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Abstract

We propose a framework for testing the possibility of large cascades in financial networks.
This framework accommodates a variety of specifications for the probabilities of emergence
of ‘contagious links’, where a contagious link leads to the default of a bank following the
default of its counterparty. These are the first order contagion probabilities and depend
on the shock propagation mechanism under consideration. When the cascade represents
an insolvency cascade, and under complete observation of balance sheets, the first order
contagion probabilities follow from the distribution of recovery rates.

Under general contagion mechanisms and incomplete information, the financial network
is modeled as an inhomogenous random graph in which only some of the banks’ character-
istics are observable. We give bounds on the size of the first order contagion and testable
conditions for it to be small. For power-law financial networks, we also give a condition so
that the higher order cascade dies out.

Keywords: Systemic Risk, Default Contagion, Financial Stability, Contagious Links,
Phase Transitions, Complex Networks, Inhomogeneous Random Graphs

1 Introduction

The literature on network models for systemic risk has seen recently a sharp increase across
different disciplines, see e.g., [8, 45, 2, 33, 36, 18, 19]. Network models for distress prop-
agation among institutions/sectors/regions have mainly sought to understand the relation
between network structure and systemic risk. The resulting insights are mostly qualitative
in nature. In a recent speech on this topic, Janet Yellen notes “With a few narrow excep-
tions, they treat all market participants as similar in size and in range of activities, and
they use relatively simplistic network structures. ” [50].

Empirical studies (see Figure 1) point to the diversity of network structures of real-world
banking systems: from scale-free structures as in [22, 28] to centralized networks [43] or

∗Part of this work was accomplished while the authors were visiting Isaac Newton Institute for Mathemat-
ical Sciences in Cambridge for the program on “Systemic Risk: Mathematical Modelling and Interdisciplinary
Approaches”. We thank them for their hospitality. We also thank Rama Cont and Nikolaos Fountoulakis for
helpful discussions.
†Swiss Finance Institute @ EPFL, Quartier UNIL-Dorigny, Extranef 249, 1015 Lausanne, Switzerland, email:

hamed.amini@epfl.ch
‡School of Operations Research and Information Engineering, Cornell University, Ithaca, NY 14850, USA,

email: acm299@cornell.edu

1



core-periphery structures in [30]. Some of these networks can well be approximated with
few classes of banks, core and peripheral and are homogenous within each class. Others, as
the UK banking system shown in Figure 1, are highly heterogenous in both the connectivity
as well as in the the size of the banks’ balance sheets. In [22, 28], the connectivity is shown
to follow a power law distribution across banks. As it is well known in the epidemics and
percolation literature, e.g., [4, 5, 6, 20, 34, 40, 39, 41, 44, 46, 49], the network structure
plays an essential role in the propagation of distress.

Figure 1: Structure of interbank networks. From left to right: Austria, scale-free struc-
ture [22]; UK, sparse inhomogenous structure [16]; Switzerland, sparse and centralized
structure [43].

Another critical point to consider in a model of financial contagion is the available in-
formation. In some few cases the modeler has complete information on interbank linkages.
As pointed out in [13], there is in general only partial information on the interbank network
and only aggregate data, for example on the total size of the assets and liabilities, is avail-
able. From this point of view, a random network, i.e., a set of networks consistent with the
observable aggregates and a probability distribution over these networks, captures well the
partial information structure.

Random networks in which the characteristics of the banks can be prescribed provide
the flexibility needed to model financial networks. These characteristics may have different
degrees of heterogeneity and may be calibrated to real-world data. Moreover, such models
are amenable to analysis of the size of contagion following an initial shock and yield testable
conditions for the possibility of large default cascades. Such probabilistic models can thus
provide powerful tools for financial regulation.

In previous work [8], we considered a model of default propagation in a financial network
modeled as a random network with prescribed connectivity, exposure and capital sequences.
The main result in [8] is the asymptotic size of contagion in terms of these sequences.
Moreover, in [8], we introduce the concept of contagious exposures, i.e., those exposures
that lead to the default of a bank in case the counterparty defaults and show that the
topology of the subgraph of contagious links determines whether the cascade is large scale
or not. It turns out that, for large networks, the condition for large cascades can be
characterized in terms of observable quantities such as the number of contagious exposures
and the connectivity. This condition can be used in a stress testing framework [7]. Under
different shocks applied to the entire sequence of capital and exposures, the topology of
the subgraph of contagious links changes and a phase transition occurs for sufficiently large
shocks. Namely, the system passes in a regime when large scale cascades are possible.

Retaining the focus on testable conditions for large cascades, the current paper proposes
multiple extensions of [8]:
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• We allow for random recovery rates for the exposures to defaulted banks, which can
be thought of as the uncertain recovery rates by the end of the cascade. While it is
common in the literature to derive recovery rates from an elegant fixed point equation
[35], this relies on the assumption that all debts are instantaneously cleared, unlikely
to hold in reality. At the time of the initial shock, recovery rates are uncertain.1 In
this paper we model recovery rates as random variables (who satisfy some cash-flow
consistency conditions). This captures the uncertainty about the value of the defaulted
bank, the amount of deposits with higher seniority and also the intertemporal aspect
of repaying to the creditors.

• The probability distribution for the recovery rates induces a (first-order) contagion
probability matrix, which gives for each pair of nodes the probability that there is a
contagious link between them. In a stress testing framework for insolvency contagion,
one can rely on the specification of the distribution of the recovery rates, of the asset
shocks and on data on interbank exposures to compute this contagion probability
matrix.

However, the concept of contagious links is by no means restricted to insolvency
contagion and a different model of contagion induces a different probability matrix.
From this point of view, our paper can be thought of as a framework for testing
the large scale contagion under different propagation mechanisms: there can by a
contagious link between two nodes if there is a critical exposure as in [8], a critical
OTC cash-flow as in [27] or if the funding structure leads to a contagion of bank runs
[14], etc. Moreover, the contagious links induced by multiple contagion mechanisms
may co-exist [12, 37, 38].

As pointed out in [37], contagion through the network of exposures becomes significant
in presence of heterogeneity and rollover risks. The presence of rollover risks can be
captured in our model by introducing contagious links among banks that rely on
unstable short term funding.

