13] it is proved that the set of possible limiting functions
is the set of continuous functions θ from R to C such that θ(0) = 1 and θ(−t) = θ̄(t)
for t ∈ R. But this characterization does not say anything on the probabilistic infor-
mation encoded in θ. We now wish to develop more on probabilistic interpretations
of the limiting function and the implications of mod-Gaussian convergence in terms of
classical limit theorems of probability theory.

We first note that by looking at E[eitXn/
√

tn ], one immediately sees that mod-Gaussian
convergence implies a central limit theorem for the sequence ( Xn√

tn
):

Xn√
tn

⇀n→∞ N (0, 1), (1)

where the convergence above holds in law (see [JKN11, §2-3] for more details on this).
On the other hand, with somewhat stronger hypotheses on the remainder o(1) that
appears in Definition 1, a local limit theorem also holds, see [KN12, Theorem 4] and
[DKN11, Theorem 5]:

P[Xn ∈ B] = P[Gn ∈ B] (1 + o(1)) =
m(B)√

2πtn
(1 + o(1))

for relatively compact sets B with m(∂B) = 0, m denoting the Lebesgue measure.

In [FMN13], it is then explained that by looking at Laplace transforms instead of
characteristic functions, and by assuming the convergence holds on a whole band of
the complex plane, one can obtain in the setting of mod-Gaussian convergence pre-
cise estimates of moderate or large deviations. In fact these results provide a new
probabilistic interpretation of the limiting function as a measure of the "breaking of
symmetry" in the Gaussian approximation of the tails of Xn (see §1.1 for more details).

The goal of this paper is threefold:

• to propose a new interpretation of the limiting function in the framework of
mod-Gaussian convergence with Laplace transforms; these results allow us in
particular to recover some well known exotic limit theorems from statistical
mechanics due to Ellis and Newman [EN78] and similar one for other models
or in higher dimensions.
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• to show that once one is able to prove mod-Gaussian convergence, then one
can expect to obtain finer results than merely convergence in law, such as speed
of convergence and local limit theorems. Results on the rate of convergence
in the Curie-Weiss model were recently obtained using Stein’s method (see e.g.
[EL10]) while the local limit theorem, to the best of our knowledge, is new.

• to explore the applications of the results obtained in [FMN13] on the "breaking
of symmetry" in the central limit theorem to some classical models of statistical
mechanics. In particular our approach determines the scale up to which the
Gaussian approximation for the tails is valid and its breaking at this critical
scale.

Our results are best illustrated with some classical one-dimensional models from sta-
tistical mechanics, such as the Curie-Weiss model or the Ising model. To illustrate the
flexibility of our approach, we shall also prove similar results for weighted symmetric
random walks in dimensions 2 and 3. The statistics of interest to us will be the total
magnetization, which can be written as a sum of dependent random variables. These
examples add to the already large class of examples of sums of dependent random
variables we have already been able to deal with in the context of mod-φ convergence.

In the remaining of the introduction we recall the results obtained in [FMN13] which
led us to the "breaking of symmetry" interpretation, as well as an underlying method
of cumulants that enabled us to establish the mod-Gaussian convergence for a large
family of sums of dependent random variables. The important aspect of the cumulant
method is that it provides a tool to prove mod-Gaussian convergence in situations
where one cannot explicitly compute the characteristic function. We eventually give
an outline of the paper.

1.1. Complex convergence and interpretation of the residue. We consider again a
sequence of real-valued random variables (Xn)n∈N, but this time we assume that their
Laplace transforms E[ezXn ] are convergent in an open disk of radius c > 0. In this case,
they are automatically well-defined and holomorphic in a band of the complex plane
Bc = {z ∈ C, |Re(z)| < c} (see [LS52, Theorem 6], and [Ess45] for a general survey of
the properties of Laplace and Fourier transforms of probability measures).

Definition 2. The sequence (Xn)n∈N is said to converge in the complex mod-Gaussian sense
with parameters tn and limiting function ψ if, locally uniformly on Bc,

E[ezXn ] e−
tn z2

2 = ψ(z) (1 + o(1)),

where ψ is a continuous function onBc with ψ(0) = 1. Then, one has in particular convergence
in the sense of Definition 1, with θ(t) = ψ(it).

In this setting which is more restrictive than before, the residue ψ has a natural inter-
pretation as a measure of "breaking of symmetry" when one tries to push the estimates
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of the central limit theorem from the scale
√

tn to the scale tn. The previously men-
tioned central limit theorem (1) tells us that:

P
[
Xn ≥ a

√
tn
]
=

(
1√
2π

∫ ∞

a
e−

x2
2 dx

)
(1 + o(1))

for any a ∈ R. In the setting of complex mod-Gaussian convergence, this estimate
remains true with a = o(

√
tn), so that if ε = o(1), then

P [Xn ≥ ε tn] =

(
1√
2π

∫ ∞

ε
√

tn
e−

x2
2 dx

)
(1 + o(1)),

=
e−

tnε2
2

√
2πtn ε

(1 + o(1)) if 1� ε� 1√
tn

,

where the notation an � bn stands for bn = o(an). Then, at scale tn, the limiting
residue ψ comes into play, with the following estimate that holds without additional
hypotheses than those in Definition 2:

∀x ∈ (0, c), P[Xn ≥ xtn] =
e−

tnx2
2

√
2πtn x

ψ(x) (1 + o(1)), (2)

the remainder o(1) being uniform when x stays in a compact set of R∗+ ∩ (0, c). This
estimate of positive large deviations has the following counterpart on the negative side:

∀x ∈ (0, c), P[Xn ≤ −xtn] =
e−

tnx2
2

√
2πtn x

ψ(−x) (1 + o(1)).

So for instance, if (Yn)n∈N is a sequence of i.i.d. random variables with convergent
moment generating function, mean 0, variance 1 and third moment E[Y] > 0, then
Xn = 1

n1/3 ∑n
i=1 Yi converges in the complex mod-Gaussian sense with parameters n1/3

and limiting function ψ(z) = exp(E[Y3] z3/6), and therefore for x > 0,

P

[
n

∑
i=1

Yi ≥ xn2/3

]
= P

[
N (0, 1) ≥ xn1/6

]
exp

(
E[Y3] x3

6

)
(1 + o(1)).

Thus, at scale n2/3, the fluctuations of the sum of i.i.d. random variables are no more
Gaussian, and the residue ψ(x) measures this "breaking of symmetry": in the previous
example, it makes moderate deviations on the positive side more likely than moderate
deviations on the negative side, since ψ(x) > 1 > ψ(−x) for x > 0.

Remark. The problem of finding the normality zone, i.e. the scale up to which the
central limit theorem is valid, is a known problem in the case of i.i.d. random variables
(see e.g. [IL71]). The description of the "symmetry breaking" is new and moreover the
mod-Gaussian framework covers many examples with dependent random variables
(see also [FMN13] for more examples).

Thus, the observation of large deviations of the random variables Xn provides a
first probabilistic interpretation of the residue ψ in the deconvolution of a sequence of
characteristic functions of random variables by a sequence of large Gaussian variables.
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In Section 3, we shall provide another interpretation of ψ, which is inspired by some
classical results from statistical mechanics (cf. [EN78, ENR80]).

1.2. The method of joint cumulants. The appearance of an exponential of a monomial
Kxr≥3 as the limiting residue in mod-Gaussian convergence is a phenomenon that oc-
curs not only for sums of i.i.d. random variables, but more generally for sums of pos-
sibly non identically distributed and/or dependent random variables. For instance,

(1) the number of zeroes of a random Gaussian analytic function ∑∞
k=0(NC)k zk in

the disk of radius 1− 1
n ;

(2) the number of triangles in a random Erdös-Rényi graph G(n, p);

are both mod-Gaussian convergent after proper rescaling, and with limiting function
of the form exp(Lz3), with the constant L depending on the model (see again [FMN13]).
The reason behind these universal asymptotics lies in the following method of cumu-
lants. If X is a random variable with convergent Laplace transform E[ezX] on a disk,
we recall that its cumulant generating function is

log E[ezX] = ∑
r≥1

κ(r)(X)

r!
zr, (3)

which is also well-defined and holomorphic on a disk around the origin. Its coefficients
κ(r)(X) are the cumulants of the variable X, and they are homogenenous polynomials
in the moments of X; for instance, κ(1)(X) = E[X], κ(2)(X) = E[X2] − E[X]2, and
κ(3)(X) = E[X3]− 3 E[X2]E[X] + 2 E[X]3.

Consider now a sequence of random variables (Wn)n∈N with κ(1)(Wn) = 0, and for
r ≥ 2,

κ(r)(Wn) = Kr αn (1 + o(1)), (4)

with αn → +∞. This assumption is inspired by the case of a sum Wn = ∑n
i=1 Yi of

centred i.i.d. random variables for which κr(Wn) = n κ(r)(Y). If it is satisfied, then one
can formally write

log E

[
e

z Wn
(αn)1/3

]
= (αn)

−2/3 κ(2)(Wn) z2

2
+ (αn)

−1 κ(3)(Wn) z3

6
+ ∑

r≥4

κ(r)(Wn)

r!
((αn)

−1/3z)r

' (αn)
1/3 K2 z2

2
+

K3 z3

6
+ ∑

r≥4

Kr zr

r!
(αn)

1−r/3

' (αn)
1/3 K2 z2

2
+

K3 z3

6

whence the mod-Gaussian convergence of Xn = (αn)−1/3 Wn, with parameters tn =
K2 (αn)1/3 and limiting function exp(K3 z3/6). The approximation is valid if the o(1)
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in the asymptotics of κ(2)(Wn) is small enough (namely o((αn)−1/3)), and if the series
∑r≥4 can be controlled, which is the case if

∀r, |κ(r)(Wn)| ≤ (Cr)r αn (5)

for some constant C. The method of cumulants in the setting of mod-Gaussian con-
vergence amounts to prove (4) for the first cumulants of the sequence (Xn)n∈N, and
(5) for all the other cumulants. From such estimates one then obtains mod-Gaussian
convergence for an appropriate renormalisation of (Wn)r≥3, with limiting function
exp(Kr zr/r!), where r is the smallest integer greater or equal than 3 such that Kr 6= 0.

This method of cumulants works well with sequences (Wn)n∈N that write as sums
of (weakly) dependent random variables. Indeed, cumulants admit the following gen-
eralization to families of random variables, see [LS59]. Denote Qr the set of partitions
of [[1, r]] = {1, 2, 3, . . . , r}, and µ the Möbius function of this poset (see [Rot64] for basic
facts about Möbius functions of posets):

µ(Π) = (−1)`(Π)−1 (`(Π)− 1)!

where `(Π) = s if Π = π1 t π2 t · · · t πs has s parts. The joint cumulant of a family
of r random variables with well defined moments of all order is

κ(X1, . . . , Xr) = ∑
Π∈Qr

µ(Π)
`(Π)

∏
i=1

E

[
∏
j∈πi

Xj

]
.

It is multilinear and generalizes Equation (3), since

κ(X1, . . . , Xr) =
∂r

∂z1∂z2 · · · ∂zr

∣∣∣∣
z1=···=zr=0

(
log E[ez1X1+···+zrXr ]

)
κ
(

X, . . . , X︸ ︷︷ ︸
r times

)
= κ(r)(X).

Suppose now that Wn = W = ∑n
i=1 Yi is a sum of dependent random variables. By

multilinearity,
κ(r)(W) = ∑

i1,...,ir

κ(Yi1 , . . . , Yir), (6)

so in order to obtain the bound (5), it suffices to bound each "elementary" joint cumu-
lant κ(Yi1 , . . . , Yir). To this purpose, it is convenient to introduce the dependency graph
of the family of random variables (Y1, . . . , Yn), which is the smallest subgraph G of
the complete graph on n vertices such that the following property holds: if (Yi)i∈I and
(Yj)j∈J are disjoint subsets of random variables with no edge of G between a variable Yi
and a variable Yj, then (Yi)i∈I and (Yj)j∈J are independent. Then, in many situations,
one can write a bound on the elementary cumulant κ(Yi1 , . . . , Yir) that only depends
on the induced subgraph G[i1, . . . , ir] obtained from the dependency graph by keeping
only the vertices i1, . . . , ir and the edges between them. In particular:

(1) κ(Yi1 , . . . , Yir) = 0 if the induced graph G[i1, . . . , ir] is not connected.

(2) if |Yi| ≤ 1 for all i, then |κ(Yi1 , . . . , Yir)| ≤ 2r−1 ST(G[i1, . . . , ir]), where ST(H) is
the number of spanning trees on a (connected) graph H.
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By gathering the contributions to the sum of Formula (6) according to the nature and
position of the induced subgraph G[i1, . . . , ir] in G, one is able to prove efficient bounds
on cumulants of sums of dependent variables, and to apply the method of cumulants
to get their mod-Gaussian convergence. We refer to [FMN13] for precise statements,
in particular in the case where each vertex in G has less than D neighbors, with D
independent of the vertex and of n. In Section 5, we shall apply this method to a case
where G is the complete graph on n vertices, but where one can still find correct bounds
(and in fact exact formulas) for the joint cumulants κ(Yi1 , . . . , Yir): the one-dimensional
Ising model.

