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Filipiak and Markiewicz (2012) proved the universal optimality of circular weakly
neighbor balanced designs (CWNBDs) under the interference model with fixed neighbor
effects among the class of complete block designs. In two special cases where a CWNBD
cannot exist, Filipiak et al. (2012) characterized D-optimal designs. The aim of this
paper is to show the universal optimality of CWNBDs and to characterize D-optimal
designs under the interference model with random neighbor effects.

Keywords Circular weakly neighbor balanced designs; D-optimality; Information
matrix; Interference model; Left-neighboring matrix; Universal optimality.

Mathematics Subject Classification 62K05; 62K10.

1. Introduction

A basic problem in the theory of experimental designs is to characterize optimal designs.
If in an experiment the response to a treatment is affected by the other treatments (for
example, in agricultural and horticultural experiments), then the optimality of designs
under an interference model is studied. David et al. (2001) use several models to analyze
data from such trials, including a model with random interference effects. Jones et al. (1992)
give information matrices for a mixed effects model with random interference effects with
the same variances and determine optimal repeated measurements designs. Filipiak and
Markiewicz (2003, 2007) proved the universal optimality of circular neighbor balanced
designs (CNBDs) under an interference model with random neighbor effects. This is an
extension of results presented by Druilhet (1999) for a fixed interference model. Filipiak and
Markiewicz (2012) showed that circular weakly neighbor balanced designs (CWNBDs) are
universally optimal under the fixed interference model. The aim of this paper is to generalize
these results for the mixed interference model with random neighbor effects.

The conditions for the existence of CNBDs and CWNBDs are quite strict: see, for
example, Druilhet (1999) and Filipiak and Markiewicz (2012). In the case where the
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A Mixed Interference Model 4535

universally optimal designs cannot exist, optimality with respect to the specified criteria is
considered. Filipiak et al. (2008) and Filipiak et al. (2012) characterized E- and D-optimal
designs under the fixed interference models over some classes of complete block designs
with t treatments and b = t − 2 or b = t . It is interesting to extend these results to the
mixed interference model. The problem of the characterization of E-optimal complete
block designs is considered in Filipiak and Różański (2012). The aim of this paper is
to characterize D-optimal designs among some complete block designs under the mixed
interference model.

This paper is organized as follows. First we present some general definitions and nota-
tion. In Sec. 3 we prove the universal optimality of CWNBDs over the class of equireplicated
complete block designs. In Sec. 4 we characterize the structure of the left-neighboring ma-
trix of a D-optimal design with t = k = b + 2 and t = k = b, and we make some remarks
on the construction of D-optimal designs with examples. In both sections we assume the
mixed interference model.

2. Definitions and Notation

Let us consider an experiment in which t treatments are arranged in n non-homogeneous
units grouped in b blocks each of size k. The set of such designs we denote by Dt,b,k . An
interference model with left-neighbor effects associated with the design d ∈ Dt,b,k can be
written as

y = Tdτ + Ldλ + Bβ + ε, (1)

where τ and β are the vectors of treatment and block effects, respectively. Here λ and
ε are the vectors of random left-neighbor effects and random errors, respectively, with
E(λ) = 0t, Cov(λ) = σ 2

LIt , E(ε) = 0n, Cov(ε) = In, and Cov(λ, ε) = �n, where σ 2
L is

a known constant. The matrices In and �n are identity and zero matrices of order n,
respectively, and 0n is n-dimensional vector of zeros. The matrix B = Ib ⊗ 1k is the design
matrix of block effects, where 1k is a k-dimensional vector of ones and ⊗ denotes the
Kronecker product. By � we denote Cov(y) = σ 2

LLdL′
d + Ibk .

Let Tdu be the design matrix of treatment effects in block u, 1 ≤ u ≤ b. Further, define
Td = (T′

d1 : · · · : T′
db)′ as the design matrix of treatment effects. For each u we define

Ldu = HkTdu, where Hk is a k × k matrix of the form:

Hk =
(

0′
k−1 1

Ik−1 0k−1

)
.