• Given a general contagion probability matrix, we give sufficient conditions such that
the size of first order cascade, due to contagious links and which is the primary source
of the cascade, to be small. Some of these bounds are known for the homogeneous
undirected networks in the context of SIR epidemics and bond percolation, see [24,
31, 32, 34]. These are unrealistic settings in financial networks. Our first technical
contribution is to extend these results for directed and heterogenous networks. We
also give several examples on how these bounds can be used for different topologies
of the financial network.

• We consider an incomplete information setting where we only observe characteristics
or “types” of market participants in the financial system. The inhomogeneity of the
graph is assumed within these types. A particularly relevant set of types is that
of core/peripheral bank, see Example 13. In this case, we give a simple and testable
condition for the financial network to be resilient, i.e., that starting from a small shock,
the final size of the cascade is small. However, the model allows for rather general sets
of types of the financial institutions, both finite as well as (countably or uncountably)
infinite. An example of an uncountably infinite type space could be types related to
the total liability and the total asset of each individual bank in the financial network;
as in Example 14. Extending the previous results on percolation in undirected random
graphs in [10, 11, 40] to inhomogeneous directed random graphs, we give a necessary

1Recovery rates after the failure of Lehman were around eight cents on the dollar [42]. The recovery rates
after three months were around ten cents on the dollar.
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and sufficient condition such that the size of the first order cascade to be small. This
condition marks a phase transition in the size of the first order cascade.

• We show that for financial networks with infinite second order moment for the degree
distribution a fraction of initial defaults that tends to zero may lead to a positive
fraction of final defaults, so that the default amplification may be unbounded.

• Finally, we consider a power-law degree distribution for the financial network, which
may have infinite second order moment, and give a precise condition under which we
do not have a higher order cascade and the final size of the cascade is the same as the
size of the first order cascade. Under this condition, it suffices to monitor the size of
the first order cascade to ensure the stability of the financial network. We characterize
the subcritical regime of the cascade in terms of the distribution of the degrees in the
network. The asymmetry in connectivity induced by a power law distribution plays
a critical role in financial contagion and may lead to effects at the level of the whole
system, see e.g., [1].

The paper is organized as follows. In Section 2 we introduce a model of financial
contagion on a given network, with random recovery rates. In Section 3, we give bounds
on the size of the first order cascade in terms of contagion probability matrix. In Section
4 we introduce the random graph model and bound the size of the (random) subgraph of
contagious links. In Section 5 we give conditions on the connectivity for the size of the
cascade to be equal to the size of the first order cascade. Section 6 concludes. The proofs
of all lemmas and theorems are provided in Appendix A.

Basic notations. We let N be the set of non-negative integers. For non-negative se-
quences xn and yn, we write xn = O(yn) if there exist N ∈ N and C > 0 such that xn ≤ Cyn
for all n ≥ N , and xn = o(yn) (or xn � yn), if xn/yn → 0, as n → ∞. Let {Xn}n∈N be
a sequence of real-valued random variables on a probability space (Ω,P). If c ∈ R is a

constant, we write Xn
p−→ c to denote that Xn converges in probability to c. That is, for

any ε > 0, we have P(|Xn − c| > ε) → 0 as n → ∞. Let {an}n∈N be a sequence of real
numbers that tends to infinity as n → ∞. We write Xn = op(an), if |Xn|/an converges
to 0 in probability. Additionally, we write Xn = Op(an), to denote that for any positive
sequence ω(n) → ∞, we have P(|Xn|/an ≥ ω(n)) = o(1). If En is a measurable subset of
Ω, for any n ∈ N, we say that the sequence {En}n∈N occurs with high probability (w.h.p.)
if P(En) = 1 − o(1), as n → ∞. Also, we denote by Be(p) a Bernoulli distributed random
variable whose probability of being equal to 1 is p. Bin(k, p) denotes a binomial distribution
corresponding to the number of successes of a sequence of k independent Bernoulli trials
each having probability of success p. We will suppress the dependence of parameters on the
size of the network n, if it is clear from the context.

2 Network models of banking systems

At a fixed time, a financial system is represented as a set [n] := {1, . . . , n} of financial
institutions (banks) that intermediate credit among end-users. Banks hold claims on each
other. We model these claims by a liability matrix Lij . For any two financial institutions i
and j, Lij represents the total liability of i to j. This represents the maximum loss related
to direct claims, incurred by j upon the failure of i. The total value of claims held by
end-users on bank i (deposits) is given by Di.
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External assets Deposits
Xi Di

ζiXi - loss on assets Interbank liabilities
Li =

∑
j∈[n] Lij

Interbank assets
Ai =

∑
j∈[n] Lji Capital

Ci

ζiXi - loss on capital

Assets Liabilities

Table 1: Stylized balance sheet of bank i after shock.

The total value of interbank assets of bank i is given by

Ai :=
∑
j∈[n]

Lji,

while the total value of interbank liabilities of i is given by

Li :=
∑
j∈[n]

Lij .

The total value of claims held by bank i on end-users (external assets) is denoted by Xi.
We now consider that the external assets of bank i receive a shock ζi, proportional to the
external asset. Let Ci be the capital of bank i after the shock, defined as the total value of
assets minus the total value of liabilities:

Ci := Xi(1− ζi) +Ai − Li −Di. (1)

Table 1 shows a stylized balance sheet of bank i after shock.

A bank i is said to be in fundamental default if its capital after the shock is negative

Ci < 0.

We let the set of fundamental defaults

D0 = {i ∈ [n] | Ci < 0}. (2)

Given the sequence of assets and liabilities in the network, the set of fundamental
defaults depends only on the shock. We call small shock regime, the regime under which
the number of fundamental defaults is small compared to the size of the network.

A bank in default will not be able to repay in full its liabilities. In most of the literature
on interbank contagion, see e.g. [35, 9], the recovery rates are considered fully proportional
to the asset size of the defaulted bank, but in reality this is too optimistic since liquidation
takes time and the valuation of the assets is uncertain. In the following, we denote by
R = (Rij) the matrix of recovery rates, where Rij denotes the recovery rate of the liability
of i to j. Since banks are required to hold minimal capital reserves, these recovery rates
are bounded from below by a constant R ∈ [0, 1]. We assume that the actual recovery rate
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of the liability of i to j (in case of default of i) is given by R + Eij , where Eij captures all
the uncertainly about the value of the defaulted bank, the amount of deposits with higher
seniority and also the intertemporal aspect of repaying to the creditors. Hence we have
Rij = 1 if i is solvent (not in default) and Rij = R + Eij if i is in default. In particular, in
the following we consider that {Eij}i,j∈[n] are random variables, such that the support of

the distribution of Rij satisfies supp(Rij) ⊆ [R,Ri] for some 0 ≤ R ≤ Ri ≤ 1, which satisfy
some cash-flow consistency condition (see the remark below). For tractability, we consider
that Eij are independent (not necessarily identically distributed).

