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Abstract

Bistability is ubiquitous in biological systems. For example, bistability is found in many reaction
networks that involve the control and execution of important biological functions, such as signalling
processes. Positive feedback loops, composed of species and reactions, are necessary for bistability, and
generally for multi-stationarity, to occur. These loops are therefore often used to illustrate and pinpoint
the parts of a multi-stationary network that are relevant (‘responsible’) for the observed multi-stationarity.
However positive feedback loops are generally abundant in reaction networks but not all of them are
important for subsequent interpretation of the network’s dynamics.

We present an automated procedure to determine the relevant positive feedback loops of a multi-
stationary reaction network. The procedure only reports the loops that are relevant for multi-stationarity
(that is, when broken multi-stationarity disappears) and not all positive feedback loops of the network.
We show that the relevant positive feedback loops must be understood in the context of the network
(one loop might be relevant for one network, but cannot create multi-stationarity in another). Finally,
we demonstrate the procedure by applying it to several examples of signalling processes, including a
ubiquitination and an apoptosis network, and to models extracted from the Biomodels database.

We have developed and implemented an automated procedure to find relevant positive feedback loops
in reaction networks. The results of the procedure are useful for interpretation and summary of the
network’s dynamics.

Background
Bistability, and multi-stationarity in general, is ubiquitous in biological systems ranging from biochemical
networks to epidemiological and eco-systems [22, 23, 28, 33]. It is considered an important biological
mechanism for controlling cellular and bacterial behaviour and developmental processes in organisms, and
it is closely linked to the idea of the cell as a decision making unit, where a continuous input is converted
to an on/off response corresponding to two distinct states of the cell [19, 24].

The question of bistability therefore arises naturally in many contexts. Many studies aim to demonstrate
that in a given biochemical system, bistability can or cannot occur [7, 15, 21–23]. This has created some
interest in formal methods that connect the network structure to the dynamic behaviour of the system, see
e.g. [1, 4, 5, 9, 17, 25, 26, 31, 32].

One qualitative network feature has in particular been linked to multi-stationarity, namely the existence
of a positive feedback loop. A positive feedback loop consists of a sequence of species such that each
species affects the production of another species, either positively or negatively, and such that the number
of negative influences is even. The idea of associating positive feedback loops with bistability goes back to
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Jacob and Monod who introduced it in the context of gene regulatory networks [16]. It was later formalised
by Thomas in the form of a conjecture [30], which was finally proved by Soulé [29], see also [13, 18].

Soulé considers dynamical systems of the form

ẋ = f(x), x ∈ Ω ⊆ Rn, (1)

where x = x(t), x = (x1, . . . , xn) is the vector of species concentrations, ẋ = dx/dt is the derivative
of x with respect to time t, and f is the so-called species-formation rate function, which specifies the
instantaneous change in the concentrations.

The work of Soulé is based on the so-called interaction graph [29]. This graph encodes how the vari-
ation of one species concentration depends on the concentration of the other species. It is built from the
Jacobian matrix Jf (x∗) of f evaluated at a point x∗, such that the non-zero entries of Jf (x∗) corresponds
to directed edges of the graph and the signs of the entries are edge labels. Soulé’s analysis is mainly in-
formative when the signs of the entries are independent of x∗. He proved that the existence of a positive
feedback loop in the interaction graph is a necessary condition for f(x) to have multiple zeros. In other
words, it is a necessary condition for multi-stationarity to exist in the ODE system (1).

Soulé’s approach usually works well when modelling gene networks, but it is often useless when mod-
elling enzymatic signalling networks. In this case, the interaction graph rarely has constant labels. A related
line of work, that remedies this short-coming and might be seen as a refinement of Soulé’s work, is based
on the so-called directed species-reaction graph (DSR-graph) [2, 3, 6, 32]. If f in (1) is obtained from a
reaction network, then it decomposes in the form

ẋ = f(x) = Av(x), (2)

where A is the stoichiometric matrix of the network and v(x) the vector of reaction rates. The DSR-graph
uses this particular structure.

The DSR-graph is a bipartite graph with nodes labeled by the species and the reactions of the reaction
network. There is a signed directed edge from a species to a reaction if the species concentration contributes
either positively (positive edge label) or negatively (negative edge label) to the rate v(x) of the reaction.
There is an edge from a reaction to a species if the stoichiometric coefficient of the species in the reaction
is non-zero. In this case the edge is labelled with the sign of the stoichiometric coefficient. Compared to
the interaction graph, the DSR-graph makes use of the explicit form of f .

