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Abstract. In this paper we give a method to geometrically modify an open set such that the

first k eigenvalues of the Dirichlet Laplacian and its perimeter are not increasing, its measure

remains constant, and both perimeter and diameter decrease below a certain threshold. The

key point of the analysis relies on the properties of the shape subsolutions for the torsion energy.
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1. Introduction and statement of the main results

The results of this paper are motivated by spectral shape optimization problems for the

eigenvalues of the Dirichlet Laplacian, e.g.

min
{
λk(Ω), Ω ⊂ RN , |Ω| = 1

}
, (1.1)

where λk denotes the kth eigenvalue of the Dirichlet Laplacian and | · | the N dimensional

Lebesgue measure (N ≥ 2). In order to prove existence of an optimal set Ω for problem (1.1),

two different methods were proposed recently. On the one hand, in [17] it is proved a surgery

result asserting that one can suitably modify an open set such that the first k eigenvalues of the

Dirichlet Laplacian are not increasing, its measure remains constant and its diameter decrease

below a certain threshold. This result together to the Buttazzo-Dal Maso existence theorem [11]

(which has a local character) gives a proof of global existence of solutions. By a different method,

based on the so called shape subsolutions (see the definition in Section 2), in [7] is proved the

existence of solutions and moreover that all minimizers have finite diameter and finite perimeter.

Recently, Van den Berg has studied in [4] a minimum problem with both a measure and a

perimeter constraint:

min
{
λk(Ω), Ω ⊂ RN , |Ω| ≤ 1, Per(Ω) ≤ C

}
. (1.2)

An existence result for this problem cannot be deduced from the results [7, 17]. The surgery

method of [17] can hardly control the perimeter since the procedure generates new pieces of

boundary which may have a large surface area. As well, in the presence of two simultaneous

constraints, the notion of shape subsolution can not be used in a direct manner due to the lack

of suitable Lagrange multipliers which can take into account both geometric constraints. The

results of this paper are also intended to provide a tool allowing to prove existence of a solution

for (1.2).

In this paper we give a result which follows the main objectives of [17], but with the new

requirement on the control of the perimeter. For this purpose, the “surgery” is done in a different
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manner, using some of the key ideas of the shape subsolutions. Roughly speaking, we look at

the local behavior of the torsion function and prove that if this function is small enough in some

region, then one can cut out a piece of the domain controlling simultaneously the variation of

the low part of the spectrum, of the measure and of the perimeter.

Throughout the paper, by Ω̃ we denote an open set of finite measure. For simplicity, and

without restricting the generality, we shall assume that its measure is equal to 1. Here is our

main result which, for clarity, is stated in a simplified way:

Theorem 1.1. For every K > 0, there exists D,C > 0 depending only on K and the dimension

N , such that for every open set Ω̃ ⊂ RN with |Ω̃| = 1 there exists an open set Ω satisfying

(1) |Ω| = 1, diam (Ω) ≤ D and Per(Ω) ≤ min{Per(Ω̃), C},
(2) if λk(Ω̃) ≤ K, then λk(Ω) ≤ λk(Ω̃).

The set Ω is essentially obtained by removing some parts of Ω̃ and rescaling it to satisfy the

measure constraint. In case the measure of Ω̃ is not equal to 1, the constants D and C above

depend also on |Ω̃|, following the rescaling rules of the eigenvalues, measure and perimeter

We shall split the main result stated above in two distinct theorems, Thereoms 3.3 and 4.1.

The construction of Ω differs depending on which kind of control of the perimeter is desired. If

the perimeter of Ω̃ is infinite (or larger than C), it is convenient to use an optimization argument

related to the shape subsolutions to directly construct the set Ω satisfying all the requirements

above on eigenvalues, measure and diameter, but with a perimeter less than C (Theorem 3.3).

If the perimeter of Ω̃ is finite (for example smaller than C), we produce a different argument,

by cutting in a suitable way the set Ω̃ with hyperplanes, and removing some strips, decreasing

in this way the perimeter (Thereom 4.1) and of course satisfying all the requirements above

on eigenvalues, measure and diameter. In this last case, the control of the perimeter is done

through a De Giorgi type argument. We point out that the assertions of the two theorems are

slightly stronger than the unified formulation stated in Theorem 1.1.