Remark 1. Note that since an institution cannot pay more than its external assets plus
what it recovered from its debtors, the recovery rates of each institution i ∈ [n] must satisfy
the following constraints

Xi(1− ζi) +
∑
j∈[n]

LjiRji ≥
∑
j∈[n]

LijRij .

In order to satisfy the above constraint we can take for example a conservative approach
and consider the worst case scenario in which the recovery rates of a defaulted bank are
computed under the assumption of minimum recovery rate for its own interbank assets.
More precisely, assume that for all i = 1, . . . , n

Xi(1− ζi) +AiR ≥ LiRi.

In particular, if R = 0 then it suffices to set Ri = Xi(1−ζi)
Li

∧ 1 so that [R,Ri] always exists
and one can always choose the maximal such an interval. Note, moreover, that in this case
Ri depends on the bank i only through its characteristics Li and Xi. The recovery rate Rij
follows a distribution which depends only the characteristics of bank i.

Following the fundamental defaults, there is a default cascade that reaches the following
fixed point equation.

Definition 2 (Cascade fixed point set). Define D∗ as the set of institutions whose capital
is insufficient to absorb losses due to defaulted institutions

D∗ = D∗(R) =

i ∈ [n] | Ci <
∑
j∈D∗

(1−Rji)Lji

 . (3)

The cascade has in general multiple fixed points, as shown by the next lemma. The
smallest fixed point set corresponds to the smallest number of defaults and can be reached
by assuming a priori that all banks pay in full and then updating the default set: as we
learn that some banks default, then some debtor banks will not repay in full. If the recovery
rates are too small, i.e., the loss rates are too large, then the creditor banks may default and
so on. The largest fixed point corresponds to the largest number of defaults. We assume
a priori that all banks default. If there are banks that are able to pay their debts even if
all their debtors are in default, then we update the default set by removing these banks,
and so on. In practice, there may be no such bank that is able to pay all its debts when its
debtors are all in default. In this case, the default set consisting of all banks is the largest
fixed point of the cascade.

Lemma 3. There exists largest and smallest cascade fixed point sets D∗,D∗ satisfying (3)

such that any cascade fixed point set D∗ is included in D∗ and includes D∗, i.e., we have

D0 ⊆ D∗ ⊆ D∗ ⊆ D
∗ ⊆ [n].
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In the reminder of the paper we only consider the smallest cascade fixed point set
D∗ = D∗ which, as the proof of Lemma 3 shows, can be obtained iteratively in at most
n− 1 steps (D∗ = Dn−1) by starting from D0 and setting at step k = 1, . . . , n− 1:

Dk :=

i ∈ [n] | Ci <
∑

j∈Dk−1

(1−Rji)Lji

 .

As we will show in Section 5, in the small shock regime, the spread of contagion in a
large network relies on the existence of a large component connected by contagious links:

Definition 4 (Contagious link). We say that i → j is contagious if and only if the
default of institution i triggers the default of j, i.e., if the loss induced by the default of i
on j is larger than the capital of j:

(1−Rij)Lij > Cj .

In the following, we fix a probability space (Ω,F ,P) that models the uncertainly in the
financial system. We let βij denote the probability that a link from i to j (with Lij > 0)
becomes contagious. Given the liability matrix and the realized shocks (in stress scenarios),
the randomness stems from the uncertain recovery rates and we have:

βij := P
(
Rij <

Lij − Cj
Lij

)
. (4)

The subgraph of the financial network constituted of contagious links will be a primary
source for the propagation of default cascades: the larger this subgraph, the larger the size
of default contagion.

We call first order cascade the contagion carried through the contagious links. More
precisely, we denote by C1 the set of banks that can be reached solely by contagious links,
starting form the set of fundamental defaults, i.e.,

C1 = {j ∈ [n] | ∃ k ≥ 1, (j0 ∈ D0, j1, . . . , jk = j), j`−1 → j` is contagious ∀` = 1, . . . , k}.

We refer to |C1| as the size of the first order cascade. We say that the cascade is small if
|C1| = op(n), i.e., the fundamental shock does not lead to a positive fraction of defaults
through contagious links. Note that C1 is a random set which depends on D0 and the
recovery rates R. Clearly this set contains the set of fundamental defaults and, all banks
in this set, by definition of contagion links, are guaranteed to default, so we have

D0 ⊆ C1 ⊆ Dn−1.

We call the higher order cascade the cascade that is not carried through contagious
links: Dn−1 \ C1 represent the nodes that default by the higher order cascade. A critical
question is regarding the relation between the size of the set C1 and the size of final set of
defaults Dn−1. In the next two sections, we state some necessary and sufficient conditions
on the matrix B := (βij)i,j∈[n] for the size of first order cascade in the small shock regime

to be small. Namely, we give bounds on the number of institutions in C1. It turns out that
bounding the size of C1 is critical to bounding the final number of defaults in the system.
We will show in Section 5 (see Theorem 22), that if the size of C1 is smaller than some
critical parameter then the final size of cascade will be small.
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We end this section by the following remark. The concept of contagious links in financial
networks can be defined more generally than the contractual liabilities for which the loss
exceeds the capital of the creditor bank, as in the condition of Definition 4. In general there
could be a contagious link between i and j even in absence of liability between i and j, for
example due to common asset holdings, see e.g., [23, 25, 29] or information contagion [3].

3 Bounds in general networks

In this section we state some general conditions on the matrix B = (βij)i,j∈[n] for the size

of the first order cascade, i.e., |C1|, to be small.

We begin by giving a condition on the maximum row sum of the matrix B which ensures
that the amplification |C1|/|D0| is bounded with high probability (w.h.p.).

Proposition 5. Let β+
i :=

∑
j βij and β+

max = maxi(β
+
i ). If β+

max < 1, then

E [|C1|] ≤
1

1− β+
max
|D0|,

which in particular implies that |C1|/|D0| = Op (1).