The DSR-graph exists in different versions depending on the labelling of the edges (signs versus stoi-
chiometric coefficients) and whether two opposite directed edges between the same node pair are combined
into one undirected edge or not [2,3,32]. It has been shown that the existence of positive feedback loops in
the DSR-graph is a necessary condition for the system (2) to admit multi-stationarity [3].

Based on these results it has become standard to highlight positive feedback loops in multi-stationary
reaction networks, eg. [22, 28]. The loops are typically found using intuitive reasoning that might overlook
the existence of other relevant positive feedback loops or might select positive feedback loops that are not
related to the existence of multi-stationarity. Here we provide a method, based on theoretical considera-
tions, to classify all positive feedback loops of a multi-stationary network into those that are related to the
observed multi-stationarity and those that are not. In other words, we determine the positive feedback loops
that when broken, multi-stationarity disappears.

The question needs to be understood in the context of the whole network and not in isolation: a particular
positive feedback loop that is responsible for multi-stationarity in one network might appear in another
network that cannot have multiple steady states.

We present an automated procedure to determine the positive feedback loops that contribute to multi-
stationarity. The procedure is based on the injectivity property applied to an ODE system of the form (2), as
described in [32]. In this context, we review the proof of the fact that positive feedback loops are necessary
for multi-stationarity and how this relates to the DSR-graph. We illustrate the procedure with examples
of multi-stationary reaction networks involved in cell signaling. We further consider the networks in the
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Biomodels database [20] and apply the procedure to all non-injective networks (injective networks cannot
be multi-stationary, see below). This provides an overview of the landscape of relevant positive feedback
loops occurring in documented reaction networks.

Methods
We use the formalism of Chemical Reaction Network Theory (CRNT) [8]. An ODE system is built from a
set of reactions and reaction rates.

Reaction networks
A reaction network, or simply a network, consists of a set of species {X1, . . . , Xn} and a set of reactions
of the form:

rj :

n∑
i=1

αijXi →
n∑
i=1

βijXi, j = 1, . . . ,m (3)

where αij , βij are nonnegative integers, called the stoichiometric coefficients. As a running example we use
the network in Figure 1. It has three species, Xcyt, Xnuc, X∗nuc, which are different forms of the Cdk1-cyclin
B1 complex, and four reactions [28].

Xcyt

Xnuc X∗
nuc

r
1

r 2

r3

r4

Figure 1: Main example. The reaction network used in [28] as a toy model to model the onset of mito-
sis. Here X is the complex Cdk1-cyclin B1 formed by the cyclin dependent kinase Cdk1 and the mitotic
cyclin B1, “cyt” indicates that the species is in the cytoplasm, “nuc” that it is in the nucleus, and X∗ is
phosphorylated CdC1-cyclin B1. Phosphorylation of Cdk1-cyclin B1 only takes place in the cell nucleus.

We denote the concentration of the species X1, . . . , Xn by lower-case letters x1, . . . , xn. The evolution
of the species concentrations with respect to time is modelled as an ODE system in the following way. We
let A = (aij) be the stoichiometric matrix of the network:

aij = βij − αij ,

that is, the (i, j)-th entry encodes the net production of species Xi in reaction rj . The vector (a1j , . . . , anj)
is called the reaction vector of reaction rj .

The rate of reaction rj is a function vj : Ωv → R≥0, where Rn>0 ⊆ Ωv ⊆ Rn≥0 and Ωv is the set of
possible species concentrations. A typical choice of v = (v1, . . . , vm) is mass-action kinetics. In this case

vj(x) = x
α1j

1 · · · · · xαnj
n , x ∈ Ωv,

with the convention that 00 = 1. Putting the pieces together provides a model for the evolution of the
species concentrations over time:

ẋ = Av(x), x ∈ Ωv. (4)
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Returning to Figure 1, we let x1, x2, x3 be the concentrations of Xcyt, Xnuc, X∗nuc, respectively. Following
[28], one model of the network is:

ẋ1 = −κ1x1 + κ2x2

ẋ2 = κ1x1 − κ2x2 −
x2(x2 + x3)4

K4 + (x2 + x3)4
+ κ4x3 (5)