We note that the results of this paper hold true in exactly the same way if instead of

“open” sets one works with “quasi-open” or “measurable” sets (see the precise definitions of the

spectrum for this weaker settings in [10]). In general, if Ω̃ is quasi-open or measurable, then the

constructed set Ω is of the same type. In some situations in which the diameter of Ω̃ is large, Ω

could be chosen open and smooth.

2. The spectrum of the Dirichlet Laplacian and the torsion function

Let Ω ⊂ RN be an open set of finite measure. Denoting by H1
0 (Ω) the usual Sobolev space,

the eigenvalues of the Dirichlet Laplacian on Ω are defined by

λk(Ω) := min
Sk

max
u∈Sk\{0}

∫
Ω |∇u|

2 dx∫
Ω u

2 dx
, (2.1)

where the minimum ranges over all k-dimensional subspaces Sk of H1
0 (Ω).
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The torsion function of Ω is the function denoted wΩ which minimizes the torsion energy

E(Ω) := min
u∈H1

0 (Ω)

1

2

∫
RN
|Du|2dx−

∫
RN

udx,

and satisfies in a weak sense

−∆wΩ = 1 in Ω, wΩ ∈ H1
0 (Ω).

Note that the torsion energy is negative if Ω 6= ∅ and

E(Ω) = −1

2

∫
RN

wΩdx < 0.

We recall (see for instance [11]) that if one extends the torsion function by zero on RN \Ω, then

it satisfies −∆wΩ ≤ 1 in the sense of distributions in RN .

A fundamental property of the torsion function is the Saint Venant inequality, which states

that among all (open) sets of equal volume, the ball maximizes the L1-norm of the torsion

function. This leads to the following inequality∫
Ω
wΩdx ≤ |Ω|

N+2
N

ω
−2/N
N

N(N + 2)
, (2.2)

where ωN is the volume of the ball of radius 1 in RN . A similar inequality between the L∞

norms was proved by Talenti in [18] and leads to :

‖wΩ‖L∞ ≤
( |Ω|
ωN

) 2
N 1

2N
. (2.3)

We recall the following bound on the ratio between eigenvalues of the Dirichlet Laplacian,

which can be found in [2]. For all k ∈ N there exists a constant Mk, depending only on k and

the dimension N , such that

1 ≤ λk(Ω)

λ1(Ω)
≤Mk. (2.4)

Another fundamental inequality, proved in [3] (see also [5]), relates the L∞ norm of the torsion

function with the first eigenvalue and reads

1

λ1(Ω)
≤ ‖wΩ‖∞ ≤

4 + 3N log 2

λ1(Ω)
. (2.5)

We also recall the following inequality due to Berezin, Li and Yau (see [16]), which asserts that

for some constant CN depending only on the dimensions of the space, we have

∀k ∈ N λk(Ω) ≥ CN
( k

|Ω|

) 2
N
.

The way we shall use this inequality is the following: if one fixes K > 0, then the number of

eigenvalues of Ω below K, is at most of
(
K
CN

)N
2 |Ω|.

The γ-distance between two open sets with finite measure Ω1,Ω2 is defined by:

dγ(Ω1,Ω2) :=

∫
RN
|wΩ1 − wΩ2 |dx.
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For sets satisfying Ω1 ⊆ Ω2, the following inequality was proved in [7] : for every k ∈ N∣∣∣ 1

λk(Ω1)
− 1

λk(Ω2)

∣∣∣ ≤ 2k2e1/4πλk(Ω2)N/2dγ(Ω1,Ω2), (2.6)

and we notice that there is a strong relation between the γ-distance and the torsion energy:

dγ(Ω1,Ω2) = 2(E(Ω1)− E(Ω2)).

Let c > 0. It is said that Ω̃ ⊂ RN is a shape subsolution for the energy if for all Ω ⊂ Ω̃

E(Ω) + c|Ω| ≥ E(Ω̃) + c|Ω̃|.