The following example shows how the above proposition can be applied in the case where
the out degrees of the financial network are bounded from the above.

Example 6 (Bounded out-degree graphs). Assume that the out degrees of the financial
network are bounded from the above by ∆ and βij = β is constant over all existing links.
The above proposition implies that if β < 1

∆ then the network is resilient and we have for
any finite set D0, P (|C1| > ω(n))→ 0 for any ω(n)→∞.

So far, we have given conditions for the size of C1 to be small in terms of the maximum
row sum of contagion probability matrix. We now consider the L2 norm of the matrix B.
Let us denote by λmax(B) = ||B||2 the largest singular value of B which is the square root of
the largest eigenvalue of the positive-semidefinite matrix BTB. The following proposition
shows that the amplification |C1|/|D0| is Op(

√
n) whenever the largest singular value is

smaller than 1. Intuitively, it is natural to characterize the subcritical regime in terms of
the largest singular value, since this represents the rate of growth of the number of (directed)
paths in the graph [26].

Proposition 7. If λmax(B) < 1, then

E [|C1|] ≤
1

1− λmax(B)

√
n|D0|,

which in particular implies that |C1| = Op

(√
n|D0|

)
.

The following example shows that the upper bound in the above proposition is asymp-
totically tight in the case of star networks. Star networks are relevant to the post-crisis
environment since a large part of the interbank liabilities are centrally cleared. As we intro-
duce a central counterparty clearing (CCP) into the financial network (when all exposures
are cleared), the financial network becomes a star network, see e.g. [9, 33].
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Example 8 (Star networks). Consider a star network, consisting of a CCP denoted by
node 1 and n − 1 leaves. Assume the case where the CCP defaults, and D0 = {1}. It is
then clear that

E [|C1|] = 1 +

n∑
j=2

β1j .

Moreover, the largest singular value of B satisfies (by the Cauchy-Schwarz inequality)

λmax(B) = sup
x 6=0

||Bx||
||x||

= sup
x 6=0

∑n
j=2 β1jxj√∑n

j=2 x
2
j

=

√√√√ n∑
j=2

β2
1j .

So the above proposition says that if
∑n
j=2 β

2
1j < 1 then

λmax(B) =

√√√√ n∑
j=2

β2
1j ≥ 1−

√
n

1 +
∑n
j=2 β1j

.

In particular suppose that βij = β and λmax(B) =
√∑n

j=2 β
2
1j = β

√
n− 1 = γ < 1. Then

we have

E [|C1|] = 1 +

n∑
j=2

β1j = 1 + β(n− 1) = 1 + γ
√
n− 1

which is close to the upper bound
√
n

1−γ given by above proposition. Moreover, in this case,

using large deviation techniques for the binomial distributions (like Chernoff’s inequality)
we can show that for γ′ < γ, P (|C1| ≤ γ′

√
n) goes to 0, exponentially in n, when n goes to

infinity.

Let us now define for k = k(n) < n,

η(k) := max
S⊆[n], k≤|S|≤n

β+(S, Sc)

|S|
, (5)

where β+(S, Sc) =
∑
i∈S
∑
j∈Sc βij and Sc denotes the complement of the set S. The fol-

lowing proposition establishes another upper-bound on the size of the first order contagion.
This upper bound is given by the size of a set that contains the fundamental set of defaults,
but from which there is a small number of contagious links leading outside the set. The
intuition behind this proposition is that if the average degree out of a set of size larger than
k is smaller than 1 (for all such sets) then the size of the first order cascade is Op(k).

Proposition 9. Assume that for some k = k(n) = o(n) we have η(k) < 1. Then

E [|C1|] ≤
1

1− η(k)
max(k, |D0|),

which in particular implies that |C1| = Op (|D0|+ k(n)).

Example 10 (Erdős-Rényi random graphs). The (directed) Erdős-Rényi random graph
ER(n, p) with parameters n and p consists of n nodes, and each of the n(n − 1) possible
links in a directed graph on n labelled vertices is present independently with probability p.
If p = 1, then this is the complete graph. Assume that βij = β for all i, j ∈ [n], i 6= j (the
general case will be discussed in Section 4). In this case, it is not hard to show that w.h.p.
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for k(n)� log n and for c ≥ lim supn→∞(n− 1)pβ we have η(k) ≤ c. We thus conclude by
the above proposition that if there exists some constant c satisfying lim supn→∞(n−1)pβ ≤
c < 1 then, for any ω(n)→∞ as n→∞ and a finite set D0, we have (as n→∞)

P (|C1| > ω(n) log n)→ 0.

4 Inhomogeneous random financial networks

So far, we have considered the financial network as given and that the randomness stems
only from the recovery rates. In this section we assume that we have only partial information
about the financial network. In particular, the matrix Lij is not observable. We assume
that the financial institutions have different types which are in a certain type space S
and we only have information about their types. The set of types can be large enough to
classify the banks according to the available information. We model the financial network
as a random network consistent with the observation of types. The probability that there
is a contagious link between any two banks depends thus on the types of these two banks.

When there are banks of just 2 types, e.g., core and periphery as in Example 13, with
banks that are homogenous within each class, then it suffices to take S = {s1, s2}. However,
the model allows for rather general sets of types of the financial institutions, both finite as
well as (countably or uncountably) infinite. An example of an uncountably infinite type
space could be types related to the total liability Li and the total asset Ai of each individual
bank i in the financial network; see Example 14.

Assume we know how many institutions there are of a given type. This is described in
terms of a measure µ, where for A ⊆ S, µ(A) denotes the proportion of banks having a type
in A. Since only the types of the banks are observable and not their linkages, it is natural
to assume in the partial information setting that the probability βij of having a contagious
link from i to j depends only on the types of i and j. Namely (in our general model) we
consider a kernel

β̂ = β̂(n) : S2 → [0,∞),

where for s, s′ ∈ S, β̂(s, s′)/n ∧ 1 is the probability of having a contagious link from an
institution of type s to an institution of type s′. As a (natural) technical assumption we
consider in the following that

sup
s,s′,n

β̂(s, s′) <∞.

When S = {s1} we have βij = β and we find as a special case the Erdős-Rényi random
graph which was studied in Example 10. The inhomogenous model of random graphs was
introduced in [47, 21]. The directed inhomogeneous random graphs was studied in [17].

