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Abstract

We show in this paper that after proper scalings, the characteristic polynomial
of a random unitary matrix converges almost surely to a random analytic function
whose zeros, which are on the real line, form a determinantal point process with
sine kernel. Our scaling is performed at the so-called ”microscopic” level, that is
we consider the characteristic polynomial at points which are of order 1/n distant.
We draw several consequences from our result. On the random matrix theory side,
we obtain the limiting distribution for ratios of characteristic polynomials where
the points are evaluated at points of the form exp(2iπα/n). We also give an ex-
plicit expression for the (dependence) relation between two different values of the
characteristic polynomial on the microscopic scale. On the number theory side, in-
spired by the Keating-Snaith philosophy, we conjecture some new limit theorems
for the Riemann zeta function at the stochastic process level as well as some al-
ternative approach to the conjecture by Goldston, Montgomery and Gonek for the
moments of the logarithmic derivative of the Riemann zeta function. We prove
our main random matrix theory result in the framework of virtual isometries to
circumvent the fact that the rescaled characteristic polynomial does not even have
a moment of order one, hence making the classical techniques of random matrix
theory difficult to apply.
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1 Introduction

A major breakthrough in the so called random matrix approach in number theory is
the seminal paper of Keating and Snaith [KS00], where they conjecture that the char-
acteristic polynomial of a random unitary matrix, restricted to the unit circle, is a good
and accurate model to predict the value distribution of the Riemann zeta function on
the critical line. In particular, using this philosophy, they were able to conjecture the
exact asymptotics of the moments of the Riemann zeta function, a result which was
considered to be out of reach with classical tools form analytic number theory. One
simple and naive explanation for the success of the characteristic polynomial as a ran-
dom model to the Riemann zeta function comes from Montgomery’s conjecture that
asserts that the zeros of the Riemann zeta function on the critical line (after rescaling)
statistically behave like the eigenangles (after rescaling) of large random unitary ma-
trices. Moreover the limiting point process obtained from the eigenvalues is a deter-
minantal point process with the sine kernel. A natural question which then naturally
arose in the community was the existence of a random analytic function with zeros
which from a determinantal point process with the sine kernel and which would be
obtained as a limiting object from characteristic polynomials. As we shall see below,
the sequence of characteristic polynomials of random unitary matrices of growing di-
mensions does not converge. We shall nonetheless prove that after a proper rescaling
in ”time” (the characteristic polynomial can be viewed as a stochastic process with
parameter z ∈ C, and we shall consider the characteristic polynomial at the scale z/n)
and space (that is we normalize with the value of the characteristic polynomial at 1),
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this sequence converges locally uniformly on compact subsets of the complex plane to
a random analytic function with the desired property. The convergence will be proved
to occur almost surely, thanks to the use of virtual isometries introduced in [BNN12].
The basic idea behind virtual isometries is that of coupling the different dimensions
of the unitary groups U(n) together in such a way that marginal distribution on each
U(n), for fixed n, is the Haar measure. This strong convergence will in turn imply the
weak convergence of the same objects. But since our rescaled characteristic polynomi-
als do not even have a moment of order one, proving the weak convergence as stated
in Theorem 1.2 with classical methods does not seem to be an easy task. On the other
hand combining some of the fine estimates on the eigenvalues from [MNN13] which
make strong use of the coupling from virtual isometries and some other classical esti-
mates on sine kernel determinantal point processes is enough to establish almost sure
convergence. We shall see that our main limit theorem has several far reaching conse-
quences:

1. On the random matrix theory side, we shall be able to characterize the limit of
ratios of characteristic polynomials evaluated at points of the form α

n for α ∈ C.
We shall also give a description of the dependence between the log of the char-
acteristic polynomial evaluated at various points distant of α

n . Ratios of char-
acteristic polynomials of random matrices are relevant objects which have been
extensively studied in recent years, for instance in relation with quantum chaotic
systems or analytic number theory (see [BS06], [CS07], [CFZ08], [BG06]), using
a wide range of techniques (e.g. classical analysis, representation theory or su-
persymmetry methods). To the best of our knowledge the problem of charac-
terizing the limiting object on the microscopic scale has never been addressed
or solved before.1 We shall also derive the limiting object for the rescaled loga-
rithmic derivative of the characteristic polynomial at the microscopic scale. This
limiting object was not known before; in fact, after we prove the convergence of
the properly rescaled logarithmic derivative, we can give an alternative combina-
torial identity for its moments through the formulas in [CFZ08] or [CS08]. How-
ever we shall see that there exist explicit formulas for the moments using only
the correlation functions of the sine kernel determinantal point process (though
it should be noted that the computations become very heavy beyond the second
complex moments).

2. On the number theory side, we shall state some conjectures relating our limit-
ing random analytic function to the Riemann zeta function: our scaling amounts
to eliminating the contribution of prime numbers to keep only those of the Rie-
mann zeros and thus obtain a limiting object whose zeros form a sine kernel de-
terminantal point process, in agreement with the GUE conjecture. We shall also
relate the logarithmic derivative of our limiting function to recent conjectures of
Goldston, Gonek and Montgomery [GGM01] on the second moment of the log-
arithmic derivative of the Riemann zeta function. We shall be able to provide a
very general conjecture on the logarithmic derivative of the Riemann zeta func-
tion in agreement with the predictions obtained in [GGM01] and in [FGLL13].

1This question was asked to A.N. by Alexei Borodin in a private communication.
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Moreover we shall see that the logarithmic derivative of our random analytic
function is of interest in its own and relate it to a Gaussian field on the meso-
scopic scale: such objects, for more general point processes, have been recently
studied by Aizenmann and Warzel in [AW13] and our results can be viewed as a
complement to the results obtained in there.

In the sequel, we introduce the main objects and notation and state our main theo-
rem.

1.1 The characteristic polynomial of random unitary matrices and
the number theory connections

It is a well known fact in the theory of random unitary matrices that, when properly
rescaled, the eigenvalues converge to a determinantal point process with sine kernel:

Proposition 1.1. Let En denote the set of eigenvalues taken in (−π, π] and multiplied by
n/2π of a random unitary matrix of size n following the Haar measure. Let us also define, for
y 6= y

′
,

K(y, y
′
) =

sin[π(y
′ − y)]

π(y′ − y)

and
K(y, y) = 1.

Let E∞ be a determinantal sine-kernel process, i.e. a point process such that for all r ∈
{1, . . . , n}, and for all Borel measurable and bounded functions F with compact support from
Rr to R,

E

Ñ ∑
x1 6=···6=xr∈E∞

F(x1, . . . , xr)

é
=
∫

Rr
F(y1, . . . , yr)ρr(y1, . . . , yr)dy1 . . . dyr,

where
ρr(y1, . . . , yr) = det((K(yj, yk))1≤j,k≤r).

Then, the point process En converges to E∞ in the following sense: for all Borel measurable
bounded functions f with compact support from R to R,∑

x∈En

f (x) −→
n→∞

∑
x∈E∞

f (x),

where the convergence above holds in law.

We now recall basic facts about the Riemann zeta function (the reader can find more
details in classical textbooks such as [Tit86]). The Riemann zeta function is defined, for
<(s) > 1, by

ζ(s) =
∞∑

n=1

1
ns .
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It has a meromorphic continuation to the whole complex plane with a single pole at 1.
It also satisfies a functional equation which we can be stated as follows:

π−s/2Γ(s/2)ζ(s) = π(s−1)/2Γ((1− s)/2)ζ(1− s),

and
ζ(s) = χ(s)ζ(1− s),

where
χ(1− s) = χ(s)−1 = 2(2π)−sΓ(s) cos(πs/2).

The non-trivial zeros of the zeta function are denoted by ρ = σ + it, where 0 < σ < 1.
The Riemann hypothesis is the assertion that all non trivial zeros satisfy σ = 1/2 and
hence all non trivial zeros are of the form ρ = 1/2 + it, with t ∈ R. If we assume
the Riemann hypothesis, then the zeros come in conjugate pairs and we note the zeros
in the upper half-plane as 1/2 + iγj, where 0 < γ1 ≤ γ2 ≤ · · · . One can count the
number of such zeros up to some height T:

N(T) := #{j; 0 ≤ γj ≤ T} = T
2π

log
T

2πe
+ O(log T).

The connection to random matrix theory was conjectured by Montgomery in [Mon73]:
it is conjectured that the rescaled zeros of the zeta function γ̃ := γ/(2π) log γ (this
rescaling is done in order to obtain an average spacing of order 1) satisfy the same
limit theorem as the one given in Proposition 1.1 for the rescaled eigenvalues of ran-
dom unitary matrices (in fact the conjecture was initially stated for the pair correlation
and then extended to all correlations by Rudnik and Sarnak in [RS96]; see the recent
paper of Conrey and Snaith [CS14] for a detailed account and new methods).

Another major insight came with the work of Keating and Snaith ([KS00]) where
they use the characteristic polynomial of random unitary matrices to model the value
distribution of the Riemann zeta function on the critical line (i.e. the family {ζ(1/2 +
it), t ≥ 0}) to make spectacular predictions on the moments of the Riemann zeta
function. In particular, in [KS00] they computed the moments of the characteris-
tic polynomial of a random unitary matrix following the Haar measure. They de-
duced that the characteristic polynomial asymptotically behaves like a log-normal
distributed random variable when the dimension n goes to infinity: more precisely,
its logarithm, divided by

»
log n, tends to a complex Gaussian random variable Z

such that E[Z] = E[Z2] = 0 and E[|Z|2] = 1. This result has been generalized in
Hughes, Keating and O’Connell [HKO01], where the authors proved the asymptotic
independence of the characteristic polynomial taken at different fixed points. A ques-
tion which then naturally arises concerns the behavior of the characteristic polynomial
at points which vary with the dimension and which are sufficiently close to each other
in order to avoid asymptotic independence. The scale we consider in the present paper
is the average spacing of the eigenangles of a unitary matrix in dimension n, i.e. 2π/n.
More precisely, let (Un)n≥1 be a sequence of matrices, Un being Haar-distributed in
U(n), and let Zn be the characteristic polynomial of Un:

Zn(X) = det
Ä
Id−U−1

n X
ä
= det (Id−U∗nX) .
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For a given z ∈ C, we consider the value of Zn at the two points 1 and e2izπ/n, whose
distance is equivalent to 2π|z|/n when n goes to infinity. We know that the law of
Zn(1) can be approximated by the exponential of a gaussian variable of variance log n,
so it does not converge when n goes to infinity: the same is true for Zn(e2izπ/n). In or-
der to obtain a convergence in law, it is then natural to consider the ratio Zn(e2izπ/n)/Zn(1),
which has order of magnitude 1 and which is well-defined as soon as 1 is not an eigen-
value of Un, an event occurring almost surely.

If we consider all the values of z together, we obtain a random entire function ξn,
defined by

ξn(z) =
Zn(e2izπ/n)

Zn(1)
.

We will prove that this function has a limiting distribution when n goes to infinity.
More precisely, one of the main results of this article is the following:

Theorem 1.2. In the space of continuous functions from C to C, endowed with the topology
of uniform convergence on compact sets, the random entire function ξn converges in law to a
limiting entire function ξ∞. The zeros of ξ∞ are all real and form a determinantal sine-kernel
point process, i.e. for all r ≥ 1, the r-point correlation function ρr corresponding to this point
process is given, for all x1, . . . , xr ∈ R, by

ρr(x1, . . . , xr) = det
(

sin[π(xj − xk)]

π(xj − xk)

)
1≤j,k≤r

.

Taking a finite number of points z1, . . . , zp ∈ C, we see in particular that the joint
law of the mutual ratios of Zn(e2iπz1/n), . . . , Zn(e2iπzp/n) converges when n goes to
infinity. Now one can hope to gain new insights on the behaviour of ratios of charac-
teristic polynomials on this microscopic scale. More precisely, let us define:

R(α1, · · · , αr; β1, · · · , βr) :=
Zn(e2iα1π/n) · · · Zn(e2iαrπ/n)

Zn(e2iβ1π/n) · · · Zn(e2iβrπ/n)
, (1)

where r ∈ N and αj ∈ C, β j ∈ C, for all 1 ≤ j ≤ r. Ratios such as (1), on the
macroscopic scale (i.e. without the 1/n in the arguments) have been extensively stud-
ied in random matrix theory for different random matrix ensembles, e.g. the GUE
by Borodin and Strahov in [BS06] or in the CUE case by Conrey, Framer and Zirn-
bauer ([CFZ08]), by Conrey and Snaith ([CS07]) or Bump and Gamburd ([BG06]). In
all cases, one considers the expectation of the ratios and the n-limit of this expression.
But the n-limit of R(α1, · · · , αr; β1, · · · , βr) had remained an open problem. In fact, we
shall prove a strong version (i.e. with almost sure convergence) of Theorem 1.2 which
will immediately yield the n-limit of R(α1, · · · , αr; β1, · · · , βr) as well as some central
limit theorem for the vector (log Zn(e2iπz/n), log Zn(1)). The almost sure convergence
is established through the machinery of virtual isometries that we recall in the next
paragraph.

