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Abstract

We study the topological properties of the cp-rank operator cp(A) and the re-
lated cp-plus-rank operator cp+(A) (which is introduced in this paper) in the set
Sn of symmetric n×n-matrices. For the set of completely positive matrices, CPn,
we show that for any fixed p the set of matrices A satisfying cp(A) = cp+(A) = p
is open in Sn \ bd (CPn). By making use of the Perron-Frobenius vector we also
prove that the set An of matrices with cp(A) = cp+(A) is dense in Sn. By
applying the theory of semi-algebraic sets we are able to show that membership
in An is even a generic property. We furthermore answer several questions on
the existence of matrices satisfying cp(A) = cp+(A) or cp(A) 6= cp+(A), and
comment on genericity of having infinitely many minimal cp-decompositions.

1 Introduction

We define a symmetric matrix A to be completely positive if there exists nonnegative
vectors b1, . . . ,bp such that A =

∑p
i=1 bib

T
i . The set of completely positive matrices

forms a proper cone, i.e. a cone which is closed, convex, pointed and full-dimensional.
This cone plays an important role in the field of copositive optimisation (see, e.g.,
[Dür10, Bom12, Bur12]).

In this paper we investigate the cp- and cp-plus-ranks of matrices, which are closely
related to complete positivity. These are defined below, where we let Sn be the set
of symmetric n × n matrices, N be the set of nonnegative integers, Rn

+ be the set of
nonnegative real n-vectors and Rn

++ be the set of strictly positive real n-vectors:

Definition 1.1. For A ∈ Sn we define its cp-rank and its cp-plus-rank respectively as:

cp(A) := min
{
p ∈ N

∣∣ ∃b1, . . .bp ∈ Rn
+ s.t. A =

∑p
i=1bib

T
i

}
,

cp+(A) := min
{
p ∈ N

∣∣ ∃b1, . . .bp ∈ Rn
++ s.t. A =

∑p
i=1bib

T
i

}
.
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Note that a matrix A ∈ Sn is completely positive if and only if cp(A) <∞.
One motivation for the study of the cp-plus-rank is given by the following theorem,

where CPn denotes the cone of completely positive matrices of order n, int (CPn)
denotes its interior, and rank(A) denotes the standard linear rank of the matrix A:

Theorem 1.2. For A ∈ Sn we have

A ∈ int (CPn) ⇐⇒ cp+(A) <∞ and rank(A) = n.

Proof. This comes from [Dic10, Theorem 3.8], after noting that for any matrixB ∈ Rm×n

we have rank(BTB) = rank(B).

Another point of interest is when cp(M) = cp+(M). We then have the following two
properties, where for ε > 0 and M ∈ Sn we define Nε (M) = {X ∈ Sn | ‖M −X‖ ≤ ε},
and for a matrixA = (aij) ∈ Sn, by ‖A‖ we mean the Frobenius norm, i.e., ‖A‖ =

√∑
i,j a

2
ij:

Theorem 1.3. Consider M ∈ Sn such that 2 ≤ cp(M) = cp+(M) <∞. Then M has
infinitely many minimal cp-decompositions, where a minimal cp-decomposition is a set
{b1, . . . ,bp} ⊆ Rn

+ such that p = cp(M) and M =
∑p

i=1 bib
T
i .

Proof. This will follow directly from Lemma 2.10.

Theorem 1.4. Consider M ∈ int (CPn) such that cp(M) = cp+(M). Then there
exists ε > 0 such that for all X ∈ Nε (M) we have cp(X) = cp+(X) = cp(M).

Proof. This will be shown in Theorem 2.7.

The aim of the present paper is to study the topological properties of the functions
cp(M) and cp+(M).

In Section 2 we will look at some basic preliminary results on these ranks. In
Section 3 we show how orthogonal matrices can be used in considering them. In
Section 4 properties of the rank functions are analysed by using Perron-Frobenius
vectors. In Section 5 we are interested in properties of the maximum cp- and cp-plus-
ranks. Finally, in Section 6 of this paper we shall show that membership in the set
{M ∈ Sn | cp(M) = cp+(M)} is a generic property. This yields

Theorem 1.5. The following properties are generic within the completely positive cone:

1. Having infinitely many minimal cp-decompositions,

2. The cp- and cp-plus- ranks being equal and locally constant.

Proof. This will be shown in Corollary 6.8.