It is proved in [7] that, if Ω̃ is a shape subsolution for the energy, then it is bounded (with

controlled diameter) and has finite perimeter.

We conclude this Section with a result relating a pointwise value of the torsion function to

its integral on some neighborhood.

Lemma 2.1. Let Ω ⊂ RN be an open set and w = wΩ be its torsion function. For every θ > 0,

there exists δ0 > 0 depending only on N, θ such that if w(x) ≥ θ for some x ∈ RN , then∫
Bδ(x)

wdx ≥ θωN
2
δN , ∀δ ∈ (0, δ0).

Proof. Since for every x0 ∈ RN the function x 7→ w(x) + |x−x0|2
2N is subharmonic in RN , we have

that, for all δ > 0

θ ≤ w(x0) ≤ 1

|Bδ|

∫
Bδ(x0)

(w(x) +
|x− x0|2

2N
) dx =

1

|Bδ|

∫
Bδ(x0)

wdx+
δ2

2(N + 2)
.

For some δ0 sufficiently small (e.g equal to
√
θ(N + 2)), we have ∀ 0 < δ ≤ δ0∫

Bδ(x)
wdx ≥ θωN

2
δN .

�

3. Control of the spectrum by subsolutions

Before stating our first result, we outline the main ideas. Let Ω̃ ⊂ RN be a given open set

of finite measure. Assume that for some set Ω ⊂ Ω̃ and for some constant c > 0 we have

E(Ω) + c|Ω| ≤ E(Ω̃) + c|Ω̃|. (3.1)

Then, we shall observe that a certain number of low eigenvalues of the rescaled set
(
|Ω̃|
|Ω|

) 1
N

Ω are

not larger than the corresponding eigenvalues on Ω̃, provided that c is small enough. Smaller is

the constant c, more eigenvalues satisfy this property. Indeed, from (2.6), we get

λk(Ω)− λk(Ω̃) ≤ 4k2e1/4πλk(Ω)λk(Ω̃)(N+2)/2[E(Ω)− E(Ω̃)]. (3.2)

Setting KΩ,Ω̃ = 4k2e1/4πλk(Ω)λk(Ω̃)(N+2)/2, using inequality (3.1) we get

λk(Ω)− λk(Ω̃) ≤ cKΩ,Ω̃(|Ω̃| − |Ω|) ≤ cKΩ,Ω̃|Ω̃|
N−2
N
N

2
(|Ω̃|

2
N − |Ω|

2
N ). (3.3)
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Then, for every Λ such that

cKΩ,Ω̃|Ω̃|
N−2
N
N

2
≤ Λ (3.4)

we get

λk(Ω)− λk(Ω̃) ≤ Λ(|Ω̃|
2
N − |Ω|

2
N ),

so

λk(Ω) + Λ|Ω|
2
N ≤ λk(Ω̃) + Λ|Ω̃|

2
N .

If c is small enough so that we can choose Λ satisfying λk(Ω̃) = Λ|Ω̃|
2
N , we get

λk(Ω)|Ω|
2
N ≤ λk(Ω̃)|Ω̃|

2
N .

The construction above can be carried out provided that one has control on an upper bound of

KΩ,Ω̃ in (3.4). We shall prove that this is the case, if c is small enough.

Lemma 3.1. Let k ∈ N,K > 0 and Ω̃ ⊂ RN be an open set of unit measure, satisfying

λk(Ω̃) ≤ K. There exist two constants c, β > 0 depending only on K and N such that for all

Ω ⊂ Ω̃ satisfying

E(Ω) + c|Ω| ≤ E(Ω̃) + c|Ω̃| (3.5)

we have

λi(Ω)|Ω|2/N ≤ λi(Ω̃)|Ω̃|2/N , ∀ i = 1, . . . , k (3.6)

and |Ω| ≥ β|Ω̃|.

Proof. We divide the proof in several steps.