1.2 Virtual isometries and almost sure convergence

In order to prove Theorem 1.2, we will define the sequence (Un)n≥1 of unitary matrices
in a common probability space, with a coupling chosen in such a way that an almost
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sure convergence occurs. An interest of this method is that it is more convenient to
deal with pointwise convergence than with convergence in law when we work on a
functional space. Moreover, the coupling gives a powerful way to track the sequence
(ξn)n≥1 of holomorphic function, and a deterministic link between this sequence and
the limiting function ξ∞.

Besides it is important to stress that the moments method, which is a classical tech-
nique in random matrix theory, is impossible to implement. Indeed the random func-
tion at hand ξn does not have any integer moment when evaluated on circle, which
makes the use of the formulas on moments of ratios in [BG06] and [CFZ08] difficult to
use. For example, in Theorem 3 of the article [BG06], one clearly sees the divergence
of ratios, as the evaluation points get close to 1.

The coupling we consider here corresponds to the notion of virtual isometries, as
defined by Bourgade, Najnudel and Nikeghbali in [BNN12]. The sequence (Un)n≥1
can be constructed in the following way:

1. One considers a sequence (xn)x≥1 of independent random vectors, xn being uni-
form on the unit sphere of Cn.

2. Almost surely, for all n ≥ 1, xn is different from the last basis vector en of Cn,
which implies that there exists a unique Rn ∈ U(n) such that Rn(en) = xn and
Rn − In has rank one.

3. We define (Un)n≥1 by induction as follows: U1 = x1 and for all n ≥ 2,

Un = Rn

Ç
Un−1 0

0 1

å
.

It has already been proven in [BHNY08] that with this construction, Un follows,
for all n ≥ 1, the Haar measure on U(n). From now on, we always assume that the
sequence (Un)n≥1 is defined with this coupling.

For each value of n, let λ
(n)
1 , . . . , λ

(n)
n be the eigenvalues of Un, ordered counter-

clockwise, starting from 1: they are almost surely pairwise distinct and different from
1. If 1 ≤ k ≤ n, we denote by θ

(n)
k the argument of λ

(n)
k , taken in the interval (0, 2π):

θ
(n)
k is the k-th strictly positive eigenangle of Un. If we consider all the eigenangles of

Un, taken not only in (0, 2π) but in the whole real line, we get a (2π)-periodic set with
n points in each period. If the eigenangles are indexed increasingly by Z, we obtain a
sequence

· · · < θ
(n)
−1 < θ

(n)
0 < 0 < θ

(n)
1 < θ

(n)
2 < . . . ,

for which θ
(n)
k+n = θ

(n)
k + 2π for all k ∈ Z.

It is also convenient to extend the sequence of eigenvalues as a n-periodic sequence
indexed by Z, in such a way that for all k ∈ Z,

λ
(n)
k = exp

Å
iθ(n)k

ã
.

With the notation above, the following holds:
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Theorem 1.3 (Theorem 7.3 in [MNN13]). Almost surely, the point processÅ
y(n)k :=

n
2π

θ
(n)
k , k ∈ Z

ã
converges pointwise to a determinantal sine-kernel point process (yk, k ∈ Z). And moreover,
almost surely, the following estimate holds for all ε > 0:

∀k ∈ [−n
1
4 , n

1
4 ], y(n)k = yk + Oε

Å
(1 + k2)n−

1
3+ε
ã

Remark 1.4. The implied constant in Oε is random: more precisely, it may depend on the
sequence (Um)m≥1 and on ε. However, it does not depend on k and n.

We are now able to state the main convergence result of the paper.

Theorem 1.5. Almost surely and uniformly on compact subsets of C, we have the convergence:

ξn (z)
n→∞−→ ξ∞(z) := eiπz ∏

k∈Z

Ç
1− z

yk

å
Here, the infinite product is not absolutely convergent. It has to be understood as the limit of
the following product, obtained by regrouping the factors two by two:Ç

1− z
y0

å∏
k≥1

ñÇ
1− z

yk

åÇ
1− z

y−k

åô
,

which is absolutely convergent.

This theorem immediately implies Theorem 1.2, provided that ξ∞ is entire and that
the zeros of ξ∞ are exactly given by the sequence (yk)k∈Z.

The first point is a direct consequence of the fact that ξ∞ is the uniform limit on
compact sets of the sequence of entire functions (ξn)n≥1, and the second point is a
consequence of the fact that the k-th factor of the absolutely convergent product above
vanishes at yk and y−k and only at these points.

Now, thanks to the a.s. convergence, we can state the following corollaries.

Corollary 1.6. Let r ∈ N and αj ∈ C, β j ∈ C but β j /∈ (yk)k∈Z, for all 1 ≤ j ≤ r. Then the
following convergence holds a.s. as n→ ∞:

R(α1, · · · , αr; β1, · · · , βr) :=
Zn(e2iα1π/n) · · · Zn(e2iαrπ/n)

Zn(e2iβ1π/n) · · · Zn(e2iβrπ/n)
→ ξ∞(α1) · · · ξ∞(αr)

ξ∞(β1) · · · ξ∞(βr)

Since the convergence in Theorem 1.5 holds almost surely in the space of holomor-
phic functions, we immediately obtain:

Corollary 1.7. We have a.s. as n→ ∞:

2iπ
n

Z
′
n(e2iπz/n)

Zn(1)
→ ξ

′
∞.
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The next corollary involves the logarithm of Zn. The determination of this loga-
rithm is the only one such that log Zn vanishes at 0 (recall that Zn(0) = 1), and which
is continuous on the following maximal simply connected domain

D := C\
ß

reiθ(n)k |k ∈ Z, r ≥ 1
™

.

Note that for all z ∈ D, we have:

log Zn(z) =
n∑

k=1
log

Ñ
1− z

λ
(n)
k

é
,

where the principal branch of the logarithm is considered.

Corollary 1.8. Let z ∈ C. The following convergence holds in law as n→ ∞Ñ
log Zn(e2iπz/n)»

(1/2) log n
,

log Zn(1)»
(1/2) log n

é
→ (N ,N )

where N stands for a standard complex Gaussian random variable.

Proof. One checks that

log Zn(e2iπz/n)− log Zn(1) = log ξn(z),

where log ξn is the unique determination of the logarithm, vanishing at 0, and contin-
uous in the domain

D′n := C\
ß

y(n)k − iu|k ∈ Z, u ≥ 0
™

.

Let log ξ∞ be the similar determination of the logarithm of ξ∞. Let us fix z ∈ C, t > 0
such that z + it has strictly positive imaginary part, and let L be the line consisting of
the two segments from 0 to z+ it and from z+ it to z. We also suppose that the random
functions (ξn)n≥1 and ξ∞ are coupled in such a way that almost surely, ξn tends to ξ∞
uniformly on compact sets of C. Almost surely, for n large enough, 0 and <z are not
zeros of ξn and one deduces that L is included in D′n. Hence,

log ξn(z) =
∫

L

ξ ′n(s)
ξn(s)

ds

and

log ξ∞(z) =
∫

L

ξ ′∞(s)
ξ∞(s)

ds.

Now, (ξn, ξ ′n) tends to (ξ∞, ξ ′∞) uniformly on L. Moreover, ξ∞ is continuous and non-
vanishing on the compact set L, which implies that |ξ∞|, and then |ξn| for n large
enough, are bounded away from zero on L. Hence, ξ ′n/ξn tends to ξ ′∞/ξ∞ uniformly
on L, and then log ξn(z) tends to log ξ∞(z). We deduce that

log Zn(e2iπz/n)»
(1/2) log n

− log Zn(1)»
(1/2) log n

−→
n→∞

0

almost surely with the coupling above, and then in probability. Since we already know
that the second term of the difference tends in law to N , we are done.
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Remark 1.9. This central limit theorem is consistent with the predictions of [FK14] on the
correlation of the log of the characteristic polynomial taken at two points distant of 1/n.

Remark 1.10. A similar result would hold for a finite number of points.

Remark 1.11. From Corollary 1.7 one can also deduce a joint central limit theorem for the
log of the derivative of the characteristic polynomial at e2iπz/n and the log of the characteristic
polynomial at 1.

We can eventually easily derive the limiting random analytic function for the loga-
rithmic derivative:

Corollary 1.12. We have almost surely, for all z /∈ {yk, k ∈ Z} :

2iπ
n

Z
′
n(e2iπz/n)

Zn(e2iπz/n)
−→
n→∞

ξ ′∞(z)
ξ∞(z)

,

where

ξ ′∞(z)
ξ∞(z)

= iπ +
∑
k∈Z

1
z− yk

=: iπ +
1

z− y0
+

∞∑
k=1

Ç
1

z− yk
+

1
z− y−k

å
.

Hence, for all α1, . . . , αr /∈ {yk, k ∈ Z},Ç
2iπ
n

år Z′n(e2iα1π/n)

Zn(e2iα1π/n)

Z′n(e2iα2π/n)

Zn(e2iα2π/n)
· · · Z′n(e2iαrπ/n)

Zn(e2iαrπ/n)
−→
n→∞

ξ ′∞(α1)

ξ∞(α1)
· · · ξ ′∞(αr)

ξ∞(αr)
.

1.3 Outline of the paper

The proof of Theorem 1.5 will be made in several steps in Section 2 , using estimates on
the argument of Zn, stated in Section 2.1, and estimates on the renormalized eigenan-
gles y(n)k , stated in Section 2.2. In Section 3, we prove some properties of the limiting
random function ξ∞, we compute the moments of order 1 and 2 of its logarithmic
derivative, and we state some related conjectures on the behavior of the Riemann zeta
function in the neighborhood of the critical line. In Section 4, we prove that in a sense
which can be made precise, the fluctuations of the determinantal sine-kernel process,
viewed at a scale tending to infinity, converge in law to a blue noise, i.e. a noise whose
spectral density is proportional to the frequency. In relation with this convergence,
we show that the fluctuations of ξ ′∞/ξ∞, viewed at a large scale, tend to a Gaussian
process on C\R, whose convariance structure is explicitly computed. This covariance
is consistent with the computation of the two first moments of ξ ′∞/ξ∞.

2 Proof of Theorem 1.5

2.1 On the argument of the characteristic polynomial

In this section, we study the argument of Zn, in order to deduce estimates on the
deviation of y(n)k from k.
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Here, we define the argument as the imaginary part of log Zn, with the determina-
tion of the logarithm given in the previous section.

The next proposition gives a link between the number of eigenvalues of Un in a
given arc of circle, and the variation of the argument of Zn along this arc. The deriva-
tion is relatively standard and we shall not reproduce a proof here (see [Hug01], p.
35-36. or [BHNN13], proof of Proposition 2.2).

Proposition 2.1. Consider A and B two points on the unit circle. Note ĀB for the arc joining
A and B counterclockwise. Denote by `

(
ĀB

)
the length of the arc and N

(
ĀB

)
the number of

zeros of Zn in the arc. We assume that A and B are not zeros of Zn. Then:

N
(

ĀB
)
=

n`
(

ĀB
)

2π
− 1

π
[= log (Zn(B))−= log (Zn(A))] .

Remark 2.2. This shows that the imaginary part of the determination of the logarithm= log Zn(z)
increases with speed n/2 and jumps by −π when encountering a zero.

Corollary 2.3. Let k ∈ Z, and let ε > 0 be small enough so that there are no eigenangle of Un

in [0, ε] and (θ
(n)
k , θ

(n)
k + ε]. Then:

k = y(n)k −
1
π
=
Å

log
Å

Zn(ei(θ(n)k +ε))
ã
− log

Ä
Zn(eiε)

äã
Proof. Notice first that if k is increased by n, θ

(n)
k increases by 2π, y(n)k increases by

n, λ
(n)
k = eiθ(n)k does not change, and the assmption made on ε remains the same.

Hence, in the equality we want to prove, the right-hand side and the left-hand side
both increase by n, which implies that it is sufficient to show the corollary for 1 ≤ k ≤
n. If these inequalities are satisfied, let us choose, in the previous proposition, A = eiε

and B = ei(θ(n)k +ε). Then we note that

N
(

ĀB
)
= k,

and
n`
(

ĀB
)

2π
=

nθ
(n)
k

2π
= y(n)k ,

which proves the corollary.