Notation

In this paper we shall always consider n to be an integer which is strictly greater than
one. In addition to the notation introduced earlier in this section, we shall let Rn

denote the set of real n-vectors; Sn+ the set of positive semidefinite matrices of order n;
N n the set of nonnegative symmetric matrics of order n; and bd (CPn) the boundary
of the set of completely positive matrices. For a vector a ∈ Rn, whenever we mention
a norm we mean the Euclidean norm, i.e., ‖a‖ =

√∑
i a

2
i .
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2 Preliminary results

In this section we shall consider some basic results connected to the cp- and cp-plus-
ranks. We start with the following three trivial results.

Lemma 2.1. For all M ∈ Sn, we have cp+(M) ≥ cp(M) ≥ rank(M).

Lemma 2.2. If M ∈ Sn \ {0} such that cp+(M) is finite, then M ∈ int (N n) ∩ CPn.

Lemma 2.3. For all A,B ∈ Sn and α, β > 0 we have

cp(αA+ βB) ≤ cp(A) + cp(B).

We shall now consider how the cp- and cp-plus-ranks vary in a neighbourhood of a
matrix M ∈ Sn.

Theorem 2.4. Let M ∈ Sn. Then there exists ε > 0 such that cp(P ) ≥ cp(M) for all
P ∈ Nε (M).

Proof. This was shown in [SMBJS13, Proposition 2.4].

A similar result also holds for the cp-plus-rank, although with the inequality re-
versed.

Theorem 2.5. Let M ∈ Sn\bd (CPn). Then there exists ε > 0 such that cp+(P ) ≤ cp+(M)
for all P ∈ Nε (M).

Proof. If M /∈ CPn then there exists ε > 0 such that for all P ∈ Nε (M) we have
P /∈ CPn, and thus cp+(P ) =∞ = cp+(M).

If M ∈ int (CPn) then the result comes directly from considering the proof of [DS08,
Theorem 2.3].

Remark 2.6. The result of the previous theorem does not in general hold whenM ∈ bd (CPn).
For example, if M ∈ bd (CPn) such that cp+(M) 6= ∞, then for all ε > 0 there exists
P ∈ Nε (M) \ CPn and thus cp+(P ) =∞ > cp+(M).

Combining Lemma 2.1 and Theorems 2.4 and 2.5, we get the following result.

Theorem 2.7. Let M ∈ Sn \ bd (CPn) such that cp(M) = cp+(M) = p. Then there
exists ε > 0 such that cp+(P ) = cp(P ) = p for all P ∈ Nε (M).

Corollary 2.8. The following sets are open for all p ∈ N:{
M ∈ Sn \ bd (CPn)

∣∣ cp(M) = cp+(M) = p
}
,{

M ∈ Sn \ bd (CPn)
∣∣ cp(M) = cp+(M)

}
.

We finish this section by considering some equivalent definitions of the cp- and
cp-plus-ranks, which will be used regularly throughout the paper.

We begin with the following trivial result:

Lemma 2.9. For all A ∈ Sn \ {0} we have

cp(A) = min
{
p ∈ N

∣∣ ∃B ∈ Rp×n
+ s.t. A = BTB

}
,

cp+(A) = min
{
p ∈ N

∣∣ ∃B ∈ Rp×n
++ s.t. A = BTB

}
.
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Proof. This comes from noting that if we have a matrix B ∈ Rp×n whose rows are
given by bT

1 , . . . ,b
T
p then BTB =

∑p
i=1 bib

T
i .

We now consider another equivalent definition of the cp-plus-rank which is less
trivial. These results come from [Dic13, Lemma 7.13] and its proof.

Lemma 2.10. Consider a,b ∈ Rn, and for all θ ∈ R let cθ = a sin θ + b cos θ and
dθ = a cos θ − b sin θ. Then we have:

1. aaT + bbT = cθc
T
θ + dθd

T
θ for all θ ∈ R, and

2. if a ∈ Rn
++ and b ∈ Rn

+ then there exists Θ > 0 such that cθ,dθ ∈ Rn
++ for all

θ ∈ (0,Θ].

Corollary 2.11. For A ∈ Sn \ {0}, we have

cp+(A) = min
{
p ∈ N

∣∣ ∃b1, . . .bp ∈ Rn
+ s.t. b1 ∈ Rn

++ and A =
∑p

i=1bib
T
i

}
.

This result leads to an inequality for the function cp-plus-rank similar to Lemma 2.3,
but note that here we have a mixture of cp- and cp-plus-ranks.

Corollary 2.12. For all A,B ∈ Sn \ {0} and α, β > 0 we have

cp+(αA+ βB) ≤ cp+(A) + cp(B).

3 Orthogonal matrices

The concept of cp-plus-rank connects to orthogonal matrices through the following
lemma.