1.3. Basic models. As mentioned above, the goal of the paper is to study the phe-
nomenon of mod-Gaussian convergence for probabilistic models stemming from sta-
tistical mechanics; this extends the already long list of models for which we were able
to establish this asymptotic behavior of the Fourier or Laplace transforms ([JKN11,
KN12, FMN13]). More precisely, we shall focus on one-dimensional spin configura-
tions, which already yield an interesting illustration of the theory and technics of mod-
Gaussian convergence. Given two parameters α ∈ R and β ∈ R+, we recall that the
Curie-Weiss model and the one-dimensional Ising model are the probability laws on
spin configurations σ : [[1, n]]→ {±1} given by

CWα,β(σ) =
1

Zn(CW, α, β)
exp

α
n

∑
i=1

σ(i) +
β

2n

(
n

∑
i=1

σ(i)

)2
 ; (7)

Iα,β(σ) =
1

Zn(I, α, β)
exp

(
α

n

∑
i=1

σ(i) + β

(
n−1

∑
i=1

σ(i) σ(i + 1)

))
. (8)

The coefficient α measures the strength and direction of the exterior magnetic field,
whereas β measures the strength of the interaction between spins, which tend to align
in the same direction. This interaction is local for the Ising model, and global for the
Curie-Weiss model. Set Mn = ∑n

i=1 σ(i): this is the total magnetization of the system,
and a random variable under the probabilities CWα,β and Iα,β.

In Section 2, we quickly establish the mod-Gaussian convergence of the magnetiza-
tion for the Ising model, using the explicit form of the Laplace transform of the mag-
netization, which is given by the transfer matrix method. Alternatively, when α = 0,
in the appendix, we apply the cumulant method and give an explicit formula for each
elementary cumulant of spins (see Section 5). This allows us to prove the analogue
for joint cumulants of the well-known fact that covariances between spins decrease
exponentially with distance in the 1D-Ising model. This second method is much less
direct than the transfer matrix method, but we consider the Ising model to be a very
good illustration of the method of joint cumulants. Moreover it illustrates the fact that
one does not necessarily need to be able to compute precisely the moment generating
function of the random variables.

In Section 3, we focus on the Curie-Weiss model, and we interpret the magnetiza-
tion as a change of measure on a sum of i.i.d. random variables. Since these sums
converge in the mod-Gaussian sense, it leads us to study the effect of a change of
measure on a mod-Gaussian convergent sequence. We prove that in the setting of
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L1-mod-Gaussian convergence, such changes of measures either conserve the mod-
Gaussian convergence (with different parameters), or lead to a convergence in law,
with a limiting distribution that involves the residue ψ. We thus recover the results
of [EN78, ENR80], and extend them to the setting of L1-mod-Gaussian convergence.
In Section 4, using Fourier analytic arguments, we quickly recover the optimal rate
of convergence of the Ellis-Newman limit theorem for the Curie-Weiss model which
was recently obtained in [EL10] using Stein’s method, and then we establish a local
limit theorem, thus completing the existing limit theorems for the Curie-Weiss model
at critical temperature CW0,1.

2. MOD-GAUSSIAN CONVERGENCE FOR THE ISING MODEL:
THE TRANSFER MATRIX METHOD

In this section, (σ(i))i∈[[1,n]] is a random configuration of spins under the Ising mea-
sure (8), and Mn = ∑n

i=1 σ(i) is its magnetization. The mod-Gaussian convergence of
Mn after appropriate rescaling can be obtained by two different methods: the transfer
matrix method, which yields an explicit formula for E[ezMn ]; and the cumulant method,
which gives an explicit combinatorial formula for the coefficients of the power series
log E[ezMn ]. We use here the transfer matrix method, and refer to the appendix (Section
5) for the cumulant method.

1

FIGURE 1. Two configurations of spins under the Ising measures of pa-
rameters (α = 0, β = 0.3) and (α = 0, β = 1).

The Laplace transform E[ezMn ] of the magnetization of the one-dimensional Ising
model is well-known to be computable by the following transfert matrix method, see
[Bax82, Chapter 2]. Introduce the matrix

T =

(
eα+β e−α−β

eα−β e−α+β

)
,

and the two vectors V = (eα, e−α) and W = ( 1
1 ). If the rows and columns of T cor-

respond to the two signs +1 and −1, then any configuration of spins σ = (σ(i))i∈[[1,n]]
has under the Ising measure Iα,β a probability proportional to

Vσ(1)Tσ(1),σ(2)Tσ(2),σ(3) · · · Tσ(n−1),σ(n).

Therefore, the partition function Zn(I, α, β) is given by

∑
σ(1),...,σ(n)

Vσ(1)Tσ(1),σ(2)Tσ(2),σ(3) · · · Tσ(n−1),σ(n) = V(T)n−1W

= a+(λ+)
n−1 + a−(λ−)n−1,
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where

a+ = cosh α +
eβ sinh2 α + e−β√
e2β sinh2 α + e−2β

; a− = cosh α− eβ sinh2 α + e−β√
e2β sinh2 α + e−2β

λ+ = eβ cosh α +

√
e2β sinh2 α + e−2β ; λ− = eβ cosh α−

√
e2β sinh2 α + e−2β.

Indeed, λ± are the two eigenvalues of T, and a+ and a− are obtained by identification
of coefficients in the two formulas

Z1(I, α, β) = eα + e−α

Z2(I, α, β) = e2α+β + e−2α+β + 2e−β.

Then, the Laplace transform of Mn is given by

Eα,β[ezMn ] =
Zn(I, α + z, β)

Zn(I, α, β)
.

In particular,

Eα,β[Mn] =
∂E[ezMn ]

∂z

∣∣∣∣
z=0

=
∂

∂α
log Zn(I, α, β) = n

eβ sinh α√
e2β sinh2 α + e−2β

+ O(1).

whence a formula for the (asymptotic) mean magnetization by spin:

m =
eβ sinh α√

e2β sinh2 α + e−2β
.

A more precise Taylor expansion of Zn(I, α + z, β) leads to the following:

Theorem 3. Under the Ising measure Iα,β, Mn−nm
n1/3 converges in the complex mod-Gaussian

sense with parameters

tn = n1/3 e−β cosh α

(e2β sinh2 α + e−2β)3/2

and limiting function

ψ(z) = exp

(
−2eβ sinh3 α + (3eβ − e−3β) sinh α

6(e2β sinh2 α + e−2β)5/2
z3

)
.

Proof. In the following, we are dealing with square roots and logarithms of complex
numbers, but each time in a neighborhood of R∗+, so there is no ambiguity in the choice
of the branches of these functions. That said, it is easier to work with log-Laplace
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transforms:

log E

[
ez Mn−nm

n1/3

]
= log Zn

(
I, α +

z
n1/3 , β

)
− log Zn(I, α, β)− zn2/3m

log Zn(I, α, β) = log a+(α, β) + (n− 1) log λ+(α, β) + o(1)

log Zn

(
I, α +

z
n1/3 , β

)
= log a+

(
α +

z
n1/3 , β

)
+ (n− 1) log λ+

(
α +

z
n1/3 , β

)
+ o(1)

= log a+(α, β) + (n− 1) log λ+(α, β) + zn2/3 ∂

∂α
(log λ+(α, β))

+
z2n1/3

2
∂2

∂α2 (log λ+(α, β)) +
z3

6
∂3

∂α3 (log λ+(α, β)) + o(1).

Thus, it suffices to compute the first derivatives of log λ+(α, β) with respect to α:

log λ+(α, β) = log
(

eβ cosh α +

√
e2β sinh2 α + e−2β

)
∂

∂α
(log λ+(α, β)) =

eβ sinh α√
e2β sinh2 α + e−2β

= m

∂2

∂α2 (log λ+(α, β)) =
e−β cosh α

(e2β sinh2 α + e−2β)3/2
= σ2

∂3

∂α3 (log λ+(α, β)) = −2eβ sinh3 α + (3eβ − e−3β) sinh α

(e2β sinh2 α + e−2β)5/2
= K3.

We therefore get

log E

[
ez Mn−nm

n1/3

]
= n1/3 σ2 z2

2
+

K3 z3

6
+ o(1).

�

By using Formula 2, this result leads to new estimates of moderate deviations for the
probability Pα,β[Mn ≥ nm + n1/3x]. In the special case when α = 0, the limiting func-
tion ψ(z) of Theorem 3 is equal to 1, and one has to push the expansion of log Zn(I, 0, β)
to order 4 to get a meaningful mod-Gaussian convergence (the same phenomenon will
occur in the case of the Curie-Weiss model):

Theorem 4. Under the Ising measure I0,β, Mn
n1/4 converges in the complex mod-Gaussian sense

with parameters tn = n1/2 e2β and limiting function

ψ(z) = exp
(
−3e6β − e2β

24
z4
)

.
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3. MOD-GAUSSIAN CONVERGENCE IN L1 AND THE CURIE-WEISS MODEL

In this Section, (Xn)n∈N is a sequence of random variables with entire moment gen-
erating series E[ezXn ], and we assume the following:

(A) One has mod-Gaussian convergence of the Laplace transforms, i.e., there is a se-
quence tn → +∞ and a function ψ continuous on R such that

ψn(t) = E[etXn ] e−
tn t2

2

converges locally uniformly on R to ψ(t).
(B) Each function ψn, and their limit ψ are in L1(R).

We denote Pn the law of Xn,

Qn[dx] =
e

x2
2tn

E

[
e
(Xn)2

2tn

] Pn[dx], (9)

and Yn a random variable under the new law Qn. Note that hypothesis (B) implies that
Zn = E[e(Xn)2/2tn ] is finite for all n ∈N. Indeed,∫

R
ψn(t) dt = E

[∫
R

etXn− tn t2
2 dt

]
= E

[
e
(Xn)2

2tn

(∫
R

e−
(Xn−tnt)2

2tn dt
)]

=

√
2π

tn
E

[
e
(Xn)2

2tn

]
.

Therefore the new probability measures Qn are well defined. The goal of this section
is to study the asymptotics of the new sequence (Yn)n∈N. As we shall see in §3.3,
the Curie-Weiss model defined by Equation (7) is one of the main examples in this
framework. However, it is more convenient to look at the general problem, and we
shall introduce later other models concerned by our general results.

3.1. Ellis-Newman lemma and deconvolution of a large Gaussian noise. Suppose
for a moment that hypothesis (A) is replaced by the stronger hypotheses of Definition
2, with c = +∞ and therefore Bc = C. Fix then 0 < a < b, and consider the partial
integral E[e(Xn)2/2tn 1tna≤Xn≤tnb]. By integration by parts of Riemann-Stieltjes integrals,
one has:∫ tnb

tna
e

x2
2tn Pn[dx] =

[
−e

x2
2tn Pn[Xn ≥ x]

]tnb

tna
+
∫ tnb

tna

x
tn

e
x2
2tn Pn[Xn ≥ x] dx

=

[
−e

tn x2
2 Pn[Xn ≥ tnx]

]b

a
+
∫ b

a
tnx e

tn x2
2 Pn[Xn ≥ tnx] dx

=

([
− ψ(x)√

2πtn x

]b

a
+

√
tn

2π

∫ b

a
ψ(x) dx

)
(1 + oa,b(1))

=

(√
tn

2π

∫ b

a
ψ(x) dx

)
(1 + oa,b(1))

because of the estimates of precise deviations (2). In this computation, oa,b(1) is uni-
form for a, b in compact sets of (0,+∞). In fact this estimate remains true for a, b in a
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compact set of R; hence, a and b can be possibly negative. If the estimate is also true
with a = −∞ and b = +∞, then

Qn[tna ≤ Yn ≤ tnb] =
E[e(Xn)2/2tn 1tna≤Xn≤tnb]

E[e(Xn)2/2tn ]

=

√
tn
2π

∫ b
a ψ(x) dx√

tn
2π

∫ +∞
−∞ ψ(x) dx

(1 + o(1))

=

∫ b
a ψ(x) dx∫ +∞
−∞ ψ(x) dx

(1 + o(1)),

so (Yn
tn
)n∈N converges in law to the density ψ(x)/

∫
R

ψ(x) dx.

We now wish to identify the most general conditions under which this convergence
in law happens. To this purpose, it is useful to produce random variables with density
ψn(x)/

∫
R

ψn(x) dx. They are given by the following Proposition, which appeared in
[EN78] as Lemma 3.3:

Proposition 5. Let Gn be a centred Gaussian variable with variance 1
tn

, and independent from
Yn. The law of Wn = Gn +

Yn
tn

has density ψn(x)/
∫

R
ψn(x) dx.

Proof. Denote Zn = E[e(Xn)2/2tn ], and fX(x) dx (respectively, PX) the density (respec-
tively, the law) of a random variable X. One has

P[Wn ≤ w] =
∫ w

−∞

(∫
R

fGn(x− u)PYn
tn
[du]

)
dx

=

√
tn

2π

∫ w

−∞

(∫
R

e−
tn (x− y

tn )2

2 PYn [dy]

)
dx

=

√
tn

2π

∫ w

−∞

(∫
R

eyx− y2
2tn Qn[dy]

)
e−

tn x2
2 dx

=
1

Zn

√
tn

2π

∫ w

−∞

(∫
R

eyx Pn[dy]
)

e−
tn x2

2 dx

=
1

Zn

√
tn

2π

∫ w

−∞
ψn(x) dx.

Making w go to +∞ gives an equation for Zn =
√

tn
2π

∫
R

ψn(x) dx. One concludes that:

P[Wn ≤ w] =

∫ w
−∞ ψn(x) dx∫ ∞
−∞ ψn(x) dx

.

�

This important property was not used in our previous works: to get the residue of
deconvolution ψn of a random variable Xn by a large Gaussian variable of variance tn
(that is to say that one wants to remove a Gaussian variable of variance tn from Xn), one
can make the exponential change of measure (9), and add an independent Gaussian
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variable of variance tn: the random variable thus obtained, which is tnWn with the
previous notation, has density proportional to ψn(w/tn) dw.

3.2. The residue of mod-Gaussian convergence as a limiting law. We can now state
and prove the main result of this Section. We assume the hypotheses (A) and (B), and
keep the same notation as before.