4.1 The finite-type case

We first treat the case when the set of types is finite. Namely, fix r ≥ 2 and suppose we
have a financial network with r different types. Let S = {s1, s2, . . . , sr} and let s(v) denote
the type of a bank v ∈ [n]. Let ni denote the number of vertices of type si, i.e.,

ni := #{v ∈ [n] | s(v) = si},
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so that n1 +n2 + · · ·+nr = n and let µ(n)(si) = ni/n. We shall assume that the fraction of
vertices of a given type is asymptotically positive constant which means there is a probability
distribution µ (independent of n) such that

lim
n→∞

µ(n)(si) = µi, (6)

so that we have µi > 0 and ni − µin = o(n). We then assume that the probability βuv of
having a contagious link from bank u to bank v depends only on the types of u and v so
that

βuv = β̂ (s(u), s(v)) /n.

Consider now the r × r matrix B̄ =
(
b̄ij
)

1≤i,j≤r where

b̄ij := µj β̂(si, sj) (7)

is the average number of contagious links from an institution of type si to the institutions
of type sj . The following theorem says that if the largest singular value of the contagion
probability matrix B̄ is smaller than one, then the amplification |C1|/|D0| is Op(log n).
On the contrary, if the largest singular value of the matrix B̄ is greater than one, then
there exists a (giant) component strongly connected by contagious links which represents a
positive faction of the financial system. This marks a phase transition in the size of the first
order cascade. In the supercritical regime, if any of the initially defaulted nodes belongs
to the component strongly connected by contagious links, then this whole component will
default, and thus the final cascade will be a positive fraction of the financial network.

Theorem 11. The following holds:

• If λmax(B̄) < 1 then |C1|/|D0| = Op(log n);

• If λmax(B̄) > 1 then w.h.p. there exists a strongly connected set of nodes representing
a positive fraction of the financial system such that the default of any node belonging
to this set can trigger the default of all nodes in the set.

To give the intuition behind the above theorem, in the following, we describe an approxi-
mation of the local structure of the inhomogeneous financial network (induced by contagious
links) by a multi-type branching process.

Remark 12 (Branching process approximation). Consider the multi-type Galton-Watson
processes where the particles are of types from S = {s1, s2, . . . , sr}. Given i ∈ [r] let X+

i

(resp. X−i ) denote the Galton-Watson process starting at a particle of type si such that the
number of children of type sk ∈ S of a particle of type sj ∈ S has a Poisson distribution

with mean β̂(sj , sk)µk (resp. β̂(sk, sj)µk), for all 1 ≤ j, k ≤ r. Let ξ+
i denote the survival

probability of X+
i . Thus the vector of survival probabilities

(
ξ+
1 , . . . , ξ

+
1

)
is the maximal

fixed point in [0, 1] of the following fixed point equation; see e.g., [15]:

ξ+
i = 1− E

− r∑
j=1

µj β̂(si, sj)ξ
+
j

 ,

for all i = 1, . . . , r. Respectively ξ−i denotes the survival probability of X−i and
(
ξ−1 , . . . , ξ

−
1

)
is the maximal fixed point in [0, 1] of

ξ−i = 1− E

− r∑
j=1

µj β̂(sj , si)ξ
−
j

 ,
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for all i = 1, . . . , r. We then let ξ∗ =
∑r
i=1 ξ

+
i ξ
−
i . The main result of [17] is that if B̄ is an

irreducible matrix then the size of the strongly connected giant component in finite-type
inhomogeneous random graphs is given by ξ∗n+ o(n) w.h.p..

In the following example, we consider the particular case of a core-periphery economy.
Recent empirical evidence suggests that financial networks exhibit a core-periphery network
structure, the core being highly interconnected and peripheral banks having few connections
only with banks in the core, see e.g., [30]. The previous theorem gives in this case a simple
and testable condition for the network to be resilient.

Example 13 (Core-periphery structure). Suppose that we have a financial network in
which there are nC banks of type C or ”core” and nP banks of type P or ”periphery”
with nC + nP = n, nC/n → µC and nP /n → µP as n → ∞. Suppose that there are no
(contagious) links between any two periphery banks. Then the above theorem implies that
if

µCµP β̂(C,P )β̂(P,C) + µC β̂(C,C) < 1,

then the size of the first order cascade is small and we have |C1|/|D0| = Op(log n).

4.2 The general case

In this section we extend the result of Theorem 11 to a much more general setting where
the type space S is a separable metric space. For A ⊆ S, µ(n)(A) denotes the proportion

of banks having a type in A. Writing si = s
(n)
i for the type of bank i ∈ [n], and δs for the

measure consisting of a point mass of weight 1 at s, and

µ(n) :=
1

n

n∑
i=1

δsi

for the empirical distribution of the types of banks, we shall assume that µ(n) converges
(in probability in case that si are random) to µ as n → ∞. The convergence condition
µ(n) → µ means exactly that for every µ-continuity set A,

µ(n)(A) := #{i : s
(n)
i ∈ A}/n→ µ(A).

Example 14. An example of an uncountably infinite type space is given when the types
represent the size of the total interbank assets Ai, the size of total interbank liabilities
Li and the capital Ci of each individual bank i in the financial network. We now let the
measurable space of types S := ([0,∞)3,B([0,∞)3)), endowed with the Borel sigma-algebra.
A type (x, y, z) ∈ S is interpreted as the size of interbank assets, interbank liabilities and
capital of a bank that has this type. For any n and sequence of assets, liabilities and capital

(A
(n)
i , L

(n)
i , C

(n)
i )i∈[n], we write

F (n)(x, y, z) := #{i ∈ [n], A
(n)
i ≤ x, L(n)

i ≤ y, C(n)
i ≤ z}/n.

We then need to assume that F (n) converges weakly as the size of the network tends to ∞,
i.e, there is a distribution function F : [0,∞)3 → [0, 1] such that for all (x, y, z) at which F
is continuous limn→∞ F (n)(x, y, z) = F (x, y, z).

We shall assume that the probability βij of having a contagious link from i to j depends
only on the types of i and j. Namely (in our general model) we consider a kernel

β̂ = β̂(n) : S2 → [0,∞),

12



where for i, j ∈ [n], the probability of having a contagious link from i with type si to j with

type sj is given by β̂(si, sj)/n independently of all other pairs i, j.