This corollary shows that it is equivalent to control the argument of Zn, and the
distance between k and y(n)k . In the remaining of this section, we give some explicit
bounds on the distribution of = log(Zn) on the unit circle.

Proposition 2.4. For all x > 0, one has

P (|= (log Zn(1)) | ≥ x) ≤ 2 exp
(
− x2

C + log n

)
,

where C > 0 is a universal constant.

11



Remark 2.5. In the proof below, we prove that one can take C = π2

6 + 1.

Proof. Let us note
Xn = = (log Zn(1))

Thanks to the formula (1.1) in [BHNY08]:

∀λ ∈ R, E
Ä
eλXn

ä
=

n∏
k=1

Γ (k)2

Γ
Ä
k + iλ

2

ä
Γ
Ä
k− iλ

2

ä
Let us start with the standard Chernoff bound:

∀λ > 0, P (Xn ≥ x) ≤ e−λxE
Ä
eλXn

ä
.

Now, using the infinite product formula for the Gamma function:

∀z ∈ C,
1

Γ(z)
= eγzz

∞∏
j=1

Ç
1 +

z
j

å
e−z/j,

E
Ä
eλXn

ä
=

n∏
k=1

Γ (k)2

Γ
Ä
k + iλ

2

ä
Γ
Ä
k− iλ

2

ä
=

n∏
k=1

Ü
k2 + λ2

4
k2

∞∏
j=1

Å
1 + k+ iλ

2
j

ãÅ
1 + k− iλ

2
j

ã
(
1 + k

j

)2

ê
=

n∏
k=1

Ñ
k2 + λ2

4
k2

∞∏
j=1

Ä
j + k + iλ

2

ä Ä
j + k− iλ

2

ä
(j + k)2

é
=

n∏
k=1

∞∏
j=0

(j + k)2 + λ2

4

(j + k)2

=
n∏

k=1

∞∏
j=0

(
1 +

λ2

4 (j + k)2

)

≤ exp

Ñ
n∑

k=1

∞∑
j=0

λ2

4 (j + k)2

é
= exp

Ñ
λ2

4

n∑
k=1

∞∑
j=k

1
j2

é
≤ exp

Ñ
λ2

4

n∑
k=1

Ç
1
k2 +

∫ ∞

k

dt
t2

åé
= exp

Ñ
λ2

4

n∑
k=1

Ç
1
k2 +

1
k

åé
≤ exp

(
λ2

4

(
π2

6
+ 1 + log n

))

12



Eventually for C = π2

6 + 1, we obtain

P (Xn ≥ x) ≤ min
λ>0

e−λx+ λ2
4 (C+log n).

The minimum is reached for λ = 2x
C+log n , giving us the bound:

P (= (log Zn(1)) ≥ x) ≤ exp
(
− x2

C + log n

)
.

The desired bound is obtained from the symmetry of = (log Zn(1)), as eigenvalues are
invariant in law under conjugation:

P (|= (log Zn(1)) | ≥ x)
=P (= (log Zn(1)) ≥ x) + P (−= (log Zn(1)) ≥ x)
=2P (= (log Zn(1)) ≥ x)

We deduce the following estimate on the maximum of the argument of Zn on the
unit circle:

Proposition 2.6. Almost surely:

sup
|z|=1,z∈D

|= log Zn(z)| = O (log n)

More precisely, for any D >
√

2:

∃n0 ∈N, ∀n ≥ n0, sup
|z|=1,z∈D

|= log Zn(z)| ≤ D log n

which means that almost surely:

lim sup
n

1
log n

sup
|z|=1,z∈D

|= log Zn(z)| ≤
√

2

Proof. Consider n regularly spaced points on the circle, say:

xk,n := ei 2πk
n , k = 0, 1, 2, . . . , n− 1,

and the events:
Ak,n := {|= log Zn (xk,n) | ≥ D log n}

Because the law of the spectrum of Un is invariant under rotation, all the events Ak,n
have the same probability for different k’s. Moreover, thanks to the previous Chernoff
bound:

nP (A0,n) ≤ 2n exp
(
−D2(log n)2

C + log n

)

13



≤ 2n exp
Ä
−D2 (log n− C)

ä
≤ 2eD2Cn1−D2

Hence:
∞∑

n=1

n∑
k=1

P (Ak,n) =
∞∑

n=1
nP (A0,n) < ∞

The Borel-Cantelli lemma ensures that, almost surely:

∃n0 ∈N, ∀n ≥ n0, ∀k, |= log Zn (xk,n) | ≤ D log n

Now consider a point z = eiθ ∈ D. For fixed n, it lies on the arc between xk,n and
xk+1,n for a certain k. Because

θ 7→ = log Zn(eiθ)

is piece-wise linear, increasing with speed n/2 and only jumping by −π, we have:

= log Zn(eiθ) ≤ = log Zn(xk,n) +
n
2

Ç
θ − 2πk

n

å
≤ = log Zn(xk,n) + π

In the other direction, we have

= log Zn(eiθ) ≥ = log Zn(xk+1,n)−
n
2

Ç
2π(k + 1)

n
− θ

å
≥ = log Zn(xk+1,n)− π

So that, almost surely:

∃n0 ∈N, ∀n ≥ n0, ∀z ∈ D, |= log Zn (z) | ≤ π + D log n

The more precise estimate |= log Zn (z) | ≤ D log n follows after replacing D by D′ ∈
(
√

2, D) in the previous computation and considering n0 large enough so that π <
(D− D′) log n.

2.2 Precise estimates for the eigenvalues of virtual isometries

The following estimate will reveal crucial for the proof of Theorem 1.5.

Proposition 2.7. Almost surely and uniformly in n and k:

y(n)k = k + O (log(2 + |k|))

In fact, if y(n)k is replaced by yk (n → ∞), this estimate is already easily deduced
from existing literature (for example [MM13], [Sos02]):

Lemma 2.8. Almost surely:

∀k ∈ Z, yk = k + O (log(2 + |k|))

14



Proof. Consider a sine-kernel process yk. For A > 0 and a < b, let X[a,b] be the num-
ber of particles yk in [a, b], and let XA := X[0,A]. Thanks to Proposition 2 in [MM13]
(which is by the way also a standard result in the theory of point processes), which can
be applied to the sine-kernel process, XA is a sum of independent Bernoulli random
variables. As in Corollary 4 in [MM13], we can deduce, using the Bernstein inequality
that

∀t > 0, P (|XA − A| ≥ t) ≤ 2 exp
(
−min

(
t2

4 Var(XA)
,

t
2

))
.

An estimate for the variance is proved by Costin and Lebowitz [CL95] (see also
Soshnikov [Sos02]):

Var(XA) =
1

π2 log A + O(1)

Therefore, for all D > 0,

P (|XA − A| ≥ D log A) ≤ 2 exp
(
−(log A)min

(
D2π2

4 + O(1/ log A)
,

D
2

))
.

For D > 2, and A large enough, D2π2/[4 + O(1/ log A)] > D/2, which implies:

P (|XA − A| ≥ D log A) ≤ 2 exp (−(log A)(D/2)) = 2A−D/2.

This quantity is summable for positive integer values of A. By Borel-Cantelli’s lemma,
we deduce that almost surely, for A ∈N:

XA = A + O (log(2 + |A|)) .

From the inequality
X[0,bAc] ≤ X[0,A] ≤ X[0,dAe],

we deduce that the estimate remains true for all A ≥ 0. Taking A = yk for k > 0
proves the proposition for positive indices. With the same argument one handles the
negative ones.

In order to prove Proposition 2.7, we will also need the two lemmas:

Lemma 2.9. Almost surely:

∀k ∈ Z, y(n)k = k + O (log n)

Proof. This is an immediate consequence of Corollary 2.3 and Proposition 2.6.

Lemma 2.10. For every 0 < η < 1
6 , there exists ε > 0 such that, almost surely:

∀k ∈ [−nη, nη], y(n)k = yk + O
Ä
n−ε
ä

Proof. Since k ∈ [−n1/4, n1/4], we can apply Theorem 1.3, which gives, for all δ > 0,

y(n)k = yk + Oδ

Å
(1 + k2)n−

1
3+δ
ã

.

15



Since k = O(nη),

y(n)k = yk + Oδ

Å
n2η− 1

3+δ
ã

,

which, by taking

δ =
1
6
− η > 0,

gives the desired result, for

ε = −2η +
1
3
− δ = 2δ− δ = δ > 0.

Proof of Proposition 2.7. In the range |k| ≥ n1/7, it is a consequence of Lemma 2.9. In
the range |k| < n1/7, it is a consequence of Lemmas 2.8 and 2.10 (for η = 1/7).

2.3 Infinite product representation of the ratio and its convergence

First, let us express ξn in function of the renormalized eigenangles of Un.

Proposition 2.11. One has

ξn (z) = eiπz ∏
k∈Z

Ñ
1− z

y(n)k

é
,

where the infinite product has to be understood as the limit of the product from k = −A to
k = A when the integer A goes to infinity.

Proof.

ξn (z) =
Zn
Ä
exp( i2πz

n )
ä

Zn(1)

=
n∏

k=1

1− exp( i2πz
n )

λ
(n)
k

1− 1
λ
(n)
k

=
n∏

k=1

1− exp( i2πz
n − iθ(n)k )

1− exp
Å
−iθ(n)k

ã
=

n∏
k=1

exp( i2πz
2n −

1
2 iθ(n)k )

exp(−1
2 iθ(n)k )

exp(− i2πz
2n + 1

2 iθ(n)k )− exp
Å
−1

2 iθ(n)k + i2πz
2n

ã
exp

Å
1
2 iθ(n)k

ã
− exp

Å
−1

2 iθ(n)k

ã
=

n∏
k=1

exp(
iπz
n

)
sin
Å

πz
n −

1
2 θ

(n)
k

ã
sin
Å
−1

2 θ
(n)
k

ã
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= exp(iπz)
n∏

k=1

sin
Å

1
2 θ

(n)
k −

πz
n

ã
sin
Å

1
2 θ

(n)
k

ã
Now, the standard product formula for the sine function can be written as follows:

∀α ∈ C, sin (α) = α lim
A→∞

∏
0<|j|≤A

Ç
1− α

π j

å
.

We then have:

ξn (z) = exp(iπz)
n∏

k=1

Ü
1
2 θ

(n)
k −

πz
n

1
2 θ

(n)
k

lim
A→∞

∏
0<|j|≤A

1−
1
2 θ

(n)
k −

πz
n

π j

1−
1
2 θ

(n)
k

π j

ê
= exp(iπz)

n∏
k=1

ÖÑ
1− z

y(n)k

é
lim

A→∞

∏
0<|j|≤A

Ñ
1− z

nj + y(n)k

éè
= exp(iπz)

n∏
k=1

lim
A→∞

∏
0≤|j|≤A

Ñ
1− z

nj + y(n)k

é
Using the periodicity of the eigenangles, we have:

y(n)k+jn = jn + y(n)k ,

and then

ξn (z) = exp(iπz) lim
A→∞

∏
1−nA≤k≤n+nA

Ñ
1− z

y(n)k

é
.

Now, for B ≥ 2n, A ≥ 2 integers such that An ≤ B ≤ An + n − 1, the product of
1− z

y(n)k

from 1− nA to n + nA and the product from −B to B differ by at most 2n fac-

tors, which are all 1+O(|z|/y(n)nA)+O(|z|/|y(n)1−nA|) = 1+O(|z|/nA). The quotient be-
tween these two products is then well-defined and exp[O(|z|/A)] = exp[O(n|z|/B)]
for B large enough, which implies that it tends to one when B goes to infinity. Hence,

ξn (z) = exp(iπz) lim
B→∞

∏
−B≤k≤B

Ñ
1− z

y(n)k

é
.

We are now ready to prove Theorem 1.5.

Proof of theorem 1.5. Thanks to the estimate from Proposition 2.7:

y(n)k = k + O (log(2 + |k|))
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We have that, for k ≥ 1 and z in a compact K:Ñ
1− z

y(n)k

éÑ
1− z

y(n)−k

é
= 1− z

O(log(2 + |k|))
k2 + O

(
|z|2
k2

)

= 1 +
OK (log(2 + |k|))

k2

Hence:

ξn (z) = eiπz ∏
k∈Z

Ñ
1− z

y(n)k

é
is a sequence of entire functions uniformly bounded on compact sets. Therefore, by
Montel’s theorem uniform convergence on compact sets is implied by pointwise con-
vergence. Let us then focus on proving pointwise convergence.