Step 1. The constant c can be chosen such that E(Ω̃) + c|Ω̃| is negative. In order to find the

right information on c, we start by proving the following inequality:∫
Ω̃
wΩ̃dx ≥ C(N)

1

(2λ1(Ω̃))
N+2

2

, (3.7)

with C(N) := (2N)
N+2

2 ωN
N(N+2) . We first note that (wΩ̃ −

1
2λ1(Ω̃)

)+ is the torsion function of the set

{wΩ̃ > 1
2λ1(Ω̃)

} and that ‖wΩ̃ −
1

2λ1(Ω̃)
‖∞ ≥ 1/2λ1(Ω̃), thanks to (2.5). As a consequence of the

Talenti inequality (2.3), the measure of the set {wΩ̃ > 1
2λ1(Ω̃)

} is controlled from below by λ1(Ω̃),

precisely we have∫
Ω̃
wΩ̃dx ≥

∫
{
wΩ̃>

1
2λ1(Ω̃)

}
(
wΩ̃ −

1

2λ1(Ω̃)

)
dx+

∫
{
wΩ̃>

1
2λ1(Ω̃)

} 1

2λ1(Ω̃)
dx ≥ C(N)

1

(2λ1(Ω̃))
N+2

2

.

Then it is clear that we have

E(Ω̃) + c|Ω̃| ≤ − C(N)

2(2λ1(Ω̃))
N+2

2

+ c|Ω̃|.

The right hand side above is negative, as soon as we choose

c ≤ C(N)

2|Ω̃|(2K)
N+2

2

, (3.8)

since λ1(Ω̃) ≤ K.
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Step 2. The constant c can be chosen such that for every Ω satisfying (3.5), we have ‖wΩ‖∞ ≥
1
2‖wΩ̃‖∞. Indeed, denote h := ‖wΩ̃‖∞ and assume that ‖wΩ‖∞ <

‖wΩ̃‖∞
2 . Then

0 ≤ c|Ω| ≤ c|Ω̃|+ 1

2

∫
wΩdx−

1

2

∫
wΩ̃dx

= c|Ω̃|+ 1

2

∫
wΩdx−

1

2

∫
min

{
wΩ̃, h/2

}
dx− 1

2

∫
{wΩ̃>h/2}

(
wΩ̃ − h/2

)
dx

≤ c|Ω̃| − 1

2

∫
{wΩ̃>h/2}

(
wΩ̃ − h/2

)
dx.

Thanks to the fact that (wΩ̃ − h/2)+ = w{wΩ̃>h/2} using the same argument as in Step 1, we

have that

C(N)h
N+2

2 ≤ 1

2

∫
{wΩ̃>h/2}

(wΩ̃ − h/2)+ ≤ c|Ω̃|.

Consequently, if

c ≤ C(N)K−
N+2

2

then ‖wΩ‖∞ ≥
‖wΩ̃‖∞

2 , since by inequality (2.5) ‖wΩ̃‖∞ ≥
1

λ1(Ω̃)
≥ 1

K .

We note that, using the inequalities (2.4) and (2.5) together with the fact that ‖wΩ‖∞ ≥
‖wΩ̃‖∞/2, one can easily deduce that for every i ∈ N the corresponding eigenvalues on Ω and Ω̃

are comparable

λi(Ω̃) ≤ λi(Ω) ≤ (8 + 6N log 2)Miλi(Ω̃). (3.9)

Step 3. Proof of inequality (3.6). Choosing c satisfying Steps 1 and 2, and

c ≤ λ1(B)

2Mkk2(8 + 6N log 2)e1/4πk2K
N
2

+2
, (3.10)

where B is the ball of volume equal to 1, from the Faber-Krahn inequality we have

c2Mkk
2(8 + 6N log 2)e1/4πk2K

N
2

+2 ≤ λ1(Ω̃)

|Ω̃|2/N
, (3.11)

or this precisely gives, in view of (3.2)-(3.3),

λi(Ω) + Λ|Ω|2/N ≤ λi(Ω̃) + Λ|Ω̃|2/N . (3.12)

Thanks to Step 2, c is such that Λ ≤ λ1(Ω̃)

|Ω̃|2/N . Consequently, (3.12) also holds for all values larger

than λ1(Ω̃)

|Ω̃|2/N , thus this inequality holds for all i = 1, . . . , k with constant λi(Ω̃)

|Ω̃|2/N .

