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Abstract

We consider the relationship between stationary distributions for stochastic models of chemical reac-
tion systems and Lyapunov functions for their deterministic counterparts. Specifically, we derive the well
known Lyapunov function of chemical reaction network theory as a scaling limit of the non-equilibrium
potential of the stationary distribution of stochastically modeled complex balanced systems. We extend
this result to general birth-death models and demonstrate via example that similar scaling limits can yield
Lyapunov functions even for models that are not complex or detailed balanced, and may even have mul-
tiple equilibria.

1 Introduction
This paper studies the connection between deterministic and stochastic models of (bio)chemical reaction
systems. In particular, for the class of so-called “complex balanced” models, we make a connection
between the stationary distribution of the stochastic model and the classical Lyapunov function used in
the study of the corresponding deterministic models. Specifically, we show that in the large volume limit
of Kurtz [18, 19], the non-equilibrium potential of the stationary distribution of the scaled stochastic
model converges to the standard Lyapunov function of deterministic chemical reaction network theory.
Further, we extend this result to birth-death processes.

In 1972, Horn and Jackson [16] introduced a Lyapunov function for the study of complex balanced
systems, and remarked on a formal similarity to Helmholtz free energy functions. Since then the prob-
abilistic interpretation of this Lyapunov function for complex balanced systems has remained obscure.
For detailed balanced systems, which form a subclass of complex balanced systems, a probabilistic in-
terpretation for the Lyapunov function is known — see, for example, the work of Peter Whittle [27,
Section 5.8] — though these arguments appear to be little known in the mathematical biology commu-
nity. The key ingredient that enables us to extend the analysis pertaining to detailed balanced systems
to complex balanced systems comes from [3], where Anderson, Craciun, and Kurtz showed that the sta-
tionary distribution for the class of complex balanced chemical reaction networks can be represented as a
product of Poisson random variables; see equation (1) below.

While there are myriad results pertaining to either stochastic or deterministic models, there are rela-
tively few making a connection between the two. Perhaps the best known such connections come from
the seminal work of Thomas Kurtz [18, 19, 20], which details the limiting behavior of classically scaled
stochastic models on finite time intervals, and demonstrates the validity of the usual deterministic ODE
models on those intervals. There is even less work on the connection between the deterministic and
stochastic models on infinite time horizons, that is, on the long term behavior of the different models,
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though two exceptions stand out. As alluded to above, Anderson, Craciun, and Kurtz showed that a
stochastically modeled complex balanced system — for which the deterministically modeled system has
complex balanced equilibrium c — has a stationary distribution of product form,

⇡(x) =
1

Z
�

d

Y

i=1

cxi
i

x
i

!

, x 2 � ⇢ Zd

�0

, (1)

where � is the state space of the stochastic model and Z
�

> 0 is a normalizing constant [3]. On the other
hand, in [4], Anderson, Enciso, and Johnston provided a large class of networks for which the limiting
behaviors of the stochastic and deterministic models are fundamentally different, in that the deterministic
model has special “absolutely robust” equilibria whereas the stochastic model necessarily undergoes an
extinction event.

In the present paper, we return to the context of complex balanced models studied in [3], and show
that the usual Lyapunov function of Chemical Reaction Network Theory (CRNT),

V(x) =
X

i

x
i

(ln(x
i

)� ln(c
i

)� 1) + c
i

, (2)

can be understood as the limit of the non-equilibrium potential of the distribution (1) in the classical
scaling of Kurtz. We extend this result to the class of birth-death models. We then demonstrate through
examples that Lyapunov functions for an even wider class of models can be constructed through a sim-
ilar scaling of stationary distributions. It is not yet clear just how wide the class of models for which
this specific scaling limit provides a Lyapunov function is, and we leave this question open. Similar
(non-mathematically rigorous) results have been pointed out in the physics literature though the gener-
ality of these results remain unclear [26]. See also [15] for recent mathematical work pertaining to the
ergodicity of stochastically modeled chemical systems and [23] for earlier related work pertaining to the
irreducibility and recurrence properties of stochastic models.

Before proceeding, we provide a key definition.

Definition 1. Let ⇡ be a probability distribution on a countable set � such that ⇡(x) > 0 for all x 2 �.
The non-equilibrium potential of the distribution ⇡ is the function �

⇡

: � ! R defined by

�
⇡

(x) = � ln (⇡(x)) .

We close the introduction with an illustrative example.

Example 2. Consider the catalytic activation-inactivation network

2A ⌦ A+B, (3)

where A and B represent the active and inactive forms of a protein, respectively. The usual deterministic
mass-action kinetics model for the concentrations (x

A

, x
B

) of the species A and B is

ẋ
A

= �
1

x2

A

+ 
2

x
A

x
B

ẋ
B

= 
1

x2

A

� 
2

x
A

x
B

,

where 
1

and 
2

are the corresponding reaction rate constants for the forward and reverse reactions in
(3). For a given total amount M def

= x
A

(0)+x
B

(0) > 0, these equations have a unique stable equilibrium

c
A

=

M
2


1

+ 
2

, c
B

=

M
1


1

+ 
2

,

which can be shown to be complex balanced.
We now turn to a stochastic model for the network depicted in (3), that tracks the molecular counts

for species A and B. Letting V be a scaling parameter, which can be thought of as Avogadro’s number
multiplied by volume, the standard stochastic mass-action kinetics model can be described in several
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different ways. For example, the Kolmogorov forward equations governing the probability distribution
of the process are

d

dt
p
µ
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B

, t) =

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� 1, t)

+
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� 1)(x
B

+ 1)p
µ

(x
A
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+ 1, t)
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i

p
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(x
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, x
B
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(4)

where x
A

, x
B

2 Z
�0

are the molecular counts of A and B, respectively, and p
µ

(x
A

, x
B

, t) denotes the
probability that the system is in state (x

A

, x
B

) at time t given an initial distribution of µ. Note that there
is one such differential equation for each state, (x

A

, x
B

), in the state space. In the biological context the
forward equation is typically referred to as the chemical master equation.

Assume that the initial distribution for the stochastic model has support on the set �V

def
= {(x

A

, x
B

) 2
Z2

�0

|x
A

� 1, x
A

+ x
B

= VM}, where M > 0 is selected so that VM is an integer. Hence, the total
number of molecules is taken to scale in V . The stationary distribution can then be found by setting
the left hand side of the forward equation (4) to zero and solving the resulting system of equations (one
equation for each (x

A

, x
B

) 2 �

V ). Finding such a solution is typically a challenging, or even impossible
task. However, results in [3] imply that for this particular system the stationary distribution is (almost) a
binomial distribution and is of the form (1),

⇡V

(x
A

, x
B

) =

1

Z
V

 

VM

x
A

!