Then, Ld = (Ib⊗Hk)Td is the design matrix of left-neighbor effects. This form of the matrix
Hk follows from the assumption that each treatment has a left neighbor. This situation may
occur if each block of a design has the form of a circle. If plots in blocks are arranged in
linear forms, we can obtain the effect of circularity by adding border plots at the beginning
of each block, where the treatment at the border plot is the same as the treatment at the
opposite end of the block (for more details see, e.g., Druilhet, 1999). The border plots
receive treatments but are not used for measuring the response variables.

Model (1) with random neighbor effects λ is called a mixed interference model and is
denoted by Mσ . Following Jones et al. (1992), by M∞ we denote the model in which the
variance tends to infinity (σ 2

L = ∞). Such a model is called a fixed interference model. On
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4536 Filipiak and Markiewicz

the other hand, if σ 2
L = 0, model (1) is a model without neighbor effects and is denoted by

M0.
For any m × n matrix A we define QA = Im − A(A′A)−A′, the orthogonal projector

onto the orthocomplement of the column span of a matrix A, where (A′A)− denotes a
generalized inverse of A′A. Observe that QB = Ib ⊗ Ek , where Ek = Ik − 1

k
1k1′

k .
Further, let Cd,u denote information matrices of d for estimating τ in model Mu under

normality, where u ∈ {σ,∞}.
From Filipiak and Markiewicz (2007), for Cov(λ) = σ 2

LIt the information matrix Cd,σ

can be expressed as

Cd,σ = T′
dQBTd − σ 2

LT′
dQBLd (σ 2

LL′
dQBLd + It )

−1L′
dQBTd (2)

or equivalently, from Jones et al. (1992), as

Cd,σ = T′
d�

−1Td − T′
d�

−1B(B′�−1B)−1B′�−1Td = T′
d�

−1/2Q�−1/2B�−1/2Td (3)

with �−1 = In −Ld�L′
d , where � is a diagonal matrix of order t with σ 2

L

1+riσ
2
L

, i = 1, · · · , t ,
and ri is the number of replications of the ith treatment in the design.

Since 1n is a vector in the column span of matrix B, the following inequality is satisfied:

Cd,σ = T′
d�

−1/2Q�−1/2B�−1/2Td �L T′
d�

−1/2Q�−1/21n
�−1/2Td , (4)

for every design d ∈ Dt,b,k , where for two t × t symmetric matrices A and B the notation
A �L B means that A is below B in the Loewner ordering, i.e., B−A is non-negative definite.
The matrix on the right-hand side of (4) is the information matrix for the interference model
with general mean and random neighbor effects and without block effects, i.e.,

y = μ1n + Tdτ + Ldλ + ε, (5)

with Cov(y) = σ 2
LLdL′

d + Ibk . Such a model can be studied if the experiment is assumed
to use circular blocks, but the experimental conditions may be equal in every block; cf.
Hwang (1973).

It should be noted that from the equality H′
kEkHk = Ek it follows that L′

dQBLd =
T′

dQBTd . Moreover, since the matrix QBTd has zero row sums, the matrices T′
dQBTd ,

T′
dQBLd in (2) and Cd,σ have row and column sums zero. Observe that

T′
dQBLd = T′

dLd − k−1T′
dBB′Ld = Sd − k−1NdN′

d ,

where Sd = T′
dLd = (sd,ij )1≤i,j≤t is called a left-neighboring matrix of design d (c.f. Fil-

ipiak et al., 2008) and Nd = B′Td = B′Ld = (nd,ij )1≤i≤t,1≤j≤b is an incidence matrix of
design d. For a design d ∈ Dt,b,k the symbols sd,ij and nd,ij are, respectively, the number of
occurrences of treatment i with treatment j as a left neighbor and the number of occurrences
of treatment i in block j. It is easy to see that Sd1t = rd , where rd = (rdi)1≤i≤t is a vector of
replications of treatments. Moreover, for binary complete block designs, i.e., designs with
t = k such that every treatment occurs once in each block, Nd = 1t1′

b and the information
matrix Cd,σ depends on the design only with respect to Sd .