Fix A ≥ 2. Let us prove that:

∏
|k|≤A

Ñ
1− z

y(n)k

é
−
∏

k∈Z

Ñ
1− z

y(n)k

é
= OK

Ç
log A

A

å
, (2)

∏
|k|≤A

Ç
1− z

yk

å
−
∏

k∈Z

Ç
1− z

yk

å
= OK

Ç
log A

A

å
. (3)

Here, the infinite products are, as before, the limits of the products from −B to B for
B going to infinity. Note that the existence of the infinite product involving yk is an
immediate consequence of the absolute convergence of the productÇ

1− z
y0

å∏
k≥1

ñÇ
1− z

yk

åÇ
1− z

y−k

åô
,

stated in Theorem 1.5, and following from the estimate:Ç
1− z

yk

åÇ
1− z

y−k

å
= 1− z

O(log(2 + |k|))
k2 + O

(
|z|2
k2

)
= 1 +

OK (log(2 + |k|))
k2 .

We now prove (2): a proof of (3) is simply obtained by removing the indices n. We
have:

∏
|k|≥A

Ñ
1− z

y(n)k

é
= 1 + OK

Ñ∑
k≥A

log(2 + |k|)
k2

é
= 1 + OK

Ç
log A

A

å
and ∏

|k|≤A

Ñ
1− z

y(n)k

é
= OK (1)

Therefore:

∏
|k|≤A

Ñ
1− z

y(n)k

é
−
∏

k∈Z

Ñ
1− z

y(n)k

é
18



=
∏
|k|≤A

Ñ
1− z

y(n)k

éÑ
1−

∏
|k|>A

Ñ
1− z

y(n)k

éé
=

∏
|k|≤A

Ñ
1− z

y(n)k

éÇ
1−

Ç
1 + OK

Ç
log A

A

ååå
=OK

Ç
log A

A

å
Because errors are uniform in n, this is saying:

sup
n

∣∣∣∣∣∣∣
∏
|k|≤A

Ñ
1− z

y(n)k

é
−
∏

k∈Z

Ñ
1− z

y(n)k

é∣∣∣∣∣∣∣ −→A→∞
0

Now: ∣∣∣∣∣∣ ∏k∈Z

Ñ
1− z

y(n)k

é
−
∏

k∈Z

Ç
1− z

yk

å∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∏
|k|≤A

Ñ
1− z

y(n)k

é
−

∏
|k|≤A

Ç
1− z

yk

å∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∏

k∈Z

Ñ
1− z

y(n)k

é
−

∏
|k|≤A

Ñ
1− z

y(n)k

é∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∏

k∈Z

Ç
1− z

yk

å
−

∏
|k|≤A

Ç
1− z

yk

å∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∏
|k|≤A

Ñ
1− z

y(n)k

é
−

∏
|k|≤A

Ç
1− z

yk

å∣∣∣∣∣∣∣+ OK

Ç
log A

A

å
Hence, as y(n)k → yk pointwise:

lim sup
n→∞

∣∣∣∣∣∣ ∏k∈Z

Ñ
1− z

y(n)k

é
−
∏

k∈Z

Ç
1− z

yk

å∣∣∣∣∣∣ = OK

Ç
log A

A

å
Taking A→ ∞ completes the proof.

3 Properties of the limiting function ξ∞, its logarithmic
derivative and the number theory connection

In this section, we establish some properties of ξ∞ and then link ξ∞ and its logarithmic
derivative to the Riemann zeta function.
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3.1 The order of ξ∞ as an entire function

We first start with a simple statement on the order of ξ∞ as an entire function:

Proposition 3.1. Almost surely, ξ∞ is of order 1. More precisely, the exists a.s. a random
C > 0, such that for all z ∈ C.

|ξ∞(z)| ≤ eC|z| log(2+|z|).

On the other hand, there exists a.s. a random c > 0 such that for all x ∈ R,

|ξ∞(ix)| ≥ cec|x|.

Proof. We have:Ç
1− z

yk

åÇ
1− z

y−k

å
= 1− z

O(log(2 + |k|))
k2 + O

(
|z|2
k2

)

with errors being uniform in z and k ≥ 1. We distinguish between three regimes for
k ∈ Z different from zero: |k| ≥ e|z|, |z| ≤ |k| < e|z|, 1 ≤ |k| < |z|. In the first regime,Ç

1− z
yk

åÇ
1− z

y−k

å
= 1 + O

Ç |z|(log(2 + |k|))
k2

å
,

which implies∣∣∣∣∣∣∣
∏

k≥e|z|

Ç
1− z

yk

å Ç
1− z

y−k

å∣∣∣∣∣∣∣ ≤ exp

Ö
O

Ö
|z|

∑
k≥e|z|

log(2 + k)
k2

èè
= exp

Ö
O

Ö
|z|

∑
k≥e|z|

k−3/2

èè
= exp

(
O
(
|z|e−|z|/2

))
= O(1).

In the second regime,

log(2 + |k|) ≤ log(e|z| + 2) ≤ log(3e|z|) ≤ |z|+ 2,

and then Ç
1− z

yk

åÇ
1− z

y−k

å
= 1 + O

Ç |z|(|z|+ 2)
k2

å
,

which implies∣∣∣∣∣∣∣
∏

|z|≤k<e|z|

Ç
1− z

yk

åÇ
1− z

y−k

å∣∣∣∣∣∣∣ ≤ exp

Ñ
O

Ñ
|z|(|z|+ 2)

∑
k≥|z|∨1

1
k2

éé
= exp O(|z|).

Finally, in the third regime, we have, since |yk/k| is a.s. bounded from below,

1− z
yk

= 1 + O(|z/k|),
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which in turn implies∣∣∣∣∣∣∣
∏

1≤k<|z|

Ç
1− z

yk

åÇ
1− z

y−k

å∣∣∣∣∣∣∣ ≤ exp

Ñ
O

Ñ
|z|

∑
1≤k<|z|

(1/k)

éé
= exp O (|z| log(2 + |z|)) .

Since ∣∣∣∣∣1− z
y0

∣∣∣∣∣ ≤ exp(|z|/y0) = exp O(|z|),

we deduce by combining the three regimes, the following upper bound:

|ξ∞(z)| ≤ exp O (|z| log(2 + |z|)) .

In order to prove the lower bound, we first use the equality:

|ξ∞(ix)|2 =
∏

k∈Z

(
1 +

x2

y2
k

)
.

Since |yk| = O(|k|) for k 6= 0, we deduce that there exists a random c > 0 such that

|ξ∞(ix)|2 ≥
∏
k 6=0

(
1 +

x2

ck2

)
,

and then

|ξ∞(ix)| ≥
∏
k≥1

(
1 +

x2

ck2

)
=

sinh(πx/
√

c)
πx/
√

c
,

which shows the lower bound given in the proposition.

3.2 The logarithmic derivative ξ∞ and conjectures related to the Rie-
mann zeta function

Now we state a conjecture which relates the random function ξ∞ to the behavior of the
zeta function close to the critical line:

Conjecture 3.2. Let U be a uniform random variable on [0, 1] and T > 0 a real parameter
going to infinity. Our random limiting function should be related to the renormalized zeta
function with randomized argument. We conjecture the following convergence in law, uni-
formly in the parameter z on every compact set:Ö

ζ
(

1
2 + iTU − i2πz

log T

)
ζ
Ä

1
2 + iTU

ä ; z ∈ C

è
T→∞−→ (ξ∞(z); z ∈ C)

By taking logarithmic derivatives, it is natural also to conjecture the following convergenceÇ−i2π

log T
ζ ′

ζ

Ç
1
2
+ iTU − i2πz

log T

å
; z ∈ C

å
T→∞−→

Ç
ξ ′∞
ξ∞

(z); z ∈ C

å
on compact sets bounded away from the real line.
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This conjecture is supported by the following lemma:

Lemma 3.3. We have, for z /∈ R,

ξ ′∞
ξ∞

(z) = iπ +
∑
k∈Z

1
z− yk

=: iπ +
1

z− y0
+

∞∑
k=1

Ç
1

z− yk
+

1
z− y−k

å
,

and when the random variable U is fixed:

−i2π

log T
ζ ′

ζ

Ç
1
2
+ iTU − i2πz

log T

å
= iπ +

∑
γ̃

1
z− γ̃

+ o(1)

where γ̃ are the non-trivial zeros of the Riemann zeta function centered around 1
2 + iUT and

renormalized so that their average spacing around the origin is O (1). More precisely:

γ̃ :=
− log T

2πi

Ç
ρ− 1

2
− iUT

å
with ρ a zero of ζ. The infinite sum on γ̃ has to be understood as follows:

∑
γ̃

1
z− γ̃

=
1

z− γ̃0
+

∞∑
k=1

Ç
1

z− γ̃k
+

1
z− γ̃−k

å
,

where (γ̃k)k∈Z are ordered by increasing real part, increasing imaginary part if they have the
same real part, and counted with multiplicity.

Remark 3.4. The absolute convergence of the last sum can be easily deduced from the classical
estimate, for A > 2, on the number of nontrivial zeros N(A) with imaginary part in [0, A], or
in [−A, 0]:

N(A) = ϕ(A) + O(log A),

for

ϕ(A) =
A

2π
log
Ç

A
2πe

å
.

Indeed, all the ways to number the renormalized zeros γ̃ consistently with the statement of the
lemma are deduced from each other by translation of the indices, and for any such numbering
one checks that

γ̃k = sgn(k)
log T

2π
ϕ(−1)(|k|) + O(log(2 + |k|)),

where ϕ(−1) is the inverse of the bijection from [2πe, ∞) to R+, induced by ϕ. The implicit
constant depends on T, U and the precise numbering of the zeros, but not on k. This estimate
is sufficient to ensure the convergence of the last series in the lemma, when one takes into
account that ϕ(−1)(k) ≥ k/ log k for all k ≥ 2. The sum of the series does not depend on the
numbering of the γ̃’s, since any translation of the indices change the partial sums by a bounded
number of terms, which tend to zero. Note that the γ̃’s are all real if and only if the Riemann
hypothesis is satisfied.
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Proof. The convergence of the first series in the lemma is easily deduced from the es-
timate in Proposition 2.7. The partial sums are the logarithm derivatives of the corre-
sponding partial products associated to ξ∞. Since uniform convergence on compact
sets of non-vanishing holomorphic functions implies the corresponding convergence
of the logarithmic derivative, we get the part of the lemma related to ξ ′∞/ξ∞. For the
formula involving ζ, we start by the Hadamard product formula for the zeta function:

∀s ∈ C\{1}, ζ (s) = πs/2
∏

ρ

(
1− s

ρ

)
2(s− 1)Γ

Ä
1 + s

2

ä .

The product has to be computed by grouping pairs of conjugate non-trivial zeros of
zeta. Hence, for s not a zero nor a pole:

ζ ′

ζ
(s) =

1
2

log π +
∑

ρ

1
s− ρ

− 1
s− 1

− 1
2

Γ′

Γ

Å
1 +

s
2

ã
Take s = 1

2 + iTU − i2πz
log T with T → ∞ and use the asymptotics Γ′

Γ

Ä
1 + s

2

ä
= log T +

O(1). The error is uniform in z on compact sets away from the real line. Then:

−i2π

log T
ζ ′

ζ

Ç
1
2
+ iTU − i2πz

log T

å
=
−i2π

log T
∑

ρ

1
s− ρ

+
i2π

log T
1
2
(log T + O(1)) + o(1)

= iπ +
−i2π

log T
∑

ρ

1
− i2πz

log T −
Ä
ρ− 1

2 − iUT
ä + o(1)

Here, all the sums on ρ are obtained by grouping pairs of conjugate values of ρ. Writing
the last sum in function of the sequence (γ̃k)k∈Z gives

−i2π

log T
ζ ′

ζ

Ç
1
2
+ iTU − i2πz

log T

å
= iπ +

∞∑
k=1

Ç
1

z− γ̃a+k
+

1
z− γ̃a+1−k

å
+ o(1),

where a depends only on the way to number the γ̃k’s. Changing the partial sums by
at most 2|a| + 1 terms, all tending to zero, gives the partial sums of the series in the
lemma.

Our formulation can be easily related to the GUE conjectures [RS96], which is the
natural extension of Montgomery’s conjecture [Mon73] on pair correlations. Indeed,
the previous lemma gives a good heuristic of Conjecture 3.2: since the randomized
and renormalized zeros γ̃ are expected to behave like a sine kernel point process, the
two expressions should match in law when T → ∞. It is interesting to notice that the
term iπ in the expression of ζ ′/ζ is due to the “Archimedian” gamma factor in the
Hadamard product of ζ. With the same renormalization corresponding to the aver-
age spacing of the zeros, we get the same term for the logarithmic derivative of the
characteristic polynomial of the CUE.