Theorem 6. The following assertions are equivalent:

(i) The sequence (Yn
tn
)n∈N is tight.

(ii) The sequence (Yn
tn
)n∈N converges in law to a variable with density ψ(x)/

∫
R

ψ(x) dx.

(iii) The convergence ψn → ψ, which is supposed locally uniform on R, also occurs in L1(R).

We shall then say that (Xn)n∈N converges in the L1-mod-Gaussian sense with parameters tn
and limiting function ψ. In this setting, the residue ψ can be interpreted as the limiting law of
(Xn)n∈N after an appropriate change of measure.

Proof. Since the Gaussian variable Gn of variance 1
tn

converges in probability to 0,
(Yn

tn
)n∈N converges to a law µ if and only if (Wn)n∈N converges to the law µ. If (iii)

is satisfied, then by Proposition 5,

lim
n→∞

P[Wn ≤ w] =

∫ w
−∞ ψ(x) dx∫ ∞
−∞ ψ(x) dx

,

so the cumulative distribution functions of the variables Wn converge to the cumulative
distribution function of the law ψ(x)/

∫
R

ψ(x) dx, and (ii) is established. Obviously,
one also has (ii)⇒ (i). Finally, if (iii) is not satisfied, then by Scheffe’s lemma one also
has ∫

R
ψn(x) dx 6→

∫
R

ψ(x) dx.

However, by Fatou’s lemma,
∫

R
ψ(x) dx ≤ lim infn→∞

∫
R

ψn(x) dx. Therefore, the non-
convergence in L1 is only possible if

∫
R

ψ(x) dx < lim supn→∞
∫

R
ψn(x) dx. Thus, there

is an ε > 0 and a subsequence (nk)k∈N such that

∀k ∈N,
∫

R
ψnk(x) dx ≥ ε +

∫
R

ψ(x) dx.

Then, for all a, b ∈ R,

lim sup
k→∞

P[a ≤Wnk ≤ b] = lim sup
k→∞

(∫ b
a ψnk(x) dx∫
R

ψnk(x) dx

)
=

∫ b
a ψ(x) dx

lim infk→∞
∫

R
ψnk(x) dx

≤
∫

R
ψ(x) dx

ε +
∫

R
ψ(x) dx

< 1

which amounts to saying that (Wn)n∈N (and therefore (Yn
tn
)n∈N) is not tight; hence, (i)

implies (iii). �

To complete this result, it is important to compare the two notions of complex mod-
Gaussian convergence and of integral L1-mod-Gaussian convergence. Though there
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are no direct implication between these two assumptions, the following Proposition
shows that the latter notion is a stronger type of convergence:

Proposition 7. Let (Xn)n∈N be a sequence that converges in the L1-mod-Gaussian sense with
parameters tn → ∞ and limiting function ψ ∈ L1(R). The estimate of precise large deviations
(2) is then satisfied.

Proof. Recall than Zn = E[e(Xn)2/2tn ] =
√

tn
2π

∫
R

ψn(x) dx. We want to compute

P[Xn ≥ tnx] =
∫ ∞

tnx
Pn[dy] = Zn

∫ ∞

tnx
e−

y2
2tn Qn[dy] = Zn

∫ ∞

x
e−

tn u2
2 PYn

tn
[du].

Suppose for a moment that we can replace the law of Yn
tn

by the one of Wn = Gn +
Yn
tn

in
the previous computation. Then, one obtains from Proposition 5

Zn

∫ ∞

x
e−

tn u2
2 PWn [du] =

√
tn

2π

∫ ∞

x
e−

tnu2
2 ψn(u) du.

Fix ε > 0. Since ψn converges locally uniformly to the continuous function ψ, there is
an interval [x, x + η] such that for n large enough and u ∈ [x, x + η],

ψ(x)− ε < ψn(u) < ψ(x) + ε.

Therefore, for n large enough,

(ψ(x)− ε)
∫ x+η

x
e−

tnu2
2 du ≤

∫ x+η

x
e−

tnu2
2 ψn(u) du ≤ (ψ(x) + ε)

∫ x+η

x
e−

tnu2
2 du

↓ ↓

(ψ(x)− ε)
e−

tnx2
2

tnx
(ψ(x) + ε)

e−
tnx2

2

tnx
.

Indeed, by integration by parts,
∫ x+η

x e−
tn u2

2 du is asymptotic to e−
tn x2

2
tn x . On the other

hand, since ψn →L1 ψ, for the remaining part of the integral,

∫ ∞

x+η
e−

tnu2
2 ψn(u) du ≤ e−

tn(x+η)2
2

(∫ ∞

x+η
ψn(u) du

)
' e−

tn(x+η)2
2

(∫ ∞

x+η
ψ(u) du

)
which is much smaller than the previous quantities. Therefore, assuming that one can
replace Yn

tn
by Wn, we obtain the asymptotics

P[Xn ≥ tnx] =
e−

tn x2
2

√
2πtn x

ψ(x) (1 + o(1))



MOD-GAUSSIAN CONVERGENCE AND APPLICATIONS FOR MODELS OF STATISTICAL MECHANICS15

for all x > 0; this is what we wanted to prove. Finally, the replacement Yn
tn
↔ Wn is

indeed valid, because∫ ∞

x
e−

tn u2
2 PWn [du] =

[
e−

tn u2
2 P[Wn ≤ u]

]∞

x
+
∫ ∞

x
tnu e−

tn u2
2 P[Wn ≤ u] du

'
[

e−
tn u2

2 P[Yn/tn ≤ u]
]∞

x
+
∫ ∞

x
tnu e−

tn u2
2 P[Yn/tn ≤ u] du

'
∫ ∞

x
e−

tn u2
2 PYn

tn
[du]

by using on the second line the fact that both Yn
tn

and Wn converge in law to the same
limit, and therefore have equivalent cumulative distribution function on R+. �

In the same setting of L1-mod-Gaussian convergence, one has similarly the estimates
on the negative part of the real line, and around 0, as described on page 4 in the setting
of complex mod-Gaussian convergence.

3.3. Application to the Curie-Weiss model. Consider i.i.d. Bernoulli random vari-
ables (σ(i))i≥1 with P[σ(i) = 1] = 1 − P[σ(i) = −1] = eα

2 cosh α for some α ∈ R.
We set Un = ∑n

i=1 σ(i), so that

E[ezUn ] =

(
cosh(z + α)

cosh α

)n

= (cosh z + sinh z tanh α)n

E

[
ez Un−n tanh α

n1/3

]
=

(
cosh(zn−1/3) + sinh(zn−1/3) tanh α

ezn−1/3 tanh α

)n

log E

[
ez Un−n tanh α

n1/3

]
=

n1/3

2 cosh2 α
z2 − sinh α

3 cosh3 α
z3 + o(1)

so one has complex mod-Gaussian convergence of Un−n tanh α
n1/3 with parameters n1/3

cosh2 α

and limiting function exp(− sinh α
3 cosh3 α

z3).

If α = 0, then the term of order 3 disappears in the Taylor expansion of the charac-
teristic function, and one obtains instead

log E

[
ez Un

n1/4

]
=

n1/2 z2

2
− z4

12
+ o(1),

hence a complex mod-Gaussian convergence of Xn = Un
n1/4 with parameters n1/2 and

limiting function exp(−z4/12). Since this function restricted to R is integrable, this
leads us to the following result, which originally appeared in [EN78] (without the mod-
Gaussian interpretation):

Theorem 8. Let Xn = n−1/4 ∑n
i=1 σ(i) be a rescaled sum of centred±1 independent Bernoulli

random variables. It converges in the L1-mod-Gaussian sense, with parameters n1/2 and limit-
ing function exp(− z4

12). As a consequence, if Yn = n−1/4Mn is the rescaled magnetization of
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a Curie-Weiss model CW0,1 of parameters α = 0 and β = 1, then Yn/n1/2 converges in law
to the distribution

exp(− x4

12) dx∫
R

exp(− x4

12) dx
.

Proof. The function ψn(t) is in our case

ψn(t) = e−
t2n1/2

2

(
cosh

t
n1/4

)n
,

and we have seen that it converges locally uniformly to ψ(t) = exp(− t4

12). By Scheffe’s
lemma, to obtain the L1-mod-convergence, it is sufficient to prove that

∫
R

ψn(t) dt con-
verges to

∫
R

exp(− t4

12) dt. This is a simple application of Laplace’s method:∫
R

ψn(t) dt =
∫

R
e−

t2n1/2
2

(
cosh

t
n1/4

)n
dt = n1/4

∫
R

(
e−

u2
2 cosh u

)n
du

and the function u 7→ e−
u2
2 cosh u attains its global maximum at u = 0, with a Taylor

expansion 1− u4

12 + o(u4), see Figure 2.

-4 -2 2 4

0.5

1

1.5

FIGURE 2. The function f (u) = e−
u2
2 cosh u.

Then, the exponential change of measure (9) gives a probability measure on spin con-
figurations proportional to

exp
(
(Yn)2

2n1/2

)
= exp

(
1

2n
(Mn)

2
)

,

so it is indeed the Curie-Weiss model CW0,1. �
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It is easily seen that the proof adapts readily to the case where Bernoulli variables
are replaced by so-called pure measures, so we recover all the limit theorems stated in
[EN78, ENR80]. However, by choosing the setting of mod-Gaussian convergence, we
also obtain new limit theorems for models that do not fall in the Curie-Weiss setting.
The following result explains how it would work to replace the Bernoulli distribution
by more general ones; cf. [KNN13, Proposition 2.2].

Proposition 9. Let k ≥ 2 be an integer, and let (Bn)n≥1 be a sequence of i.i.d random variables
in Lr for some r > k + 1, such that the first k moments of B1 are the same as the corresponding
moments of the Standard Gaussian distribution. Then the sequence of random variables(

1
n1/(k+1)

n

∑
k=1

Bk

)
n≥1

converges in the mod-Gaussian sense with parameters

tn = n(k−1)/(k+1),

and limiting function

θ(t) = e(it)
k+1 ck+1

(k+1)! ,

where ck+1 denotes the (k + 1)-th cumulant of B1.

When the random variables Bn have an entire moment generating function, then one
can replace t with −it to obtain mod-Gaussian convergence with the Laplace trans-
forms. If B1 is symmetric, then k is necessarily an odd number of the form 2s− 1 and
hence

ψ(t) = e(−1)st2s c2s
(2s)! .

In the case of the Bernoulli random variables, s = 2 and c4 = −1/12. In order to have
our theorem of L1-mod-Gaussian convergence to hold, we need to find conditions on
the distribution of B1 such that c2s is negative and that

∫
R

ψn converges to
∫

R
ψ. The

conditions in [EN78] and [ENR80] precisely imply these. But within our more general
framework, following the discussion in Section 1.2, we could well imagine a situation
which fulfils the assumptions of Theorem 6 but where the initial symmetric random
variables are not necessarily i.i.d but simply independent or even weakly dependent.
The following paragraph yields an example of such a setting.

3.4. Mixed Curie-Weiss-Ising model. Consider the one-dimensional Ising model of
parameter α = 0, and β arbitrary. We have shown in Section 2 the complex mod-
Gaussian convergence of (n−1/4 Mn)n∈N with parameters n1/2 e2β and limiting func-
tion ψ(z) = exp(−(3e6β − e2β) z4/24). Restricted to R, this limiting function is inte-
grable, and again one has L1-mod-convergence. Indeed, recall that

E[etMn ] =
Zn(I, t, β)

Zn(I, 0, β)
=

1
2

(
a+(t, β)

(
λ+(t, β)

2 cosh β

)n−1

+ a−(t, β)

(
λ−(t, β)

2 cosh β

)n−1
)

.
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It will be convenient to work with n−1/4 Mn+1 instead of n−1/4 Mn in order to work
with n-th powers. Then,

ψn(t) = E

[
et

Mn+1
n1/4

]
e−

n1/2e2βz2
2

∫
R

ψn(t)dt =
n1/4

2

∫
R

a+(u, β)

(
λ+(u, β)

2 cosh β
e−

e2βu2
2

)n

+ a−(u, β)

(
λ−(u, β)

2 cosh β
e−

e2βu2
2

)n

du

and for every parameter β ≥ 0, the functions

u 7→ λ+(u, β)

2 cosh β
e−

e2βu2
2 and u 7→ λ−(u, β)

2 cosh β
e−

e2βu2
2

attain their unique maximum at u = 0, see Figure 3 for the graph of the first function.

FIGURE 3. The function f (u, β) = λ+(u,β)
2 cosh β e−

e2βu2
2 (using MATHEMATICA).

Their Taylor expansions at u = 0 are respectively

1− 3e6β − e2β

24
u4 + o(u4) and tanh β + o(1),

so again by the Laplace method we get limn→∞
∫

R
ψn(t) dt =

∫
R

ψ(t) dt and the L1-
mod-convergence. As a consequence, consider the random configuration of spins σ on
[[1, n]] with probability proportional to

exp

β

(
n−1

∑
i=1

σ(i)σ(i + 1)

)
+

1
2ne2β

(
n

∑
i=1

σ(i)

)2
 .

This model has a local interaction with coefficient β and a global interaction with coef-
ficient 1

e2β , so it is a mix of the Ising model and of the Curie-Weiss model. The previous
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discussion and Theorem 6 show that its magnetization satisfies the non standard limit
theorem

Mn

n3/4 ⇀n→∞
ψ(x) dx∫
R

ψ(x) dx
with ψ(x) = exp

(
−3e6β − e2β

24
x4
)

.