Since the matrix Cd,σ has zero row and column sums, to characterize universally
optimal designs we use Kiefer’s (1975) Proposition 1.

Assume that we have a design d∗ ∈ Dt,b,k such that Cd∗,u, u ∈ {σ,∞} is completely
symmetric and that trCd∗,u is maximal over Dt,b,k . Then the design d∗ is universally optimal
in Kiefer’s sense in the class Dt,b,k under the model Mu.
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A Mixed Interference Model 4537

Recall that an m×m matrix A is called completely symmetric if all its diagonal elements
are equal and all its off-diagonal elements are equal.

It is known that for some combinations of design parameters, for example, t = k = b+2
or t = k = b, universally optimal designs cannot exist (for more details see, e.g., Druilhet,
1999, Filipiak and Markiewicz, 2003, 2007, 2012). Therefore in such cases we characterize
D-optimal designs over some special classes of designs under the mixed interference model.
The presented results are an extension of results given by Filipiak et al. (2012) for the fixed
interference model.

A design d∗ ∈ Dt,b,k is called D-optimal overDt,b,k if
∏t−1

i=1 λi(Cd∗,u) ≥ ∏t−1
i=1 λi(Cd,u),

u ∈ {σ,∞}, for all designs d ∈ Dt,b,k , where 0 = λ0(Cd,u) ≤ λ1(Cd,u) ≤ · · · ≤ λt−1(Cd,u)
are the eigenvalues of the information matrix Cd,u; cf. Pukelsheim (1993).

Throughout the paper we will use the property of permutational similarity. Recall, that
the matrix P′AP, where P ∈ Pt is a permutation matrix of order t and A is an arbitrary t × t

matrix, is said to be permutationally similar to A. It is known that the eigenvalues (and
consequently the determinant) of A and a matrix permutationally similar to A are equal.

3. Universal Optimality of Designs

Let us define CWNBDS as follows.

Definition 1. (Filipiak and Markiewicz, 2012)
Let b 
= x(t − 1), x ∈ N. A circular binary design d ∈ Dt,b,t with sd,ij ∈ {x − 1, x},

i 
= j , and completely symmetric matrix SdS′
d is called a CWNBD.

Note that for b = x(t − 1) we obtain the definition of CNBD, i.e., a design with
Sd = x(1t1′

t − It ); cf. Druilhet (1999).
From Filipiak and Markiewicz (2012) it follows that a necessary condition for the

existence of a CWNBD with (x − 1)(t − 1) < b ≤ x(t − 1), x ∈ N is

b(b − 2x + 1)

t − 1
∈ N.

Filipiak and Markiewicz (2012) proved the universal optimality of CWNBDs under
the model M∞ among the designs from Dt,b,t if b ≤ t − 1, and from Rt,b,t if b > t − 1,
where Rt,b,k ⊂ Dt,b,k is the class of equireplicated designs with no treatment preceded by
itself. In this section, we study the universal optimality of CWNBDs under the model Mσ .
By Rt,b,k ⊂ Dt,b,k we denote the class of equireplicated designs.

Theorem 1. For every σ 2
L ∈ (0,∞] a CWNBD is universally optimal over the class Rt,b,t ,

b < t − 1, and over the class Rt,b,t , b > t − 1, under the interference model Mσ .