We say that a kernel β̂ is graphical on a vertex space V = (S, µ, (s1, . . . , sn)) if the
following conditions hold:

(i) β̂ is continuous on S × S;

(ii) β̂ ∈ L1(S × S);

(iii) 1
n

∑
i,j∈[n] β̂ (si, sj) −→

∫
S
∫
S β̂(s, s′)µ(ds)µ(ds′).

We assume that β̂ is graphical in the following. Similar to the case of non directed inhomo-
geneous random graphs, see [21], the number of outgoing (resp. incoming) contagious links
belonging to a vertex of a given type x is asymptotically distributed as a Poisson random
variable with a mean λ+(x) (reps. λ−(x)) where

λ+(x) :=

∫
S
β̂(x, y)µ(dy) and λ−(x) :=

∫
S
β̂(y, x)µ(dy). (8)

Given a kernel β̂ on a ground space (S, µ), let T+

β̂
and T−

β̂
be the integral operators on

(S, µ) with kernel β̂, defined by

(T+

β̂
f)(x) :=

∫
S
β̂(x, y)f(y)µ(dy), (9)

(T−
β̂
f)(x) :=

∫
S
β̂(y, x)f(y)µ(dy), (10)

for any (measurable) function f such that this integral is defined (finite or +∞) for almost

every (a.e.) x. Note that if β̂ ∈ L1(S × S), as we shall assume throughout, then T±
β̂
f is

also defined for every bounded f ; in this case T±
β̂
f ∈ L1(S) and thus T±

β̂
f is finite a.e.

We define
||T+

β̂
|| := sup

{
||T+

β̂
f ||2 : f ≥ 0, ||f ||2 ≤ 1

}
≤ ∞. (11)

The following theorem shows that, in the general case, the resilience of the financial
network can be characterized using the norm of the operator T+

β̂
.

Theorem 15. The following holds:

• If ||T+

β̂
|| < 1 then |C1|/|D0| = Op(log n);

• If ||T+

β̂
|| > 1 then with high probability, there exists a strongly connected set of nodes

representing a positive fraction of the financial system such that the default of any
node belonging to this set can trigger the default of all nodes in the set.

Similarly to the finite-type case, we can give the intuition behind the above theorem
by looking at the following multi-type branching process. The survival probability for the
multi-type branching process is determined in terms of the operator 1− exp(−T+

β̂
f).

Remark 16 (Branching process approximation). Consider the multi-type Galton-Watson

branching process X+
s (reps. X−s ) associated to (S, µ, β̂). This starts with a single particle

whose type is s. Each particle of type x has a set of children whose types are distributed

13



as a Poisson process on S with intensity β̂(x, y)dµ(y) (resp. β̂(y, x)dµ(y)). In other words,
the number of children with types in a subset A ⊆ S has a Poisson distribution with mean∫
A
β̂(x, y)dµ(y), and these numbers are independent for disjoint sets A and for different

particles; see [21]. Let ξ+(s) (reps. ξ−(s)) be the survival probabilitiy for the branching
process X+

s (reps. X−s ). We define the operators Φ+

β̂
and Φ−

β̂
by

Φ±
β̂
f = 1− exp

(
−T±

β̂
f
)
, (12)

for f ≥ 0. Note that for such f we have 0 ≤ T±
β̂
f ≤ ∞, and thus 0 ≤ Φ±

β̂
f ≤ 1. The survival

probabilities ξ+(s) and ξ−(s) are the maximal fixed point of the non-linear operators Φ+

β̂

and Φ−
β̂

respectively; see [21]. We then set

ξ∗ =

∫
S
ξ+(s)ξ−(s)µ(ds). (13)

The results of [21, 17] show that the size of the strongly connected giant component in
(general) inhomogeneous random graphs is given by ξ∗n+ o(n) with high probability if the

kernel β̂ on a ground space (S, µ) is irreducible; a kernel β̂ on a ground space (S, µ) is

reducible if there exists A ⊂ S with 0 < µ(A) < 1 such that β̂ = 0 a.e. on A× (S/A), and
irreducible otherwise.

5 Final size of default cascades in large networks

In the previous section we characterized the size of the first-order contagion |C1| when the
skeleton of contagious links is drawn from an inhomogenous random graph. We now turn
our attention to the final set of defaults Dn−1 and we characterize its size.

In order to compare our results with previous findings, we first summarize the results
in [8], which give limit theorems on the final size of the default cascade. These results hold
in an information setting where the distribution of the degree and default threshold of the
banks is known. More importantly, these results are now stated under a relaxed condition
on the second order moment of the degree distribution; the distribution of degrees may now
have infinite variance, as is the case in many real-world networks.

We then consider the case of power-law degree distribution of financial institutions and
state a theorem which shows that if the size of C1 (and the number of outgoing links from
C1 to the rest of the network) is smaller than some critical parameter then the final size of
cascade will be small.

5.1 Limit theorems

Similarly as in the previous section, we assume that we have only partial information about
the financial network and in particular on the matrix Lij . Namely we assume that for each
institution i ∈ [n], we are given the number of its creditors denoted by

d
(n)
out(i) := #{j ∈ [n] : Lij > 0},

and the number of its debtors denoted by

d
(n)
in (i) := #{j ∈ [n] : Lji > 0}.

14



The empirical distribution of the degrees is denoted by µ(n) which is assumed to converge
to some probability distribution µ with finite average λ as n→∞; (for all j, k ∈ N)

µ(n)(j, k) := #
{
i ∈ [n] | d(n)

in (i) = j, d
(n)
out(i) = k

}
→ µ(j, k), (14)

and,

λ :=
∑
j,k

jµ(j, k) =
∑
j,k

kµ(j, k) ∈ (0,∞). (15)

Moreover, we need to assume that (as n→∞)∑
j,k

jµ(n)(j, k) =
∑
j,k

kµ(n)(j, k)→ λ. (16)

Assume now that for each institution i ∈ [n], we are given the set of non-zero elements
of the i-th column of the liability matrix L which is given by

Lin(i) = {Lji | Lji > 0} .