With the choice of λi(Ω̃)

|Ω̃|2/N , using the arithmetic geometric inequality, we note that

λi(Ω)|Ω|2/N ≤ λi(Ω̃)|Ω̃|2/N , ∀ i = 1, . . . , k.

Step 4. In order to control the diameter of the rescaled set, we prove the existence of β > 0 such

that |Ω| ≥ β|Ω̃|. Indeed, we have the chain of inequalities (the last one being a consequence of

(2.3))

1

2K
≤ 1

2λ1(Ω̃)
≤
‖wΩ̃‖∞

2
≤ ‖wΩ‖∞ ≤

( |Ω|
ωN

) 2
N 1

2N
,

which gives the estimate for β, depending only on K,N . �
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Remark 3.2. Inequality (3.9) in Step 2 could also be obtained in a different way, as a conse-

quence of inequality (2.6) by choosing c small enough. Indeed, if c is such that

2k2e1/4πλk(Ω̃)N/2dγ(Ω, Ω̃) ≤ 1

2λk(Ω̃)
, (3.13)

then λk(Ω̃) ≤ λk(Ω) ≤ 2λk(Ω̃). Since by the hypothesis of Lemma 3.1 we have

E(Ω)− E(Ω̃) ≤ c,

inequality (3.13) holds as soon as

c ≤ 1

8k2e1/4πλ
N/2+1
k (Ω̃)

.

Now, we are in position to prove the first result. Below, the diameter of a disconnected set

is referred as the sum of the diameters of each connected component.

Theorem 3.3. For every K > 0, there exists D,C > 0 depending only on K and the dimension

N such that for every open set Ω̃ ⊂ RN with |Ω̃| = 1 there exist an open set Ω with diam (Ω) ≤ D,

|Ω| = 1, Per(Ω) ≤ C and if λk(Ω̃) ≤ K then λk(Ω) ≤ λk(Ω̃).

Proof. From the Berezin-Li-Yau inequality, the maximal index k0 for which it is possible that

λk0(Ω̃) ≤ K is lower than a constant depending only on K and N .

Let us consider the minimum problem

min
Ω⊂Ω̃
{E(Ω) + c|Ω|},

with c the constant given by Lemma 3.1 and k = k0. This problem has at least one solution,

denoted Ω∗, which is an open set (see for instance [14]) and it is also a shape subsolution of

the energy. The results from [7] give that diam (Ω∗) ≤ D(c) and that Per(Ω∗) ≤ C(c) and we

remind that c depends only on K and the dimension N . Moreover, using Step 4 of Lemma 3.1,

we have that the set Ω := |Ω∗|−1/NΩ∗ has still diameter and perimeter bounded by constants

depending only on K,N , thanks to the fact that |Ω| ≥ β|Ω̃|. Moreover we have that

∀i = 1, . . . , k, λi(Ω) ≤ λi(Ω̃),

since λk(Ω̃) ≤ K. �

4. Control of the perimeter

In order to give precise statements, we introduce a suitable notion of diameter in a prescribed

direction. In the coordinate direction e1 ∈ RN we set

diam e1(Ω) := H1
(
t ∈ R : HN−1(Ω ∩ {x1 = t}) > 0

)
.

Theorem 4.1. For every K,P > 0, there exist D > 0 depending only on K,P and the dimension

N , such that for every open set Ω̃ ⊂ RN with |Ω̃| = 1, Per(Ω̃) ≤ P , there exists an open

set Ω of unit measure with diam e1(Ω) ≤ D, Per(Ω) ≤ Per(Ω̃) such that if λk(Ω̃) ≤ K then

λk(Ω) ≤ λk(Ω̃).
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For every x1 ∈ R and r > 0, we define the strip centered in x1 of width 2r orthogonal to

Re1 by

Sr(x1) := [−r + x1, r + x1]× RN−1.

Its topological boundary is ∂Sr := {−r + x1, r + x1} × RN−1. If x1 = 0, we simply denote Sr

instead of Sr(0).

The main idea of the following lemma is inspired from [1] and was also used in [12], [7],

and [8] under different settings. We point out that here we do not use optimality, but only an

inequality between two fixed domains.