ẋ3 =
x2(x2 + x3)4

K4 + (x2 + x3)4
− κ4x3,

where κ1, . . . , κ4,K > 0 are parameters. It takes the form (4) with

A =

 −1 1 0 0
1 −1 −1 1
0 0 1 −1

 , (6)

v(x) =

(
κ1x1, κ2x2,

x2(x2 + x3)4

K4 + (x2 + x3)4
, κ4x3

)
, (7)

and Ωv = Rn≥0. Observe that the phosphorylation reaction Xnuc → X∗nuc has a reaction rate that depends on
both the concentration of the reactant Xnuc and the concentration of the product X∗nuc. We also consider an
alternative model in which the rate of Xnuc phosphorylation depends on x2 only:

v(x) =

(
κ1x1, κ2x2,

x52
K4 + x42

, κ4x3

)
. (8)

This alternative model is also consistent with the set of reactions in Figure 1, but the third reaction is now
independent of the amount of X∗nuc.

Multi-stationarity
The specific form of (4) implies that the trajectories of the ODE system are confined to the so-called stoi-
chiometric compatibility classes:

C0 = (x0 + im(A)) ∩ Ωv,

where x0 = x(0) in Ωv is the initial condition. That is, the trajectories are restricted to the space spanned
by the reaction vectors. Of particular interest is the (relative) interior of C0, also called the positive stoi-
chiometric compatibility class, given by C0 ∩ Rn>0. Any trajectory that starts in C0 ∩ Rn>0, stays there, but
might be attracted towards the boundary.

A reaction network is said to be multi-stationary if there exist two distinct steady states in a positive
stoichiometric compatibility class (but not necessarily in all classes). Equivalently, if there exist distinct
positive x, y ∈ Rn>0 such that Av(x) = Av(y) = 0 and x − y ∈ im(A). A network with one positive
steady state and one steady state at the boundary is therefore not multi-stationary in this terminology.

The reaction network in Figure 1 is multi-stationarity for some choice of parameters with the rate vector
in (7) [28], but not with the rate vector in (8) (which will be shown later).

Influence matrix
The concept of a positive feedback loop is associated with structural network properties and qualitative
features of the reaction rates. Therefore, we assume some regularity on the reaction rates that we encode
into an abstract symbolic matrix, called the influence matrix. A feedback loop does not depend on specific
parameters or the specific functional form of the reaction rates.
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To proceed, we assume that the function vj(x) is strictly monotone in each variable xi and define the
influence matrix Z = (zij) as

zij =


γij if vj(x) increases in xi
−γij if vj(x) decreases in xi
0 if vj(x) is constant in xi,

where γij are symbolic variables.
The influence matrices associated with the two reaction rate vectors in (7) and (8) are given by

Z1 =

 γ1,1 0 0 0
0 γ2,2 γ2,3 0
0 0 γ3,3 γ3,4

 , (9)

and

Z2 =

 γ1,1 0 0 0
0 γ2,2 γ2,3 0
0 0 0 γ3,4

 , (10)

respectively. All influences are zero or positive.

DSR-graph
We define the DSR-graph as a labelled bipartite directed graph with node set {X1, . . . , Xn, r1, . . . , rm}
and such that:

(a) There is an edge from Xi to rj with label zij if zij 6= 0.

(b) There is an edge from rj to Xi with label aij if aij 6= 0.

We refer to the signed DSR-graph as the graph identical to the DSR-graph given by (a)-(b), but with the
labels replaced by their signs. The (signed) DSR-graph of the running example with A as in (6) and Z as
in (9) is shown in Figure 2. The (signed) DSR-graph with Z as in (10) is identical to that in Figure 2, with
the edge from X∗nuc to r3 removed.

Circuits and nuclei
A circuit in a graph G is a sequence of distinct nodes i1, . . . , iq such that there is a directed edge from ik to
ik+1 for all k ≤ q − 1 and one from iq to i1. A circuit must involve at least one edge. The label of a circuit
C, denoted `(C), is the product of the labels of the edges in the circuit. Two circuits are disjoint if they do
not have any common nodes.

A circuit with positive label is a positive feedback loop, and similarly, a circuit with negative label is
a negative feedback loop. The three positive feedback loops of the running example are shaded in Figure
2B. They correspond to shuttling of the complex between the nucleus and the cytoplasm, activation and
deactivation of Xnuc, and self-activation of Xnuc (the rate of reaction r3 increases with x3, that is, the
production of X∗nuc increases with the amount of X∗nuc).