✓


2


1

+ 
2

◆
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✓


1


1

+ 
2

◆
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, (x
A

, x
B

) 2 �

V , (5)

where Z
V

is the normalizing constant

Z
V

def
= 1�

✓


1


1

+ 
2

◆

V M

.

The distribution is not binomial since the state (x
A

, x
B

) = (0, V M) cannot be realized in the system.
In order to make a connection between the stochastic and deterministic models, we convert the

stochastic model to concentrations by dividing by V . That is, for x 2 Z we let x̃V

def
= V �1x. Let-

ting ⇡̃V

(x̃V

) denote the stationary distribution of the scaled process, we find that

⇡̃V

(x̃V

) =

1

Z
V

 

VM

V x̃V

A

!

✓


2


1

+ 
2

◆

V x̃

V
A
✓


1


1

+ 
2

◆

V x̃

V
B

,

where x̃V 2 1

V

�

V . We now consider the non-equilibrium potential of ⇡̃V scaled by V

� 1

V
ln(⇡̃V

(x̃V

)) =

1

V
ln(Z

V

)� 1

V
ln((VM)!) +

1

V
ln((V x̃V

A

)!) +

1

V
ln((V x̃V

B

)!)

� x̃V

A

ln

✓


2


1

+ 
2

◆

� x̃V

B

ln

✓


1


1

+ 
2

◆

.

Stirling’s formula says that

ln(n!) = n ln(n)� n+O(ln(n)) for n > 0. (6)

Assuming that lim
V !1

x̃V

= x̃ 2 R2

>0

, and after some calculations, equation (6) yields

lim

V !1

� 1

V
ln(⇡̃V

(x̃V

)) = x̃
A

✓

ln x̃
A

� ln

✓


2


1

+ 
2

◆◆

+ x̃
B

✓

ln(x̃
B

)� ln

✓


1


1

+ 
2

◆◆

�M ln(M)

def
= V(x̃).
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Recalling that x̃
B

= M � x̃
A

, we may rewrite V in the following useful way

V(x̃) = x̃
A

✓

ln x̃
A

� ln

✓

M
2


1

+ 
2

◆

� 1

◆

� M
2


1

+ 
2

+ x̃
B

✓

ln x̃
B

� ln

✓

M
1


1

+ 
2

◆

� 1

◆

� M
1


1

+ 
2

.

Remarkably, this V(x̃) is exactly the function we would obtain if we were to write the standard Lyapunov
function of CRNT, given in (2), for this model. ⇤

The first goal of this paper is to show that the equality between the scaling limit calculated for the
stochastic model above, and the Lyapunov function for the corresponding deterministic model is not an
accident, but in fact holds for all complex balanced systems. We will also demonstrate that the correspon-
dence holds for a wider class of models.

The remainder of this article is organized as follows. In Section 2, we briefly review some relevant
terminology and results. In Section 3, we derive the general Lyapunov function of chemical reaction
network theory for complex balanced systems as a scaling limit of the non-equilibrium potential of the
corresponding scaled stochastic model. In Section 4, we discuss other, non-complex balanced, models
for which the same scaling limit gives a Lyapunov function for the deterministic model. In particular, we
characterize this function when the corresponding stochastic system is equivalent to a stochastic birth-
death process.

2 Chemical reaction systems and previous results
2.1 Chemical reaction networks
We consider a system consisting of d chemical species, {S

1

, . . . , S
d

}, undergoing transitions due to a
finite number, m, of chemical reactions. For the kth reaction, we denote by ⌫

k

, ⌫0

k

2 Zd

�0

the vec-
tors representing the number of molecules of each species consumed and created in one instance of the
reaction, respectively. For example, for the reaction S

1

+ S
2

! S
3

, we have ⌫
k

= (1, 1, 0)T and
⌫0

k

= (0, 0, 1)T , if there are d = 3 species in the system. Each ⌫
k

and ⌫0

k

is termed a complex of the
system. The reaction is denoted by ⌫

k

! ⌫0

k

, where ⌫
k

is termed the source complex and ⌫0

k

is the product
complex. A complex may appear as both a source complex and a product complex in the system.

Definition 3. Let S = {S
1

, . . . , S
d

}, C = {⌫
1

, ⌫0

1

, . . . , ⌫
m

, ⌫0

m

}, and R = {⌫
1

! ⌫0

1

, . . . , ⌫
m

! ⌫0

m

}
denote the sets of species, complexes, and reactions, respectively. The triple {S, C,R} is a chemical
reaction network.

Definition 4. The linear subspace S = span{⌫0

1

�⌫
1

, . . . , ⌫0

m

�⌫
m

} is called the stoichiometric subspace
of the network. For c 2 Rd

�0

we say c + S = {x 2 Rd|x = c + s for some s 2 S} is a stoichiometric
compatibility class, (c+S)\Rd

�0

is a non-negative stoichiometric compatibility class, and (c+S)\Rd

>0

is a positive stoichiometric compatibility class.

2.2 Dynamical system models
2.2.1 Stochastic models

The most common stochastic model for a chemical reaction network {S, C,R} treats the system as a
continuous time Markov chain whose state X is a vector giving the number of molecules of each species
present with each reaction modeled as a possible transition for the chain. The model for the kth reaction is
determined by the source and product complexes of the reaction, and a function �

k

of the state that gives
the transition intensity, or rate, at which the reaction occurs. In the biological and chemical literature,
transition intensities are referred to as propensities.

Specifically, if the kth reaction occurs at time t the state is updated by addition of the reaction vector
⇣
k

def
= ⌫0

k

� ⌫
k

and
X(t) = X(t�) + ⇣

k

.

4



The most common choice for intensity functions is to assume the system satisfies mass-action kinetics,
which states that the rate functions take the form

�
k

(x) = 
k

d

Y

i=1

x
i

!

(x
i

� ⌫
ki

)!

, (7)

for some constant 
k

> 0, termed the rate constant, and where ⌫
k

= (⌫
k1

, . . . , ⌫
kd

)

T . Under the
assumption of mass-action kinetics and a non-negative initial condition, it follows that the dynamics of
the system is confined to a particular non-negative stoichiometric compatibility class given by the initial
value X(0), namely X(t) 2 (X(0) + S) \ Rd

�0

.
The number of times that the kth reaction occurs by time t can be represented by the counting process

R
k

(t) = Y
k

✓

Z

t

0

�
k

(X(s))ds

◆

,

where the {Y
k

, k 2 {1, . . . ,m}} are independent unit-rate Poisson processes (see [5, 21], or [9, Chap-
ter 6]]). The state of the system then satisfies the equation X(t) = X(0) +

P

k

R
k

(t)⇣
k

, or

X(t) = X(0) +

X

k

Y
k

✓

Z

t

0

�
k

(X(s))ds

◆

⇣
k

, (8)

where the sum is over the reaction channels. Kolmogorov’s forward equation for this model is

d

dt
P
µ

(x, t) =
X

k

�
k

(x� ⇣
k

)P
µ

(x� ⇣
k

, t)�
X

k

�
k

(x)P
µ

(x, t), (9)

where P
µ

(x, t) represents the probability that X(t) = x 2 Zd

�0

given an initial distribution of µ and
�
k

(x� ⇣
k

) = 0 if x� ⇣
k

/2 Zd

�0

. So long as the process is non-explosive, the two representations for the
processes, the stochastic equation (8) and the Markov process with forward equation (9), are equivalent
[5, 9].