We then consider the random financial network which captures this data for each node
and is constructed by configuration model: associate to each node i, two sets: Hout(i)
representing its out-going half-edges, and Hin(i) representing its in-coming half-edges, with

|Hout(i)| = d
(n)
out(i), and |Hin(i)| = d

(n)
in (i). Moreover the elements in the set Lin(i) are

assigned (randomly) to each incoming half-edges. Let Hout =
⋃
i∈[n]Hout(i) and Hin =⋃

iHin(i). A configuration is a matching of Hout with Hin. When an out-going half-edge
of node i is matched with an in-coming half-edge of node j, a directed edge from i to j
appears in the graph. The configuration model is the random directed multigraph which
is uniformly distributed across all configurations. Observe that the self-loops may occur,
these become rare as n→∞. It is easy to see conditional on the multigraph being simple
graph, we obtain a uniformly distributed random graph with these given degree sequences;
see [8].

The sequences of continuous liabilities, external assets, deposits and external shocks are
mapped into discrete sequences representing the default threshold for each institution, with
the result of this mapping represented by the quantities p(n)(j, k, θ). These are assumed to
converge to some distribution

p(n)(j, k, θ)→ p(j, k, θ),

where the limit distribution can be interpreted as the fraction of banks with degree (j, k)
that default exactly after θ debtor defaults; see [8] for more details.

Remark 17. Under the assumption that Rij are i.i.d. with support on [R,R] for all i, j, it
is easy to see that the number of contagious links of each node can be drawn independently
of the matching in the configuration model. Indeed, when the set Lin(i) is assigned to the
incoming half-edges, the number of contagious incoming half-edges of bank i is given by a
random variable

Ni :=
∑

`k∈Lin(i)

11(1−Rk)`k>C(i),

with Rk a random variable with value in (R,R), with the same distribution as all recovery
rates Rij . We then have (for large n)

βij ≈
dout(i)∑n
k=1 dout(k)

E(Nj) ≈
dout(i)din(j)∑n
k=1 dout(k)

p (din(j), dout(j), 1) .
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We define the function I : [0, 1]→ [0, 1] as

I(π) :=
∑
j,k,θ

kµ(j, k)

λ
p(j, k, θ)P(Bin(j, π) ≥ θ), (17)

and let π∗ be the smallest fixed point of I in [0, 1].

The following theorem proved in [8] gives the asymptotic size of contagion. In order to
ensure that with positive probability the graph is simple in the limit, we assumed in [8] a
condition of finite second order moment for the degree distribution. However, the proof in
[8] for the following two theorems does not require this condition, so here it is relaxed.

Theorem 18. We have:

• If π∗ = 1 then asymptotically all nodes default during the cascades:

|Dn−1|
n

p−→ 1.

• If π∗ < 1 and furthermore π∗ is a stable fixed point of I (I ′(π∗) 6= 1), then

|Dn−1|
n

p−→ J(π∗) :=
∑
j,k,θ

µ(j, k)p(j, k, θ)P(Bin(j, π∗) ≥ θ).

We define as the resilience measure the following function of the network’s features,
which takes values in (−∞, 1]:

1−
∑
j,k

jk

λ
µ(j, k)p(j, k, 1).

The second theorem of [8] is the following.

Theorem 19. The response of the financial network to the initial default of a small number
of nodes depends on its intrinsic frailty in the following way:

• If the resilience measure is positive, then w.h.p. for any finite set D0, the final fraction
of defaults is negligible.

• If the resilience measure is negative, then there exists a strongly connected set of
nodes representing a positive fraction of the financial system such that, w.h.p. any
node belonging to this set can trigger the default of all nodes in the set.

We now suppose that the resilience condition given by above theorem is satisfied so that
the resilience measure is positive and we have

∑
j,k

jk
λ µ(j, k)p(j, k, 1) < 1, and assume that

only a small fraction ε of all nodes represent fundamental defaults, i.e., p(j, k, 0) = ε for all
j, k ∈ [n]. As a corollary of the above theorems we have:

Corollary 20. Assume that the resilience condition is satisfied and moreover we have∑
j,k jkµ(j, k) < ∞. When a small fraction ε of all nodes represent fundamental defaults,

we have
|Dn−1|
n

p−→ ε (1 +

∑
j,k jµ(j, k)p(j, k, 1)

1−
∑
j,k

µ(j,k)jk
λ p(j, k, 1)

)︸ ︷︷ ︸
Amplification

+o(ε). (18)

16



Note that the above corollary requires that
∑
j,k jkµ(j, k) < ∞. In [8] this is implied

by the condition of finite second order moment for the degree distribution. Thus, under
the resilience condition, assuming that

∑
j,k jkµ(j, k) < ∞, gives a finite amplification

of defaults given by (18). On the other hand, if
∑
j,k jkµ(j, k) = ∞ (as is the case for

many real-world networks) then the resilience condition guarantees that the final fraction
of defaults is small only if the number of initial defaults is finite. In this case, a positive
small fraction of initial defaults may still trigger a large cascade under certain conditions.

This is the object of a new result of this paper that we state below. Consider the case
when

∑
j,k jkµ(j, k) = ∞ and suppose there is a fraction of banks with a finite threshold

to default and at the same time with a large number of creditors and debtors. Then these
banks will amplify the initial defaults: Their large number of incoming links will likely be
connected to multiple initially defaulted banks and thus these banks reach their default
threshold. Moreover, these banks have at the same time a large out-degree and thus they
will increase the rate of the epidemics’ spread.

Corollary 21. Assume that for some Θ ∈ N, , γ ∈ R+ and β ∈ (2, 3):

∑
k

Θ∑
θ=1

kµ(j, k)p(j, k, θ) ≥ γj−β+1

for all j ∈ N. Then there exists π̂ > 0 the smallest positive solution of

π =
∑
j,k

∑
θ≥1

kµ(j, k)

λ
p(j, k, θ)P(Bin(j, π) ≥ θ) (19)

such that, for ε small enough and n large enough, the final fraction of defaults is given by
J(π̂) > 0. Namely, for all δ > 0 there exists n(δ) and ε(δ) such that for all n > n(δ) and
ε < ε(δ) we have

P
(
| |Dn−1|

n
− J(π̂)| < δ

)
> 1− δ.

The above corollary shows a jump discontinuity at 0 for the final size of the cascade
when

∑
k

∑Θ
θ=1 kµ(j, k)p(j, k, θ) ≥ γj−β+1 for all j ∈ N. In particular this condition implies

that (since β ∈ (2, 3)) ∑
j,k

jkµ(j, k) ≥ γ
∑
j

j−β+2 =∞.