Lemma 4.2. For all c > 0, there exist C0, r0 > 0, with C0r0 ≤ min
{
c
2 ,

1
2K

}
such that if for

some r ≤ r0 the function w is not identically zero in Sr and

E(Ω̃) + c|Ω̃| ≤ E(Ω̃ \ Sr) + c|Ω̃ \ Sr|, (4.1)

then

max
S2r

wΩ̃ ≥ C0r. (4.2)

Proof. Below, we denote w := wΩ̃ and ε := maxS2r w and introduce the function η : RN → R+ :

η = 0 in Sr, η = ε in RN \ S2r,

−∆η = 1 in S2r \ Sr,

η = 0 on ∂Sr,

η = ε on ∂S2r.

(4.3)

Since the function min {w, η} := w ∧ η belongs to H1
0 (Ω̃ \ Sr) we get

E(Ω̃ \ Sr) ≤
1

2

∫
|D(w ∧ η)|2dx−

∫
w ∧ ηdx.

Hypothesis (4.1) gives

1

2

∫
|Dw|2dx−

∫
wdx+ c|Sr ∩ Ω̃| ≤ 1

2

∫
|D(w ∧ η)|2dx−

∫
w ∧ ηdx.

Since ε ≤ C0r0 ≤ c
2 we get w ∧ η = w in Ω̃ \ S2r. Denoting the outer unit normal to a set by ν,

1

2

∫
Sr

|Dw|2dx+
c

2
|Sr ∩ Ω̃| ≤ 1

2

∫
Sr

|Dw|2dx−
∫
Sr

wdx+ c|Sr ∩ Ω̃|

≤ 1

2

∫
S2r\Sr

(|D(w ∧ η)|2 − |Dw|2)dx−
∫
S2r\Sr

(w ∧ η − w)dx

=
1

2

∫
S2r\Sr∩{w>η}

(|Dη|2 − |Dw|2)dx−
∫
S2r\Sr

(w − η)+dx

≤
∫
S2r\Sr∩{w>η}

−Dη ·D(w − η)dx−
∫
S2r\Sr

(w − η)+dx

= −
∫
∂Sr

∂η

∂ν
(w − η)+dx = |η′(r)|

∫
∂Sr

w dHN−1.



A SURGERY RESULT FOR THE SPECTRUM OF THE DIRICHLET LAPLACIAN 9

The following trace inequality holds:∫
∂Sr

w dHN−1 ≤ C(N)

(
1

r

∫
Sr

wdx+

∫
Sr

|Dw|dx
)
.

By using hypothesis (4.2) and the Cauchy-Schwarz inequality on the gradient term, we get to∫
∂Sr

w dHN−1 ≤ C(N)

(
(C0 +

1

2
)|Sr ∩ Ω̃|+ 1

2

∫
Sr∩Ω̃

|Dw|2dx
)
.

If
∫
Sr
|Dw|2dx+ |Sr ∩ Ω̃| = 0 then w = 0 in the “strip” Sr. Otherwise

∫
Sr
|Dw|2dx+ |Sr ∩ Ω̃| > 0

and from the previous inequality we get

min

{
1

2
,
c

2

}
≤ |η′(r)|C(N)(C0 + 1).

Since |η′(r)| = |C0 − r/2|, choosing C0 and r0 small enough we get a contradiction. We notice

that the choice of these constants depends only on N and on c. �

The following corollary can be proved in the very same way as Lemma 4.2.

Corollary 4.3. For all c > 0 there exist C0, r0 > 0 with C0r0 ≤ min
{
c
2 ,

1
2K

}
such that if for

some r ≤ r0 and x1, . . . , xn ∈ R such that S2r(xi) ∩ S2r(xj) = ∅ for all i 6= j, it holds

max
{
wΩ̃(x) : x ∈ ∪iS2r(xi)

}
≤ C0r0,

then we have that

E(Ω̃ \ ∪iSr(xi)) + c|Ω̃ \ ∪iSr(xi)| ≤ E(Ω̃) + c|Ω̃|. (4.4)

Here we outline the main idea for proving Theorem 4.1. Let c be as in Lemma 3.1 and

r0, C0 be the constants from Lemma 4.2, for that particular choice of c. We shall remove a finite

number of strips Sr(xi) from the region where wΩ̃(x) ≤ C0r0 thus, following inequality (4.4) and

Lemma 3.1, we can control the eigenvalues after rescaling. The control of the perimeter, will

be done by a suitable choice of the position of the strips. Contrary to the construction in [17],

the new perimeter introduced by sectioning with hyperplanes does not depend on the HN−2

measure of the boundary of the sections.