It is of interest to characterize the long-term behavior of the process. Let � ⇢ Zd

�0

be a closed
component of the state space; that is, � is closed under the transitions of the Markov chain. A probability
distribution ⇡(x), x 2 �, is a stationary distribution for the chain on � if

X

k

⇡(x� ⇣
k

)�
k

(x� ⇣
k

) = ⇡(x)
X

k

�
k

(x) (10)

for all x 2 �. (If x � ⇣
k

62 � then ⇡(x � ⇣
k

) is put to zero.) If in addition � is irreducible, that is,
any state in � can be reached from any other state in � (for example, �V in Example 2 is an irreducible
component) and ⇡ exists, then ⇡ is unique [17].

Solving equation (10) is in general a difficult task, even when we assume each �
k

is determined
by mass-action kinetics. However, if in addition there exists a complex balanced equilibrium for the
associated deterministic model, then equation (10) can be solved explicitly [3].

2.2.2 Deterministic models and complex balanced equilibria

For two vectors u, v 2 Rd

�0

we define uv

def
=

Q

i

uvi
i

and adopt the convention that 00 = 1.
Under an appropriate scaling limit (see Section 2.3.1) the continuous time Markov chain model de-

scribed in the previous section becomes

x(t) = x(0) +
X

k

✓

Z

t

0

f
k

(x(s))ds

◆

(⌫0

k

� ⌫
k

), (11)

where
f
k

(x) = 
k

x
⌫k1

1

x
⌫k2

2

· · ·x⌫kd
d

= 
k

x⌫k , (12)

and 
k

> 0 is a constant. We say that the deterministic system (11) has deterministic mass-action kinetics
if the rate functions f

k

have the form (12). The system (11) is equivalent to the system of ordinary
differential equations (ODEs) with a given initial condition x

0

= x(0),
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ẋ =

X

k


k

x⌫k
(⌫0

k

� ⌫
k

). (13)

The trajectory given by x
0

is confined to the non-negative stoichiometric compatibility class (x
0

+ S) \
Rd

�0

.
Some mass-action systems have complex balanced equilibria. An equilibrium point c 2 Rd

�0

is said
to be complex balanced if and only if for each complex z 2 C we have

X

{k:⌫

0
k=z}


k

c⌫k =

X

{k:⌫k=z}


k

c⌫k ,

where the sum on the left is over reactions for which z is the product complex and the sum on the right is
over reactions for which z is the source complex. For such an equilibrium the total inflows and the total
outflows balance out at each complex also [10, 14].

In [16] it is shown that if there exists a complex balanced equilibrium c 2 Rd

>0

for a given model then

(1) There is one, and only one, positive equilibrium point in each positive stoichiometric compatibility
class.

(2) Each such equilibrium point is complex balanced.

(3) Each such complex balanced equilibrium point is locally asymptotically stable relative to its stoi-
chiometric compatibility class.

Whether or not each complex balanced equilibrium is globally asymptotically stable relative to its
positive stoichiometric compatibility class is the content of the Global Attractor Conjecture, which has
received considerable attention [1, 2, 6, 7, 12, 22]. The local asymptotic stability is concluded by an
application of the Lyapunov function (2).

2.2.3 Lyapunov functions

Definition 5. Let E ⇢ Rd

�0

be an open subset of Rd

�0

and let f : Rd

�0

! R. A function V : E ! R is
called a (strict) Lyapunov function for the system ẋ = f(x) at x

0

2 E if x
0

is an equilibrium point for
f , that is, f(x

0

) = 0, and

(1) V(x) > 0 for all x 6= x
0

, x 2 E and V (x
0

) = 0

(2) rV(x) · f(x)  0, for all x 2 E, with equality if and only if x = x
0

, where rV denotes the
gradient of V .

If these two conditions are fulfilled then the equilibrium point x
0

is asymptotically stable [24]. If the
inequality in (2) is not strict for x

0

6= x then x
0

is stable and not necessarily asymptotically stable. If the
inequality is reversed, ˙V(x) > 0, x 6= x

0

, then the equilibrium point is unstable [24].
We will see that in many cases the large volume limit of the non-equilibrium potential of a stochas-

tically modeled system is a Lyapunov function defined on the interior of the nonnegative stoichiometric
subspace.

2.3 Product form distributions
The following result from [3], utilized in (5), provides a characterization of the stationary distributions of
complex balanced systems.

Theorem 6. Let {S, C,R} be a chemical reaction network and let {
k

} be a choice of rate constants.
Suppose that, modeled deterministically, the system is complex balanced with a complex balanced equi-
librium c 2 Rd

>0

. Then the stochastically modeled system with intensities (7) has a stationary distribution
on Zd

�0

consisting of the product of Poisson distributions,

⇡(x) =

d

Y

i=1

cxi
i

x
i

!

e�ci , for x 2 Zd

�0

. (14)
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If Zd

�0

is irreducible, then (14) is the unique stationary distribution. If Zd

�0

is not irreducible, then the
stationary distribution, ⇡

�

, of an irreducible component of the state space � ⇢ Zd

�0

is

⇡
�

(x) =
1

Z
�

d

Y

i=1

cxi
i

x
i

!

e�ci , for x 2 �,

and ⇡
�

(x) = 0 otherwise, where Z
�

is a positive normalizing constant.
Each irreducible component of the state space is necessarily contained in a single non-negative sto-

ichiometric compatibility class (Definition 4). The choice of the complex balanced equilibrium point c
in the theorem is independent of � and the particular stoichiometric compatibility class containing it [3].
Note that since � ⇢ Zd

�0

, we always have that Z
�

 1.

2.3.1 The classical scaling

We may convert from molecular counts to concentrations by scaling the counts by V , where V is the
volume of the system times Avogadro’s number. Following [3], define |⌫

k

| =
P

i

⌫
ki

. Let {
k

} be a set
of rate constants and define the scaled rate constants, V

k

, for the stochastic model in the following way,

V

k

=


k

V |⌫k|�1

(15)

(see [28, Chapter 6]). Let x 2 Zd

�0

be an arbitrary state of the system and denote the intensity function
for the stochastic model by

�V

k

(x) =
V 

k

V |⌫k|

d

Y

i=1

x
i

!

(x
i

� ⌫
ki

)!

.