We will now compute the two first moments of ξ ′∞
ξ∞

, which will naturally give a

conjecture on the corresponding moments of ζ ′

ζ . A particular case of our conjecture is
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in fact equivalent to the pair correlation conjecture under Riemann hypothesis, thanks
to a paper by Goldston, Gonek and Montgomery [GGM01]. One should also note that
recently Farmer, Gonek, Lee and Lester obtain in [FGLL13] an equivalent formulation,
with different methods, for the moments of the logarithmic derivative of the Riemann
zeta function in terms of the correlation functions of the sine kernel: the objects that
are introduced there are different but our formulation is essentially the same as theirs.
The main difference is that we propose to consider directly a random meromorphic
function which follows from a conjecture for the ratios of the zeta function itself (in
particular there is no more n-limit to consider on the random matrix side) and that the
logarithmic derivative ξ

′
∞/ξ∞ seems to carry some spectral interpretation (see the last

section and the reference there to the recent work by Aizenman and Warzel [AW13]).

A first useful technical tool is provided in the following proposition.

Proposition 3.5. Almost surely, for all z /∈ {yk, k ∈ Z},

ξ ′∞(z)
ξ∞(z)

= iπ + lim
A→∞

∑
[yk|<A

1
z− yk

.

Moreover, if we denote

∑
[yk|≥A

1
z− yk

:=
ξ ′∞(z)
ξ∞(z)

− iπ −
∑

[yk|<A

1
z− yk

,

then for any compact set K, bounded away from R, and for all p > 1, there exists an absolute
constant Cp,K such that:

∀A > 2, sup
z∈K

E

Ö∣∣∣∣∣∣∣ ∑|yk|≥A

1
z− yk

∣∣∣∣∣∣∣
pè 1

p

≤ Cp,K
log A√

A

Proof. By Lemma 2.8, there exists almost surely C > 0 such that

|yk − k| ≤ C(log(2 + |k|))

for all k ∈ Z. In order to prove the first part of the proposition, it is sufficient to show
that almost surely, for all z /∈ {yk, k ∈ Z},Ö

iπ +
∑
|yk|<A

1
z− yk

è
−

Ö ∑
|k|<A−C log(2+A)

1
z− yk

+ iπ

è
−→
A→∞

0.

Indeed, the second term of the difference is already known to converge to ξ ′∞(z)/ξ∞(z).
Now, |k| < A− C log(2 + A) implies that

|yk| ≤ |k|+ C log(2 + |k|) ≤ |k|+ C log(2 + A) < A,

and then we have to show ∑
|k|≥A−C log(2+A),|yk|<A

1
z− yk

−→
A→∞

0.
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Since |yk| ≥ |k| − C log(2 + |k|), it is sufficient to prove

∑
|k|≥A−C log(2+A),|k|−C log(2+|k|)<A

1
|z− yk|

−→
A→∞

0.

Now, this convergence holds since for C, z and (yk)k∈Z fixed, the number of terms of
the sum is O(log A) when A goes to infinity, and all the terms are O(1/A).

Let α > 1 to be fixed later. From the convergence above, we can write

E

Ö∣∣∣∣∣∣∣ ∑|yk|≥A

1
z− yk

∣∣∣∣∣∣∣
pè 1

p

=E

Ö∣∣∣∣∣∣∣∑l∈N

∑
A∨lα≤|yk|<A∨(l+1)α

1
z− yk

∣∣∣∣∣∣∣
pè 1

p

≤
∑
l∈N

E

Ö∣∣∣∣∣∣∣ ∑
A∨lα≤|yk|<A∨(l+1)α

1
z− yk

∣∣∣∣∣∣∣
pè 1

p

Now, for every z ∈ K, and l such that lα ≥ supz∈K |z|+ 1,

lα ≤ |yk| < (l + 1)α ⇒
∣∣∣∣∣ 1
z− yk

+
1

(1 + l)α sgn yk

∣∣∣∣∣� 1
(1 + l)α+1 ,

the implicit constant depending only on K. Indeed,

|z− yk − (1 + l)α sgn yk| ≤ |z|+ |yk − (1 + l)α sgn yk| ≤ |z|+ ||yk| − (1 + l)α|
≤ OK(1) + (1 + l)α − lα = OK((1 + l)α−1),

and
|z− yk||(1 + l)α sgn yk| ≥ (lα − |z|)(1 + l)α �K (1 + l)2α,

since from lα ≥ supz∈K |z|+ 1, we get

lα − |z| ≥ lα

(
sup
z∈K
|z|+ 1

)−1

≥ 2−α

(
sup
z∈K
|z|+ 1

)−1

(1 + l)α.

Hence, for an interval I, if:

XI := Card{k ∈ Z|yk ∈ I}

is the number of points from the sine kernel that fall in I, then for A large enough:

E

Ö∣∣∣∣∣∣∣ ∑|yk|≥A

1
z− yk

∣∣∣∣∣∣∣
pè 1

p

�
∑
l∈N

Ü
E

Ö∣∣∣∣∣∣∣ ∑
A∨lα≤|yk|<A∨(l+1)α

1
(1 + l)α sgn yk

∣∣∣∣∣∣∣
pè 1

p

+ E

Ö∣∣∣∣∣∣∣ ∑
A∨lα≤|yk|<A∨(l+1)α

1
(1 + l)α+1

∣∣∣∣∣∣∣
pè 1

p
ê
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≤
∑
l∈N

1
(1 + l)α

E

Å∣∣∣∣X[A∨lα,A∨(l+1)α] − X[−A∨(l+1)α,−A∨lα]

∣∣∣∣pã 1
p

+
∑
l∈N

1
(1 + l)α+1 E

Å∣∣∣∣X[A∨lα,A∨(l+1)α] + X[−A∨(l+1)α,−A∨lα]

∣∣∣∣pã 1
p

�
∑
l∈N

1
(1 + l)α

E

Å∣∣∣∣X[0,A∨(l+1)α−A∨lα] −E

Å
X[0,A∨(l+1)α−A∨lα]

ã∣∣∣∣pã 1
p

+
∑
l∈N

1
(1 + l)α+1 E

Å∣∣∣∣X[0,A∨(l+1)α−A∨lα]

∣∣∣∣pã 1
p

The last step uses the symmetry and translation invariance of the sine kernel process.
Here, we can be more generous in our estimate and write:

1
(1 + l)α+1 E

Å∣∣∣∣X[0,A∨(l+1)α−A∨lα]

∣∣∣∣pã 1
p

≤ 1
(1 + l)α

E

Å∣∣∣∣X[0,A∨(l+1)α−A∨lα] −E

Å
X[0,A∨(l+1)α−A∨lα]

ã∣∣∣∣pã 1
p

+
1

(1 + l)α+1 E

Å
X[0,A∨(l+1)α−A∨lα]

ã
Hence:

E

Ö∣∣∣∣∣∣∣ ∑|yk|≥A

1
z− yk

∣∣∣∣∣∣∣
pè 1

p

�
∑
l∈N

1
(1 + l)α

E

Å∣∣∣∣X[0,A∨(l+1)α−A∨lα] −E

Å
X[0,A∨(l+1)α−A∨lα]

ã∣∣∣∣pã 1
p

+
1

(1 + l)α+1 E

Å
X[0,A∨(l+1)α−A∨lα]

ã
Recall that for B > 0:

E
Ä
X[0,B]

ä
= B

Hence:

∑
l∈N

1
(1 + l)α+1 E

Å
X[0,A∨(l+1)α−A∨lα]

ã
�

∑
l≥A

1
α−1

(1 + l)α−1

(1 + l)α+1 � A−
1
α

On the other hand, because X[0,B] − B have tails bounded by a Gaussian density:

E
(∣∣∣X[0,B] − B

∣∣∣p) =p
∫ ∞

0
tpP

(∣∣∣X[0,B] − B
∣∣∣ ≥ t

) dt
t

≤2p
∫ ∞

0
tp exp

(
−min

(
t2

4 Var(X[0,B])
,

t
2

))
dt
t

≤2p
∫ ∞

0
tp exp

(
− t2

4 Var(X[0,B])

)
dt
t
+ 2p

∫ ∞

0
tp exp

Ç
− t

2

å
dt
t

�
Å

Var(X[0,B])
1
2 p + 1

ã
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where the implicit constant depends on p. Therefore:

E
(∣∣∣X[0,B] − B

∣∣∣p) 1
p � Var(X[0,B])

1
2 + 1

In the end:

E

Ö∣∣∣∣∣∣∣ ∑|yk|≥A

1
z− yk

∣∣∣∣∣∣∣
pè 1

p

�A−
1
α +

∑
l≥A

1
α−1

1
(1 + l)α

E

Å∣∣∣∣X[0,(l+1)α∨A−lα∨A] −E

Å
X[0,(l+1)α∨A−lα∨A]

ã∣∣∣∣pã 1
p

≤A−
1
α +

∑
l≥A

1
α−1

1
(1 + l)α

Å
Var(X[0,(l+1)α∨A−lα∨A])

1
2 + 1

ã
The estimate:

Var(XI)� 1 + log |I|
allows to conclude the proof:

E

Ö∣∣∣∣∣∣∣ ∑|yk|≥A

1
z− yk

∣∣∣∣∣∣∣
pè 1

p

�A−
1
α +

∑
l≥A

1
α−1

1
(1 + l)α

(1 + log (1 + l))

�A−
1
α + A

1
α−1 log A,

when we take the optimal exponent α = 2.

Corollary 3.6.

lim
A→∞

E

Ö∣∣∣∣∣∣∣ ∑|yk|≥A

1
z− yk

∣∣∣∣∣∣∣
pè

= 0

and:

∀z /∈ R, ∀p ≥ 1,
ξ ′∞
ξ∞

(z) ∈ Lp

This corollary allow to compute the moments of ξ ′∞/ξ∞ by first restricting the infi-
nite sums to the yk’s between −A and A, and then by letting A → ∞. More precisely,
for all fixed z1, z2, . . . , zp /∈ R,

∀p ≥ 1,
ξ ′∞
ξ∞

(z1) . . .
ξ ′∞
ξ∞

(zp) ∈ Lp

and

E

Ç
ξ ′∞
ξ∞

(z1) . . .
ξ ′∞
ξ∞

(zp)

å
= lim

A→∞
E

Ö
p∏

j=1

Ö
iπ +

∑
|yk|<A

1
zj − yk

èè
.

The last quantity can be computed thanks to the sine kernel correlation functions of
order less or equal than p, on the segment [−A, A]. We will now perform the compu-
tation of the two first moments.
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Remark 3.7. Before proceeding we should mention that since we have been able to prove the
convergence of the rescaled logarithmic derivative of the characteristic polynomial to ξ ′∞

ξ∞
, we

should also be able to obtain an alternative expression for the moments using the formulas in
[CS08] for the moments of ratios of the logarithmic derivative of the characteristic polynomial.
Although the combinatorial expressions there provide closed formulas, we do not find them
easier to handle than the method we have described above. As we shall see it below, the formulas
for the second moments are already very involved.

First moment M1(z), z /∈ R:

M1(z) := E

Ç
ξ ′∞
ξ∞

(z)
å

= iπ + lim
A→∞

E

Ö ∑
|yk|≤A

1
z− yk

è
= iπ + lim

A→∞

∫
[−A,A]

dy
ρ1(y)
z− y

= iπ (1− sgn (=(z)))
= i2π1{=(z)<0}

Second moment M2(z, z′); z, z′ /∈ R: Let us first assume that z and z′ have not the
same real part, in particular z1 6= z2. One has:

M2(z, z′) := E

Ç
ξ ′∞
ξ∞

(z)
ξ ′∞
ξ∞

(z′)
å

= −π2 + π2 Äsgn (=(z)) + sgn
Ä
=(z′)

ää
+ E

Ñ∑
k,l

1
z− yk

1
z′ − yl

é
= −π2 + π2 Äsgn (=(z)) + sgn

Ä
=(z′)

ää
+ lim

A→∞
E

Ö ∑
|yk|,|yl |≤A

1
z− yk

1
z′ − yl

è
Moreover:

E

Ö ∑
|yk|,|yl |≤A

1
z− yk

1
z′ − yl

è
=
∫
[−A,A]

dy
(z− y) (z′ − y)

+
∫
[−A,A]2

dy1dy2
Ä
1− S(y1 − y2)

2
ä

(z− y1) (z′ − y2)
,

where

S(x) =
sin (πx)

πx
The first integral corresponds to the indices k = l while the second integral corre-
sponds to k 6= l. The former is handled by a partial fraction decomposition (recall that
z 6= z′):

lim
A→∞

∫
[−A,A]

dy
(z− y) (z′ − y)

= iπ
sgn (=(z))− sgn (=(z′))

z− z′
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The second integral can be written as I1 − I2, where

I1 =
∫
[−A,A]2

dy1dy2

(z− y1) (z′ − y2)
,

and

I2 =
∫
[−A,A]2

S(y1 − y2)
2

(z− y1) (z′ − y2)
dy1dy2.