3.5. Sub-critical changes of measures. In the mixed Curie-Weiss-Ising model, one
may ask what happens if instead of β and 1

e2β one puts arbitrary coefficients for the
local and the global interaction. More generally, given a sequence (Xn)n∈N that con-
verges in the L1-mod-Gaussian sense with parameters tn and limiting function ψ, one
can look at the change of measure

Q
(γ)
n [dx] =

e
γx2
2tn

E

[
e

γ(Xn)2
2tn

] Pn[dx]

with γ ∈ (0, 1) (for γ > 1, the change of measure is not necessarily well-defined, since
the hypotheses (A) and (B) do not ensure that E[eγ(Xn)2/2tn ] < +∞). These subcritical
changes of measures do not modify the order of magnitude of the fluctuations of Xn,
and more precisely:

Theorem 10. Suppose that (Xn)n∈N converges in the L1-mod-Gaussian sense with parame-
ters tn and limiting function ψ. Then, if (X(γ)

n )n∈N is a sequence of random variables under
the new probability measures Q

(γ)
n , it converges in the L1-mod-Gaussian sense with parameters

(1− γ)tn and limit ψ.

Example. Consider a random configuration of spins σ on [[1, n]] with probability pro-
portional to

exp

β

(
n−1

∑
i=1

σ(i)σ(i + 1)

)
+

γ

2n

(
n

∑
i=1

σ(i)

)2
 ,

with γ < e−2β. The total magnetization of the system has order of magnitude n1/2,
and more precisely, one has the central limit theorem

Mn

n1/2 ⇀n→∞ N (0, (1− γe2β)e2β),

and in fact a L1-mod-Gaussian convergence of Mn
n1/4 , with a limiting function

ψ(x) = exp(−(3e6β − e2β) x4/24)

that does not depend on γ.

Proof of Theorem 10. We denote as before (Yn)n∈N a sequence of random variables un-
der the laws Qn = Q

(1)
n . We first compute the asymptotics of Z(γ)

n = E[eγ(Xn)2/2tn ]:

Z(γ)
n = Zn E[e−(1−γ)(Yn)2/2tn ]
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=

√
tn

2π

(∫
R

ψ(x) dx
)

E

[
e−

tn(1−γ)
2 (Yn

tn )2
]
(1 + o(1))

=

√
tn

2π

(∫
R

ψ(x) dx
)

E

[
e−

tn(1−γ)
2 (Wn)2

]
(1 + o(1))

=

√
1

1− γ
(1 + o(1))

by using on the third line the same argument as in the proof of Proposition 7 to replace
Yn
tn

by Wn; and by using the Laplace method on the fourth line in order to compute∫
R

e−tn(1−γ)x2/2 ψn(x) dx. The same computations give the asymptotics of

E[etXn+γ(Xn)2/2tn ] = Zn E[etYn−(1−γ)(Yn)2/2tn ]

=

√
tn

2π

(∫
R

ψ(x) dx
)

E

[
etnt (Yn

tn )− tn(1−γ)
2 (Yn

tn )2
]
(1 + o(1))

=

√
tn

2π

(∫
R

ψ(x) dx
)

E

[
etnt Wn− tn(1−γ)

2 (Wn)2
]
(1 + o(1))

= e−
tnt2

2(1−γ)

√
1

1− γ
ψ(t) (1 + o(1))

with again a Laplace method on the fourth line. Since

E[etX(γ)
n ] =

E[etXn+γ(Xn)2/2tn ]

Z(γ)
n

,

this shows the hypotheses (A) and (B) for the sequence (X(γ)
n )n∈N. Then, since (Yn

tn
)n∈N

converges in law, by using the implication (ii) ⇒ (iii) in Theorem 6 for the sequence
(X(γ)

n )n∈N, we see that the mod-Gaussian convergence of Laplace transforms neces-
sarily happens in L1(R). �

3.6. Random walks changed in measure. In this section, we shall make a brief ex-
cursion in the higher dimensions. Since we do not want to enter details on mod-
Gaussian convergence for random vectors (for which we refer the reader to [KN12]
and [FMN13]), we shall only consider the simple case X = (X(1), . . . , X(d)) is a ran-
dom vector with values in Rd such that E[exp(z1X(1) + · · ·+ zdX(d))] is entire in Cd.
We shall say that the sequence (Xn) of random vectors converges in the complex mod-
Gaussian sense with parameter tn and limiting function ψ(z1, · · · , zd) if the following
convergence holds locally uniformly on compact subsets of Cd:

ψn(t) = E[exp(z1X(1)
n + · · ·+ zdX(d)

n )] exp
(
−tn

(z1)
2 + · · ·+ (zd)

2

2

)
→ ψ(z1, . . . , zd).

In this vector setting, the assumptions (A) and (B) of Section 3 now simply amount to
the fact that the convergence above holds locally uniformly for t = (t(1), · · · , t(d)) ∈ Rd

and that ψn and ψ are both in L1(Rd).
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Following the case d = 1 we denote Pn the law of Xn on Rd,

Qn[dx] =
e
‖x‖2
2tn

E

[
e
‖Xn‖2

2tn

] Pn[dx],

and Yn a random variable under the new law Qn. Note that here again hypothesis
(B) implies that Zn = E[e‖Xn‖2/2tn ] is finite for all n ∈ N. Indeed, with the notation
〈u, v〉 = u1v1 + · · ·+ udvd, we have∫

Rd
ψn(t) dt = E

[∫
Rd

e〈t,Xn〉− tn ‖t‖2
2 dt

]
= E

[
e
(‖Xn‖2

2tn

(∫
Rd

e−
‖Xn−tnt‖2

2tn dt
)]

=

(
2π

tn

)d/2

E

[
e
‖Xn‖2

2tn

]
.

Therefore, the new probabilities Qn are well-defined and

Zn = E[e‖Xn‖2/2tn ] =

(
tn

2π

)d/2 ∫
Rd

ψn(t) dt.

Then it is clear that Proposition 5 holds with Gn being a Gaussian vector with covari-
ance matrix 1/tn Id where Id is the identity matrix of size d. Similarly one can establish
an analogue of Theorem 6 in Rd.

Let Wn be a simple random walk on the lattice Zd≥2: at each step, each of the 2d
neighbors of the state that is occupied has the same probability of transition (2d)−1.
The d-dimensional characteristic function of Wn = (W(1)

n , . . . , W(d)
n ) is

E[ez1W(1)
n +···+zdW(d)

n ] =

(
cosh z1 + · · ·+ cosh zd

d

)n
.

Therefore, one has the asymptotics

log E

[
e

z1W(1)
n +···+zdW(d)

n
n1/4

]

= n log
(

1 +
(z1)

2 + · · ·+ (zd)
2

2dn1/2 +
(z1)

4 + · · ·+ (zd)
4

24dn
+ o

(
1
n

))
= n1/2 (z1)

2 + · · ·+ (zd)
2

2d
− 3((z1)

2 + · · ·+ (zd)
2)2 − d((z1)

4 + · · ·+ (zd)
4)

24d2 + o(1).

One obtains a d-dimensional complex mod-Gaussian convergence of Xn = n−1/4 Wn

with parameters n1/2

d and limiting function

ψ(z1, . . . , zd) = exp
(
−3 ((z1)

2 + · · ·+ (zd)
2)2 − d ((z1)

4 + · · ·+ (zd)
4)

24d2

)
.

In [FMN13], we used this mod-convergence to prove quantitative estimates regarding
the breaking of the radial symmetry when one considers random walks conditioned to
be of large size (of order n3/4 instead of the expected order n1/2). With the notion of
L1-mod-Gaussian convergence, one can give another interpretation, but only for d = 2
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or d = 3. Restricted to Rd, the limiting function is indeed not integrable for d ≥ 4: if
t2, . . . , td ∈ [−1, 1], then

3 ((t1)
2 + · · ·+ (td)

2)2 − d ((t1)
4 + · · ·+ (td)

4) ≤ 3 ((t1)
2 + (d− 1))2 − d (t1)

4

≤ (3− d)(t1)
4 + 6(d− 1)(t1)

2 + 3(d− 1)2.

So, restricted to the domain R× [−1, 1]d−1, ψ(t1, . . . , td) ≤ K exp(a(t1)
4 − b(t1)

2) for
some positive constants a, b and K; therefore, this function is not integrable.

On the other hand, if d = 2 or d = 3, then ψ is integrable on Rd, and one has L1-
mod-Gaussian convergence. Indeed, when d = 2, the limiting function is

ψ(t1, t2) = exp
(
− (t1)

4 + (t2)
4 + 6(t1t2)

2

96

)
, (10)

which is clearly integrable; and the residues

ψn(t1, t2) = E

[
e

t1W(1)
n +t2W(2)

n
n1/4

]
e−

n1/2((t1)
2+(t2)

2)
4

converge locally uniformly on R2 to ψ(t1, t2), but also in L1(R2). Indeed,∫
R2

ψn(t1, t2) dt1 dt2 =
∫

R2

(
cosh t1

n1/4 + cosh t2
n1/4

2

)n

e−
n1/2((t1)

2+(t2)
2)

4 dt1 dt2

= n1/2
∫

R2

(
cosh u1 + cosh u2

2
e−

(u1)
2+(u2)

2

4

)n

du1 du2,

and the function (u1, u2) 7→ cosh u1+cosh u2
2 e−

(u1)
2+(u2)

2

4 reaches its unique global maxi-
mum at u1 = u2 = 0, with Taylor expansion

1− (u1)
4 + (u2)

4 + 6(u1u2)
2

96
+ o(‖u‖4)

around this point (see Figure 4).

Thus, by using the multi-dimensional Laplace method, one sees that the limit of the
integral

∫
R2 ψn(t1, t2) dt1 dt2 is

∫
R2 ψ(t1, t2) dt1 dt2, and the L1 convergence is shown.

Similarly, when d = 3, the limiting function is

ψ(t1, t2, t3) = exp
(
− (t1t2)

2 + (t1t3)
2 + (t2t3)

2

36

)
, (11)

and the following computation shows that it is integrable:∫
R3

ψ(x, y, z) dx dy dz =
∫

R2
e−

(yz)2
36

(∫
R

e−
y2+z2

36 x2
dx
)

dy dz

= 6
√

π
∫

R2

e−
(yz)2

36√
y2 + z2

dy dz

= 3
√

π
∫ ∞

r=0

∫ π

θ=0
e−

r4 sin2 θ
144 dr dθ
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FIGURE 4. The function f (u1, u2) =
cosh u1+cosh u2

2 e−
(u1)

2+(u2)
2

4 .

= 12
√

3π
∫ ∞

r=0
e−r4

dr
∫ π

2

θ=0

dθ√
sin θ

< +∞

since 1√
sin θ

is integrable at 0. On the other hand, the residues

ψn(t1, t2, t3) = E

[
e

t1W(1)
n +t2W(2)

n +t3W(3)
n

n1/4

]
e−

n1/2((t1)
2+(t2)

2+(t3)
2)

6

converge to ψ(t1, t2, t3) locally uniformly on R3 and in L1(R3). Indeed, one has again∫
R3

ψn(t1, t2, t3) dt = n1/2
∫

R3

(
cosh u1 + cosh u2 + cosh u3

3
e−

(u1)
2+(u2)

2+(u3)
2

6

)n

du

and the function in the brackets reaches its unique maximum at u1 = u2 = u3 = 0,
with Taylor expansion corresponding to the limiting function ψ after application of the
Laplace method.

The multidimensional analogue of Theorem 6 thus yields the following multidimen-
sional extension of the limit theorem for the Curie-Weiss model:

Theorem 11. Let Wn be a simple random walk in dimension d ≤ 3. If Vn is obtained from Wn
by a change of measure by the factor exp(d ‖Wn‖2/2n), then

Vn

n3/4 ⇀n→∞
ψ(x) dx∫

R3 ψ(x) dx
,

where ψ(x) = exp(−x4/12) in dimension 1, and ψ is given by Formulas (10) and (11) in
dimension 2 and 3.

Remark. Suppose d = 2. Then, there is a limit in law not only for Vn
n3/4 , but in fact for

the whole random walk ( Vk
n3/4 )k≤n, viewed as a random element of C(R+, R2) or of the

Skorohod space D(R+, R2), see Figure 5.
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FIGURE 5. A 2-dimensional random walk changed in measure by
e‖Wn‖2/n, here with n = 10000.

4. LOCAL LIMIT THEOREM AND RATE OF CONVERGENCE IN THE ELLIS-NEWMAN
LIMIT THEOREM

We keep the same notation as before and note In =
∫

R
ψn(x) dx and I∞ =

∫
R

ψ(x) dx.
In this section we wish to provide a quick approach based on Fourier analysis,

(1) to compute the Kolmogorov distance between the rescaled magnetization

Yn/n1/2 = Mn/n3/4

in the Curie-Weiss model and the random variable W∞ with density ψ(x)/I∞,
where ψ(x) = exp(−x4/12). This problem was recently solved in [EL10] using
Stein’s method. As in [EL10], our method would cover many more general
models as well: it is just a matter of specializing Lemma 12 and Lemma 13
below which are stated in all generality.

(2) to prove a new local limit theorem for the rescaled magnetization n−1/4Mn in
the Curie-Weiss model. Here again we shall indicate how one can establish local
limit theorems in more general situations.

4.1. Speed of convergence. Getting back to our special case of the Curie-Weiss model,
we denote Xn = 1

n1/4 ∑n
i=1 Bi a scaled sum of ±1 independent Bernoulli random vari-

ables; Yn the random variable with modified law

Qn[dy] =
e

y2

2n1/2 Pn[dy]

E

[
e
(Xn)2

2n1/2

] ;

Gn an independent Gaussian random variable of variance 1
n1/2 ; and Wn = Yn

n1/2 + Gn. It
follows from the previous results that the law of Wn has density

ψn(x)
In

=
1
In

e−
n1/2x2

2

(
cosh

x
n1/4

)n
,
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which converges in L1 towards the law ψ(x)
I∞

= 1
I∞

e−
x4
12 . We hence wish for an upper

bound for the Kolmogorov distance between Yn
n1/2 and W∞. For this we shall need the

following general lemmas.