Lemma 3.1. Let A,B ∈ Rp×n. Then ATA = BTB if and only if there exists an
orthogonal matrix Q ∈ Rp×p such that A = QB.

Proof. The reverse implication (which we will need below) is trivial. The forward
implication is a well known result in linear algebra, and a sketch of the proof is presented
in [Xu04, Lemma 1].

In the paper [SSMS13] the authors considered matrices B ∈ Rp×n
+ and defined such

matrices to be nearly positive if there exist orthogonal matrices {Qi | i ∈ N} such that
QiB > 0 for all i and limi→∞Qi = I (where I is the identity matrix). Using the lemma
above we then get the following sufficient condition for when the cp-rank of a matrix
is equal to its cp-plus rank.

Corollary 3.2. Let X ∈ CPn with cp(X) = p, and let B ∈ Rp×n
+ such that X = BTB.

If B is a nearly positive matrix, then cp+(X) = p.

In [SSMS13, Example 7.4] it was shown that the reverse implication to this does not
hold. In that example, for n ≥ 4, they considered a family of M = ATA ∈ int (CPn),
withA ∈ Rn×n

+ not being a nearly positive matrix, but cp+(M) = cp(M) = rank(M) = n.
In [SSMS13] the authors looked at many interesting results on nearly positive ma-

trices, including the following:

Theorem 3.3. Let X ∈ CPn ∩ int (N n) and let B ∈ Rp×n
+ such that X = BTB. If

either n ≤ 3 or p ≤ 2 (or both) then B is nearly positive.

Translating this result for the cp-plus-rank we get the following corollary.

Corollary 3.4. Let X ∈ CPn ∩ int (N n). If n ≤ 3 or cp(X) ≤ 2 (or both) then
cp(X) = cp+(X).
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4 Perron-Frobenius Vectors

In this section we shall analyse the cp- and cp-plus-ranks using the theory of Perron-
Frobenius vectors. We begin by recalling some basic definitions and results on Perron-
Frobenius vectors, applied to matrices in N n \ {0}.

Theorem 4.1. Let M ∈ N n \ {0}. Then there exists λ ∈ R++ such that:

1. λ is an eigenvalue of M ,

2. the absolute values of all eigenvalues of M are less than or equal to λ,

3. there is an eigenvector x ∈ Rn
+, with ‖x‖ = 1, corresponding to the eigenvalue λ.

We refer to this as a Perron-Frobenius (P-F) vector of M .

Furthermore, if M ∈ int (N n), then for λ and x given above we have:

4. the absolute values of all eigenvalues of M , excluding λ, are strictly less than λ,

5. x ∈ Rn
++, and x is the unique eigenvector of M corresponding to λ, up to multi-

plication by a scalar (i.e. the eigenvalue λ has multiplicity one). We shall denote
this eigenvector by xM .

Remark 4.2. Note that any matrix M ∈ int (CPn) satisfies M ∈ int (N n). Also note
that if in the theorem above we have M /∈ int (N n), then we do not necessarily have a
unique P-F vector. For example, consider M being equal to the identity matrix.

We now recall the following well known lemma on eigenvectors and eigenvalues.

Lemma 4.3. Consider a matrix A ∈ Sn with eigenvectors x1,x2 ∈ Rn, whose corre-
sponding eigenvalues are λ1, λ2 ∈ R. If λ1 6= λ2 then xT

1 x2 = 0.

Proof. This comes from noting that λ1x
T
1 x2 = xT

1Ax2 = λ2x
T
1 x2.

From this we then get the following result on P-F vectors.

Lemma 4.4. Consider M ∈ N n \ {0} and let x ∈ Rn
++ be an eigenvector of M such

that ‖x‖ = 1. Then x is a P-F vector of M .

Proof. Assume for the sake of contradiction that the eigenvector x with corresponding
eigenvalue µ is not a P-F vector. Then there exists a P-F vector y ∈ Rn

+ \ {0}
with eigenvalue λ > µ. By Lemma 4.3 it would follow yTx = 0, a contradiction to
0 6= y ∈ Rn

+, x ∈ Rn
++.

Another well known lemma on eigenvectors is the following.

Lemma 4.5. Consider P,Q ∈ Sn and x ∈ Rn \ {0} such that P = Q+µxxT for some
µ ∈ R. Then x is an eigenvector of P if and only if it is an eigenvector of Q.

Proof. Without loss of generality let ‖x‖ = 1. Then we have

Qx = λx ⇔ Px = (λ+ µ)x.