One has immediately

lim
A→∞

I1 = lim
A→∞

Ç∫
[−A,A]

dy
z− y

åÇ∫
[−A,A]

dy
z′ − y

å
= −π2 sgn (=(z)) sgn

Ä
=(z′)

ä
.

For fixed z and z′, the integral I2 is dominated by∫
R2

1
(1 + |y1|)(1 + |y2|)[1 + (y1 − y2)2]

dy1dy2

≤ 1
2

∫
R2

1
1 + (y1 − y2)2

Ç
1

(1 + |y1|)2 +
1

(1 + |y2|)2

å
dy1dy2

=
∫

R

dy
1 + y2

∫
R

du
(1 + |u|)2 < ∞.

Hence,

lim
A→∞

I2 =
∫

R2

S(y1 − y2)
2

(z− y1) (z′ − y2)
dy1dy2,

where the last integral is absolutely convergent. The change of variable u = y2, v =
y1 − y2 gives

lim
A→∞

I2 =
∫

R
dvS(v)2

∫
R

du
(z− u− v)(z′ − u)

.

The integral in u can again be computed by a partial fraction decomposition, and one
gets ∫

R

du
(z− u− v)(z′ − u)

= iπ
sgn (=(z))− sgn (=(z′))

z− z′ − v
.

Note that since z and z′ are assumed to have different imaginary parts, the denomina-
tor does not vanish. One then has

lim
A→∞

I2 = iπ
î
sgn (=(z))− sgn

Ä
=(z′)

äó ∫
R

S(v)2

z− z′ − v
dv,

where∫
R

S(v)2

z− z′ − v
dv =

1
4π2

∫
R

2− e2iπv − e−2iπv

v2(z− z′ − v)
dv.

=
1

4π2

∫
R

1− e2iπv + 2iπv
v2(z− z′ − v)

dv +
1

4π2

∫
R

1− e−2iπv − 2iπv
v2(z− z′ − v)

dv,

In the two last integrals, the integrands are bounded near zero and dominated by 1/v2

at infinity, and then the integrals are absolutely convergent. Moreover, the integrands
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can be extended to meromorphic functions of v, with the unique pole v = z − z′.
Note that because of the addition of the terms ±2iπv, there is no pole at v = 0. In
the first integral, if we replace R by the contour given by the union of (−∞,−R],
[−R,−R + iR], [−R + iR, R + iR], [R + iR, R] and (R, ∞), the modified integral tends
to zero when R goes to infinity. One deduces that the initial integral is equal to 2iπ
times the sum of the residues of the integrand at the poles in the upper half plane:

1
4π2

∫
R

1− e2iπv + 2iπv
v2(z− z′ − v)

dv =
1− e2iπ(z−z′) + 2iπ(z− z′)

2iπ(z− z′)2 1=(z−z′)>0

Changing v in −v and exchanging z and z′, we deduce

1
4π2

∫
R

1− e−2iπv − 2iπv
v2(z− z′ − v)

dv = −1− e−2iπ(z−z′) − 2iπ(z− z′)
2iπ(z− z′)2 1=(z−z′)<0,

and by adding the equalities:

∫
R

S(v)2

z− z′ − v
dv =

sgn (=(z− z′))
(
1− e2iπ(z−z′) sgn(=(z−z′))

)
2iπ(z− z′)2 +

1
z− z′

.

By noting that

iπ
î
sgn (=(z))− sgn

Ä
=(z′)

äó
sgn

Ä
=(z− z′)

ä
= 2iπ1=(z)=(z′)<0,

we deduce

lim
A→∞

I2 =
1− e2iπ(z−z′) sgn(=(z−z′))

(z− z′)2 1=(z)=(z′)<0 + iπ
sgn (=(z))− sgn (=(z′))

z− z′
.

Hence,

lim
A→∞

(I1 − I2) = −π2 sgn (=(z)) sgn
Ä
=(z′)

ä
− 1− e2iπ(z−z′) sgn(=(z−z′))

(z− z′)2 1=(z)=(z′)<0

− iπ
sgn (=(z))− sgn (=(z′))

z− z′
,

and

lim
A→∞

E

Ö ∑
|yk|,|yl |≤A

1
z− yk

1
z′ − yl

è
= −π2 sgn (=(z)) sgn

Ä
=(z′)

ä
− 1− e2iπ(z−z′) sgn(=(z−z′))

(z− z′)2 1=(z)=(z′)<0.

Hence

M2(z, z′) = −4π21=(z)<0,=(z′)<0 −
1− e2iπ(z−z′) sgn(=(z−z′))

(z− z′)2 1=(z)=(z′)<0.

This formula has been proven for =(z) 6= =(z′). It remains true without this as-
sumption. Indeed, the L2 convergence of iπ +

∑
|yk|≤A

1
z−yk

towards ξ ′(z)/ξ(z) for
A → ∞ has been proven uniformly in compact sets away from the real line. Since the
joint moments of the former quantity are easily proven to be continuous, one deduces
that M2 is continuous with respect to z, z′ /∈ R.
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Second moment with a conjugate M̃2(z, z′); z, z′ /∈ R: Let us now define

M̃2(z, z′) := E

(
ξ ′∞
ξ∞

(z)
ξ ′∞
ξ∞

(z′)
)

Since
ξ ′∞
ξ∞

(z′) = −2iπ +
ξ ′∞
ξ∞

(z′),

one gets
M̃2(z, z′) = M2(z, z′)− 2iπM1(z),

and then

M̃2(z, z′) = 4π21=(z)<0,=(z′)<0 −
1− e2iπ(z−z′) sgn(=(z−z′))

(z− z′)2
1=(z)=(z′)>0.

In particular, we get the L2 norm:

E

Ñ∣∣∣∣∣ξ ′∞ξ∞
(z)
∣∣∣∣∣
2
é

= 4π21=(z)<0 +
1− e−4π|=(z)|

4=2(z)
.

As a consequence of the previous computation, if our conjecture is true and mo-
ments are also controlled then:

Conjecture 3.8.

lim
T→∞

1
log2 T

E

Ç
ζ ′

ζ

Ç
1
2
+ iUT +

a
log T

å
ζ ′

ζ

Ç
1
2
+ iUT +

a′

log T

åå
=1<(a)<0,<(a′)<0 −

1− e−(a′−a) sgn<(a′−a)

(a− a′)2 1<(a)<(a′)<0

lim
T→∞

1
log2 T

E

(
ζ ′

ζ

Ç
1
2
+ iUT +

a
log T

å
ζ ′

ζ

Ç
1
2
+ iUT +

a′

log T

å)
=1<(a)<0,<(a′)<0 +

1− e−(a+a′) sgn<(a+a′)Ä
a + a′

ä2 1<(a)<(a′)>0

Remark 3.9. In Lemma 3.3, we see that there is a correspondance between a and −2iπz in
this conjecture and the computations just above. This explains the signs of the terms involved
in the conjecture, and the fact the imaginary parts of z and z′ are replaced by the real parts of a
and a′.

For a = a′, one recovers the first statement of theorem 3 in [GGM01], which is
equivalent to the pair correlation conjecture under Riemann hypothesis. Higher mo-
ments formulas are also expected to be equivalent to the convergence of higher corre-
lation functions of ζ zeros towards the corresponding correlations for the sine-kernel
process.
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4 Mesoscopic fluctuations and blue noise

The function ξ ′∞
ξ∞
(z) − iπ studied in the pervious section was recently considered by

Aizenman and Warzel in [AW13]. They prove that for any z ∈ R, the value of this
function follows the Cauchy distribution: in fact, their result applies to more general
point processes than the sine kernel process. In the present paper, we deal with the
same function but away from the real line. In this section we shall view this function
in the framework of linear statistics and will study its fluctuations on a mesoscopic
level. It is may be worth noting here that ξ ′∞

ξ∞
(z) − iπ also has a spectral interpreta-

tion: informally, it is the trace of the resolvent of the (unbounded) random Hermitian
operator whose spectrum consists exactly of the points (yk)k∈Z that we constructed
in [MNN13]. This interpretation is informal since the series corresponding to the re-
solvant is not absolutely convergent.

For s ≥ 0, we consider the Sobolev space:

Hs :=
ß

f ∈ L2 (R, C)
∣∣∣ ∫

R

∣∣∣ f̂ (k)∣∣∣2 Ä1 + |k|2äs
dk
™

,

where the Fourier transform of f is normalized as follows:

f̂ (k) =
1√
2π

∫
R

f (x)e−ikxdx.

We then call blue noise a Gaussian family of centered variables indexed by H1/2, de-
noted (B( f )) f∈H1/2 , such that f 7→ B( f ) is linear, B( f ) is a.s. real if f is a real-valued
function, and

E[|B( f )|2] = 1
2π

∫
R
|k|| f̂ (k)|2dk.

The covariance structure of B is then:

E[B( f )B(g)] =
1

2π

∫
R
|k| f̂ (k)ĝ(−k)dk,

E[B( f )B(g)] =
1

2π

∫
R
|k| f̂ (k)ĝ(k)dk.

Similarly as for the Brownian motion, we can take the notation:∫
R

f (t)dBt := B( f ).

Now, for any function f ∈ L1(R, C) ∩ L2(R, C), we have

E


Ñ∑

k∈Z

| f (yk) |
é2
 =

∫
R
| f |2 +

∫
R2
(1− S2(x− y))| f (x)|| f (y)|dxdy

≤
∫

R
| f |2 +

Å∫
R
| f |
ã2

< ∞,
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and then
X f :=

∑
k∈Z

f (yk)−
∫

f

is well-defined as a square-integrable random variable. As we will see in Corollary 4.3,
X f can also be defined as a square-integrable random variable as soon as f ∈ H1/2,
even if f is not integrable.

In this section, we examine the behavior of
∑

k∈Z f
Äyk

L

ä
− L

∫
f as L → ∞ for suit-

able functions f :

Theorem 4.1. If (yk; k ∈ Z) is a sine kernel point process, there is a blue noise B such thatÅ
X f ( ·L)

ã
f∈H1/2

L→∞−→
Å∫

f (t)dBt

ã
f∈H1/2

,

the convergence holding in law for finite-dimensional marginals.

In Subsection 4.2, we analyse the asymptotic behavior of the Stieltjes transform of
the sine kernel process. To that endeavor, we apply the result to the complex-valued
functions fz (t) = 1

z−t .

4.1 The sine kernel from afar

We will need an intermediate proposition:

Proposition 4.2 (Adapted from Soshnikov [Sos00]). If f is a smooth, real-valued function
with compact support and if the p-th cumulant of X f is denoted Cp( f ), then we have:

C1( f ) = 0∣∣∣∣∣C2( f )− 1
2π

∫ ∣∣∣ f̂ (k)∣∣∣2 |k|dk
∣∣∣∣∣�

∫
|k|
∣∣∣ f̂ (k)∣∣∣2 1|k|≥πdk

∀p ≥ 3,
∣∣∣Cp( f )

∣∣∣�p

∫
k1+···+kp=0

1|k1|+···+|kp|>2π|k1|
∣∣∣ f̂ (k1) . . . f̂

Ä
kp
ä∣∣∣ dk

where in the previous equation, dk stands for the Lebesgue measure on the hyperplane
¶

k1 + · · ·+ kp = 0
©

.

Proof. The first equality is immediate. Now, since y(n)k = n
2π θ

(n)
k converges almost

surely to yk, X f is the almost sure limit of:

Xn, f :=
∑
k∈Z

f
Å n

2π
θ
(n)
k

ã
−
∫

f

=
n∑

k=1

Ñ
− 1

n

∫
f +

∑
l∈Z

f
Å n

2π
θ
(n)
k + nl

ãé
=

n∑
k=1

ψn

Å
θ
(n)
k

ã
,
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where ψn is the sequence of 2π-periodic functions with zero mean:

ψn (θ) = −
1
n

∫
f +

∑
l∈Z

f
Å n

2π
θ + nl

ã
If f̂ is the Fourier transform of f , the Fourier coefficientsÇ

ck(ψn) :=
1

2π

∫ 2π

0
ψn(θ)e−ikθdθ; k ∈ Z

å
of ψn are given by:

c0(ψn) = 0,

∀k ∈ Z∗, ck(ψn) =

√
2π

n
f̂
Ç

2πk
n

å
.