A k-nucleus is a collection of disjoint circuits which involves k nodes [29]. The label `(D) of a k-
nucleusD is the product of the labels of the edges in the nucleus. Let a1, a2 be the number of circuits in the
nucleus that have odd (resp. even) number of species nodes and let a = a1 + a2. The sign of a k-nucleus
is defined as σ(D) = (−1)a2 . That is, if D = C1 ∪ · · · ∪ Ca is a disjoint union of circuits, then

σ(D)`(D) = (−1)a2
a∏
i=1

`(Ci). (11)
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(A) DSR-graph

Xcyt Xnuc X∗
nuc

r1

r2

r3

r4

−1
γ1,1 1

−1

γ2,2

−1
γ2,3

−1

γ3,4
1 1

γ3,3

1

(B) Signed DSR-graph

Spatial
Activation

Self-activation

Xcyt Xnuc X∗
nuc

r1

r2

r3

r4

−
+ +

−
+

−
+

−
+

+ +

+

+

Figure 2: DSR-graphs of the running example. (A) The DSR-graph. There are two 4-nuclei correspond-
ing to negative terms in the polynomial pA,Z1

: each of them consists of the red circuit combined with one
of the two blue circuits. Of these, the only positive feedback loop is the red circuit, which is responsi-
ble for the observed multi-stationarity. (B) There are three positive feedback loops in the graph, marked
with shades of grey. Only the self-activation feedback loop (red circuit in (A)) is associated a term in the
polynomial pA,Z1 , see (13). Hence the other two positive feedback loops are not relevant for the observed
multi-stationarity.

In the DSR-graph, any circuit involves an equal number of species and reaction nodes and, hence, an
even number of edges. Consider a 2s-nucleus D = C1 ∪ · · · ∪Ca of the DSR-graph. We show that if none
of the circuits are positive feedback loops, then the sign of σ(D)`(D) is (−1)s. Indeed, if all circuits have
negative labels, that is, `(Ci) = −1 for all i, then

sign(σ(D)`(D)) = (−1)a2+a = (−1)a1+2a2 = (−1)a1 .

Because D is a 2s-nucleus, it contains s species nodes. Let ni be the number of species nodes in circuit Ci,
such that s = n1 + · · · + na. We have that ni is odd for a1 of the circuits and even for a2 of the circuits.
Therefore, (−1)s = (−1)n1+···+na = (−1)a1 , and

σ(D)`(D) = (−1)s (12)

if there are no positive feedback loops in D. This result is also in [2], where it is stated using a different
terminology.
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Injectivity
In this section we study injectivity of the function x 7→ Av(x), x ∈ C0∩Rn>0 (4). In the next section we link
this injectivity property for all positive stoichiometric compatibility classes to the non-existence of positive
feedback loops in the DSR-graph. With other words, if all feedback loops are negative then the function is
injective on all positive stoichiometric compatibility classes. In particular, there cannot exist two distinct
points x, y ∈ Rn>0 in the same stoichiometric compatibility class such that Av(x) = Av(y) = 0, that is, the
network cannot be multi-stationary.

To decide whether the function Av(x) is injective on all positive stoichiometric compatibility classes
for any v(x) with given influence matrix Z, we rely on a method previously developed by us [11, 12, 32].
We will now explain this method.

Given a pair of matricesA,Z, we define a polynomial pA,Z of degree s = rank(A), in as many variables
as there are non-zero entries of Z. For this, let M = AZt and let {ω1, . . . , ωd} be a basis of im(A)⊥,
which we assume to be Gauss-reduced. Further, let i1, . . . , id be the indices of the first non-zero entries of
ω1, . . . , ωd, respectively. We define a symbolic n× n matrix, M̃ , by replacing the ij-th row of M with ωj

(cf. [32, Section 5]). The polynomial pA,Z is defined as

pA,Z = det(M̃),

which can be written as a sum of terms depending on the variables γij , by expanding the determinant. Each
non-zero term is of the form c

∏s
k=1 γikjk where c is a coefficient and all ik, respectively jk, are distinct.

It is a result of [12, 32] that if pA,Z is not identically zero and all non-zero coefficients of pA,Z have
the same sign, then the function Av(x) is injective on each positive stoichiometric compatibility class and,
hence, the network cannot be multi-stationary. As a consequence, pA,Z has coefficients of opposite sign
whenever the network is multi-stationary. If the coefficients do not have the same sign, then the network
might be multi-stationary, but it cannot be concluded from the test.