Lemma 12. Consider the two distributions Wn = ψn(x) dx
In

and W∞ = ψ(x) dx
I∞

. The Kolmogorov
distance between them is smaller than

‖ψ− ψn‖L1

I∞
(1 + o(1)).

Proof. Fix a ∈ R, and suppose for instance that
∫

R
ψ(x) dx ≥

∫
R

ψn(x) dx. We have

FWn(a)− FW∞(a) =

(∫ a
−∞ ψn(x) dx

In
−
∫ a
−∞ ψ(x) dx

In

)
+

(∫ a
−∞ ψ(x) dx

In
−
∫ a
−∞ ψ(x) dx

I∞

)

=

∫ a
−∞(ψn(x)− ψ(x)) dx

In
+

(∫ a

−∞
ψ(x) dx

) ∫ ∞
−∞(ψ(x)− ψn(x)) dx

I∞ In

≤ −
∫ a
−∞(ψ(x)− ψn(x)) dx

In
+

∫ ∞
−∞(ψ(x)− ψn(x)) dx

In

≤
∫ ∞

a (ψ(x)− ψn(x)) dx
In

≤ ‖ψ− ψn‖L1

In
.

Writing FW∞(a)− FWn(a) = (1− FWn(a))− (1− FW∞(a)), one sees that the inequality is
in fact valid with an absolute value on the left-hand side. Since In = I∞(1 + o(1)), this
shows the claim. If

∫
R

ψn(x) dx ≥
∫

R
ψ(x) dx, it suffices to exchange the roles played

by ψn and ψ to get the inequality. �

The asymptotics of the L1-norm ‖ψ− ψn‖L1 in the Curie-Weiss model are computed
as follows. Noting that one always has ψn(x) ≥ ψ(x), it suffices to compute∫

R
ψn(x) dx =

∫
R

e−
n1/2 x2

2

(
cosh(x n−1/4)

)n
dx = n1/4

∫
R

(
e−

u2
2 cosh(u)

)n
du.

By the Laplace method (see [Zor04, Formula (19.17), p. 624-625]), the asymptotics of
the integral is

n−
1
4

(
121/4 Γ(1

4)

2

)
+ n−

3
4

(
123/4 Γ(3

4)

10

)
+ smaller terms.

The first term corresponds to I∞ =
∫

R
ψ(x) dx =

∫
R

e−x4/12 dx. As a consequence,

‖ψ− ψn‖L1

I∞
=

1
n1/2

√
12 Γ(3

4)

5 Γ(1
4)

(1 + o(1)).

The main work now consists in computing dKol(
Yn

n1/2 , Wn). We start by a Lemma
which is a variation of arguments used for i.i.d. random variables in [Tao12, p. 87].
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In the following, given a function f ∈ L1(R), we write its Fourier transform f̂ (ξ) =∫
R

f (x) eiξx dx. Recall that the function

υ(ξ) =

{
e
− 1

1−4ξ2 if |ξ| < 1
2 ,

0 otherwise.

is even, of class C∞ and with compact support [−1
2 , 1

2 ]. We set ρ̂? = υ, so that

ρ?(x) =
1

2π

∫ 1
2

− 1
2

υ(ξ) e−ixξ dξ

by the Fourier inversion theorem. By construction, the Fourier transform of ρ? has
support equal to [−1

2 , 1
2 ]. Set now

ρ(x) =
(ρ?(x))2∫

R
(ρ∗(y))2 dy

.

By construction, ρ is smooth, even, non-negative and with integral equal to 1. More-
over, ρ̂ is up to a constant equal to ν ∗ ν(ξ), so it has support included into [−1, 1]. The
convolution of ρ with characteristic functions of intervals will allow us to transform
estimates on test functions into estimates on cumulative distribution functions. More
precisely, for a ∈ R and ε > 0, set ρε(x) = 1

ε ρ( x
ε ), and φa,ε(x) = φε(x− a), where φε is

the function 1(−∞,0] ∗ ρε. One sees φa,ε as a smooth approximation of the characteristic
function 1(−∞,a].

For all a, ε, φa,ε has Fourier transform compactly supported on
[
−1

ε , 1
ε

]
. Moreover, it

has negative derivative, and decreases from 1 to 0. Later, we will use the identity

φε(εx) = φ1(x) = φ(x).

On the other hand, we have the following estimates for K > 0 (we used SAGE for
numerical computations):

|ρ∗(K)| =
1

2πK2

∣∣∣∣∣
∫ 1

2

− 1
2

υ′′(ξ) e−iKξ dξ

∣∣∣∣∣ ≤ 1
2πK2

∫ 1
2

0
|υ′′(ξ)| dξ =

1.0166−
K2 ;

∫
R
(ρ∗(y))2 dy =

1
2π

∫ 1
2

0
|υ(ξ)|2 dξ = 0.01059+.

Therefore, for any K > 0,

ρ(K) = ρ(−K) =
(ρ∗(K))2∫

R
(ρ∗(y))2 dy

≤ 99
K4 ;

φ(K) = 1− φ(−K) =
∫ ∞

0
ρ(K + y) dy ≤ 33

K3 .

Lemma 13. Let V and W be two random variables with cumulative distribution functions FV
and FW . Assume that for some ε > 0

|E[φa,ε(V)]−E[φa,ε(W)]| ≤ Bε,
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where the positive constant B is independent of a. We also suppose that W has a density w.r.t.
Lebesgue measure that is bounded by m. Then,

sup
a∈R

|FV(a)− FW(a)| ≤ 2(B + 10m) ε.

Proof. Fix a positive constant K, and denote δ = supa∈R |FV(a)− FW(a)| the Kolmogo-
rov distance between V and W. One has

FV(a) = E[1V≤a] ≤ E[φa+Kε,ε(V)] + E[(1− φa+Kε,ε(V)) 1V≤a]

≤ E[φa+Kε,ε(W)] + E[(1− φa+Kε,ε(V)) 1V≤a] + Bε.

The second expectation writes as

E[(1−φa+Kε,ε(V)) 1V≤a] =
∫

R
(1− φa+Kε,ε(x)) 1(−∞,a](x) fV(x) dx

= −
∫

R
((1− φa+Kε,ε(x)) 1(−∞,a](x))′ FV(x) dx

=
∫

R
φ′a+Kε,ε(x) 1(−∞,a](x) FV(x) dx +

∫
R
(1− φa+Kε,ε(x)) 1a(x) FV(x) dx.

For the first integral, since FV(x) ≥ FW(x)− δ and the derivative of φa+Kε,ε is negative,
an upper bound on I1 is∫

R
φ′a+Kε,ε(x) 1(−∞,a](x) FW(x) dx− δ

∫
R

φ′a+Kε,ε(x) 1V≤a(x)

=
∫

R
φ′a+Kε,ε(x) 1(−∞,a](x) FW(x) dx + (1− φa+Kε,ε(a)) δ

=
∫

R
φ′a+Kε,ε(x) 1(−∞,a](x) FW(x) dx + (1− φ(−K)) δ.

As for the second integral, it is simply (1− φa+Kε,ε(a))FV(a), and by writing FV(a) ≤
FW(a) + δ, one gets the upper bound on I2∫

R
(1− φa+Kε,ε(x)) 1a(x) FW(x) dx + (1− φa+Kε,ε(a)) δ

=
∫

R
(1− φa+Kε,ε(x)) 1a(x) FW(x) dx + (1− φ(−K)) δ.

One concludes that

E[(1− φa+Kε,ε(V)) 1V≤a] ≤ E[(1− φa+Kε,ε(W)) 1W≤a] + 2(1− φ(−K))δ.

On the other hand, if m is a bound on the density fW of W, then

E[φa+Kε,ε(W) 1W≥a] =
∫ ∞

a
φa+Kε,ε(y) fW(y) dy

≤ m
∫ ∞

a
φε(y− a− Kε) dy = m

∫ ∞

0
φε(y− Kε) dy

≤ mε
∫ ∞

0
φ(u− K) du ≤ mε (K + 4.82) ,
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by using on the last line the bound φ(x) ≤ 33
x3 . As a consequence,

E[φa+Kε,ε(W)] ≤ E[φa+Kε,ε(W) 1W≤a] + m (K + 4.82) ε

FV(a) ≤ FW(a) + (B + m (K + 4.82)) ε + 2
33
K3 δ.

Similarly, FV(a) ≥ FW(a)− (B + m(K + 4.82))ε− 2 33
K3 δ, so in the end

δ = sup
a∈R

|FV(a)− FW(a)| ≤ (B + m (K + 4.82)) ε +
66
K3 δ.

As this is true for every K, one can for instance take K = 3
√

132, which gives

δ ≤ 1
1− 1

2

(
B + m

(
3
√

132 + 4.82
))

ε ≤ 2(B + 10m) ε.

�

We are going to apply Lemma 13 with V = Yn
n1/2 and W = Wn. First, notice that a

bound on the density of Wn is

|ψn(x)|
In

≤ 1
I∞

=
2

121/4 Γ(1
4)

= m.

On the other hand, using the Fourier transform of the Heaviside function

1̂(−∞,a](ξ) = eiaξ

(
πδ0(ξ) +

i
ξ

)
,

we get

E

[
φa,ε

(
Yn

n1/2

)]
−E[φa,ε(Wn)] =

1
2π In

∫ 1
ε

− 1
ε

φ̂a,ε(ξ) ψ̂n(ξ)

(
e

ξ2

2n1/2 − 1
)

dξ

=
1

2π In

∫ 1
ε

− 1
ε

ρ̂ε(ξ) eiaξ

(
i
ξ

)
ψ̂n(ξ)

(
e

ξ2

2n1/2 − 1
)

dξ;∣∣∣∣E[φa,ε

(
Yn

n1/2

)]
−E[φa,ε(Wn)]

∣∣∣∣ ≤ 1
2π In n1/2

∫ 1
ε

− 1
ε

|ρ̂(εξ)| |ψ̂n(ξ)| e
ξ2

2n1/2 dξ

by controlling e
ξ2

2n1/2 − 1 by its first derivative (notice that we used the vanishing of
this quantity at ξ = 0 in order to compensate the singularity of the Fourier transform
of the Heavyside distribution). Since ‖ρ̂‖L∞ = ‖ρ‖L1 = 1, the previous bound can be
rewritten as∣∣∣∣E[φa,ε

(
Yn

n1/2

)]
−E[φa,ε(Wn)]

∣∣∣∣ ≤ 1
2π In n1/2

∫ 1
ε

− 1
ε

|ψ̂n(ξ)| e
ξ2

2n1/2 dξ.

We then need estimates on the Fourier transform of ψ̂n, and more precisely estimates
of exponential decay. To this purpose, we use the following Lemma, which is related
to [RS75, Theorem IX.13, p. 18]:
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Lemma 14. Let f be a function which is analytic on a band {z ∈ C | |Im(z)| < c}. For any
b ∈ (0, c),

| f̂ (ξ)| ≤ 2

(
sup
−b≤a≤b

‖ f (·+ ia)‖L1

)
e−b|ξ|,

assuming that the supremum is finite.

Proof. Notice that the Fourier transform of τa f (·) = f (·+ ia) is∫
R

τa f (x) eixξ dx =
∫

R
f (x + ia) eixξ dx =

(∫
R

f (x + ia) ei(x+ia)ξ dx
)

eaξ .

By analyticity of the function in the integral, using Cauchy’s integral formula, one sees
that the last term is also (∫

R
f (x) eixξ dx

)
eaξ = f̂ (ξ) eaξ ,

(see the details on page 132 of the book by Reed and Simon). It follows that

| f̂ (ξ)| ea|ξ| ≤ | f̂ (ξ)| (eaξ + e−aξ) ≤ |τ̂a f (ξ)|+ |τ̂−a f (ξ)| ≤ ‖τa f ‖L1 + ‖τ−a f ‖L1 .

�

Thus we need to compute for a > 0 the L1-norm of ψn(·+ ia). We write

|ψn(x + ia)| = e−
n1/2(x2−a2)

2

∣∣∣∣cosh
(

x + ia
n1/4

)∣∣∣∣n
= |ψn(x)| e n1/2a2

2

∣∣∣cos2
( a

n1/4

)
+ tanh2

( x
n1/4

)
sin2

( a
n1/4

)∣∣∣ n
2

= |ψn(x)| e n1/2a2
2

∣∣∣1− (1− tanh2
( x

n1/4

))
sin2

( a
n1/4

)∣∣∣ n
2 .

For n large enough, sin2( a
n1/4 ) ≥ a2

n1/2 − a4

3n , and on the other hand, 0 ≤ tanh2
(

x
n1/4

)
≤

x2

n1/2 , so∣∣∣∣ψn(x + ia)
ψn(x)

∣∣∣∣ ≤ e
n1/2a2

2 exp

(
−n1/2a2

2

(
1− tanh2

( x
n1/4

))(
1− a2

3n1/2

))
≤ e

a4
3 e

a2x2
2 .

Since ψn(x) behaves as e−x4/12, the previous Lemma can be applied, with an asymp-
totic bound

‖ψn(·+ ia)‖L1 . e
a4
3

∫
R

e−
x4
12 +

a2x2
2 dx = e

13a4
12

∫
R

e−
(x2−3a2)2

12 dx

. e
13a4

12

(
2
√

3 a + I∞

)
by cutting the integral in two parts according to the sign of x2− 3a2. We have therefore
proven:
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Proposition 15. For any b ≥ 0,

|ψ̂n(ξ)| . K(b) e−b|ξ|,

where K(b) = 2e
13b4

12 (2
√

3 b + I∞) and where the symbol . means that the inequality is true
up to any multiplicative constant 1 + ε, for ε > 0 and n large enough.