Now combining Lemmas 4.4 and 4.5 we get the following result:
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Lemma 4.6. Consider P,Q ∈ N n \ {0} and x ∈ Rn
++ such that P = Q + µxxT for

some µ ∈ R. Then x is a P-F vector of P if and only if it is a P-F vector of Q.

We will now look at what P-F vectors can tell us about the cp- and cp-plus-ranks.
In order to do this for M ∈ int (N n) and µ ∈ R we let

M(µ) := M + µxMxT
M .

Note from Theorem 4.1 that this is well defined. Furthermore, from the definition, we
have that ‖M −M(µ)‖ = |µ| and thus M(µ) ∈ N|µ| (M). We also note the following
basic result.

Lemma 4.7. Let M,P ∈ int (N n) and µ ∈ R such that P = M(µ). Then we have
M = P (−µ).

Proof. This comes directly from Theorem 4.1 and Lemma 4.6.

We are now ready to present the main results of this section.

Theorem 4.8. For all M ∈ int (N n) and all µ > 0 we have cp(M) ≥ cp+(M(µ)).

Proof. This proof is an adaptation of one from [SMBJS13].
In this proof we will in fact prove the more general result that considersM ∈ N n\{0}

with a P-F vector x ∈ Rn
++. Under these circumstances, we have

cp(M) ≥ cp+(M + µxxT) for all µ > 0.

Indeed, if M /∈ CPn then we have cp(M) =∞ and the result is trivial. From now
on we assume M ∈ CPn \ {0} and consider an arbitrary µ > 0.

Letting p = cp(M) ∈ (0,∞), there exists V ∈ Rp×n
+ such that M = V TV . All rows

of V are nonzero, otherwise cp(M) < p. Therefore, letting y = V x, we have y ∈ Rp
++.

As x is a P-F vector of M , there exists λ > 0 such that λx = Mx = V TV x = V Ty.
We thus have that yTy = xTV Ty = λxTx = λ.

The proof is now completed by letting ν =
√

1 + (µ/λ) − 1 > 0, noting that we
have (V + νyxT) ∈ Rp×n

++ and considering the following:

(V + νyxT)T(V + νyxT) = V TV + ν(V TyxT + xyTV ) + ν2xyTyxT

= M + νλ(2 + ν)xxT

= M + µxxT.

Theorem 4.9. Consider M ∈ int (CPn) with p := cp(M) ≤ cp+(M) =: q. Then there
exists ε̂ > 0 such that for all ε ∈ (0, ε̂] we have

cp(M(ε)) = cp+(M(ε)) = p and cp(M(−ε)) = cp+(M(−ε)) = q.

Proof. From Theorem 2.4, there exists ε+ > 0 such that for all ε ∈ (0, ε+] we have
p ≤ cp(M(ε)), and from Theorem 4.8 we have cp+(M(ε)) ≤ p. We now note from
Lemma 2.1 that cp(M(ε)) ≤ cp+(M(ε)), and combining these three inequalities to-
gether we get cp(M(ε)) = cp+(M(ε)) = p for all ε ∈ (0, ε+].

Similarly, from Theorem 2.5, there exists ε− > 0 such that for all ε ∈ (0, ε−] we have
q ≥ cp+(M(−ε)). For such ε, as the cp-plus-rank is finite, we have M(−ε) ∈ int (N n),
and thus from Lemma 4.7 and Theorem 4.8 we have cp(M(−ε)) ≥ q. We now note from
Lemma 2.1 that cp+(M(−ε)) ≥ cp(M(−ε)), and combining these three inequalities
together we get cp(M(−ε)) = cp+(M(−ε)) = q for all ε ∈ (0, ε−].

Now letting ε̂ = min{ε−, ε+}, this completes the proof.
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5 Maximum cp- and cp-plus-ranks

Let us define the numbers

pn := max{cp(M) |M ∈ CPn},
p+n := max{cp+(M) | cp+(M) <∞}.

In the following theorem we collect some known results on these numbers, along with
a couple of new ones.