Proof. Let d∗ ∈ Dt,b,t be a CWNBD such that (x −1)(t −1) < b ≤ x(t −1), x ∈ N. Since

CWNBD is binary and complete, T′
d∗B = 1t1′

b, �−1 = Ibk − σ 2
L

1+bσ 2
L

Ld∗L′
d∗ and

T′
d∗�

−1Td∗ = bIt − σ 2
L

1 + bσ 2
L

Sd∗S′
d∗ , T′

d∗�
−1B = 1

1 + bσ 2
L

1t1′
b,

B′�−1B = t

(
Ib − σ 2

L

1 + bσ 2
L

1b1′
b

)
, (B′�−1B)−1 = 1

t
(Ib + σ 2

L1b1′
b)
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4538 Filipiak and Markiewicz

are the elements of (3). Hence

Cd∗,σ = bIt − σ 2
L

1 + bσ 2
L

Sd∗S′
d∗ − b

t(1 + bσ 2
L)

1t1′
t . (6)

Observe that all diagonal entries of Sd∗ are equal to zero, and in each row (b−(x−1)(t −1))
entries are equal to x and (x(t − 1) − b) entries are equal to x − 1. Thus, for i = 1, · · · , t

(Sd∗S′
d∗ )ii = (b − (x − 1)(t − 1))x2 + (x(t − 1) − b)(x − 1)2 =

= b(2x − 1) − x(x − 1)(t − 1)

and

tr Cd∗,σ = bt − b

1 + bσ 2
L

− σ 2
L

1 + bσ 2
L

tr Sd∗S′
d∗ =

= bt − b

1 + bσ 2
L

− tσ 2
L

1 + bσ 2
L

(b(2x − 1) − x(x − 1)(t − 1)) .

Let d ∈ Rt,b,t . Then

T′
d�

−1Td = bIt − σ 2
L

1 + bσ 2
L

SdS′
d , T′

d�
−11n = b

1 + bσ 2
L

1t , 1′
n�

−11n = bt

1 + bσ 2
L

and from (4)

Cd,σ �L bIt − σ 2
L

1 + bσ 2
L

SdS′
d − b

t(1 + bσ 2
L)

1t1′
t . (7)

We obtain

tr Cd,σ ≤ bt − b

1 + bσ 2
L

− σ 2
L

1 + bσ 2
L

tr SdS′
d

and it is enough to show

tr SdS′
d ≥ tr Sd∗S′

d∗ . (8)

(a) Let b < t − 1. Then

tr SdS′
d =

t∑
i=1

t∑
j=1

s2
d,ij ≥

t∑
i=1

t∑
j=1

sd,ij = bt = tr Sd∗S′
d∗ .

(b) Let b > t − 1 and let u = (x, · · · , x, x − 1, · · · , x − 1)′ be the t(t − 1)-dimensional
vector of integers with

∑t(t−1)
i=1 ui = bt . Observe that u is majorized by any other vector of

integers v with v′1t(t−1) = bt , i.e., vecSd∗ is majorized by vecSd for all d ∈ Rt,b,t , b > t −1,
where vecSd denotes the vector formed by writing the columns of Sd one under the other
in sequence. Thus due to Proposition C.1. of Marshall and Olkin (1979, p. 64), we obtain
(8). �

Remark. A CWNBD is binary and complete, so it is balanced with respect to the blocks.
Such designs are universally optimal over Dt,b,t under the model M0; see, e.g., Shah and
Sinha (1989).
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A Mixed Interference Model 4539

A method of construction of some CWNBDs is given in Filipiak and Markiewicz
(2012).

Example 1. The following CWNBD is universally optimal over R7,3,7:

d∗ =
⎛⎝1 2 3 4 5 6 7

1 3 5 7 2 4 6
1 5 2 6 3 7 4

⎞⎠ .

Now we show an example of a non-equireplicated design d# such that

tr
(
T′

d#�
−1/2Q�−1/21n

�−1/2Td#

)
> tr Cd∗,σ ,

where d∗ is CWNBD. This example shows that inequality (4) does not give a good upper
bound for the trace of the information matrix.