Consider the matrixA given in (6) and Z1 in (9). We choose {(1, 1, 1)} as a basis of im(A)⊥ and obtain

pA,Z1 = −γ2,2γ3,3 − γ1,1γ3,3 (13)
γ2,2γ3,4 + γ1,1γ2,3 + γ1,1γ3,4.

There are both positive and negative terms, hence multi-stationarity cannot be excluded. For Z2 in (10), the
polynomial pA,Z2 is obtained from (13) by setting γ3,3 = 0,

pA,Z2
= γ2,2γ3,4 + γ1,1γ2,3 + γ1,1γ3,4. (14)

In this case all terms have the same sign and thus, the network cannot be multi-stationary. This holds for
any choice of rate functions with influence matrix Z2.

The polynomial and circuits
In this section we link injectivity and the polynomial pA,Z to positive feedback loops. It is shown in [32]
that each term of the polynomial pA,Z can be identified with a collection of disjoint unions of circuits in
the DSR-graph G. Specifically, given subsets I, J ⊆ {1, . . . , n} of cardinality s, let Ds(I, J) be the set of
2s-nuclei of G with node set {Xi| i ∈ I} ∪ {rj | j ∈ J}. Then

pA,Z =
∑

I,J⊆{1,...,n}

∑
D∈Ds(I,J)

σ(D)`(D), (15)

where the sets I, J in the sum have cardinality s (cf. [32, Section 11]).
When pA,Z is derived from a “reasonable” reaction network, the predominant sign of the coefficients is

(−1)s. This is because, for most reactions, the species in the reactant complex will have positive influence
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on the reaction rate, and the species in the product complex will have negative influence; if they influence
the reaction at all. Consequently, if the network is multi-stationary, then pA,Z has some terms with the
wrong sign, that is, with sign (−1)s+1. Since sign(σ(D)`(D)) = (−1)s whenever D does not contain
positive feedback loops (12), we conclude that the network must contain positive feedback loops in order
to be multi-stationary.

Based on the above considerations, we develop a procedure to extract the positive feedback loops that
correspond to terms with the wrong sign in pA,Z . Fix a non-zero term of the polynomial pA,Z , say

(−1)s+1c γi1,j1 . . . γis,js (16)

(c is positive) and consider the following edges from species to reactions

Xik

±γik,jk−−−−−→ rjk .

The 2s-nuclei corresponding to the term (16) must contain these edges. Therefore, we add to these edges all
possible choices of s edges from reactions {rj1 , . . . , rjs} to species {Xi1 , . . . , Xis} such that the resulting
graph is a 2s-nucleus. We keep only the nuclei D for which the sign of σ(D)`(D) is (−1)s+1. The positive
feedback loops in these nuclei are those that do contribute to the existence of multiple steady states. Indeed,
if all these loops are broken, then the network cannot be multi-stationarity. We find these loops in the signed
DSR-graph.

For example, consider the polynomial pA,Z1
in (13) and the DSR-graph shown in Figure 2. In this

case, the rank of A is s = 2, and hence we focus on the negative terms since (−1)s+1 = −1. These
are γ2,2γ3,3 and γ1,1γ3,3. The corresponding 4-nuclei are depicted in Figure 2(A): there are two 4-nuclei
obtained as the union of the red circuit and one of the two blue circuits. The only positive feedback loop
that appears is therefore the self-activation positive feedback loop, and this is the only loop that is related to
the observed multi-stationarity. The other two positive feedback loops (termed the spatial and the activation
loop, respectively in Figure 2(B)) are therefore not relevant for the observed multi-stationarity.

Automated procedure
The procedure to select positive feedback loops that contribute to multi-stationarity consists of the following
steps.

1. For a network with stoichiometric matrix A of rank s and influence matrix Z, compute pA,Z and
select the terms with sign (−1)s+1.

2. Construct the DSR-graph. For each selected term of pA,Z with the wrong sign, determine the corre-
sponding 2s-nuclei of the DSR-graph that have the wrong sign.

3. For each of the nuclei, select the connected components that form positive feedback loops.

These steps have been implemented in Maple and the script is available upon request. The procedure
might fail for practical reasons (such as lack of computational memory) if the number of species and reac-
tions is too big. In our experience, this number depends heavily on the sparsity of the influence matrix [12].