Theorem 5.1. We have that

pn = max{cp(M) |M ∈ bd (CPn)}, (1)

= max{cp(M) |M ∈ int (CPn)} (2)

= max{cp+(M) |M ∈ int (CPn)} (3)

pn ≤ p+n ≤ pn + 1 (4)

pn = n for all n = 2, 3, 4, (5)

pn ≥
⌊
n2/4

⌋
> n for all n ≥ 5, (6)

pn ≥ 1
2
n(n+ 1)− 4−

√
2n

3
2 + 3

2
n >

⌊
n2/4

⌋
for all n ≥ 15, (7)

pn ≤ 1
2
n(n+ 1)− 4 for all n ≥ 5, (8)

for all k ∈ {1, . . . , n− 1} ∃M ∈ CPn s.t. cp(M) = cp+(M) = k

and we have M ∈ bd (CPn) , (9)

for all k ∈ {n, . . . , pn} ∃M ∈ int (CPn) s.t. cp(M) = cp+(M) = k, (10)

for all k ∈ {n+ 1, . . . , pn} ∃M ∈ int (CPn) s.t. k − 1 = cp(M) 6= cp+(M) = k. (11)

Proof. (1) and (2) were proven in [SMBJS13], and (3) follows directly from (2) and
Theorem 4.9. The leftmost inequality in (4) follows from (3). To prove the rightmost
inequality in (4), we consider an arbitrary M ∈ Sn \ {0} such that cp+(M) < ∞.
From the definitions, there exists v ∈ Rn

++ such that M − vvT ∈ CPn \ {0} and from
Corollary 2.12 we have cp+(M) ≤ cp+(vvT) + cp(M − vvT) ≤ 1 + pn.

While (5) and (6) are well known since long, see for example [BSM03], the bounds
in (7) and (8) were established quite recently, namely in [SMBB+13] and in [BSU14b].
For n = 5 we have pn = bn2/4c [SMBJS13]. It was conjectured in [DJL94] that
this equality holds for all n ≥ 5, however counter examples to this conjecture for
n = 7, . . . , 11 were recently presented in [BSU14a]. For n ≥ 15 this conjecture is
refuted by (7), and for n = 12, 13, 14 tighter lower bounds also refute it [BSU14b].

We shall now prove (9), (10) and (11). From Theorem 1.2 and Lemma 2.1, if
cp(M) < n then M ∈ bd (CPn). From (2), (5), (6) and Theorem 4.9, there exists
M ∈ int (CPn) such that cp(M) = cp+(M) = pn ≥ n, and thus statement (10)
holds for k = pn. From Theorem 1.2 and using that rank(M) = rank(B) holds for
M = BTB, there exists b1, . . . ,bpn ∈ Rn

++ such that span{b1, . . . ,bn} = Rn and

M =
∑pn

i=1 bib
T
i . For all k ∈ {1, . . . , pn}, θ ∈ [0, 1] we let Mk(θ) :=

∑k−1
i=1 bib

T
i +θbkb

T
k .

From Theorem 1.2 we have

Mk(θ) ∈ int (CPn) for all k ∈ {n, . . . , pn}, θ ∈ (0, 1],

Mk(θ) ∈ bd (CPn) for all k ∈ {1, . . . , n− 1}, θ ∈ [0, 1].
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Furthermore, for all k ∈ {1, . . . , pn}, θ ∈ [0, 1] we haveM = Mk(θ)+(1−θ)bkbT
k+
∑pn

i=k+1 bib
T
i ,

and thus by Lemma 2.3 we have

pn = cp(M) ≤ cp(Mk(θ)) + cp
(
(1− θ)bkbT

k +
∑pn

i=k+1bib
T
i

)
≤ cp(Mk(θ)) + 1 + pn − k.

It is also trivial to see from the definitions that cp(Mk(θ)) ≤ cp+(Mk(θ)) ≤ k. Com-
bining these inequalities together, we get

k − 1 ≤ cp(Mk(θ)) ≤ cp+(Mk(θ)) ≤ k for all k ∈ {1, . . . , pn}, θ ∈ [0, 1].

For all k ∈ {1, . . . , pn − 1} we have Mk+1(0) = Mk(1) and thus using the above we get
cp(Mk(1)) = cp+(Mk(1)) = k, which completes the proof for statements (9) and (10).
Similar arguments can also be found in [SMBB+13, Prop.4.1, Thm.4.1].

For an arbitrary k ∈ {n+1, . . . , pn}, we now let ϑk = supθ∈[0,1]{θ | cp(Mk(θ)) = k−1}
and note by Corollary 2.8 that 0 < ϑk < 1. For all θ ∈ (ϑk, 1] we have k = cp(Mk(θ)) = cp+(Mk(θ)).
Therefore, by Theorem 2.5, we have k ≤ cp+(Mk(ϑk)), and thus cp+(Mk(ϑk)) = k.
Additionally, for all ε > 0 there exists θ ∈ [ϑk − ε, ϑk] such that k − 1 = cp(Mk(θ)).
Therefore, by Theorem 2.4, we have k−1 ≥ cp(Mk(ϑk)), and thus cp(Mk(ϑk)) = k−1,
which completes the proof.