Let l0 > 0 and n ∈ N. The value of l0 will be precised below, in Lemma 4.4. Assume

xi ∈ RN and Li > 2l0, i = 1, . . . , n are such that S2Li(x
i
1) ∩ S2Lj (x

j
1) = ∅ if i 6= j. For every

t ∈ [0, l0] we define:

S(t) := ∪ni=1SLi−t(x
i
1).

For an open set of unit measure Ω̃, we denote m(t) := |S(t)∩ Ω̃| the mass of the union of strips

in Ω̃ and

σ(t) :=
n∑
i=1

HN−1(Ω̃ ∩ {Li − t, Li + t} × RN−1),

the new perimeter introduced by the sections with the hyperplanes and

p(t) =
n∑
i=1

Per(Ω̃ ∩ (Li − t, Li + t)× RN−1)− σ(t),
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the perimeter of Ω̃ inside the strips. We denote the rescaled set,

Ω(t) := (1−m(t))−1/N (Ω̃ \ S(t)).

Lemma 4.4. Given P > 0 and an open set Ω̃ of unit measure, with Per(Ω̃) ≤ P , there exist

two constants l0 and m̂, depending only on P and the dimension N , such that if m(l0) ≤ m̂

then there exists t ∈ [0, l0] such that Per(Ω(t)) ≤ Per(Ω̃).

Proof. First of all, we notice that, by definition, t 7→ m(t) is a nonincreasing function and for a.e.

t ∈ (0, l0), we have that σ(t) = −m′(t). If for every t ∈ [0, l0] we would have Per(Ω(t)) > Per(Ω̃),

we get:

Per(Ω̃)− p(t) + σ(t) ≥ Per(Ω̃)(1−m(t))
N−1
N .

There exists a constant m̂ (depending only on P,N), such that if m(t) ≤ m̂, then

(1−m(t))
N−1
N ≥ 1− m(t)

N−1
N

2P
≥ 1− m(t)

N−1
N

2Per(Ω̃)
.

Putting the above inequalities together and using the isoperimetric inequality for the set S(t),

Per(Ω̃) + 2σ(t) ≥ Per(Ω̃)− m(t)
N−1
N

2
+ p(t) + σ(t) ≥ Per(Ω̃)− m(t)

N−1
N

2
+Nω

1/N
N m(t)

N−1
N .

Since 2Nω
1/N
N − 1 > 0, we obtain:

−m′(t) ≥ (2Nω
1/N
N − 1)

m(t)
N−1
N

4
.

By integrating on [0, l0] we get

m1/N (0)−m1/N (l0) ≥ (2ω
1/N
N − 1)

l0
4N

.

Since m(0) = m̂ and m(l0) ≥ 0, choosing l0 >
4N

2ω
1/N
N −1

m̂1/N we get a contradiction. �

Remark 4.5. If we denote by A a subset of Ω̃ with maxAwΩ̃ ≤ C0r0 then, having in mind (2.5),

if m̂ is small enough (depending only on C0 and r0) we get

λ1(A)(1− m̂)2/N ≥ 1

2C0r0
≥ K.

Remark 4.6. Thanks to the choice of C0, r0 made in Lemma 4.2, we deduce that if A ⊂ Ω̃ is

such that maxAwΩ̃ ≤ C0r0, then E(A)+ c|A| ≥ 0. Indeed, using the monotonicity of the torsion

function:

E(A) + c|A| = −1

2

∫
wAdx+ c|A| ≥ −1

2

∫
A
wΩ̃dx+ c|A| ≥ −C0r0|A|

2
+ c|A| ≥ 0,

since C0r0 ≤ 2c from the hypotheses of Lemma 4.2.