If Cp,n ( f ) is the p-th cumulant of Xn, f , thanks to the main combinatorial lemma and
lemma 1 in [Sos00], we have:

C1,n ( f ) = 0∣∣∣∣∣∣C2,n ( f )− 2π

n
∑
k∈Z

|k|
n

f̂
Ç

2πk
n

å
f̂
Ç
−2πk

n

å∣∣∣∣∣∣� 1
n

∑
|k|> 1

2 n

|k|
n

f̂
Ç

2πk
n

å
f̂
Ç
−2πk

n

å
∀p ≥ 3,

∣∣∣Cp,n ( fn)
∣∣∣�p

1
np−1

∑
k1+···+kp=0
|k1|+···+|kp|>n

|k1|
n

∣∣∣∣∣ f̂
Ç

2πk1

n

å
. . . f̂

Ç
2πkp

n

å∣∣∣∣∣
As f̂ decays at infinity faster than any power, we recognize three converging Riemann
sums. The first one is:

2π

n
∑
k∈Z

|k|
n

f̂
Ç

2πk
n

å
f̂
Ç
−2πk

n

å
n→∞−→ 2π

∫
|k|
∣∣∣ f̂ (2πk)

∣∣∣2 dk =
1

2π

∫
|k|
∣∣∣ f̂ (k)∣∣∣2 dk.

The others appear as error terms and are Riemann sums converging to integrals on the
hyperplane

¶
k1 + · · ·+ kp = 0

©
⊂ Rp.

∀p ≥ 2,
1

np−1

∑
k1+···+kp=0
|k1|+···+|kp|>n

|k1|
n

∣∣∣∣∣ f̂
Ç

2πk1

n

å
. . . f̂

Ç
2πkp

n

å∣∣∣∣∣
n→∞−→

∫
k1+···+kp=0

1|k1|+···+|kp|>1|k1|
∣∣∣ f̂ (2πk1) . . . f̂

Ä
2πkp

ä∣∣∣ dk.

Therefore, for every p ≥ 1, the p-th cumulant of Xn, f is bounded independently of
n and the sequence |Xn, f |p is uniformly integrable. Thus, the convergence of Xn, f to
X f is not only almost sure but also in every Lp (Ω), Ω being the underlying probability
space.

Now since
∀p ≥ 1, Cp( fn)

n→∞−→ Cp( f ),
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we have ∣∣∣∣∣C2( f )− 1
2π

∫ ∣∣∣ f̂ (k)∣∣∣2 |k|dk
∣∣∣∣∣�

∫
|k| | f (2πk)|2 1|k|≥ 1

2
dk

∀p ≥ 3,
∣∣∣Cp( f )

∣∣∣�p

∫
k1+···+kp=0

1|k1|+···+|kp|>1|k1|
∣∣∣ f̂ (2πk1) . . . f̂

Ä
2πkp

ä∣∣∣ dk

After an obvious change of variables, we recover the claimed estimates.

Corollary 4.3. The map
f 7→ X f

from L1(R, C)∩ H1/2 to L2 (Ω) admits a linear extension to H1/2, which satisfies the follow-
ing property of continuity:

E

Å∣∣∣X f

∣∣∣2ã 1
2 � ‖ f ‖

H
1
2
,

uniformly, for all f ∈ H1/2. This extension is unique up to almost sure equality.

Proof. The estimate on the second cumulant, given by Proposition 4.2, implies

E

Å∣∣∣X f

∣∣∣2ã 1
2 � ‖ f ‖

H
1
2

for every smooth, real-valued function f with compact support. By linearity, this esi-
mate remains true without the assumption that f is real-valued. We deduce the exis-
tence of a family (Yf ) f∈H1/2 of random variables such that Yf = X f a.s. if f is smooth
with compact support, and

E

Å∣∣∣Yf

∣∣∣2ã 1
2 � ‖ f ‖

H
1
2

This family is unique up to almost sure equality. Then, we are done if we show that
X f = Yf almost surely as soon as f ∈ L1 ∩ H1/2. Now, the map f 7→ X f − Yf from
f ∈ L1 ∩ H1/2 to L2(Ω) is a.s. equal to zero on C∞

c (R, C). Moreover, we have seen
above, by using the two first correlation functions of the sine kernel process, that

E

Å∣∣∣X f

∣∣∣2ã 1
2 ≤ || f ||L1 + || f ||L2

which implies:

E

Å∣∣∣X f −Yf

∣∣∣2ã 1
2 � || f ||L1 + || f ||L2 + || f ||H1/2 � || f ||L1 + || f ||H1/2 .

Hence, the map f 7→ X f − Yf from f ∈ L1 ∩ H1/2 is continuous, and since it vanishes
on C∞

c , which is dense in L1 ∩ H1/2, it vanishes everywhere.

Proof of Theorem 4.1. It is sufficient to prove convergence in law of the one-dimensional
marginals, for real-valued functions f . Indeed, if we have this convergence, if f1, . . . , fm
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are real-valued functions in H1/2, and if λ1, . . . , λm ∈ R, then we have the convergence
in law

X f ( ·L)
=

m∑
j=1

λjX f j( ·L)
L→∞−→ B( f ) =

m∑
j=1

λjB( f j),

for
f = λ1 f1 + λ2 f2 + · · ·+ λm fm.

Applying the bounded, continuous function x 7→ eix gives the convergence of the
Fourier transform of (X f j( ·L)

)1≤j≤m towards the Fourier transform of (B( f j))1≤j≤m,
and then the convergence of the finite-dimensional marginals claimed in Theorem 4.1,
for real-valued functions. The case of complex-valued functions is then deduced by
linearity.

If remains to prove that for all f ∈ H1/2, real-valued,

X f ( ·L)
L→∞−→ B( f ).

Let us first assume that f is smooth function with compact support. If C(L)
p ( f ) is the

p-th cumulant of X f ( ·L)
, then by rescaling the space variable:

∀k ∈ R,
◊�
f
Å ·

L

ã
(k) = L f̂ (Lk)

and
C(L)

1 ( f ) = 0∣∣∣∣∣C(L)
2 ( f )− 1

2π

∫ ∣∣∣ f̂ (k)∣∣∣2 |k|dk
∣∣∣∣∣�

∫
|k|
∣∣∣ f̂ (k)∣∣∣2 1{|k|≥Lπ}dk

∀p ≥ 3,
∣∣∣∣C(L)

p ( f )
∣∣∣∣�p

∫
k1+···+kp=0

1{|k1|+···+|kp|>2πL}|k1|
∣∣∣ f̂ (k1) . . . f̂

Ä
kp
ä∣∣∣ dk

Therefore, as L → ∞, X f ( ·L)
converges in law to a centered Gaussian with variance

1
2π

∫
|k| | f (k)|2 dk, i.e. to B( f ).

Now, if f is only supposed to be in H
1
2 , let us consider a sequence of smooth com-

pactly supported functions ( fn)n∈N such that:

‖ f − fn‖
H

1
2

n→∞−→ 0

We will be done after proving that for any t in a compact set:

E

Ç
e

itX
f( ·L)

å
n→∞−→ exp

(
− t2

4π

∫
|k|| f̂ (k)|2dk

)

We have because of the triangular inequality, for fixed n:∣∣∣∣∣E
Ç

e
itX

f( ·L)
å
− exp

(
− t2

4π

∫
|k|| f̂ (k)|2dk

)∣∣∣∣∣
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≤
∣∣∣∣∣E
Ç

e
itX

f( ·L)
å
−E

Ç
e

itX
fn( ·L)

å∣∣∣∣∣
+

∣∣∣∣∣E
Ç

e
itX

fn( ·L)
å
− exp

(
− t2

4π

∫
|k|| f̂n(k)|2dk

)∣∣∣∣∣
+

∣∣∣∣∣exp
(
− t2

4π

∫
|k|| f̂ (k)|2dk

)
− exp

(
− t2

4π

∫
|k|| f̂n(k)|2dk

)∣∣∣∣∣
The third term is aO

Å
t2‖ f − fn‖2

H
1
2

ã
. The second disappears when we take the lim supL→∞.

As for the first term, we have for any ε > 0:∣∣∣∣∣E
Ç

e
itX

f( ·L)
å
−E

Ç
e

itX
fn( ·L)

å∣∣∣∣∣
≤E

Ç∣∣∣∣∣eitX
f( ·L)

−itX
fn( ·L) − 1

∣∣∣∣∣
å

≤2P

Å∣∣∣∣X f ( ·L)
− X fn( ·L)

∣∣∣∣ ≥ ε
ã
+ ε|t|

≤2
E

Ç∣∣∣∣X f ( ·L)
− X fn( ·L)

∣∣∣∣2
å

ε2 + ε|t|

By linearity and the second cumulant estimate:

E

Ç∣∣∣∣X f ( ·L)
− X fn( ·L)

∣∣∣∣2
å 1

2
= E

Ç∣∣∣∣X( f− fn)( ·L)

∣∣∣∣2
å 1

2
� ‖ f − fn‖

H
1
2

Hence for any fixed n and ε > 0:

lim sup
L→∞

∣∣∣∣∣E
Ç

e
itX

f( ·L)
å
− exp

(
− t2

2

∫
|k|| f̂ (k)|2dk

)∣∣∣∣∣
�‖ f − fn‖2

H
1
2

Ç
1
ε2 + t2

å
+ ε|t|

Taking n→ ∞, then ε→ 0 concludes the proof.

4.2 Application to the Stieltjes transform of the sine kernel

For z ∈ C\R, fz : t 7→ 1/(z− t) is in H1/2. Indeed, one can check (by using the inverse
Fourier transform for example) that

f̂z(k) = −i
√

2π sgn=(z)e−izk1k=(z)<0,

and then f̂z decays exponentially at infinity. Moreover, X fz can be related to the loga-
rithmic derivative of ξ∞:

Proposition 4.4. For all z /∈ R, we have almost surely,

X fz =
ξ ′∞(z)
ξ∞(z)

− 2iπ1=z<0 = iπ sgn=z +
1

z− y0
+

∞∑
k=1

Ç
1

z− yk
+

1
z− y−k

å
.
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Proof. Let ϕ be a smooth function from R to [0, 1], nonincreasing on R+, equal to 1 on
[−1, 1] and to 0 on R\[−2, 2]. If for A > 0, f (A)

z (t) = fz(t)ϕ(t/A), we have

| f (A)
z (t)− fz(t)| ≤ | fz(t)|1|t|≥A

and

|( f (A)
z )′(t)− f ′z(t)| =

∣∣∣∣∣ f ′z(t)ϕ(t/A) +
1
A

ϕ′(t/A) fz(t)− f ′z(t)
∣∣∣∣∣� | f ′z(t)|1|t|≥A +

| fz(t)|
A

.

For z fixed, | fz(t)| is dominated by 1/(1 + |t|), | f ′z(t)| is dominated by 1/(1 + |t|)2,
and then

| f (A)
z (t)− fz(t)|2 + |( f (A)

z )′(t)− f ′z(t)|2 �
1|t|≥A

(1 + |t|)2 +
1

A2(1 + |t|)2 .

We deduce that f (A)
z converges to fz in H1, and a fortiori in H1/2. Hence, in L2(Ω),

X fz = lim
A→∞

X
f (A)
z

= lim
A→∞

Ñ∑
k∈Z

ϕ(yk/A)

z− yk
−
∫

R

ϕ(y/A)

z− y
dy

é
= lim

A→∞

∫ 2

1
(−ϕ′(u))

Ñ∑
k∈Z

1|yk|≤Au

z− yk
−
∫ Au

−Au

dy
z− y

é
du

From Proposition 3.5, one easily deduces that

∑
k∈Z

1|yk|≤B

z− yk
−
∫ B

−B

dy
z− y

−→
B→∞

ξ ′∞(z)
ξ∞(z)

− 2iπ1=z<0

in Lp(Ω) for all p ≥ 1, and in particular in L2(Ω). Now, since −ϕ′ is nonnegative in
[1, 2] and has integral 1, one has∣∣∣∣∣∣

∣∣∣∣∣∣
∫ 2

1
(−ϕ′(u))

Ñ∑
k∈Z

1|yk|≤Au

z− yk
−
∫ Au

−Au

dy
z− y

é
du− ξ ′∞(z)

ξ∞(z)
+ 2iπ1=z<0

∣∣∣∣∣∣
∣∣∣∣∣∣
L2(Ω)

≤
∫ 2

1
(−ϕ′(u))du

∣∣∣∣∣∣
∣∣∣∣∣∣∑k∈Z

1|yk|≤Au

z− yk
−
∫ Au

−Au

dy
z− y

− ξ ′∞(z)
ξ∞(z)

+ 2iπ1=z<0

∣∣∣∣∣∣
∣∣∣∣∣∣
L2(Ω)

≤ sup
B∈[A,2A]

∣∣∣∣∣∣
∣∣∣∣∣∣∑k∈Z

1|yk|≤B

z− yk
−
∫ B

−B

dy
z− y

− ξ ′∞(z)
ξ∞(z)

+ 2iπ1=z<0

∣∣∣∣∣∣
∣∣∣∣∣∣
L2(Ω)

,

which tends to zero when A goes to infinity. Hence, in L2(Ω),

X fz = lim
A→∞

∫ 2

1
(−ϕ′(u))

Ñ∑
k∈Z

1|yk|≤Au

z− yk
−
∫ Au

−Au

dy
z− y

é
du =

ξ ′∞(z)
ξ∞(z)

− 2iπ1=z<0.
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A consequence of the previous proposition is the following result:

Proposition 4.5. For z ∈ C\R, let

F(z) := X fz =
ξ ′∞(z)
ξ∞(z)

− 2iπ1=z<0.