We can now conclude. Fix b > 0, and D < 2b. On the interval [−Dn1/2, Dn1/2], we
have

ξ2

2n1/2 − b|ξ| = −|ξ|
(

b− |ξ|
2n1/2

)
≤ −|ξ|

(
b− D

2

)
.

Therefore, with ε = 1
Dn1/2 ,∣∣∣∣E[φa,ε

(
Yn

n1/2

)]
−E[φa,ε(Wn)]

∣∣∣∣ . K(b)
2π I∞ n1/2

∫
R

e−(b−D
2 )|ξ| dξ =

K(b)
π I∞ n1/2

(
b− D

2

)
.

K(b) D
π I∞

(
b− D

2

) ε.

So, Lemma 13 applies to V = Yn
n1/2 and W = Wn, with

dKol

(
Yn

n1/2 , Wn

)
. 2

(
K(b) D

π I∞
(
b− D

2

) + 10
I∞

)
ε =

2
I∞ n1/2

(
K(b)

π (b− D
2 )

+
10
D

)
.

Taking b = D = 0.77, we get finally

dKol

(
Yn

n1/2 , Wn

)
.

2
I∞ n1/2

(
2 K(b)

π b
+

10
b

)
≤ 10.27

n1/2 .

Adding the bound on dKol(Wn, W∞) yields then:

Theorem 16. For n large enough,

dKol

(
Yn

n1/2 , W∞

)
≤ 11 n−1/2.

Notice that we have only used arguments of Fourier analysis and the language of
mod-Gaussian convergence in order to get this bound.

4.2. Local limit theorem. Combining Proposition 15 with Theorem 5 in [DKN11] on
local limit theorems for mod-φ convergence, we obtain the following local limit theo-
rem for the magnetization in the Curie-Weiss model:

Theorem 17. In the Curie-Weiss model, if we note Mn for the total magnetization, then we
have:

lim
n→∞

n1/2 P[n−1/4Mn ∈ B] =
2

121/4Γ(1
4)

m(B),

for relatively compact sets B with m(∂B) = 0, m denoting the Lebesgue measure.

Proof. With the notation of §4.1, Yn = n−1/4Mn and we need to check assumptions H1,
H2 and H3 of [DKN11] for (Yn)n∈N in order to apply Theorem 5 in loc. cit.
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• H1. The Fourier transform of the limit law µ(dx) = ψ(x) dx
I∞

of Yn
n1/2 is in the Schwartz

space, hence is integrable.

• H2. The Fourier transforms ψ̂n(ξ)
In

e
ξ2

2n1/2 of Yn
n1/2 converge locally uniformly in ξ to-

wards the Fourier transform ψ̂(ξ)
I∞

. Indeed, by Theorem 8,

ψn(x)
In
→L1(R)

ψ(x)
I∞

,

so ψ̂n(ξ)
In
→ ψ̂(ξ)

I∞
, and the term e

ξ2

2n1/2 converges locally uniformly to 1.

• H3. Finally, we have to prove that for all k ≥ 0,

fn,k(ξ) = E

[
eiξ Yn

n1/2

]
1|ξ|≤kn1/2

is uniformly integrable. Following Remark 2 in [DKN11], it is enough to show
that ∣∣∣∣E [eiξ Yn

n1/2

]∣∣∣∣ ≤ h(ξ)

for ξ such that |ξ| ≤ kn1/2 for some non-negative and integrable function h on
R. This is a consequence of Proposition 15: since |ψ̂n(ξ)| ≤ C(k) e−k|ξ| for any
k > 0, one can write∣∣∣∣E [eiξ Yn

n1/2

]∣∣∣∣ = |ψ̂n(ξ)|
In

e
ξ2

2n1/2

≤ C(k)
I∞

e−k|ξ|+ ξ2

2n1/2

≤ C(k)
I∞

e−
k
2 |ξ|

for any |ξ| < k n1/2. We can hence apply Theorem 5 of [DKN11] with dµ
dm (0) =

1/I∞,and the value of I∞ was computed in the proof of Lemma 13.

�

Remark. A similar result would more generally hold for Yn whenever one has some
estimates of exponential decay on ψ̂n(ξ) similar to the one given in Lemma 15:

lim
n→∞

tn P[Yn ∈ B] =
1
I∞

m(B).

In particular, the result holds for the random walks changed in measure studied in
§3.6.

Remark. The idea behind the proof the local limit theorem above and which is found in
[DKN11] is the following: thanks to approximation arguments, one can show that it is
enough to prove the local limit theorem for functions whose Fourier transforms have
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compact support (instead of indicator functions 1B). Then, one uses Parseval’s relation
for such functions f to write:

E[ f (Yn)] =
1

2π

∫
R

ψ̂n(ξ)

In
e

ξ2
2tn f̂

(
− ξ

tn

)
dξ

and then use the assumptions to conclude.

5. MOD-GAUSSIAN CONVERGENCE FOR THE ISING MODEL: THE CUMULANT
METHOD

In this appendix, we give another combinatorial proof of the mod-Gaussian conver-
gence of the magnetization in the Ising model, without ever computing the Laplace
transform of Mn. This serves as an illustration of the cumulant method developed in
[FMN13].

5.1. Joint cumulants of the spins. When α = 0, one can realize the Ising model by
choosing σ(1) according to a Bernoulli random variable of parameter 1

2 , and then each
sign Xi = σ(i)σ(i + 1) according to independent Bernoulli random variables with

P[Xi = 1] = 1−P[Xi = −1] =
eβ

2 cosh β
.

In particular, one recovers immediately the value of the partition function Zn(I, 0, β) =
2n(cosh β)n−1. We then want to compute the joint cumulants of the magnetization Mn;
by parity, the odd cumulants and moments vanish. By multilinearity, one can expand

κ(2r)(Mn) =
n

∑
i1,...,i2r=1

κ(σ(i1), . . . , σ(i2r)),

so the problem reduces to the computation of the joint cumulants of the individual
spins, and to the gathering of these quantities. Notice that the joint moments of the
spins can be computed easily. Indeed, fix i1 ≤ i2 ≤ · · · ≤ i2r, and let us calculate
E[σ(i1) · · · σ(i2r)]. If i2r−1 = i2r, then the two last terms cancel and one is reduced to
the computation of a joint moment of smaller order. Otherwise, notice that

E[σ(i1) · · · σ(i2r−2)σ(i2r−1)σ(i2r)] = E[σ(i1) · · · σ(i2r−2)Xi2r−1 Xi2r−1+1 · · ·Xi2r−1]

= E[σ(i1) · · · σ(i2r−2)] xi2r−i2r−1 where x = tanh β.

By induction, we thus get

E[σ(i1) · · · σ(i2r)] = x(i2−i1)+(i4−i3)+···+(i2r−i2r−1).

Let us then go to the joint cumulants. We fix i1 ≤ i2 ≤ · · · ≤ i2r, and to simplify a bit
the notations, we denote i1 = 1, i2 = 2, etc. We recall that the joint cumulants write as

κ(σ(1), . . . , σ(2r)) = ∑
Π∈Q2r

µ(Π) ∏
A∈Π

E

[
∏
a∈A

σ(a)

]
,
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where the sum runs over set partitions of [[1, 2r]]. By parity, the set partitions with
odd parts do not contribute to the sum, so one can restrict oneself to the set Q2r,even
of even set partitions. If A = {a1 < · · · < a2s} is an even part of [[1, 2r]], we write
xp(A) = x(a2−a1)+···+(a2s−a2s−1). Thus,

κ(σ(1), . . . , σ(2r)) = ∑
Π∈Q2r,even

µ(Π) ∏
A∈Π

xp(A).

In this polynomial in x, several set partitions give the same power of x; for instance,
with 2r = 4, the set partitions {1, 2, 3, 4} and {1, 2} t {3, 4} both give x(2−1)+(3+4).
Denote P2r the set of set partitions of [[1, 2r]] whose parts are all of cardinality 2 (pair
set partitions, or pairings). To every even set partition Π, one can associate a pairing
p(Π) by cutting all the even parts {a1 < a2 < · · · < a2s−1 < a2s} into the pairs {a1 <
a2}, . . . , {a2s−1 < a2s}. For instance, the even set partition Π = {1, 3, 4, 5}t {2, 6} gives
the pairing (1, 3)(4, 5)(2, 6). Then, with obvious notations,

κ(σ(1), . . . , σ(2r)) = ∑
Π∈Q2r,even

µ(Π) xp(Π). (12)

In Equation (12), two important simplifications can be made:

(1) One can gather the even set partitions Π according to the pairing ρ = p(Π) ∈
P2r that they produce. It turns out that the corresponding sum of Möbius func-
tions F(ρ) has a simple expression in terms of the pairing, see §5.1.3.

(2) Some pairings ρ yield the same monomial xρ and the same functional F(ρ). By
gathering these contributions, one can reduce further the complexity of the sum,
see §5.1.2.

In the end, we shall obtain an exact formula for κ(σ(1), . . . , σ(2r)) that writes as a sum
over Dyck paths of length 2r− 2, with simple coefficients; see Theorem 21.

5.1.1. Pairings, labelled Dyck paths and labelled planar trees. Before we start the reduction
of Formula (12), it is convenient to recall some facts about the combinatorial class of
pairings. We have defined a pairing ρ of size 2r to be a set partition of [[1, 2r]] in r pairs
(a1, b1), . . . , (ar, br). There are

cardP2r = (2r− 1)!! = (2r− 1)(2r− 3) · · · 3 1

pairings of size 2r, and it is convenient to represent them by diagrams:

1 2 3 4 5 6 7 8 9 10

2

FIGURE 6. The diagram of a pairing of size 2r = 10.

On the other hand, a labelled Dyck path of size 2r is a path δ : [[0, 2r]] → N with 2r
steps either ascending or descending, such that:

• the path δ starts from 0, ends at 0 and stays non-negative;
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1

1 3

2

1

3

FIGURE 7. The labelled Dyck path corresponding to the pairing of Figure 6.

• each descending step δ(k) > δ(k + 1) is labelled by an integer i ∈ [[1, δ(k)]].

From a labelled Dyck path of size 2r, one constructs a pairing on 2r points as follows:
one reads the diagram from left to right, opening a bond when the path is ascending,
and closing the i-th opened bond available from right to left when the path is descend-
ing with label i. For instance, if one starts from the Dyck path of Figure 7, one obtains
the pairing of Figure 6. This provides a first bijection between pairings ρ and labelled
Dyck paths δ.

By considering a Dyck path as the code of the depth-first traversal of a rooted tree,
one obtains a second bijection betwen pairings of size 2r and labelled planar rooted
trees with r edges. Here, by labelled planar rooted tree, we mean a planar rooted tree
with a label i on each edge e that is between 1 and the height h(e) of the edge (with
respect to the root). For instance, the following labelled tree T corresponds to the Dyck
path of Figure 7 and to the pairing of Figure 6:

1

1 2

1 3

4

FIGURE 8. The labelled planar rooted tree corresponding to the pairing
of Figure 6.

We shall denote Tr the set of planar rooted trees with r edges (without label), and
D2r the corresponding set of Dyck paths (again without label); they have cardinality

cardTr = cardD2r = Cr =
1

r + 1

(
2r
r

)
.

They correspond to the subset N2r of P2r that consists in non-crossing pair partitions
of [[1, 2r]]; a bijection is obtained by labelling each edge or descending step by 1, and
by using the previous constructions. For instance, the non-crossing pairing, the Dyck
path and the planar rooted tree of Figure 9 do correspond.
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1 2 3 4 5 6 7 8 9 10

5

FIGURE 9. Bijection between non-crossing pairings, Dyck paths and pla-
nar rooted trees.

In what follows, we shall always use the letters ν, δ and T respectively for non-
crossing pairings, for Dyck paths and for planar rooted trees. We shall then use con-
stantly the bijections described above, and denote for instance ν(T) for the non-cros-
sing pairing associated to a tree T, or δ(ν) for the Dyck path associated to a non-cros-
sing pairing ν. We shall also use the exponent + to indicate the following operations
on these combinatorial objects:

• transforming a non-crossing pairing ν of size 2r − 2 in a non-crossing pairing
ν+ of size 2r by adding the bond {1, 2r} "over" the bonds of ν.
• transforming a Dyck path δ of length 2r − 2 in a Dyck path δ+ of length 2r by

adding an ascending step before δ and a descending step after δ.
• transforming a rooted tree T with r − 1 edges in a rooted tree T+ with r edges

by adding an edge "below" the root.

All these operations are compatible with the aforementioned bijections, so for instance
ν(T+) = (ν(T))+ and δ(ν+) = (δ(ν))+.

5.1.2. Uncrossing pairings and the associated poset. Let us now see how the combinatorics
of pairings, Dyck paths and planar rooted trees intervene in Formula (12). We start by
gathering the set partitions Π with the same associated pairing ρ = p(Π). Thus, let us
write

κ(σ(1), . . . , σ(2r)) = ∑
ρ∈P2r

xρ

 ∑
Π∈Q2r,even

p(Π)=ρ

µ(Π)

 = ∑
ρ∈P2r

xρ F(ρ),

where F(ρ) stands for the sum in parentheses. Notice that xρ is invariant if one replaces
in a pairing two crossing pairs {a1, a3}, {a2, a4} with a1 < a2 < a3 < a4 by two nested
pairs (but non-crossing) {a1, a4}, {a2, a3}; indeed,

(a3 − a1) + (a4 − a2) = (a4 − a1) + (a3 − a1).