We are now in position to prove the main result of this section.



A SURGERY RESULT FOR THE SPECTRUM OF THE DIRICHLET LAPLACIAN 11

Proof of Theorem 4.1. We fix the constant c such that Lemma 3.1 is satisfied, we get C0, r0 from

Lemma 4.2 and we fix a constant m̂ that works both for Lemma 4.4 and for Remark 4.5. For

simplicity we rename w = wΩ̃. The region where w(x) ≥ C0r0 is contained in a finite union of

strips with width 4r0. Indeed, we define

X0 :=

{
x1 ∈ R : max

S2r0 (x1)
w ≥ C0r0

}
, X̃ :=

⋃{
S2r0(t) : t ∈ X0

}
.

From Lemma 2.1 and the Saint Venant inequality (2.2) the set X̃ is contained in the union of

at most n = n(r0, N) of disjoint strips (each of width at least 4r0). Let us call X the projection

of X̃ on Re1.

The set R \X is a finite union of disjoint segments and of the infinite intervals at ±∞, say

R \X = (−∞, b0) ∪

[
n⋃
i=1

(ai, bi)

]
∪ (an+1,∞).

If a segment (ai, bi) has a length less than or equal to 8r0 + 2l0, we shall ignore it in our further

construction and just add the corresponding strip to the set X̃ and renumber the index i if

necessary. The total length of those such segments is at most n(8r0 + 2l0).

Therefore, we shall assume in the sequel that all segments (ai, bi) have a length greater than

8r0 + 2l0. We denote ai = ai + (4r0 + l0), bi = bi − (4r0 + l0) and

Y =

[
n+1⋃
i=1

(ai, ai)

]
∪

[
n⋃
i=0

(bi, bi)

]
.

In order to highlight the main idea, let us assume in a first instance that

|
(
Y × RN−1

)
∩ Ω̃| ≤ m̂. (4.5)

If we are in this situation, we perform a simultaneous “cut” as in Lemma 4.2, removing the

following union of strips:

St := Sr0(b0 − 2r0 − t)
⋃
Sr0(ai + 2r0 + t)

⋃
Sr0(bi − 2r0 − t)

⋃
Sr0(an+1 + 2r0 + t),

for every t ∈ [0, l0].

Following the assumption (4.5) and Lemma 4.4, there exists a value t such that the perimeter

of the rescaled set |Ω̃ \ St|−
1
N (Ω̃ \ St) is at most Per(Ω̃). Moreover, from the choice of c and

Lemma 4.2, all the eigenvalues less than K of the rescaled set are not greater than the ones on

Ω̃.

In order to handle the diameter of the rescaled set, we replace all the connected components

having a projection on Re1 disjoint from X by one ball, such that the volume remains unchanged.

In this way, the perimeter does not increase, while the low part of the spectrum (below K) can

only decrease, since the first eigenvalue of every such a connected component is not smaller than

1/(C0r0) ≥ 2K (see Remark 4.5).

It is clear that the new set satisfies the diameter bound:

diam e1(Ω) ≤ diam e1(Ω̂)(1− m̂)−1/N ≤ 2
(
H1(X) + n(8r0 + 2l0) + 2r0(n+ 2)

)
+ 2ω

− 1
N

N .
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If assumption (4.5) does not hold, we can not apply directly Lemma 4.4. Let p ∈ N depending

only on P and the dimension, be such that 1
p ≤ m̂ < 1

p−1 . If

ai + p(4r0 + l0) > bi − p(4r0 + l0),

we ignore this strip and add it to X, renumbering the index i if necessary. There exists s ∈
[0, p−1] such that replacing simultaneously all ai with ai+s(4r0 + l0) and bi with bi−s(4r0 + l0)

the assumption (4.5) is satisfied and so we finish the proof, adding at worst 4np(4r0 + l0) to the

diameter. �

Remark 4.7. Since the choice of the direction e1 was arbitrary, we can repeat all the process

of the proof of Theorem 4.1 for all the coordinate direction, finding a set which has diameter

bounded in all directions, unit measure, better eigenvalues than Ω̃ up to level k and perimeter

lower than Ω̃.
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