Example 2. For the following design:

d# =
⎛⎝ 1 2 1 4 5 6 7

1 3 5 7 2 4 6
1 5 2 6 3 7 4

⎞⎠
and d∗ from Example 1 we have

tr
(
T′

d#�
−1/2Q�−1/21n

�−1/2Td#

)− tr Cd∗,σ = 2
(−1 − 4σ 2

L + 9σ 4
L

)
21 + 187σ 2

L + 540σ 4
L + 504σ 6

L

which is positive for every σ 2
L > 2+√

13
9 . However

tr Cd#,σ − tr Cd∗,σ = −2
(
1 + 8σ 2

L + 19σ 4
L + 24σ 6

L

)
7 + 61σ 2

L + 172σ 4
L + 156σ 6

L

is negative for every σ 2
L and d# is not better then d∗.

We should note that the above results are not surprising. Kunert (1994) considered a
model

y = μ1n + Tdτ + Bβ + ε

with Cov(y) = σ 2BB′ + In and with variable block sizes. He showed that balanced incom-
plete block designs which are universally optimal under the model without block effects
and under the model with fixed block effects are not necessary universally optimal under
the model with random block effects. In such a case competing designs have unequal block
sizes. Observe that in model (5) the role of Bβ is played by Ldλ, with an unequal number
of replications instead of unequal block sizes.

4. D-optimality of Designs

In this section, we characterize D-optimal designs under the mixed interference model over
the classes of complete block designs with b = t − 2 and b = t . The results are based on
the paper by Filipiak et al. (2012).
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4540 Filipiak and Markiewicz

Let P̃t be the class of permutation matrices of order t with zeros on the diagonal (the
class of derangement matrices) and let Bt,b,k be the class of binary designs. We define the
following classes:

B̃t,t−2,t = {d ∈ Bt,t−2,t : Sd = 1t1′
t − It − Pd , Pd ∈ P̃t }

and

B̂t,t,t = {d ∈ Bt,t,t : Sd = 1t1′
t − It + Pd , Pd ∈ P̃t }.

Observe that every derangement matrix Pd is permutationally similar to the diagonal
matrix diag(Ht1 , · · · , Htm ),

∑m
j=1 tj = t , tj 
= 1, where m is the number of cycles in a

permutation matrix and tj is the length of the jth cycle. We should note that, if Pd is
permutationally similar to Ht , then the designs from B̃t,t−2,t and B̂t,t,t can be constructed
from CNBDs with b = t − 1 by, respectively, removing and repeating one block. This
follows from the form of the left-neighboring matrix of CNBD, i.e., if a design d# is a
CNBD with b = t − 1, then Sd# = 1t1′

t − It ; cf. Druilhet (1999).
Since designs from the class B̃t,t−2,t and B̂t,t,t are binary and complete, the information

matrix has the form (6).

4.1. D-optimality Over Rt,t−2,t

Assume d ∈ B̃t,t−2,t and Pd ∈ P̃t . From (6)

Cd,σ =
(

t − 2 − 2σ 2
L

1 + (t − 2)σ 2
L

)
It − t − 2 + t(t − 4)σ 2

L

t(1 + (t − 2)σ 2
L)

1t1′
t − σ 2

L

1 + (t − 2)σ 2
L

(Pd + P′
d ).

Observe that the matrices Cd,σ and Cd,σ + β1t1′
t have the same eigenvectors and that

the eigenvalues corresponding to those eigenvectors are the same, except the vector 1t ,
which is an eigenvector of both matrices corresponding to the eigenvalues 0 and βt ,
respectively. Thus the product of t − 1 eigenvalues of Cd,σ is equal to the determinant of

Cd,σ + β1t1′
t divided by βt , and it is enough to compare determinants of 1+(t−2)σ 2

L

σ 2
L

Cd,σ +
t−2+t(t−4)σ 2

L

tσ 2
L

1t1′
t = αIt − (Pd + P′

d ) for different matrices Pd , with α = t2 − 4t + 2 + t−2
σ 2

L

.

For convenience, we denote the above matrix by C̃d,σ .
The following lemma will be useful in proving D-optimality results.

Lemma 1. (Filipiak et al., 2012) If P ∈ Pt is permutationally similar to Ht , then det(αIt −
(P + P′)), α > 2, is maximal over Pt .