Note that x̃ def
= V �1x gives the concentrations in moles per unit volume and that if x̃ = ⇥(1) (that is, if

x = ⇥(V )), then by standard arguments

�V

k

(x) ⇡ V 
k

d

Y

i=1

x̃
⌫ki
i

def
= V �

k

(x̃),

where the final equality defines �
k

.
Denote the stochastic process determining the abundances by XV

(t) (see (8)). Then, normalizing the
original process XV by V and defining eXV

def
= V �1XV yields

eXV

(t) ⇡ eXV

(0) +

X

k

1

V
Y
k

✓

V

Z

t

0

�
k

(

eXV

(s))ds

◆

⇣
k

.

Since the law of large numbers for the Poisson process implies V �1Y (V u) ⇡ u, we may conclude that
a good approximation to the process eXV is the function x = x(t) defined as the solution to the ODE

ẋ =

X

k


k

x⌫k
(⌫0

k

� ⌫
k

),

which is (13). For a precise formulation of the above scaling argument, termed the classical scaling, see
[18, 19, 21].

The following is an immediate corollary to Theorem 6, and can also be found in [3]. The result rests
upon the fact that if c is a complex balanced equilibrium for a given reaction network with rates {

k

},
then V c is a complex balanced equilibrium for the reaction network endowed with rates {V

k

} of (15).
Theorem 7. Let {S, C,R} be a chemical reaction network and let {

k

} be a choice of rate constants.
Suppose that, modeled deterministically, the system is complex balanced with a complex balanced equi-
librium c 2 Rd

>0

. For some V > 0, let {V

k

} be related to {
k

} via (15). Then the stochastically modeled
system with intensities (7) and rate constants {V

k

} has a stationary distribution on Zd

�0

consisting of the
product of Poisson distributions,

⇡V

(x) =

d

Y

i=1

(V c
i

)

xi

x
i

!

e�V ci , for x 2 Zd

�0

. (16)
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If Zd

�0

is irreducible, then (16) is the unique stationary distribution. If Zd

�0

is not irreducible, then the
stationary distribution, ⇡V

�

, of an irreducible component of the state space � ⇢ Zd

�0

is

⇡V

�

(x) =
1

ZV

�

d

Y

i=1

(V c
i

)

xi

x
i

!

e�V ci , for x 2 �, (17)

and ⇡V

�

(x) = 0 otherwise, where ZV

�

is a positive normalizing constant.

Note that Theorem 7 implies that a stationary distribution for the scaled model eXV is

⇡̃V

(x̃V

) = ⇡V

(V x̃V

), for x̃V 2 1

V
Zd

�0

. (18)

3 Complex balanced systems
We are ready to state and prove our first result.
Theorem 8. Let {S, C,R} be a chemical reaction network and let {

k

} be a choice of rate constants.
Suppose that, modeled deterministically, the system is complex balanced with a complex balanced equi-
librium c 2 Rd

>0

. For V > 0, let {V

k

} be related to {
k

} via (15).
Let ⇡V be given by (16) and let ⇡̃V be as in (18). If x̃V 2 1

V

Zd

�0

is a sequence of points such that
lim

V !1

x̃V

= x̃ 2 Rd

>0

, then

lim

V !1



� 1

V
ln(⇡̃V

(x̃V

))

�

= V(x̃),

where V satisfies (2). In particular, V is a Lyapunov function (Definition 5).
Further, suppose �

V ⇢ Zd

�0

is an irreducible component of the state space and that ⇡V

�

V is given by
(17). For x̃V 2 1

V

�

V , define ⇡̃V

�

V (x̃V

)

def
= ⇡V

�

V (V x̃V

). If there exists a series of points x̃V 2 1

V

�

V such
that lim

V !1

x̃V

= x̃ 2 Rd

>0

, then

lim

V !1

h

�V �1

ln(⇡̃V

�

V(x̃
V

))� V �1

ln(ZV

�

)

i

= V(x̃),

where V satisfies (2). In particular, V is a Lyapunov function (Definition 5).

Proof. We prove the second statement. The proof of the first is the same with the exception that ZV

�

⌘ 1.
Let {x̃V } be a sequence of points with x̃V 2 1

V

�

V . Suppose that lim
V !1

x̃V

= x̃ 2 Rd

>0

. We
have

�V �1

ln

⇣

ZV

�

⇡̃V

�

V (x̃V

)

⌘

= �V �1

ln

 

d

Y

i=1

e�V ci
(V c

i

)

V x̃

V
i

(V x̃V

i

)!

!

= �V �1

d

X

i=1

h

�V c
i

+ (V x̃V

i

) ln(V ) + (V x̃V

i

) ln(c
i

)� ln

⇣

(V x̃V

i

)!

⌘i

.

Applying Stirling’s formula (6) to the final term and performing some algebra yields

�V �1

ln(⇡̃V

�

V (x̃V

)) = �V �1

d

X

i=1

n

�V c
i

+ (V x̃V

i

) ln(V ) + (V x̃V

i

) ln(c
i

)

�
h

(V x̃V

i

) ln(V x̃V

i

)� (V x̃V

i

) +O(ln(V x̃V

i

))

io

=

d

X

i=1

h

x̃V

i

{ln(x̃V

i

)� ln(c
i

)� 1}+ c
i

i

+O(V �1

ln(V x̃V

i

)).

The sum is the usual Lyapunov function V , and the result is shown after letting V ! 1 and recalling
that x̃V ! x̃ 2 Rd

>0

.

The conditions of the theorem are clearly fulfilled for Example 2. In that case, as well as in many other
cases, V �1

ln(ZV

�

) converges to 0 as V ! 1, but we have not proven that lim
V !1

V �1

ln(ZV

�

) = 0

in general.
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4 Non-complex balanced systems
4.1 Birth-death processes and reaction networks
In this section we will study reaction networks that also are birth-death processes. Many results are
known for birth-death processes. In particular, a characterization of the stationary distribution can be
accomplished [17].

Let {S, C,R} be a chemical reaction network with one species only, S = {S}, and assume all
reaction vectors are either ⇣

k

= (�1) or ⇣
k

= (1). This implies that the number of molecules of S
goes up or down by one each time a reaction occurs. For convenience, we re-index the reactions and the
reaction rates in the following way. By assumption, a reaction of the form nS ! n0S will either have
n0

= n + 1 or n0

= n � 1. In the former case we index the reaction by n and denote the rate constant
by 

n

and in the latter case by �n and 
�n

, respectively. Note that the stochastically modeled reaction
network can be considered as a birth-death process with birth and death rates

p
i

=

X

{n|⇣n=(1)}

�V

n

(i) =
X

{n�0}

�V

n

(i),

q
i

=

X

{n|⇣n=(�1)}

�V

n

(i) =
X

{n<0}

�V

n

(i),
(19)

for i � 0, respectively.
If the stochastically modeled system has absorbing states we make the following modification to the

intensity functions of the system. Let i
0

2 Z
�0

be the smallest value such that (i) all birth rates of i
0

are non-zero, that is, �
n

(i
0

) > 0 for n � 0, and (ii) all death rates of i
0

+ 1 are non-zero, that is,
�
n

(i
0

+ 1) > 0 for n < 0. We modify the system by letting �
n

(i
0

) = 0 for n < 0. Note that the
modified system has a lowest state i

0

, which is not absorbing.
As an example of the above modification, consider the system with network

3S
�3! 2S, 4S



4! 5S. (20)

This model has rates �
4

(x) = 
4

x(x � 1)(x � 2)(x � 3) and �
�3

(x) = 
�3

x(x � 1)(x � 2). The
modified system would simply take �

�3

(4) = 0.
Let n

max

be the largest n for which 
n

is a non-zero reaction rate and similarly let n
min

be the largest
n for which 

�n

is a non-zero rate constant. For the network (20), n
max

= 4 and n
min

= 3.