From the following lemma we get pn = p+n for n = 2, 3, 4. It is an open question
whether this equality continues to hold for n ≥ 5.

Lemma 5.2. For n = 2, 3, 4 let M ∈ CPn ∩ int (N n). Then cp+(M) ≤ pn = n.

Proof. From Corollary 3.4, for n = 2, 3 we already have cp(M) = cp+(M). However,
the following proof will be for a general n = 2, 3, 4, as nothing is lost in doing this.

We begin by recalling that for n = 2, 3, 4 we have CPn = Sn+ ∩ N n and thus
CPn ∩ int (N n) = Sn+ ∩ int (N n), see [MM62].

Let M ∈ CPn ∩ int (N n), with P-F vector x. For ε > 0 small enough we have
P = (M − εxxT) ∈ int (N n) and thus from Lemma 4.6, x is also the P-F vector of P .
When going from M to P , the only eigenvalue that we are affecting is the eigenvalue
corresponding to x, which remains strictly positive. Therefore we have P ∈ Sn+. This
implies that P ∈ CPn, and thus cp(P ) ≤ pn. Finally, from Theorem 4.8, we have
cp+(M) ≤ cp(P ) ≤ pn, completing the proof.

For n ≥ 5 this lemma no longer holds, consider for example the following:
Example. In [DS08, Example 2.2], the authors showed that the following matrix is
on the boundary of the completely positive cone:

B =


8 5 1 1 5
5 8 5 1 1
1 5 8 5 1
1 1 5 8 5
5 1 1 5 8

 .

We have rank(B) = 5, but B /∈ int
(
CP5

)
, and thus from Theorem 1.2 we have

cp+(B) =∞.
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6 Genericity of the property cp+(M) = cp(M)

6.1 Genericity vs. open and dense

In this section we consider the topological properties of the following set:

An := {M ∈ Sn | cp(M) = cp+(M)} . (12)

As usual, we say that a set A ⊆ Sn is dense if for all X ∈ Sn and ε > 0 we have
Nε (X) ∩ A 6= ∅. From the results so far it follows that the set An contains an open
and dense subset of Sn:

Theorem 6.1. The set A n := An \ bd (CPn) is open and dense in Sn.

Proof. For an arbitrary M ∈ Sn, we consider the following cases, which will complete
the proof:

1. M /∈ CPn: We have M ∈ A n, and as the set of completely positive matrices is
closed, there exists ε > 0 such that Nε (M) ⊆ Sn \ CPn ⊆ A n.

2. M ∈ bd (CPn): We have M /∈ A n, and for all ε > 0 there exists Mε ∈ Nε (M)
such that Mε ∈ Sn \ CPn ⊆ A n.

3. M ∈ int (CPn)∩A n: From Theorem 2.7, there exists ε > 0 such thatNε (M) ⊆ A n.

4. M ∈ int (CPn)\A n: From Theorem 4.9, for all ε > 0 we have Nε (M)∩A n 6= ∅.

By this theorem we know that the set An contains an open and dense set. But it
is well known that for a set A ⊂ Sn, being dense and open does not necessarily imply
that the Lebesgue measure of Sn \ A, denoted µL

(
Sn \ A

)
, is equal to zero. Indeed,

the set of rational numbers, Q ⊆ R, is a well-known dense set with µL(Q) = 0 [Bea04,
p.133]. Considering approximations of measurable sets [Bea04, p.139], for all ε > 0
there exists an open set Aε such that Q ⊆ Aε ⊆ R and µL(Aε) ≤ µL(Q) + ε = ε. We
then have that Aε is an open and dense set in R with µL(R \ Aε) =∞ 6= 0.

In what follows we wish to strengthen the statement of Theorem 6.1, and we will
show that the membership in An is a generic property.

Recall that in topology for a subset A ⊆ RN , we say that membership in A is
generic in RN if A contains a set A0 such that the following two statements hold:

1. the set A0 is open, and

2. the Lebesgue measure of RN \ A0 is equal to zero.

Statement (1) means that membership in A0 is stable for small variations. State-
ment (2) means that ‘almost all’ elements of RN are in A0 (and thus also in A).

In the next subsection we prove that indeed membership in An is a generic property.

9



6.2 Semi-algebraic sets

In order to show that membership in the set An is generic we make use of the theory
of semi-algebraic sets and only need the density part of Theorem 6.1.