Now we state the following.

Theorem 2. If there exists a design d∗ ∈ B̃t,t−2,t , t ≥ 3, such that the left-neighboring
matrix Sd∗ is permutationally similar to 1t1′

t − It − Ht , then d∗ is D-optimal over Rt,t−2,t ,
under the interference model Mσ .

Proof. Let d∗ be a design such that Sd∗ is permutationally similar to 1t1′
t − It − Ht , t ≥ 3.

Due to Filipiak et al. (2012) we have

det
(
αIt − (Ht + H′

t )
) = −2 + xt + yt (9)
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A Mixed Interference Model 4541

with

x = α − √
α2 − 4

2
, y = α + √

α2 − 4

2
. (10)

Observe that for α > 2 the following inequalities hold:

0 < x <
α − (α − 2)

2
= 1, α − 2

α
= α + α − 4

α

2
< y <

α + α

2
= α. (11)

From (9), (11) and binomial evaluation

det C̃d∗,σ = det
(
αIt − (Ht + H′

t )
) =

= −2 + xt + yt > yt − 2 >
(
α − 2

α

)t − 2 > αt − 2tαt−2 − 2.
(12)

(a) Let d ∈ B̃t,t−2,t . Observe, that for t ≥ 4 and σ 2
L ∈ (0,∞] we have α > 2 and the claim

follows directly from Lemma 1. For t = 3 there is only one block in the design (Sd = Pd ,
Pd ∈ P̃t ) and from (6) it follows that Cd,σ = 1

1+σ 2
L

E3 does not depend on the design.

(b) Let d ∈ Rt,t−2,t \ B̃t,t−2,t . Due to (4) and (7) we may write

C̃d,σ �L

(
t − 2

σ 2
L

+ (t − 2)2

)
It − SdS′

d + (t − 4)1t1′
t . (13)

Recall that for every hermitian matrix the product of the eigenvalues of the matrix is
majorized by the product of the diagonal entries of the matrix; cf. Marshall and Olkin (1979).
Observe that the row and column sums of Sd is t − 2. Since for every d ∈ Rt,t−2,t \ B̃t,t−2,t

at least one entry of Sd is not smaller than 2, at least one diagonal entry of the matrix on
the right-hand side of (13) is not greater than t−2

σ 2
L

+ (t − 2)2 − t + (t − 4) = α − 2, and

the remaining diagonal entries are not greater than t−2
σ 2

L

+ (t − 2)2 − (t − 2) + (t − 4) = α.
Hence

det C̃d,σ ≤
t∏

i=1

(
C̃d,σ

)
ii

≤ αt−1(α − 2). (14)

Comparing (12) and (14) we obtain

αt−1(α − 2) − (αt − 2tαt−2 − 2) = −2αt−2(t2 − 6t + 2) + 2 ≤ 0

for t ≥ 6. If t = 5 we obtain the claim by comparing (14) with
(
α − 2

α

)t − 2.
Let t = 4. Then the design with the given structure of left-neighboring matrix cannot

exist. The only design from the class B̃4,2,4 is a design with the left-neighboring matrix
permutationally similar to 141′

4 − I4 − H2
4. For example, such a design has the form:

d1 =
(

1 2 3 4
1 4 3 2

)
. The remaining designs can be constructed by relabeling treatments in

this design. D-optimality of d1 is proved by direct comparison of d1 with all equireplicated
designs.

For t = 3 all designs from R3,1,3 \ B̃3,1,3 are disconnected. �

We should note that under the fixed interference model the designs given in Theorem
2 are D-optimal over the class Dt,t−2,t ; cf. Filipiak et al. (2012).
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4542 Filipiak and Markiewicz

4.2. D-optimality Over Rt,t,t

Assume d ∈ B̂t,t,t and Pd ∈ P̃t . From (6)

Cd,σ =
(

t − 2σ 2
L

1 + tσ 2
L

)
It − 1t1′

t + σ 2
L

1 + tσ 2
L

(Pd + P′
d ).