Examples
We have applied the procedure to several multi-stationary networks. These examples are also in the Maple
script, together with some other systems such as the three-site phosphorylation system.
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Ring1B/Bmi1 ubiquitination system

We consider an ODE model of histone H2A ubiquitination that involves the E3 ligases Ring1B and Bmi1
[23]. When degradation of species is not taken into account, the model has 10 species and 15 reactions.
We let B and Bdub denote the protein Bmi1 in isolation and targeted for degradation by ubiquitination,
respectively. The protein Ring1B is denoted by R, and Rub, Raub, Rdub denote three different forms of self-
ubiquitinated R, with Rdub being the form targeted for degradation. Bmi1 and Ring1B form a complex Z,
that also might be ubiquitinated, Zub. Finally, Ring1B (either alone or in the complex Z) is responsible for
the ubiquitination of the histone H2A, with states H, Hub.

The reactions describing the mechanism are [23]:

B
r1−−⇀↽−−
r2

Bdub R
r3−−⇀↽−−
r4

Rdub B + R
r5−−⇀↽−−
r6

Z

Z
r7−−⇀↽−−
r8

Zub Zub
r9−−⇀↽−−
r10

B + Raub R
r11−−⇀↽−−
r12

Rub

Raub
r13−−→ R H

r14−−⇀↽−−
r15

Hub.

We let x1, . . . , x10 denote the concentrations of B, Bdub, R, Rdub, Rub, Raub, Z, Zub, H, Hub, respectively. The
associated reaction rates are [23]:

v1 = κ1x1 v2 = κ2x2

v3 = κ3x3 v4 = κ4x4

v5 = κ5x1x3 v6 = κ6x7

v7 = x7(κ7x7 + κ8x8) v8 = κ9x8/(κ10 + x8)

v9 = κ11x8 v10 = κ12x1x6

v11 = κ13x
2
3 + κ14x3x5 v12 = κ14x5

v13 = κ15x6 v15 = κ19x10,

v14 = x9(κ16x5 + κ17x8 + κ18x6),

where κi > 0 are constants.
Self-ubiquitination of B is taken into account in the rate functions v7 and v11 for reactions r7 and r11,

respectively. These incorporate a positive influence from the reaction products. With these specific rate
functions, the system is multi-stationary [23]. We apply the automated procedure to find positive feedback
loops and obtain the circuits depicted in Figure 3(A). In [23], it is postulated that self-ubiquitination of Z
and R are crucial steps for the emergence of multiple steady states, and we confirm the statement here.

Phosphorylation systems

We have analysed different networks of signal transmission based on phosphorylation. We consider models
for sequentially distributed phosphorylation and dephosphorylation cycles and some modifications of these,
see e.g. [10, 14].

We consider first a two-site sequential phosphorylation cycle for a substrate S, where phosphorylation
of the two sites is catalysed distributively by a kinase E, and dephosphorylation of the two sites uses differ-
ent phosphatases F1, F2. Assuming a Michaelis-Menten mechanism, the reaction network consists of the
following reactions:

E + S0
r1−−⇀↽−−
r2

ES0
r3−→ E + S1

r7−−⇀↽−−
r8

ES1
r9−→ E + S2

F1 + S1
r4−−⇀↽−−
r5

F1S1
r6−→ F1 + S0

F2 + S2
r10−−⇀↽−−
r11

F2S2
r12−−→ F2 + S1
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(A) Ubiquitination
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(B) Two-site phosphorylation cycle
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(C) Cascade with feedback
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Figure 3: Examples. (A) For the ubiquitination system two positive feedback loops are found. The loops
correspond to self-ubiquitination of Z and R, respectively. (B) There are two positive feedback loops. The
right loop corresponds to the Michaelis-Menten mechanism involving the two species E and ES1. The left
loop has four species nodes. The substrates S0 and S1 compete for the same kinase E in a way that enhances
the production of both substrates: increasing S0, decreases the amount of E (reaction r1) which decreases
the rate of reaction r7, which in turn increases the amount of S1. (C) Of the three positive feedback loops
that are found, two correspond to the Michaelis-Menten mechanism (right side). One involves the kinase E
and the complex ES0. The second is similar, involving the kinase S1 of the second layer and the complex
S1P0. The left loop has five species nodes and illustrates P1-activation of the kinase E. (D) The apoptosis
system has two loops. The left loop occurs because C∗8 in reaction r1 increases the amount of C∗3, which in
turn increases the amount of C∗8 via reaction r2.