Theorem 9. Let {S, C,R} be a chemical reaction network with one species only. Assume that all
reaction vectors are of the form ⇣

n

= (�1) or ⇣
n

= (1), and assume that there is at least one of each
form. Let {

n

} be a choice of rate constants and assume, for some V > 0, that {V

n

} is related to
{

n

} via (15). Then a stationary distribution for the modified system exists on the irreducible component
� = {i|i � i

0

} if and only if either of the following holds,

(1) n
min

> n
max

, or

(2) n
min

= n
max

and 
�n

min

> 
n

max

,

in which case it exists for all V > 0. If a stationary distribution exists and x̃V ! x̃ 2 (0,1), then

lim

V !1

�V �1

ln(⇡V

(x̃V

)) = g(x̃) = �
Z

x̃

0

ln

 

P

n�0


n

x⌫n

P

n<0


n

x⌫n

!

dx+ �

✓


n

max


�n

min

◆

1/�

, (21)

where ⇡V is the stationary distribution for the model with parameter choice V > 0, and where � =

n
min

� n
max

. If � = 0, the last term is taken to be zero. Further, the function g(x̃) fulfils condition
(2) in Definition 5; that is, g(x̃) decreases along paths of the deterministically modeled system with rate
constants {

n

}.

Proof. Since all reactions have ⇣
n

= (1) or ⇣
n

= (�1) it follows that the system is equivalent to a
birth-death process with birth and death rates (19). Let i

0

be the smallest value the chain may attain.
Potentially after modifying the system as detailed above, we have that p

i

> 0 for all i � i
0

and q
i

> 0

9



for all i � i
0

+ 1. Hence, � = {i|i � i
0

} is irreducible and the stationary distribution, if it exists, is
given by (see [17])

⇡V

(x) =
1

ZV

x

Y

i=i

0

+1

p
i�1

q
i

=

1

ZV

p
i

0

· · · p
x�1

q
i

0

+1

· · · q
x

, x � i
0

,

where the partition function ZV satisfies

ZV

=

1

X

i=i

0

p
i

0

· · · p
i�1

q
i

0

+1

· · · q
i

.

Let � = n
min

� n
max

and note that for large V , there exists constants C
2

> C
1

> 0 independent of V
such that

C
2

V �

i�

n

max


�n

min

� p
i�1

q
i

� C
1

V �

i�

n

max


�n

min

for i � max(i
0

, 1).

Hence,

ZV

= ⇥

 

1

X

i=i

0

V �i

(i!)�

✓


n

max


�n

min

◆

i

!

, (22)

which is finite if and only if one of the two conditions (1) and (2) in the theorem is fulfilled, in which case
it is finite for all V > 0. Since a stationary distribution exists if and only if ZV is finite (see [17]), this
concludes the first part of the theorem.

We assume now that the stationary distribution exists, that is, that one of the two conditions (1) and
(2) are fulfilled, and consider the infinite series in equation (22). We will first give bounds on the sum that
allow us to conclude that �V �1

ln(1/ZV

) converges as V ! 1. If � = 0 then ZV is bounded between
two positive constants that are independent of V , hence �V �1

ln(1/ZV

) ! 0. For � > 0, let

x = V

✓


n

max


�n

min

◆

1/�

,

and note that
1

X

i=i

0

V �i

(i!)�

✓


n

max


�n

min

◆

i

=

1

X

i=i

0

x�i

(i!)�

 

1

X

i=i

0

xi

i!

!

�

 e�x. (23)

To get a lower bound we need Stirling’s approximation again:
p
2⇡nn+0.5e�n  n!  e nn+0.5e�n,

where n � 1 and e is the base of the natural logarithm. We first apply the second inequality to i! and
obtain

x�i

(i!)�
� x�i

e�(ii+0.5e�i

)

�

=

�0.5

e� i0.5(��1)

· (�x)�i

(�i)�i+0.5e��i

,

where the equality follows by simplifying the right hand side. Subsequently, we use the first inequality in
Stirling’s approximation to bound the right hand side in terms of (�i)!,

�0.5

e� i0.5(��1)

· (�x)�i

(�i)�i+0.5e��i

� �0.5
p
2⇡

e� i0.5(��1)

· (�x)
�i

(�i)!
=

K
1

i0.5(��1)

· (�x)
�i

(�i)!
, (24)

where K
1

are the terms that are independent of i.
The right hand side of (24) may further be bounded from below by

K
1

i0.5(��1)

· (�x)
�i

(�i)!
� K

1

(�x)�i

(�(i+ 1))!

=

K
1

(�x)�
· (�x)

�(i+1)

(�(i+ 1))!

. (25)

The sum over i of the last expression is given on page 739, formula (8), in [25]. For our purposes it
suffices to note that it can be bounded by the exponential function

1

X

i=i

0

+1

(�x)�i

(�i)!
� K

2

e�x, (26)
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where K
2

> 0 is a constant independent of x. Putting (23)-(26) together yields

e�x �
1

X

i=i

0

x�i

(i!)�
� K

1

K
2

(�x)�
e�x,

which, recalling (22) and (23), implies that

� V �1

ln(1/ZV

) ! �

✓


n

max


�n

min

◆

1/�

def
= g

0

. (27)

Next we turn to the non-equilibrium potential. Letting x̃V

= V �1x with x � i
0

, it takes the form

�V �1

ln(⇡̃V

(x̃V

)) = �V �1

ln(⇡V

(V x̃V

))

= �V �1

2

4

V x̃

V
X

i=i

0

+1

ln(p
i�1

)� ln(q
i

)

3

5� V �1

ln(1/ZV

). (28)

The last term converges for V ! 1 as shown in (27). Using the definitions of p
i

, q
i

and �V

n

(i), the sum
in the first term in (28) becomes

�V �1

V x̃

V
X

i=i

0

+1

2

4

ln

0

@

X

n�0


n

(i� 1)(i� 2) · · · (i� ⌫
n

)

V ⌫n

1

A� ln

 

X

n<0


n

i(i� 1) · · · (i� ⌫
n

+ 1)

V ⌫n

!