We call uncrossing the operation on pairings which consists in replacing two crossing
pairs by two nested pairs as described above, and we denote ρ1 � ρ2 if there is a
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sequence of uncrossings from the pairing ρ1 to the pairing ρ2; this is a partial order on
the set P2r.

6

FIGURE 10. The operation of uncrossing on a pairing.

Proposition 18. The poset (P2r,�) is a disjoint union of lattices, and each lattice contains a
unique non-crossing set partition ν, which is the minimum of this connected component of the
Hasse diagram of (P2r,�). Moreover:

1. On the lattice L(ν) associated to ν ∈ N2r, the monomial xρ and the functional F(ρ) are
constant (equal to xν and F(ν)).

2. The cardinality card L(ν) = N(ν) is given by:

N(ν) = ∏
e∈E(T(ν))

h(e, T(ν)),

where h(e, T) is the height of the edge e in the (planar) rooted tree T, and E(T) is the set of
edges of a tree T.

Proof. First, notice that if ρ1 � ρ2 in P2r, then there is a sequence of pairings going from
ρ1 to ρ2 such that every two consecutive terms µ and ρ of the sequence differ only by
the replacement of a simple nesting by a simple crossing. By that we mean that we do
not need to do replacements such as the one on Figure 11, which creates 3 crossings at
once.

7

FIGURE 11. The crossing of a nesting that is not simple.

Indeed, denoting (i, j) the crossing of the i-th bond with the j-th bond, bonds being
numeroted from their starting point, one has (1, 3) = (1, 2) ◦ (2, 3) ◦ (1, 2), which is a
composition of simple operations of crossing; and the same idea works for nestings of
higher depth. Thus, the Hasse diagram of the poset (P2r,�) has edges that consist in
replacements of simple nestings by simple crossings.

This being clarified, it suffices now to notice that via the bijection between pairings
and labelled Dyck paths explained in §5.1.1, the replacing a simple nesting by a simple
crossing corresponds to the raising of a label by 1:
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1

1

2

1

8

FIGURE 12. The operation of uncrossing is a change of labels on Dyck paths.

In particular, if ρ1 and ρ2 are two comparable pairings in (P2r,�), then the correspond-
ing labelled Dyck paths have the same shape; and for a given shape δ ∈ D2r, there is
exactly one corresponding non-crossing pair partition ν = ν(δ), which is minimal in
its connected component in the Hasse diagram of (P2r,�). Endowed with �, this
connected component L(ν) is isomorphic as a poset to the product of intervals

∏
e∈T(ν)

[[1, h(e, T(ν))]] .

Indeed, the order on the set of labelled trees of shape T(ν) induced by (L(ν),�) and by
the bijection between pairings and labelled trees is simply the product of the orders of
the intervals of labels. This proves all of the Proposition but the invariance of F(·) on
L(ν) (the invariance of x(·) was shown at the beginning of this paragraph); we devote
§5.1.3 to this last point and to the actual computation of the functional F(·). �

Assuming the invariance of F(·) on each lattice L(ν), we thus get:

κ(σ(1), . . . , σ(2r)) = ∑
ρ∈P2r

xρ F(ρ) = ∑
ν∈N2r

xν N(ν) F(ν), (13)

where N(ν) is explicit. Hence, it remains to compute the functional F(ρ).

5.1.3. Computation of the functional F. The main result of this paragraph is:

Proposition 19. The functional F(·) is constant on L(ν), and if ν is a non-crossing pairing,
then

F(ν) = (−1)r−1 ∏
e∈T(ν)

h(e,T(ν)) 6=1

(h(e, T(ν))− 1)

if T(ν) has a single edge of height 1, and 0 otherwise.

Lemma 20. The functional F vanishes on pairings associated to labelled rooted trees with more
than one edge of height 1.

Proof. Suppose that Π is an even set partition with p(Π) = ρ; ρ being a pairing of size
2r associated to a labelled Dyck path that reaches 0 after 2a steps, with 2r = 2a + 2b,
a > 0 and b > 0 (this is equivalent to the statement "having more than one edge of
height 1"). We denote ρ1 and ρ2 the pairings associated to the two parts of the Dyck
path. There are several possibilities:
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• either Π can be split as two even set partitions Π1 of [[1, 2a]] and Π2 of [[2a + 1, 2r]],
with respectively k and l parts, and with p(Π1) = ρ1 and p(Π2) = ρ2;
• or, Π is one of the k× l possible ways to unite two such even set partitions Π1

and Π2 by joining one part of Π1 with one part of Π2;

• or, Π is one of the (k
2)× ( l

2)× 2! possible ways to unite two such even set parti-
tions Π1 and Π2 by joining two parts of Π1 with two parts of Π2;

• or, Π is one of the (k
3)× ( l

3)× 3! possible ways to unite two such even set parti-
tions Π1 and Π2 by joining three parts of Π1 with three parts of Π2;
• etc.

So, F(ρ) can be rewritten as

∑
p(Π1)=ρ1
p(Π2)=ρ2

(−1)t−1
(
(t− 1)!− kl (t− 2)! +

(
k
2

)(
l
2

)
2! (t− 3)!−

(
k
3

)(
l
3

)
3! (t− 4)! + · · ·

)
,

where t = k + l. However, for every possible value of k ≥ 1 and l ≥ 1, the term in
parentheses vanishes. Indeed, assuming for instance k ≤ l, we look at

(k + l − 1)!
k

∑
x=0

(−1)x
(

k
x

)(
l
x

)(
k + l − 1

x

)−1

= k! (l − 1)!
k

∑
x=0

(−1)x
(

l
x

)(
k + l − 1− x

k− x

)
= k! (l − 1)!

(
k− 1

k

)
= 0

by using Riordan’s array rule for the second identity. �

Thus, F vanishes on pairings ρ associated to labelled trees with more than one edge
of height 1. In other words, if F(ρ) 6= 0, then {1, 2r} is a pair in ρ, and we can look at
the restricted pairing ρ̃ = ρ|[[2,2r−1]], which is of size 2r− 2; and we can consider F as a
functional on P2r−2. To avoid any ambiguity, we denote this new functional

G(ρ ∈ P2r) = ∑
p(Π)=ρ

(−1)`(Π) (`(Π))!

We then expect the formula G(ρ) = (−1)r ∏e∈E(T(ρ)) h(e). We proceed by induction
on labelled rooted planar trees, and we look at the action of adding a leave of label 1
to the tree, and of increasing a label of an edge by 1. To fix the ideas, it is convenient to
consider the following example of pairing ρ, and the associated set of set partitions Π
with p(Π) = ρ. The pairing ρ of Figure 13 is associated to the labelled planar rooted
tree on Figure 14, and it has functional G(ρ) = (−1)3 3! + 2 × (−1)2 2! = −2. We
denote N(l, ρ) the number of set partitions such that p(Π) = ρ and `(Π) = l. Hence,

G(ρ) =
r

∑
l=1

N(l, ρ) (−1)l l!
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ℓ = 3

ℓ = 2

9

FIGURE 13. A pairing of size 2r = 6 (the upper diagram) and the associ-
ated set of set partitions, which contains 3 elements.

1 1

2

10

FIGURE 14. The labelled planar rooted tree associated to the pairing of
Figure 13.

(1) Adding an edge. Suppose that one adds an edge with label 1, to obtain for in-
stance:

1 1

21

11

FIGURE 15. Addition of an new edge of label 1 to the planar rooted tree.

Set ρ′ for the new pairing; notice that it is obtained from ρ by inserting a simple
bond

14

. The set partitions Π′ with p(Π′) = ρ′ are of two kinds:
(a) those where the new bond is left alone. They all come from a set partition

Π with p(Π) = ρ by simply inserting the new bond:

ℓ = 4

ℓ = 3

12

FIGURE 16. Set partitions where the new bond is left alone.

These terms give the following contribution to G(ρ′):

G(a)(ρ
′) = −

r

∑
l=1

N(l, ρ) (−1)l (l + 1)!.
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(b) those where the new bond is linked to another part of a set partition Π
with p(Π) = ρ. Starting from a set partition Π with p(Π) = ρ, the number
of parts of Π that can actually receive the new bond is `(Π)− (h(e)− 1),
because the new bond cannot be linked to the h(e)− 1 parts that go above
him. In our example:

ℓ = 3

ℓ = 2

13

FIGURE 17. Set partitions where the new bound is integrated in another part.

These other terms give the following contribution to G(ρ′):

G(b)(ρ
′) =

r

∑
l=1

N(l, ρ) (−1)l l! (l + 1− h(e)).

We conclude that G(ρ′) = G(a)(ρ
′) + G(b)(ρ

′) = −h(e) G(ρ), so the formula for
G stays true when one adds an edge of label 1.

(2) Raising a label. As explained before, raising a label corresponds to adding a
simple crossing to the pairing ρ, which is done by exchanging two ends b and
d of two simply nested pairs {a < b} and {c < d} of ρ. This does not change
the structure of the set of even set partitions Π with p(Π) = ρ; that is, N(l, ρ) =
N(l, ρ′) for every l. So, the formula for G also stays true when one raises a label.

Since every labelled rooted tree is obtained inductively from the empty tree by adding
edges and raising labels, the proof of Proposition 19 is done.

5.1.4. Expansion of the joint cumulants as sums over Dyck paths. Recall that xν stands for
x(a2−a1)+···+(a2r−a2r−1) if ν is the pairing {a1 < a2}, . . . , {a2r−1 < a2r}. We adopt the
same notations with Dyck paths and planar rooted trees, so xδ or xT stands for xν if
δ = δ(ν) or if T = T(ν). We also denote D∗2r the image of D2r−2 in D2r by the operation
δ 7→ δ+. Notice that if ∆ = (δ(T))+ with T tree with r− 1 edges, then

∏
e∈E(T)

h(e) (h(e) + 1) =
2r−1

∏
i=1

∆i,

∆i denoting the value of the Dyck path ∆ after i steps. Starting from Equation (13) and
using the explicit formulas that we have obtained for N(ν) and F(ν), we therefore get:
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Theorem 21. For every indices 1 ≤ · · · ≤ 2r,

κ(σ(1), . . . , σ(2r)) = (−1)r−1 ∑
δ∈D∗2r

(
2r−1

∏
i=1

δi

)
xδ.

Example. The two non-crossing pairings of size 4 are

15

and

15

,
the associated powers of x are

x(6−1)+(5−4)+(3−2) and x(6−1)+(5−2)+(4−3),

and the associated quantities G(ν) are 4 and 12, so, with r = 3,

κ(σ(1), . . . , σ(6)) = 4 x6+5+3−4−2−1 + 12 x6+5+4−3−2−1.

Theorem 21 has several easy corollaries. First of all, we see immediately from it that
the sign of a joint cumulant of spins is prescribed, which was a priori non-obvious. On
the other hand, applying Theorem 21 to the case r = 1 yields

κ(σ(i), σ(j)) = x|j−i|,

that is, the correlation between two spins decreases exponentially with the distance
between the spins. More generally, one can use Theorem 21 to get a useful bound on
cumulants. Notice that the minimal exponent of x that appears in the right-hand side
of the formula is

x(2r)+((2r−1)−(2r−2))+((2r−3)−(2r−4))+···+(3−2)−1.

Indeed, it is easily seen that the exponent of x in xT increases when one makes a rota-
tion of a leaf of T in the sense of Tamari (cf. [Tam62]). Since all trees are generated by
leaf rotations from the tree with all edges of height 1 (cf. [Knu04]), the previous claim
is shown. It follows that

|κ(σ(1), . . . , σ(2r))| ≤

 ∑
δ∈D∗2r

2r−1

∏
i=1

δi

 x(2r)+((2r−1)−(2r−2))+···+(3−2)−1.

The quantity

Q(r) = ∑
δ∈D∗2r

(
2r−1

∏
i=1

δi

)
= ∑

T∈Tr−1

 ∏
e∈E(T)

h(e) (h(e) + 1)


has for first values 1, 2, 16, 272, 7936, . . . , and a simple bound on Q(r) is (2r − 2)!, see
Proposition 26 hereafter. Hence, a generalization of the exponential decay of covari-
ances is given by:

Proposition 22. For any positions of spins i1 ≤ i2 ≤ · · · ≤ i2r,

|κ(σ(i1), . . . , σ(i2r))| ≤ (2r− 2)! xi2r+(i2r−1−i2r−2)+···+(i3−i2)−i1 .

5.2. Bounds on the cumulants of the magnetization. As explained in the introduc-
tion, we now have to gather the estimates given by Theorem 21 to get the asymptotics
of the cumulants κ(2r)(Mn) of the magnetization.



42 PIERRE-LOÏC MÉLIOT AND ASHKAN NIKEGHBALI

5.2.1. Reordering of indices and compositions. Since the joint cumulants of spins have
been computed for ordered spins i1 ≤ i2 ≤ . . . ≤ i2r, in the right-hand side of the
expansion

κ(2r)(Mn) =
n

∑
i1,...,i2r=1

κ(σ(i1), . . . , σ(i2r)),

we need to reorder the indices i1, . . . , i2r, and take care of the possible identities be-
tween these indices. We shall say that a sequence of indices i1, . . . , ir has type c =

(c1, . . . , cl) with the ci positive integers and |c| = ∑l
i=1 ci = r if, after reordering, the

sequence of indices writes as

i′1 = i′2 = . . . = i′c1
< i′c1+1 = i′c1+2 = · · · = i′c1+c2

< i′c1+c2+1 = · · · .