10



In S0, S1, S2 the subindex denotes the number of phosphorylated sites. With mass-action kinetics, this
system is multi-stationary [10, 22]. However, the positive feedback loops that can account for the observed
multi-stationarity are not trivial.

We apply the automated procedure and obtain the positive feedback loops given in Figure 3(B). The first
of the two loops has two edges with negative labels. It implies that S0 and S1 enhance their own production.
Indeed, because S0 and S1 both compete for the same kinase, an increase in S0 increases the rate of reaction
r1, which in turn lowers the amount of available enzyme E. This implies that reaction r7 slows down and
hence S1 is consumed at a slower rate. The circuit closes through the reactions r4 and r6, which shows that
an increase in S1 implies an increase in S0.

These type of loops are recurrent in phosphorylation motifs. It is worth emphasising that the loops do
not have independent meaning outside to network. Another network with the same positive feedback loop
might not be multi-stationarity. This is apparent from the second positive feedback loop in Figure 3(B),
which is present whenever a Michaelis-Menten enzymatic mechanism is considered.

Signalling cascades

We consider a 2-layer cascade with an explicit positive feedback. The first layer is a phosphorylation cycle
with kinase E, phosphatase F1, and phosphorylated and unphosphorylated substrate S0, S1. The second
layer has kinase S1, phosphatase F2, and phosphorylated and unphosphorylated substrate P0, P1. Assuming
a Michaelis-Menten mechanism, the reaction network consists of the following reactions:

E + S0
r1−−⇀↽−−
r2

ES0
r3−→ E + S1

F1 + S1
r4−−⇀↽−−
r5

F1S1
r6−→ F1 + S0

S1 + P0
r7−−⇀↽−−
r8

S1P0
r9−→ S1 + P1

F2 + P1
r10−−⇀↽−−
r11

F2P1
r12−−→ F2 + P0

P1
r13−−→ E.

The automated procedure finds three positive feedback loops, as shown in Figure 3(C). The first loop is
expected and appears because the product of the second layer, P1, activates the kinase of the first layer, E.
The other two loops are similar to those in Figure 3(C).

Apoptosis

We finally consider a basic model of caspase activation for apoptosis [7]:

C∗8 + C3
r1−→ C∗8 + C∗3 C8

r6−−⇀↽−−
r7

0

C8 + C∗3
r2−→ C∗8 + C∗3 C3

r8−−⇀↽−−
r9

0

C∗3 + IAP
r3−−⇀↽−−
r14

Y
r4−→ 0 IAP

r10−−⇀↽−−
r11

0

C∗3 + IAP
r5−→ C∗3

r13−−→ 0 C∗8
r12−−→ 0.

With mass-action kinetics, this network is multi-stationary [7] and has two relevant positive feedback loops,
Figure 3(D). The second loop consists of two species, each with positive influence on a reaction rate, while
at the same time, decreasing the amount of the other.
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Analysis of the Biomodels database
We investigated the models in the database PoCaB [27], which consists of 365 models from the publicly
available database Biomodels [20] (see also the page http://www.ebi.ac.uk/biomodels-main/). The database
PoCaB contains pre-computed stoichiometric matrices, mass-action exponent matrices, and kinetic data
from the selected models.

In a previous paper [12] we extracted influence matrices of the reported kinetics. Of the 365 networks,
323 have strictly monotone kinetics such that the influence matrix is well defined. On these 323 networks
we ran the injectivity method and ended up with a total of 64 non-injective networks, excluding 27 very
large networks where the injectivity method failed (as described in [12]). Non-injectivity is a prerequisite
for being multi-stationary.
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Figure 4: Biomodels database. (A) The positive feedback loops with one species. Among the 32 loops
with one species, the frequencies are 19 and 13. (B) The positive feedback loops with 2 species. Among
the 108 loops with 2 species, the frequencies are (from top left, row by row): 35, 16, 9, 16, 13, 23. (C) The
histogram shows the size (number of species) distribution among the 341 positive feedback loops found in
the 64 models.