We prove that An is a semi-algebraic set and apply the fact that for a semi-algebraic
set, being dense is a sufficient condition for membership in the set being generic. We
note that similar arguments have been used recently to obtain genericity results in cone
programming [BDL11].

The results on semi-algebraic sets will be stated for the space RN . The results can
then be trivially applied to the space Sn ≡ R(n+1)n/2.

We begin by recalling some preliminary definitions and results on semi-algebraic
sets (see [BR90, GWdL76]).

Definition 6.2. A set A ⊂ RN is called semi-algebraic if it is given by a finite union
of sets of the form

{x ∈ RN | pi(x) = 0 for all i = 1, . . . , k, qj(x) > 0 for all j = 1, . . . , s}

with k, s ∈ N and polynomial functions pi, qj ∈ R[x].

Remark 6.3. Since {x | p(x) ≥ 0} = {x | p(x) = 0} ∪ {x | p(x) > 0}, also sets defined
by polynomial inequalities p(x) ≥ 0 are semi-algebraic.

The following theorem states some well-known facts on semi-algebraic sets.

Theorem 6.4. For N,M ∈ N, consider semi-algebraic sets A,B ⊆ RN and a polyno-
mial function h : RN → RM (e.g. a projection operator). Then the following sets are
also semi-algebraic:

A ∪ B, A ∩ B, A \ B, h(A).

Proof. For a proof we refer to [BR90, Section 2.1–2.3].

We shall now show that the set An from (12) is a semi-algebraic set.

Lemma 6.5. The set An from (12) is semi-algebraic.

Proof. Recalling from the definition that the union of finitely many semi-algebraic sets
is also semi-algebraic and recalling from Theorem 5.1 that we have pn <

1
2
n(n+ 1), it

is sufficient to show that the following set is semi-algebraic for all p ∈ N ∪ {∞}:

Anp :=
{
A ∈ Sn

∣∣ cp(A) = cp+(A) = p
}
.

For all p ∈ N we have that the following sets are trivially semi-algebraic:

E :=
{

(X, V ) ∈ Sn × Rp×n ∣∣ vij ≥ 0 for all i, j, X = V TV
}
,

F :=
{

(X, V ) ∈ Sn × Rp×n ∣∣ vij > 0 for all i, j, X = V TV
}
.

From Theorem 6.4, the projections projX(E) and projX(F) are also semi-algebraic for
all p ∈ N; but obviously

projX(E) = {X ∈ Sn | cp(X) ≤ p} and projX(F) = {X ∈ Sn | cp+(X) ≤ p} .
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Therefore again considering Theorem 5.1 and Theorem 6.4, the following sets are semi-
algebraic for all p ∈ N:

{X ∈ Sn | cp(X) =∞} = Sn \ {X ∈ Sn | cp(A) ≤ pn} ,
{X ∈ Sn | cp+(X) =∞} = Sn \ {X ∈ Sn | cp+(A) ≤ p+n } , as well as

{X ∈ Sn | cp(X) = p} = {X ∈ Sn | cp(X) ≤ p} \ {X ∈ Sn | cp(X) ≤ p− 1},
{X ∈ Sn | cp+(X) = p} = {X ∈ Sn | cp+(X) ≤ p} \ {X ∈ Sn | cp+(X) ≤ p− 1}.

Since
Anp = {X ∈ Sn | cp(X) = p} ∩ {X ∈ Sn | cp+(X) = p} ,

this finally implies that also Anp is semi-algebraic for all p ∈ N ∪ {∞}.

We can also combine Theorem 6.4 with other well-known results to obtain the
following which may be of general interest in algebraic geometry:

Theorem 6.6. Let A ⊆ RN be a semi-algebraic set. Then the membership in A is
generic if and only if A is dense in RN .

Proof. The forward implication is trivial. To prove the reverse implication we make
use of the following facts on semi-algebraic sets.

From [GWdL76, 2.7], we have that any semi-algebraic set A ⊂ RN admits a (strat-

ification) partition A =
d⋃
i=0

Si with some d ∈ N such that

1. Si ∩ Sj = ∅ for i 6= j and

2. the sets Si are smooth manifolds of RN of dimension i (or are empty).

It is a well-known result, see for example [GP74], that the manifolds of dimension N
in RN are precisely the open sets in RN . Furthermore, manifolds of dimension k < N
in RN have Lebesgue measure zero (cf., e.g., [GP74, p.45]).

We first consider the set M = RN \ A, and note from Theorem 6.4 that this set

is semi-algebraic. So M allows a stratification M =
d⋃
i=0

Si with some d ∈ N. As A is

dense, M cannot contain any open sets. This implies that for all 0 ≤ i ≤ d we have
dimSi < N and thus µL(Si) = 0, implying:

0 ≤ µL(M) = µL

(
d⋃
i=0

Si

)
≤

d∑
i=0

µL(Si) = 0.