3

5 .

Noting that this is a Riemann sum approximation, we have for x̃V ! x̃ 2 (0,1),

�V �1

V x̃

X

i=1

[ln(p
i�1

)� ln(q
i

)] ! �
Z

x̃

0

ln

 

P

n�0


n

x⌫n

P

n<0


n

x⌫n

!

dx
def
= g

1

(x̃),

as V ! 1. Hence, we may conclude that the non-equilibrium potential converges to the function
g
1

(x̃) + g
0

, as stated in the theorem. To conclude the proof, we only need to confirm that g fulfils
condition (2) in Definition 5, which we verify by differentiation,

d

dt
g(x(t)) = g0(x(t))x0

(t)

= � ln

 

P

n�0


n

x⌫n

P

n<0


n

x⌫n

!

·

0

@

X

n�0


n

x⌫n �
X

n<0


n

x⌫n

1

A .

This is strictly negative unless
X

n�0


n

x⌫n �
X

n<0


n

x⌫n
= 0,

in which case we are at an equilibrium.

For this particular class of systems we have

ẋ =

X

n�0


n

x⌫n �
X

n<0


n

x⌫n ,

so that the ratio in equation (21) is simply the ratio of the two terms in the equation above. The local
minima and maxima of g(x̃) are therefore the equilibrium points of the deterministically modeled system.
Further, by inspection, it can be seen that g(0) = 0 and g(x̃) ! 1 as x̃ ! 1. If none of the extrema of
g(x̃) are plateaus, then it follows that asymptotically stable and unstable equilibria must alternate and that
the largest equilibrium point is asymptotically stable (Definition 5). Around each of the stable equilibria
the function g(x̃) is a Lyapunov function.
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Example 10. Consider the following network which has three equilibria (for appropriate choice of rate
constants), two of which may be stable,

;


0

�
�1

X, 2X


2

�
�3

3X.

The deterministic model satisfies

ẋ = 
0

� 
�1

x+ 
2

x2 � 
�3

x3.

We have n
max

= 2 and n
min

= 3 such that condition (1) of Theorem 9 is fulfilled. Hence, the non-
equilibrium potential converges to the function

g(x̃) = �
Z

x̃

0

ln

✓


0

+ 
2

x2


�1

x+ 
�3

x3

◆

dx+


2


�3

. (29)

The stationary distribution of the stochastically modeled system can be obtained in closed form [11],

⇡V

(x) = ⇡V

(0)

x

Y

i=1

B[(i� 1)(i� 2) + P ]

i(i� 1)(i� 2) +Ri
,

where
B =


2


�3

, R =


�1


�3

, and P =


0


2

.

If P = R, then the distribution is Poisson with intensity B and, in fact, the system is complex balanced.
In this case the Lyapunov function (29) reduces to

g(x̃) = x̃ ln(x̃)� x̃� x̃ ln

✓


2


�3

◆

+


2


�3

.

in agreement with Theorem 8.
For a concrete example that is not complex balanced, consider the model with rate constants 

0

=

6,
�1

= 11,
2

= 6,
�3

= 1. In this case

ẋ = 6� 11x+ 6x2 � x3

= �(x� 1)(x� 2)(x� 3),

and there are two asymptotically stable equilibria at c = 1, 3 and one unstable at c = 2. Hence, the
function g(x̃) is a Lyapunov function locally around x̃ = 1, 3. ⇤
Example 11. Consider the chemical reaction network

X
k�1! ;, X

k

1! 2X,

which is equivalent to a linear birth-death process with absorbing state 0. This model has n
min

= n
max

=

1, and so for a stationary distribution to exist the second condition of Theorem 9 must hold. If we put the
death rate �

�1

(1) to 0 and assume 
�1

> 
1

, then condition (2) is fulfilled and

g(x̃) = �
Z

x̃

0

ln

✓


1

x


�1

x

◆

dx = �x̃ ln

✓


1


�1

◆

(30)

is a Lyapunov function. In fact, the stationary distribution of the modified system is proportional to

⇡V

(x) /
✓


1


�1

◆

x�1

1

x
,

which is independent of V . It follows that for x̃V ! x̃,

� 1

V
ln(⇡̃V

(x̃V

)) ⇡ �
✓

x̃V � 1

V

◆

ln

✓


1


�1

◆

+

1

V
ln(x̃V

) +

1

V
ln(V )

! �x̃ ln

✓


1


�1

◆

,

in agreement with (30). In this particular case the deterministic system converges to zero – the absorbing
state of the stochastic system – though this correspondence will not hold in general for systems with an
absorbing state. ⇤
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4.2 Other examples
Example 12. Consider the chemical reaction network,

; 

1! X, 2X


2! ;.

The network is not complex balanced, nor is it a birth-death process, hence the theory developed in the
previous sections is not applicable. The stationary distribution with scaled rate constants as in (15) can
be given in explicit form [8],

⇡(x) =
1p

2I
1

(2

p
2aV )

(aV )

x

x!
I
x�1

(2aV ), x 2 Z
�0

, and a =

r


1


2

,

where I
n

(z) is the modified Bessel function of the nth kind. To evaluate the non-equilibrium potential
we need two asymptotic results for the modified Bessel functions [13]:

I
1

(z) / 1p
2⇡z

ez, for large z,

I
n

(nz) / 1p
2⇡n

e⌘n

(1 + z2)1/4

 

1 +

1

X

k=1

u
k

(t)

nk

!

, for large n

where
⌘ =

p

1 + z2 + ln

✓

z

1 +

p
1 + z2

◆

, t =
1p

1 + z2
,

and u
k

(t), k � 1, are functions of t. Note that the sum involving u
k

(t) decreases proportionally to
n�1u

1

(t) as n gets large (the other terms vanish faster than 1

n

).
After some cumbersome calculations using the asymptotic relationships for the modified Bessel func-

tion, we obtain that the non-equilibrium potential satisfies

� 1

V
ln(⇡̃V

(x̃V

)) ! g(x̃), for x̃V ! x̃ as V ! 1,

where g(x̃) is defined by

g(x̃) = 2

p
2a� 2x̃ ln(a) + x̃ ln(x̃)� x̃(1 + ln(2))�

p

x̃2

+ 4a2

+ x̃ ln(x̃+

p

x̃2

+ 4a2

).

Another straightforward, but likewise cumbersome, calculation, shows that g(x̃) in fact fulfils condition
(2) in Definition 5. By differentiation twice with respect to x, we find that g00(x̃) > 0, hence g(x̃) is a
Lyapunov function. ⇤
Example 13. As a last example consider the chemical reaction network:

X


1! ;, ; 

2! 2X.