We applied the automated procedure on the 64 networks to determine the positive feedback loops. We
obtained a total of 341 different positive feedback loops with size distribution shown in Figure 4(C). Most
loops involve only 2 or 3 species (112 and 108 loops out of 341, respectively). In Figure 4(A-B), we show
the positive feedback loops involving one or two species and conclude that all possible types occur in the
database. However, for two species, their frequencies vary from 9 to 35 (out of 108), indicating that the
motifs are not equally represented in the database (Pearson’s chi-square test, p < 0.0005). For one species,
there appears to be no difference (p = 0.28). We show in Table 1 the most frequent positive feedback loops
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for different number of species nodes.

N Motif Frequency
2 (−,−,−,−) 23/112 = 0.21

(+,+,+,+) 35/112 = 0.31
3 (+,−,+,−,−,−) 19/108 = 0.18

(+,+,+,+,+,+) 18/108 = 0.17
4 (+,+,−,+,−,+,−,−) 15/68 = 0.22

(+,+,+,+,−,+,−,+) 15/68 = 0.22
(+,+,+,+,+,+,+,+) 14/68 = 0.21

5 (+,+,+,+,+,+,−,+,−,+) 9/25 = 0.36
(+,+,+,+,+,+,+,+,+,+) 7/25 = 0.28

6 (+,+,+,+,+,+,+,+,−,+,−,+) 6/28 = 0.21
(+,+,+,+,+,+,+,+,+,+,+,+) 7/28 = 0.25

7 (+,+,+,+,+,+,+,+,+,+,−,+,−,+) 14/41 = 0.34

Table 1: Positive feedback loops. For N = 2, . . . , 7 species nodes, the most frequent (>15%) positive
feedback loops for each N are shown, together with their frequencies. At most four negative labels occur.
Each cycle starts at a reaction node and the odd (even) labels correspond to reaction (species) nodes. Note
that, for example, (−,−,+,+,+,+) and (+,+,−,−,+,+) are the same as they are permutations of each
other.

Discussion
We have presented an automated procedure to find the positive feedback loops in a multi-stationary network.
The procedure relies on structural and qualitative features of the network together with a kinetics, and it
is insensitive to the specific form of the rate functions. Only positive feedback loops that are contributing
to the multi-stationarity of the network are reported, excluding those positive feedback loops that are not
relevant.

Whether a loop is relevant or not, depends on the entire DSR-graph of the network (that is, the reactions
and the influence matrix) and not just on the loop itself. In this sense, being a positive feedback loop related
to an observed multi-stationarity, is a context or network dependent property. This fact has also been
observed in [2, 3, 6]. In these papers, it is shown that the existence of a positive feedback loop fulfilling
a certain extra condition is a requirement for multi-stationarity to occur. Specifically, the loop must either
intersect another positive feedback loop in a specific way (called an S-to-R intersection) or fulfil a certain
condition on the labels (called an s-cycle). The first possibility is network dependent. It is worth mentioning
that there can be positive feedback loops that are s-cycles or that intersect another positive feedback loop
in an S-to-R intersection without being relevant for the observed multi-stationarity. This is the case for
most of the examples presented here. For example, the apoptosis network has another positive feedback
loop, Y→ r14 → IAP → r3 →Y (all edges are positive), which intersects the loop on the right side in
Figure 3(D) in an S-to-R intersection.

The property of network dependence is further illustrated in Figure 2(A)-(B), where the procedure
is applied to the reaction network in Figure 1 with influence matrix given by (9). The network models
translocation and phosphorylation of a cyclin dependent kinase X in the onset of mitosis. Only one of the
three positive feedback loops shown in Figure 2(B) can be associated with multi-stationarity in the model,
namely the self-activating loop that stimulates the creation of phosphorylated X∗nuc in the nucleus. In [28],
it is argued by different means than in this paper, that the spatial redistribution of the cyclin dependent
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kinase is important for creating the observed bistability. In contrast, our results suggest that the observed
bistability is due to the self-activation loop of the phosphorylated complex in the nucleus.

The presented procedure cannot establish whether a reaction network is multi-stationary or not. Other
means will here be required. If the procedure is applied to a reaction network that might or might not
be multi-stationary, then the absence of positive feedback loops implies that the network cannot be multi-
stationary, whereas the presence of positive feedback loops leaves the question open.

Whether a positive feedback loop found by the procedure is important in a biological or experimental
context, is not addressed in this paper, but must be established in other ways, for example by experimental
verification. A reaction network might only be multi-stationary for very specific choices of reaction rates,
which might not be relevant in a particular experimental setting. As the procedure is parameter independent,
any such verification and subsequent interpretation is beyond the scope of the procedure.
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