Now we take the semi-algebraic set A and a stratification A =
q⋃
i=0

S̃i with some q ∈ N.

We claim that the manifold S̃q with (highest) dimension q must be of dimension q = N .
So by the remark above, S̃q must be an open set. Indeed, the condition dim S̃q < N
would also imply µL(A) = 0 and then

µL(RN) = µL

(
(RN \ A) ∪ A

)
≤ µL

(
(RN \ A)

)
+ µL(A) = 0,

a contradiction. Altogether we have shown that the set A contains the open set
A0 := S̃N with complement

RN \ A0 =
(
A \ S̃N

)
∪
(
RN \ A

)
=
(N−1⋃
i=0

S̃i
)
∪
(
RN \ A

)
11



of Lebesgue measure

µL

(
RN \ A0

)
≤

N−1∑
i=0

µL(S̃i) + µL

(
RN \ A

)
= 0 .

So membership in the set A is a generic property.

We are now ready to present the main result of this section.

Theorem 6.7. Membership in the set An from (12) is generic in Sn.

Proof. By Theorem 6.1 the set An is dense in Sn. The result then follows by Lemma 6.5
and Theorem 6.6.

Corollary 6.8. The following properties are generic within the completely positive
cone:

1. Having infinitely many minimal cp-decompositions,

2. The cp- and cp-plus-ranks being equal and locally constant.

Proof. From Theorems 1.2 to 1.4 and Lemma 2.1 it is sufficient to show that member-
ship of the open set An ∩ int (CPn) is generic in CPn. Since CPn is convex we have
µL(bd (CPn)) = 0 (see e.g. [Lan86]), and from Theorem 6.7 we have µL(Sn \ An) = 0.
The proof is then completed by noting the following:

µL(CPn \ (An ∩ int (CPn))) = µL((CPn \ An) ∪ bd (CPn))

≤ µL(Sn \ An) + µL(bd (CPn)) = 0.

7 Concluding Remarks

In this paper we studied the distribution of completely positive matrices according
to their cp- and cp-plus-ranks. One interesting result found was that whereas it was
previously known that in a sufficiently small neighbourhood of a matrix M ∈ Sn the
cp-rank cannot go down, we have shown that in a sufficiently small neighbourhood of
a matrix M ∈ Sn \ bd (CPn) the cp-plus-rank can not go up. As the cp-plus-rank of a
matrix is an upper bound on its cp-rank, this means that for a matrixM ∈ Sn\bd (CPn)
with its cp-rank equal to its cp-plus rank, in a sufficiently small neighbourhood of the
matrix, neither the cp-rank nor the cp-plus-rank will change.

Motivated by this result we considered the open sets

{M ∈ Sn \ bd (CPn) | cp(M) = cp+(M) = p},

which were shown to be nonempty for all p ∈ {n, . . . , pn,∞}. An interesting open
question is whether these are also connected sets.

We have also established that the sets

{M ∈ int (CPn) | k − 1 = cp(M) < cp+(M) = k}

are nonempty for all k ∈ {n+ 1, . . . , pn}.

12



Considering the set An = {M ∈ Sn | cp(M) = cp+(M)}, we have shown that this
is dense in Sn and open in Sn \ bd (CPn). By applying the theory of semi-algebraic
sets we in addition established that membership in An is a generic property in Sn.

Some interesting questions are still open: For example, is the set An \ {0} open in
Sn? Note that around the zero matrix the set of matricesM satisfying cp(M) = cp+(M)
is not open. Indeed, take any matrix B ∈ CPn with cp(B) 6= cp+(B). For all λ > 0 we
have cp(λB) = cp(B) 6= cp+(B) = cp+(λB), but for A = 0 we have A = limλ↘0 λB
and cp(A) = cp+(A) = 0.

On the other hand in contrast to the behaviour on Sn the set of matrices An is not
dense on bd (CPn). Indeed there exist matrices A ∈ bd (CPn) and ε > 0, such that
for all M ∈ bd (CPn) ∩Nε (A) we have cp(M) 6= cp+(M) =∞. Take for example the
identity matrix I ∈ bd (CPn). Since I has full rank n, by Theorem 1.2 we must have
cp+(M) = ∞ (otherwise I would be in the interior of CPn) and this argument holds
for all M ∈ bd (CPn) ∩Nε (I) for some ε > 0.
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