Here, i′k stands for the k-th element of the reordered sequence. For instance, the se-
quence of indices (3, 2, 3, 5, 1, 2) becomes after reordering (1, 2, 2, 3, 3, 5), so it has type
(1, 2, 2, 1). The type of a sequence of indices of length r can be any composition of size
r, and we denote Cr the set of these compositions. Conversely, given a composition of
size r and length l, in order to construct a sequence of indices (i1, . . . , ir) with type c
and with values in [[1, n]], one needs:

• to choose which indices i will fall into each class (i′1, . . . , i′c1
), (i′2, . . . , i′c1+c2

), etc.;
there are (

r
c

)
=

r!
c1! c2! · · · cl !

possibilities there.
• and then to choose 1 ≤ j1 < j2 < · · · < jl ≤ n so that j1 = i′1 = · · · = i′c1

,
j2 = i′2 = · · · = i′c1+c2

, etc.

As a consequence,

κ(2r)(Mn) = ∑
c∈C2r

∑
1≤j1<j2<···<j`(c)≤n

(
2r
c

)
κ
(

σ(j1)c1 , . . . , σ(j`(c))
c`(c)
)

= (−1)r−1 ∑
c∈C2r

∑
δ∈D∗2r

(
2r
c

)
C(δ) B(n, c, δ)

where C(δ) = ∏2r−1
i=1 δi is the quantity computed in the previous paragraph, and

B(n, c, δ) = ∑
1≤j1<j2<···<j`(c)≤n

x∑{a<b}∈ν(δ)(ib−ia),

the indices i being computed from the indices j according to the rule previously ex-
plained, namely,

j1 = i1 = · · · = ic1 ;
j2 = ic1+1 = · · · = ic1+c2 ;
...

...
j`(c) = ic1+···+c`(c)−1+1 = · · · = i2r.
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Example. Suppose r = 1. There are two compositions of size 2, namely, (2) and (1, 1),
and one trivial tree with 0 edge; therefore,

κ(2)(Mn) = B(n, (2), •) + 2 B(n, (1, 1), •)

=
n

∑
j1=1

1 + 2 ∑
1≤j1<j2≤n

xj2−j1 .

The double geometric sum has the same asymptotics as ∑n
j1=1 ∑∞

j2=j1+1 xj2−j1 = n x
1−x ,

so

κ(2)(Mn) ' n
1 + x
1− x

= n e2β.

It is not hard to convince oneself that the approximation performed in the previous
example can be done in any case, so that a correct estimate of B(n, c, δ) is n B(c, δ), with

B(c, δ) = ∑
0=j1<j2<···<j`(c)

x∑{a<b}∈ν(δ)(ib−ia).

In this new expression, the indices j are unbounded (except the first one, fixed to 0),
and what we mean by approximation is that

n B(c, δ) = B(n, c, δ) + O(1),

with a positive remainder corresponding to terms of the geometric series with indices
larger than n. So:

Proposition 23. An upper bound, and in fact an estimate of |κ(2r)(Mn)| is

|κ(2r)(Mn)| ≤ n ∑
c∈C2r

∑
δ∈D∗2r

(
2r
c

)
B(c, δ)C(δ).

5.2.2. Computation of the functional B. There is a simple algorithm that allows to com-
pute B(c, δ) for any Dyck path δ and any composition c. Let us explain it with the
path δ associated to the non-crossing pairing ν of Figure 9 and with the composition
c = (3, 2, 1, 2, 2). This composition c corresponds to some identifications of indices,
which we make appear on the diagram of the pairing ν as follows:

18

FIGURE 18. Identifications of indices corresponding to the composition
c = (3, 2, 1, 2, 2).

We now contract the green edges added above, obtaining thus:
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j1 j2 j3 j4 j5

19

FIGURE 19. Contraction of the diagram of a non-crossing partition along
a composition.

This new diagram corresponds to the following simplification of the sum B(c, δ):

B(c, δ) = ∑
0=i1=i2=i3<i4=i5<i6<i7=i8<i9=i10

xi10+i9+i8−i7+i6−i5−i4+i3−i2−i1

= ∑
0=i1<i4<i6<i7<i9

x2i9+i5−2i4−i1 because of the identities of indices;

= ∑
0=j1<j2<j3<j4<j5

x(j5−j1)+(j5−j2)+(j3−j2) by relabeling the indices.

So, the new diagram, which we call the contraction of ν along c and denote ν ↓c, can be
read similarly as the previous diagrams of pairings, that is to say that

B(c, δ) = ∑
0=j1<j2<j3<j4<j5

x(ν(δ))↓c ,

where xν↓c stands for the product of factors xb−a, {a < b} running over the bonds of
the contracted diagram ν↓c.

Given a contracted diagram ρ = ν ↓c of length `(c), denote δ1(ρ) the number of
bonds opened between j1 and j2; δ2(ρ) the number of bonds opened between j2 and j3;
δ3(ρ) the number of bonds opened between j3 and j4; etc. up to δ`(c)−1(ρ). For instance,
in the previous example, there is one bond opened between j1 and j2 (the one starting
from j1); 3 bonds opened between j2 and j3 (the previous bond, which has not been
closed, and the two bonds starting from j2); and 2 bonds opened between j3 and j4 and
between j4 and j5. So (δ1, δ2, δ3, δ4) = (1, 3, 2, 2).

Proposition 24. Set ρ = (ν(δ))↓c. One has

B(c, δ) =
`(c)−1

∏
i=1

xδi(ρ)

1− xδi(ρ)
.

Example. Consider the previous contracted diagram ρ5, and the corresponding sum

B5 = ∑
0=j1<j2<j3<j4<j5

x(j5−j1)+(j5−j2)+(j3−j2).
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We reduce inductively the size of the contracted diagram as follows. We first write

B5 = ∑
0=j1<j2<j3<j4<j5

x2(j5−j4)+(j4−j1)+(j4−j2)+(j3−j2)

=

(
∑

0=j1<j2<j3<j4

x(j4−j1)+(j4−j2)+(j3−j2)

)(
∞

∑
j5=j4+1

x2(j5−j4)

)

=
x2

1− x2

(
∑

0=j1<j2<j3<j4

x(j4−j1)+(j4−j2)+(j3−j2)

)
=

xδ4

1− xδ4
B4,

where B4 is the sum corresponding to the diagram ρ4 which is obtained from ρ5 by
identifying j4 and j5:

j1 j2 j3 j4

20

FIGURE 20. Reduction of the diagram of Figure 19.

We can then do it again to go to size 3:

B4 = ∑
0=j1<j2<j3<j4

x2(j4−j3)+(j3−j1)+(j3−j2)+(j3−j2)

=

(
∑

0=j1<j2<j3

x(j3−j1)+2(j3−j2)

)(
∞

∑
j4=j3+1

x2(j4−j3)

)

=
x2

1− x2

(
∑

0=j1<j2<j3

x(j3−j1)+2(j3−j2)

)
=

xδ3

1− xδ3
B3,

where B3 is the sum corresponding to the diagram ρ3 which is obtained from ρ4 by
identifying j3 and j4:

j1 j2 j3

21

FIGURE 21. Further reduction of the diagram of Figure 19.

Two more operations yield similarly the factors xδ2

1−xδ2
and xδ1

1−xδ1
.

Proof of Proposition 24. The algorithm presented above on the example gives clearly a
proof of the formula by induction on `(c). Indeed, at each step of the induction, the
term that is factorized is

∞

∑
j`(c)=j`(c)−1+1

xδ`(c)−1(j`(c)−j`(c)−1) =
xδ`(c)−1

1− xδ`(c)−1
,
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because δ`(c)−1 is the number of bonds ending at j`(c). Then, as for the other factor, one
obtains it by replacing j`(c) by j`(c)−1 in the sum B(c, δ), and this amounts to do the
identification between j`(c)−1 and j`(c) in the contracted diagram. This identification
and reduction to lower length does not change the values δ1, . . . , δ`(c)−2, so the formula
is proven. �

We recall that a descent of a composition c = (c1, . . . , c`) is one of the integers

c1, c1 + c2, c1 + c2 + c3, . . . , c1 + · · ·+ c`−1.

For instance, the descents of c = (3, 2, 1, 2, 2) are 3, 5, 6 and 8. The set of descents D(c)
of a composition c of size r can be any subset of [[1, r− 1]], so in particular, cardCr =
2r−1. The contraction of diagrams along compositions presented at the beginning of
this paragraph satisfies the rule:

{δ1(ρ), . . . , δ`(c)−1(ρ)} = {δd, d ∈ D(c)} if ρ = (ν(δ))↓c .

So, B(c, δ) = ∏d∈D(c)
xδd

1−xδd
, and Proposition 23 becomes:

Theorem 25. An upper bound, and in fact an estimate of |κ(2r)(Mn)| is

|κ(2r)(Mn)|
n

≤ ∑
c∈C2r

∑
δ∈D∗2r

A(c) B(c, δ)C(δ)

with A(c) = (2r
c ), B(c, δ) = ∏d∈D(c)

xδd

1−xδd
and C(δ) = ∏2r−1

i=1 δi.

Example. Suppose r = 2. There is one Dyck path in D∗4 , with C(δ) = 2 since δ1 = δ3 = 1
and δ2 = 2. The compositions of size 4 are (4), (3, 1), (2, 2), (1, 3), (2, 1, 1), (1, 2, 1),
(1, 1, 2) and (1, 1, 1, 1); their contributions A(c) B(c, δ) are equal to

1,
4x

1− x
,

6x2

1− x2 ,
4x

1− x
,

12x3

(1− x)(1− x2)
,

12x2

(1− x)2 ,
12x3

(1− x)(1− x2)
,

24x4

(1− x)2(1− x2)
.

So,

|κ(4)(Mn)| ' 2n
(

1 +
8x

1− x
+

6x2

1− x2 +
12x2

(1− x)2 +
24x3

(1− x)(1− x2)
+

24x4

(1− x)2(1− x2)

)
' 2n

(1 + x)(1 + 4x + x2)

(1− x)3 = n (3 e6β − e2β).

5.2.3. Explicit bound on cumulants and the mod-Gaussian convergence. By examining the
asymptotics of the first cumulants written as rational functions in x, one is lead to the
following result. Set

Pr(x) =

 ∑
c∈C2r

∑
δ∈D∗2r

A(c) B(c, δ)C(δ)

 (1− x)2r−1.

For instance, P1(x) = 1 + x and P2(x) = 2 (1 + x)(1 + 4x + x2).
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Proposition 26. For every r ≥ 1 and every x ∈ (0, 1),

0 ≤ Pr(x) ≤ (2r)!
r!

(2r− 2)!
(r− 1)!

.

Proof. For every composition c and every path δ, B(c, δ) (1− x)2r−1 is a non-negative
and convex function of x on [0, 1]. Therefore, 0 ≤ Pr(x) ≤ x Pr(0) + (1 − x) Pr(1).
When x = 1, all the rational functions B(c, δ) (1− x)2r−1 vanish, except when c has
2r− 1 descents, that is to say that c = (1, 1, . . . , 1). Then, A(c) = (2r)!, and

lim
x→1

B(c, δ) =
2r−1

∏
i=1

1
δi

=
1

C(δ)
.

Therefore,

Pr(1) = (2r)! (cardD∗2r) =
(2r)!

r!
(2r− 2)!
(r− 1)!

.

On the other hand, when x = 0, all the rational functions B(c, δ) (1− x)2r−1 vanish,
except when c has no descent, that is to say that c = (2r). Then, A(c) = 1 and

Pr(0) = Q(r) = ∑
δ∈D∗2r

A(δ).

Among all Dyck paths in D∗2r, the one with the maximal product of values G(δ) is
(0, 1, 2, . . . , r− 1, r, r− 1, . . . , 2, 1, 0). So,

Pr(0) ≤ r! (r− 1)! (cardD∗2r) = (2r− 2)! ≤ Pr(1).

It follows that Pr(x) ≤ x Pr(1) + (1− x) Pr(1) = Pr(1). �

Corollary 27. For every r,

|κ(2r)(Mn)| ≤ n (2r− 1)!! (2r− 3)!! (e2β + 1)2r−1.

Proof. Indeed,

|κ(2r)(Mn)| ≤ n

 ∑
c∈C2r

∑
δ∈D∗2r

A(c) B(c, δ)C(δ)

 = n
Pr(x)

(1− x)2r−1

≤ n
Pr(1)

(1− x)2r−1 = n
(

1
1− x

)2r−1 (2r)!
r!

(2r− 2)!
(r− 1)!

.

Replacing x by tanh β allows to conclude, and this gives another proof of Theorem 3.
We rewrite the logarithm of the Laplace transform of n−1/4Mn as

∞

∑
r=1

κ(2r)(Mn)

(2r)!
z2r n−r/2 =

κ(2)(Mn) z2

2n1/2 +
κ(4)(Mn) z4

24n
+

∞

∑
r=3

κ(2r)(Mn)

(2r)!
z2r n−r/2.
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The series on the right-hand side is smaller than
∞

∑
r=3

(2r− 1)!! (2r− 3)!!
(2r)!

(eβ + 1)2r−1 z2r n1−r/2 ≤ n−1/2
∞

∑
r=3

((e2β + 1)z)2r n−(r−3)/2

≤ n−1/2 ((e2β + 1)z)6

1− ((e2β + 1)z)2 n−1/2 ,

so it goes uniformly to zero on every compact set of the plane. On the other hand, we
have seen that κ(2)(Mn) = n e2β−O(1) and−κ(4)(Mn) = n (3 e6β− e2β)−O(1), so we
conclude that

E

[
ez Mn

n1/4

]
e−

n1/2e2β z2
2 = e−

(3 e6β−e2β) z4
24

(
1 + O(n−1/2)

)
,

and this is indeed the content of Theorem 3. �
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