Similarly as in the previous sections, to characterize a D-optimal design it is enough to
compare the determinants of 1+tσ 2

σ 2 (Cd,σ + 1t1′
t ) = αIt + Pd + P′

d , α = t2 − 2 + t
σ 2 , for

different matrices Pd . For convenience, we denote the above matrix by Ĉd,σ .
The following lemma will be useful in proving D-optimality results.

Lemma 2. [Filipiak et al., 2012] If P ∈ P̃t is permutationally similar to

(i) Im ⊗ H3, for t = 3m, m ∈ N \ {1};
(ii) diag(Im ⊗ H3, H4), for t = 3m + 4, m ∈ N;

(iii) diag(Im ⊗ H3, H5), for t = 3m + 5, m ∈ N,
then det(αIt + P + P′), α ≥ 2.5, is maximal over P̃t . Moreover, if 2 ≤ t ≤ 5 then
the determinant of αIt + Ht + H′

t is maximal over P̃t for α > 2.

Now we state the following.

Theorem 3. If there exists a design d∗ ∈ B̂t,t,t , t ≥ 3, such that Sd∗ is permutationally
similar to

(i) Im ⊗ H3 + 1t1′
t − It , for t = 3m, m ∈ N;

(ii) diag(Im ⊗ H3, H4) + 1t1′
t − It , for t = 3m + 4, m ∈ N ∪ {0};

(iii) diag(Im ⊗ H3, H5) + 1t1′
t − It , for t = 3m + 5, m ∈ N ∪ {0},

then d∗ is D-optimal over Rt,t,t under the interference model Mσ .

Proof. Let d∗ be a design such that Sd∗ is permutationally similar to the respective matrix
from the theorem. Due to Filipiak et al. (2012) we obtain

det
(
αIt + Ht + H′

t

) =
{−2 + xt + yt , for even t ,

2 + xt + yt , for odd t ,
(15)

with x and y defined in (10). Observe that for α ≥ 2.13 the following inequalities are valid:

0 < x ≤ α − (α − 1)

2
= 1

2
, α − 3

2α
= α + α − 1

2
≤ y <

α + α

2
= α. (16)

From (15) we have

det Ĉd∗,σ =

=
⎧⎨⎩
(
2 + x3 + y3

)m
, for t = 3m, m ∈ N,(

2 + x3 + y3
)m (−2 + x4 + y4

)
, for t = 3m + 4, m ∈ N ∪ {0},(

2 + x3 + y3
)m (

2 + x5 + y5
)
, for t = 3m + 5, m ∈ N ∪ {0}.

Using (16) we may write

det Ĉd∗,σ >

{
yt − 2yt−4, for t = 3m + 4, m ∈ N ∪ {0},
yt , for remaining t.
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A Mixed Interference Model 4543

It is easy to see that det Ĉd∗,σ > yt − 2yt−4. Observe that since α > 7, y > α − 3
2α

. Thus,
using binomial evaluation,

det Ĉd∗,σ >
(
α − 3

2α

)t−4 (
α4 − 6α2 + 23

2 + 81
16α4 − 27

2α2

)
>

>
(
αt−4 − 3(t−4)

2 αt−6
) (

α4 − 6α2
)
.

(a) Let d ∈ B̂t,t,t . Observe that for every t ≥ 3 the parameter α > 2.5 and the claim follows
directly from Lemma 2.

(b) Let d ∈ Rt,t,t \ B̂t,t,t . Due to (4) and (7) we may write

Ĉd,V �L

(
t

σ 2
L

+ t2

)
It − SdS′

d + t1t1′
t .

Observe that at least t off-diagonal entries of Sd are not smaller than 2, or at least one entry
of Sd is greater than 2 and in both cases at least one off-diagonal entry of Sd is zero. Thus
at least one diagonal entry of Ĉd,σ is not greater than t2 + t

σ 2 − (4 + 4 + t − 4) + t = α − 2,
and the remaining diagonal entries are not greater than α. We obtain

det
(
Ĉd,σ

) ≤
t∏

i=1

(
Ĉd,σ

)
ii

≤ αt−1(α − 2).