It is not weakly reversible, hence not complex balanced for any choice of rate constants. It is not a birth-
death process either, as two molecules are created at each “birth” event. It is similar to Example 12, but
with the reactions going in the opposite direction.

Let the rate constants {
k

} be given and let the scaled rates {V

k

} be given accordingly. The deter-
ministically modeled system takes the form

ẋ = 2
2

� 
1

x (31)

such that there is a unique equilibrium at c =

2

2



1

. Let a def
=



2

2

1

so that c = 4a. The stationary distri-
bution exists for all reaction rates and is most easily characterized in the following way (see Supporting
Information):

N = N
1

+ 2N
2

, N
1

⇠ Po(2aV ), and N
2

⇠ Po (aV ) ,

where N
1

and N
2

are two independent Poisson random variables with intensities 2aV and aV , respec-
tively. Hence, the stationary distribution can be written as

⇡(x) = e�3V a

X

k,m : x=k+2m

(2V a)k

k!

(V a)m

m!

.

13



In the Supporting Information it is shown that the limit of the non-equilibrium potential exists as
V ! 1 with x̃V ! x̃:

lim

V !1

� 1

V
ln(⇡̃V

(x̃V

)) = g(x̃),

where

g(x̃) =

Z

x̃

0

ln

 

r

1 +

2x

↵
� 1

!

dx� ln(2) x̃

(the integral can be solved explicitly, see Supporting Information). The first derivative of g fulfils

g0(x) > 0 if and only if 4a < x,

and zero if and only if 4a = x. Comparing with (31) yields

g0(x)ẋ  0 for all x > 0,

and equality only if x = 4a. The second derivative of g is positive for all x. Hence, g(x) is a Lyapunov
function.

5 Discussion
We have demonstrated a relationship between the stochastic models for (bio)chemical reaction systems
and an important Lyapunov function for the corresponding deterministic models. In particular, we showed
that this relationship holds for the class of complex-balanced systems, which contains the class of detailed
balanced systems that have been well studied in both the physics and probability literature [27]. Further,
we showed the correspondence holds for a wider class of models including those birth and death systems
that can be modeled via chemical reaction systems. It remains open just how wide the class of models
satisfying this relationship is.
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Example 13 in the Main text

In Example 13 in the main text we consider the following chemical reaction network:

X

1! ;, ; 2! 2X. (1)

The network is not weakly reversible, hence it cannot be complex balanced. Furthermore, the model
is not a birth-death process as the ‘birth event’ creates two copies of X. Consequently, we cannot
use the theory developed in the main text to determine whether the non-equilibrium potential
converges to a Lyapunov function and in case it does, the form of the Lyapunov function.

Here we prove the claims made in the main text about the network. To be precise we will show
that an equilibrium distribution exists and show that it can be given as the sum of two independent
Poisson distributions. We will use this representation to argue that the non-equilibrium potential
converges to a Lyapunov function and state its form.

Proposition 1. Let N

t

be the number of X molecules at time t in the network N . Then the

distribution of N

t

is given as the convolution of two independent random variables,

N

t

= N1,t + 2N2,t, N1,t ⇠ Po

⇣
2↵V (1� e

�k1t)2
⌘
, and N2,t ⇠ Po

⇣
↵V (1� e

�2k1t)
⌘
.

Letting t ! 1, we obtain the equilibrium distribution of X,

N = N1 + 2N2, N1 ⇠ Po(2↵V ), and N2 ⇠ Po (↵V ) ,

1



where N1 and N2 are independent random variables.

Proof of Proposition 1. Let � = V k2 and µ = k1 for convenience. Fix t > 0. The number of
birth events that has occured before time t is Poisson with rate �t. Assume a birth event happens
at time 0 < u < t. Then either zero, one or two of the X molecules might survive until time t, each
with death rate µ. The probabilities of these events are

p

u

(2) = e

�2µ(t�u)
, p

u

(1) = 2e�µ(t�u)(1� e

�µ(t�u)), and p

u

(0) = 1� p

u

(1)� p

u

(2), (2)

where p

t

(i), i = 0, 1, 2, is the probability that i lineages survive. Given that N

t

birth events have
happened, each of the N

t

events occur at a uniform random time in (0, t). Hence, the probabilities
in equation (2), averaged over time, become

P

t

(i) =
1

t

Z
t

0
p

u

(i)du,

or

P

t

(2) =
1

2µt
(1� e

�2µt), P

t

(1) =
1

µt

(1� e

�µt)2, and P

t

(0) = 1� P

t

(1)� P

t

(2).

It follows that the number of birth events for which both molecules survive is N2,t ⇠ Po(�tP
t

(2)) and
the number of birth events for which only one of the two molecules survive is N1,t ⇠ Po(�tP

t

(1)),
which coincide with those stated in the lemma. Since birth events occur independently of each
other, N1,t and N2,t are independent random variables. Further, the number of molecules at time t

is N
t

= N1,t + 2N2,t, which proves the first part.
To obtain the equilibrium distribution we let t ! 1 and obtain N1 ⇠ Po(2↵V ) and N2 ⇠

Po(↵V ), where ↵ is as defined in the lemma.

The probability distribution of N in Lemma 1 is given by

P (N = n) =
X

k,m : k+2m=n

(2V ↵)k

k!
e

�2V ↵

(V ↵)m

m!
e

�V ↵

= e

�3V ↵

X

k,m : k+2m=n

(2V ↵)k

k!

(V ↵)m

m!
, (3)

where the sum is over all positive integers k,m such that k+2m = n. The sum does not seem easy
to manipulate further.

To evaluate 1
V

ln(P (N = n)) as V ! 1 and n/V ! x, we need a version of Laplace’s method for

approximating integrals of the form
R
e

V f(x)
dx. To state the method, we first look at the sum in (3).

Each term is rewritten by taking the exponential and the logarithm to the term, and subsequently
applying Stirling’s approximation,

p
2⇡ n

n+ 1
2
e

�n  n!  e n

n+ 1
2
e

�n for n � 1 (e ⇡ 2.71),

to provide an upper and a lower bound:

(2V ↵)k

k!

(V ↵)m

m!
= exp{k ln(2V ↵)� ln(k!) +m ln(V ↵)� ln(m!)} �

p
2⇡

V

1

u

1/2(x� 2u)1/2
e

V f

x

(u)

(2V ↵)k

k!

(V ↵)m

m!
= exp{k ln(2V ↵)� ln(k!) +m ln(V ↵)� ln(m!)}  e

V

1

u

1/2(x� 2u)1/2
e

V f

x

(u)
,

(4)
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where x = n

V

, u = m

V

, and k,m > 0, such that u > 0 and x� 2u > 0, and

f

x

(u) = �u ln(u)� (x� 2u) ln(x� 2u) + (x� u)(ln(↵) + 1) + (x� 2u) ln(2).

Note that x � 2u = k

V

, x � u = k+m

V

and 0 < u <

x

2 . Only the cases m = 0 and k = 0 cannot be
bound in this way.