Then, one has the convergence in law:

(LF(Lz))z∈C\R −→L→∞
(G(z))z∈C\R,

where G(z) = B( fz) for all z ∈ C\R. The centered gaussian process (G(z))z∈C\R has the
covariance structure given, for all z1, z2 /∈ R, by

E[G(z1)G(z2)] = −
1=(z1)=(z2)<0

(z2 − z1)2 ,

E[G(z1)G(z2)] = −
1=(z1)=(z2)>0

(z2 − z1)2 ,

and in particular

E[|G(z1)|2] =
1

4=2(z1)
.

Proof. We have, for L > 0,

fz(t/L) =
1

z− (t/L)
=

L
Lz− t

= L fLz(t),

and then
X fz(·/L) = LX fLz = LF(Lz).

The convergence in law given in this proposition is then a consequence of Theorem
4.1. It remains to compute the covariance structure. For z1, z2 ∈ C\R,

E[B( fz1)B( fz2)]

=
1

2π

∫
R
|k|(−i

√
2π sgn=(z1)e−iz1k1k=(z1)<0)(−i

√
2π sgn=(z2)eiz2k1−k=(z2)<0)dk.

If =(z1) and =(z2) have the same sign, the product of the indicator functions vanishes
for all k ∈ R, so

E[B( fz1)B( fz2)] = 0.

If =(z1) and =(z2) have not the same sign, we get

E[B( fz1)B( fz2)] =
∫

R
|k|eik(z2−z1)1k=(z2)>0.

By doing the change of variable k′ = k sgn=(z2), we get

E[B( fz1)B( fz2)] =
∫ ∞

0
keik(z2−z1) sgn=(z2)dk
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Now, for all y > 0, ∫ ∞

0
ke−ykdk =

∫ ∞

0
(u/y)e−ud(u/y) = 1/y2,

and by analytic continuation, this formula is true for all y with strictly positive real
part. Applying this to y = −i(z2 − z1) sgn=(z2), we have

E[B( fz1)B( fz2)] = −1/(z2 − z1)
2

for =(z1)=(z2) < 0, and then in any case,

E[B( fz1)B( fz2)] = −
1=(z1)=(z2)<0

(z2 − z1)2 .

Since the blue noise here is real-valued for real functions, B( fz2) = B( fz2), and then

E[B( fz1)B( fz2)] = −
1=(z1)=(z2)>0

(z2 − z1)2 .

Remark 4.6. The covariance structure of F has been computed above in this paper. We have

E[F(z1)F(z2)] = −
1− e2iπ(z1−z2) sgn=(z1−z2)

(z1 − z2)2 1=(z1)=(z2)>0,

and then

E[(LF(Lz1))(LF(Lz2))] =−→
L→∞

−
1=(z1)=(z2)<0

(z2 − z1)2 = E[G(z1)G(z2)].

Similarly,
E[(LF(Lz1))(LF(Lz2))] −→

L→∞
E[G(z1)G(z2)].

This convergence is naturally expected once the previous proposition is proven.

The stochastic process z 7→ X fz admits the version

z 7→ F(z) =
ξ ′∞(z)
ξ∞(z)

− 2iπ1=z<0,

which is holomorphic on C\R. One can ask if the situation is similar for G. The answer
is positive:

Proposition 4.7. The random function G admits a version which is holomorphic on C\R.
Moreover, z 7→ LF(Lz) converges in law to an holomorphic version of G when L goes to
infinity, in the sense of the uniform convergence on compact sets of C\R.
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Proof. We first compute the L2 norm of G(z1)− G(z2) when z1, z2 /∈ R:

E[|G(z1)− G(z2)|2] = E[|G(z1)|2] + E[|G(z2)|2]−E[G(z1)G(z2)]−E[G(z2)G(z1)]

= − 1
(z1 − z1)2 −

1
(z2 − z2)2 + 1=(z1)=(z2)>0

Ç
1

(z1 − z2)2 +
1

(z2 − z1)2

å
.

Let us now assume that z1 and z2 are in a given compact set K of C\R. Let us denote:

cK := inf{|=(z)|, z ∈ K} > 0.

If z1, z2 ∈ K have imaginary parts of different signs, necessarily |z1 − z2| ≥ 2cK and
from the computations above,

E[|G(z1)− G(z2)|2] =
1

4=2(z1)
+

1
4=2(z2)

≤ 1
2c2

K
.

One deduces
E[|G(z1)− G(z2)|2] ≤

1
8c4

K
|z1 − z2|2.

If z1, z2 ∈ K have imaginary parts with the same sign,

E[|G(z1)− G(z2)|2] = A(z1, z1) + A(z2, z2)− A(z1, z2)− A(z2, z1)),

where
A(u, v) := − 1

(u− v)2 .

The function A of two variables is holomorphic in the open set of (a, b) ∈ C2 such that
=(a)=(z1) > 0 and =(b)=(z1) < 0. Since the set [z1, z2]× [z1, z2] is included in this
domain (recall that =(z1) and =(z2) have the same sign), we have

A(z1, z1) + A(z2, z2)− A(z1, z2)− A(z2, z1)) =
∫ z2

z1

∫ z2

z1
A′′1,2(u, v)dudv,

where A′′1,2 is the second derivative of A with respect to the two variables. Hence,

E[|G(z1)− G(z2)|2] = 6
∫ z2

z1

∫ z2

z1

dudv
(u− v)4 .

Now, for u ∈ [z1, z2], v ∈ [z1, z2], we have |=(u) − =(v)| ≥ 2cK, since z1, z2 ∈ K.
Hence, |u− v|4 ≥ 16c4

K, and

E[|G(z1)− G(z2)|2] ≤
3

8c4
K

∫ z2

z1

∫ z2

z1
|du||dv|.

Hence, similarly as in the case =(z1)=(z2) < 0, we have

E[|G(z1)− G(z2)|2] ≤
3

8c4
K
|z1 − z2|2.
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By Kolmogorov’s criterion, G admits a continuous version on C\R. We now as-
sume that G itself is continuous.

Let Γ : [0, 1] 7→ C be a closed, piecewise smooth contour in C\R. Since G is contin-
uous, the integral of G along Γ is well-defined, and one has∣∣∣∣∫

Γ
G(z)dz

∣∣∣∣2 =
∫ 1

0

∫ 1

0
G(Γ(t))G(Γ(u))Γ′(t)Γ′(u)dtdu.

If we denote Γ the contour given by Γ(t) = Γ(t), we can write∣∣∣∣∫
Γ

G(z)dz
∣∣∣∣2 =

∫ 1

0

∫ 1

0
G(Γ(t))‹G(Γ(u))Γ′(t)Γ′(u)dtdu,

where ‹G is the function from C\R, given by‹G(z) = G(z).

Hence, ∣∣∣∣∫
Γ

G(z)dz
∣∣∣∣2 =

∫
Γ

∫
Γ

G(z1)
‹G(z2)dz1dz2.

Now, for z1 ∈ Γ, z2 ∈ Γ

E[|G(z1)||‹G(z2)|] ≤
Ä
E[|G(z1)|2]

ä1/2 Ä
E[|G(z2)|2]

ä1/2
=

1
4|=(z1)||=(z2)|

,

which implies ∫
Γ

∫
Γ

E[|G(z1)
‹G(z2)|]|dz1| |dz2| ≤

(`(Γ))2

4c2
Γ

< ∞,

where `(Γ) is the length of Γ and cΓ the infimum of |=(z)| for z ∈ Γ. This bound allows
to write

E

ñ∣∣∣∣∫
Γ

G(z)dz
∣∣∣∣2
ô
=
∫

Γ

∫
Γ

E[G(z1)
‹G(z2)]dz1dz2.

Now, for z1 ∈ Γ and z2 ∈ Γ, =(z1) and =(z2) have the same sign, which implies

E[G(z1)
‹G(z2)] = E[G(z1)G(z2)] = −

1
(z2 − z1)2 ,

and then

E

ñ∣∣∣∣∫
Γ

G(z)dz
∣∣∣∣2
ô
= −

∫
Γ

∫
Γ

dz1dz2

(z2 − z1)2 ,

which is equal to zero, since the function (z1, z2) 7→ 1/(z2 − z1)
2 is holomorphic and

the contours Γ and Γ are closed. Hence, for all closed, piecewise smooth contours Γ on
C\R, one has almost surely ∫

Γ
G(z)dz = 0.

One deduces that almost surely, this equality holds simultaneously for all polygonal
closed contours whose vertices have rational real and imaginary parts. Then, by con-
tinity of G, one can remove the condition of rationality, and deduces that almost surely,
G is holomorphic on C\R.
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We know z 7→ LF(Lz) converges in law to G in the sense of the finite-dimensional
marginals: it remains to prove that this convergence occurs in the space of continu-
ous functions, i.e. that the family of laws of (LF(Lz))z∈C is tight in this space. For a
compact set K of C\R, and for z1, z2 ∈ K, one has

E[|LF(Lz1)− LF(Lz2)|2] =
1− e−4Lπ|=(z1)|

4=2(z1)
+

1− e−4Lπ|=(z2)|

4=2(z2)

if =(z1)=(z2) < 0, and

E[|LF(Lz1)− LF(Lz2)|2] = AL(z1, z1) + AL(z2, z2)− AL(z1, z2)− AL(z2, z1)

=
∫ z2

z1

∫ z2

z1
(A′′L)1,2(u, v)dudv

if =(z1)=(z2) > 0, for

AL(u, v) = −1− e2iπL(u−v) sgn=(u−v)

(u− v)2 .

In the first case, we get

E[|LF(Lz1)− LF(Lz2)|2] ≤
|z1 − z2|2

8c4
K

and in the second case,

E[|LF(Lz1)− LF(Lz2)|2] ≤ |z2 − z1|2 sup
|=(u)|,|=(v)|>cK

|(A′′L)1,2(u, v)|.

Note that AL is holomorphic in {(u, v) ∈ C2,=(u)=(v) < 0}, since sgn=(u − v) is
locally constant on this set. Now,

(A′L)1(u, v) =
2(1− e2iπL(u−v) sgn=(u−v))

(u− v)3 +
2iπL sgn=(u− v)e2iπL(u−v) sgn=(u−v)

(u− v)2 ,

(A′′L)1,2(u, v) =
6(1− e2iπL(u−v) sgn=(u−v))

(u− v)4 +
8iπL sgn=(u− v)e2iπL(u−v) sgn=(u−v)

(u− v)3

+
4π2L2e2iπL(u−v) sgn=(u−v)

(u− v)2 ,

|(A′′L)1,2(u, v)| ≤ 6(1 + e−2πL|=(u−v)|)

|u− v|4 +
8πLe−2πL|=(u−v)|

|u− v|3 +
4π2L2e−2πL|=(u−v)|

|u− v|2 .

≤ 12
|=(u− v)|4 +

8πLe−2πL|=(u−v)|

|=(u− v)|3 +
4π2L2e−2πL|=(u−v)|

|=(u− v)|2

≤ 4π2

|=(u− v)|4
(
1 + (L|=(u− v)|+ L2(=(u− v))2)e−2πL|=(u−v)|

)
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≤ π2

4c4
K

(
1 + sup

x≥0
(x + x2)e−2πx

)
.

Hence,
sup
L>0

E[|LF(Lz1)− LF(Lz2)|2] ≤ c̃K|z2 − z1|2,

where c̃K > 0 depends only on K. By Kolmogorov’s criterion, the laws of (LF(Lz))z∈C\R
form a tight family for the uniform convergence on compact sets of C\R.
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