It is enough to show that

αt − 2αt−1 ≤
(

αt−4 − 3(t − 4)

2
αt−6

) (
α4 − 6α2

)
.

We obtain

αt − 2αt−1 − (
αt−4 − 3(t−4)

2 αt−6
) (

α4 − 6α2
) =

= −αt−4
(
2α3 − 3

2 tα2 + 9(t − 4)
) =

= −αt−4
(

2t6 − 3t5 − 12t4 + 12t3 + 24t2 − 3t − 52+
+ t(2t2 + 3tσ 2(2t2 − t − 4) + 6σ 4(t4 − t3 − 4t2 + 2t + 4))

σ 6

)
.

(17)

Observe that both 2t6 − 3t5 − 12t4 + 12t3 + 24t2 − 3t − 52 as well as 2t2 + 3tσ 2(2t2 −
t − 4) + 6σ 4(t4 − t3 − 4t2 + 2t + 4) are positive for every t ≥ 3 and the expression in (17)
is negative. �

We should note that under the fixed interference model the designs given in Theorem
3 are D-optimal over the class Dt,t−2,t ; cf. Filipiak et al. (2012).

4.3. Remarks

Since the following relation holds between the information matrices Cd,u, u ∈ {0, σ,∞}:
Cd,∞ �L Cd,σ �L Cd,0

(cf. Markiewicz, 1997), all the results for model Mσ hold also for model M∞. Moreover,
since the designs which satisfy the conditions of Theorem 4.1 and Theorem 4.2 are binary
and complete, they are balanced with respect to the blocks. Such designs are universally
optimal over Dt,b,t under the model M0; see, e.g., Shah and Sinha (1989).
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4544 Filipiak and Markiewicz

From Filipiak et al. (2012) it follows that D-optimal designs under the fixed and mixed
interference models have the same structure of left-neighboring matrices. Thus all the
construction methods may be applied.

Recall that a D-optimal design from Rt,t−2,t can be constructed from a CNBD by
removing one arbitrary block. A catalogue of CNBDs with t = k, b = t − 1 is given in
Azaı̈s et al. (1993). Observe, however, that for t = 6 a CNBD with b = t − 1 and t = k

cannot exist. Moreover, numerical calculations show that a design with Sd = 161′
6−I6−H6

does not exist either. In the class B̃6,4,6 there exist only designs with left-neighboring matrix
permutationally similar to 161′

6 − I6 − diag(H4 : H2) (say Sd1 ) or 161′
6 − I6 − I3 ⊗ H2 (say

Sd2 ). For such designs we have

det C̃d1,σ − det C̃d2,σ =
= 1024(1 + 4σ 2

L)2(21σ 4
L + 13σ 4

L + 2)2

σ 12
L

− 4096(1 + 4σ 2
L)3(1 + 3σ 2

L)3

σ 12
L

=

= 1024(1 + 4σ 2
L)2(1 + 3σ 2

L)2

σ 8
L

> 0

for every σ 2
L ∈ (0,∞]. Moreover, for a design d ∈ R6,4,6, from (14)

det C̃d,σ ≤ α5(α − 2) = 128(1 + 3σ 2
L)(2 + 7σ 2

L)5

σ 12
L

and

det C̃d1,σ − det C̃d,σ ≥ 128(2 + 7σ 2
L)2(123σ 6

L + 119σ 4
L + 38σ 2

L + 4)

σ 10
L

> 0

for every σ 2
L ∈ (0,∞]. Thus the design d1 is D-optimal over R6,4,6.

Example 3. The following design is D-optimal over R6,4,6:

d =

⎛⎜⎜⎝
6 1 2 3 4 5 6
2 1 3 5 4 6 2
3 1 4 2 6 5 3
5 1 6 4 3 2 5

⎞⎟⎟⎠ .
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