Consider f

x

(u) as a function on the open interval (0, x2 ) into R. The derivative of f
x

(u) with
respect to u is

f

0
x

(u) = � ln(u) + 2 ln(x� 2u)� 2 ln(2)� ln(↵),

which is decreasing in u. The function f

x

(u) attains its maximum for

u

⇤ =
1

2
(x+ ↵�

p
↵(↵+ 2x)),

which fulfills
0 < u

⇤
<

x

2
for x > 0.

The second derivative of f
x

(u) is always negative; hence f

x

(u) is convex and strictly increasing for
u < u

⇤ and strictly decreasing for u > u

⇤.
Let (a, b) be an open interval in R with a, b potentially infinite.

Theorem 1. (Laplace’s method) Assume h : (a, b) ! R and f(u) : (a, b) ! R are two functions,

such that h(u) is continuous and h(z) > 0 for all u 2 (a, b), and f(u) is twice continuously dif-

ferentiable with a unique (global) maximum u

⇤ 2 (a, b), such that f

00(u⇤) < 0. Further, assume

h(u)eV f(u)
is integrable on (a, b) for all V � 0.

Then,

Z
b

a

h(u)eV f(u)
du ⇡

s
2⇡

V |f 00(u⇤)| h(u
⇤)eV f(u⇤)

as V ! 1,

where the approximation means that the ratio of the two terms goes to one.

Lemma 1. Let P (N = n) be the probability in (3). Then

lim
V!1

� 1

V

ln(P (N = xV )) = 3↵� f

x

(u⇤),

where u

⇤
, which depends on u, is the unique maximum of f

x

(u).

Proof of Lemma 1. We assume the notation and definitions introduced above. Consider the sum
over all k,m, such that k + 2m = n and k,m > 0:

S =

n

0
VX

u= 1
V

1

u

1/2(x� 2u)1/2
e

V f

x

(u)
,

where n

0 = n�1
2 , if n is odd and n

0 = n

2 � 1, if n is even. We split the sum S into three parts:

X

u<✏

+
X

x

2�✏<u

+
X

✏ux

2�✏

1

u

1/2(x� 2u)1/2
e

V f̃

x

(u)

3



for some (small) ✏ > 0. The sum of the first two terms can be bounded downwards by 0 and upwards
by

d1V
1
2
e

V d2
,

where d1 > 0 and d2 2 R. Indeed, using the properties of f
x

(u), we have d2 = max(f
x

(✏), f
x

(x2 � ✏)),

and d1 is a number such that d1V
1
2
> max

⇣
1

u

1/2(x�2u)1/2
|u  ✏ or x

2 � ✏  u

⌘
.

The last sum can be approximated by an integral. For this, consider the function

h(u) =
1

u

1/2(x� 2u)1/2

and let u0 be given. Since f

x

�
u0 +

1
V

�
⇡ f

x

(u0) +
1
V

f

0
x

(u0) to order 1
V

, we have

a1V

Z
u0+

1
V

u0

1

u

1/2(x� 2u)1/2
e

V f

x

(u)
du  h(u0)e

V f

x

(u0)  a2V

Z
u0+

1
V

u0

1

u

1/2(x� 2u)1/2
e

V f

x

(u)
du,

for two constants a1, a2 > 0. The functions h(u), f
x

(u) and f

0
x

(u) are continuous and bounded on
[✏, x2 � ✏], hence a1, a2 can be chosen such that they are independent of u 2 [✏, x2 � ✏]. Consequently,
the bounds hold for all u 2 [✏, x2 � ✏] and we obtain

a1V

Z x

2�✏

✏

1

u

1/2(x� 2u)1/2
e

V f

x

(u)
du 

X

✏ux

2�✏

1

u

1/2(x� 2u)1/2
e

V f

x

(u)

 a2V

Z x

2�✏

✏

1

u

1/2(x� 2u)1/2
e

V f

x

(u)
du.

Using Theorem 1, the sum can further be approximated by a single term for large V . Since
h(u)eV f

x

(u) is bounded on [✏, x2 � ✏] for fixed V , the conditions for using Theorem 1 are fulfilled and
we obtain,

b1V
1
2
e

V f

x

(u⇤) 
X

✏ux

2�✏

1

u

1/2(x� 2u)1/2
e

V f

x

(u)  b2V
1
2
e

V f

x

(u⇤)
.

for some new constants b1, b2 > 0.
Consider now P (N = n). We have from the equation (3) and the definition of S that

P (N = n) = Se

�3↵V + P (N = n,N1 = 0) + P (N = n,N2 = 0).

Depending on whether n is odd or even, P (N = n,N1 = 0) might be zero. Using Stirling’s
approximation we obtain

P (N = n,N2 = 0) ⇡ e

�3↵V
e

V f

x

(0)
x

� 1
2
V

� 1
2
,

and

P (N = n,N2 = 0) ⇡ e

�3↵V
e

V f

x

(x2 )
⇣
x

2

⌘� 1
2
V

� 1
2
,

where the ⇡ means the ratio of the two terms goes to one as V ! 1.
Putting all terms in P (N = n) together, using that Se�3↵V is to a higher power in V than the

other terms, yields

lim
V!1

� 1

V

ln(P (N = xV )) = lim
V!1

� 1

V

ln(Se�3↵V ) = 3↵� f

x

(u⇤),
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which proves the claim of the lemma.

Proposition 2. The function

g(x) = 3↵� f

x

(u⇤), with u

⇤ =
1

2
(x+ ↵�

p
↵(↵+ 2x))

is a Lyapunov function for the network in (1). Further, g(x) might be written as

g(x) =

Z
x

0
ln

 r
1 +

2u

↵

� 1

!
du� ln(2)x,

as stated in the main text.

Proof of Proposition 2. From (1) we have ẋ = 2k2 � k1x. Recall that ↵ = k2
2k1

, hence the sign of
ẋ is the same as the sign of

ẋ

k1
= 4↵� x. (5)

We consider the function g(x) as a function g̃(x, u) = �3↵+ f

x

(u) of two variables (x, u) evaluated
in (x, u⇤). Hence the derivative of g(x) with respect to x is

g

0(x) =
@g̃

@u

(x, u⇤)
du

⇤

dx

+
@g̃

@x

(x, u⇤) = �@f

x

@u

(u⇤)
du

⇤

dx

� @f

x

@x

(u⇤).

The first term on the right side is 0 by definition of u⇤. Evaluating the second term yields

g

0(x) = ln

 r
1 +

2x

↵

� 1

!
� ln(2),

which fulfills
g

0(x) > 0 if and only if 4↵ < x,

and zero only when 4↵ = x. Comparing with (5) gives

g

0(x)ẋ  0 for all x > 0,

and equality only if x = 4↵. Hence g(x) is a Lyapunov function for the network (1).
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