Of course, the interest of this result is the case Θ > 1, since when Θ = 1 we already know
with this condition the network is not resilient. Note that in the fixed point equation (19),
the threshold runs over θ ≥ 1 contrary to the fixed point of the function I in Theorem
18. Corollary 21 states that as the fraction of banks with θ = 0 tends to zero, the number
of banks that default (which have a threshold θ > 0) represents a positive fraction of the
system. We also give a precise value for this final fraction of defaults.

Given that a small fraction of defaults may lead to a large number of defaults, the
natural question is to give sufficient conditions on the number of initial defaults and the
set of banks touched by the first order cascade such that the fraction of final defaults is
small, i.e., o(n). In the next section, we give such a condition for the case of power law
random graphs with parameter β ∈ (2, 3), whose second moment of the degree distribution
diverges.
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5.2 Power-law random graphs

This section focuses on the special case of degree distribution of financial institutions,
namely those following a power law distribution. In particular, we consider a random
graph model that is asymptotically equivalent to a model considered by Chung and Lu [26],
and is a special case of the inhomogeneous random graph model studied in the previous
section.

In order to define the model we consider for any n ∈ N the vertex set [n]. Each vertex i

is assigned two positive weights d̄
(n)
out(i) and d̄

(n)
in (i) which represent the expected out degree

and the expected in degree of each institution i ∈ [n]. We assume that
∑n
i=1 d̄

(n)
out(i) =∑n

i=1 d̄
(n)
in (i) and we set

Wn =

n∑
i=1

d̄
(n)
out(i) =

n∑
i=1

d̄
(n)
in (i).

In our random graph model, the event of including the link {i→ j} in the resulting graph
is independent of the inclusion of any other links, and its probability equals

pi→j = min

{
d̄out(i)d̄in(j)

Wn
, 1

}
. (20)

The degree sequence of the resulting graph follows a power law with high probability,
provided that the sequence of weights follows a power law (see [48] for a detailed discussion).
Such random graphs are also characterized as ultra-small worlds, due to the fact that the
typical distance of two vertices that belong to the same component is O(log log n); see
e.g., [26] or [48].

For any n ∈ N and any sequence of expected degrees d = d(n) we write

F (n)(x, y) = n−1
n∑
i=1

1
[
d̄in(i) ≤ x, d̄out(i) ≤ y

]
, ∀x, y ∈ [0,∞)

for the empirical distribution function of the expected degrees of a vertex chosen uniformly
at random.

We will assume that Fn satisfies the following two conditions:

• There is a distribution function F : [0,∞) × [0,∞) → [0, 1] such that for all x, y at
which F is continuous limn→∞ F (n)(x, y) = F (x, y);

• Let (D
(n)
in , D

(n)
out) be random variables with distribution function F (n), and let (Din, Dout)

be random variables with distribution function F , we have

lim
n→∞

E[D
(n)
in ] = lim

n→∞
E[D

(n)
out] = E[Din] = E[Dout] =: λ.

These conditions guarantee two important properties. First, the expected degree of a
random vertex is approximately distributed as a random variable that follows a certain
distribution. Second, this variable has finite mean and therefore the resulting graph has
bounded average degree.

We define the empirical distribution of the expected in degrees as

F
(n)
in (x) = n−1

n∑
i=1

1
[
d̄in(i) ≤ x

]
, ∀x ∈ [0,∞).
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We now assume that
(
d̄in(i)

)
i∈[n]

follows a power law distribution with parameter β ∈ (2, 3).

This is described by the following condition:

There are 0 < γ1 < γ2 , x0 > 0 and 0 < ζ such that for all x0 ≤ x ≤ nζ

γ1x
−β+1 ≤ 1− F (n)

in (x) ≤ γ2x
−β+1,

and F
(n)
in (x) = 0 for x < x0, but F

(n)
in (x) = 1 for x > nζ .

Note that according to above definition, for ζ > 1/(β − 1), we have n(1−F (n)
in (nζ)) = 0,

since 1−F (n)
in (nζ) ≤ γ2n

−ζ(β−1) = o(n−1). Thus we assume ζ ≤ 1/(β − 1) in the following.

The main result of this section is the following theorem which shows that if the size of
C1 is sufficiently small, then the contagion process will not go beyond C1. In other words it
is sufficient to understand a topological property of the network, namely the size of the set
C1, to understand its cascading behavior.

Theorem 22. If
∑
i∈C1 d̄out(i)� dc(n) := n

1−ζ(3−β)
2 then w.h.p. Dn−1 = C1.

Note that since ζ ≤ 1/(β − 1) we have dc(n) ≥ n
β−2
β−1 and, in particular, the above

theorem implies that if
∑
i∈C1 d̄out(i)� n

β−2
β−1 then w.h.p. Dn−1 = C1.

Remark 23. Under some conditions on the degrees and threshold to default of the banks,
the above condition becomes necessary for the resilience of financial network. Assume that
there exists θ∗ ∈ N (large enough) and ε > 0 (small enough) such that any bank in the
network defaults with probability at least ε when θ∗ of its creditors (regardless which ones)
are in default. Assume moreover that the out degrees and in degrees are highly correlated.
Namely, there exists K ∈ N such that for all i ∈ [n]:

1

K
d̄in(i) ≤ d̄out(i) ≤ Kd̄in(i).

Then the result of [10] on bootstrap percolation in power law random graphs implies that
for ζ > θ∗−1

2θ∗−β+1 , a positive fraction of banks will default w.h.p, i.e., there exists α > 0 such

that w.h.p. |Dn−1| > αn, whenever

|C1| � n
θ∗(1−ζ)+ζ(β−1)−1

θ∗ . (21)

In particular when θ∗ = 2 or ζ = 1/(β − 1) we find that if |C1| � dc(n) then (w.h.p.) a
positive fraction of banks will default so that the above condition is necessary.

6 Conclusion

In this paper we have proposed different frameworks for testing the possibility of large
cascades in financial networks. Our model relies on specifying the first order contagion
probabilities. Contagion may occur due to multiple channels, such as balance-sheet insol-
vency contagion, cash-flow insolvency contagion or highly relevant, contagion due to reliance
on the same sources of unstable funding.

Our framework allows for the following specifications of the first order contagion prob-
abilities. Under full observation of the interbank network, the uncertainty comes from the
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recovery rates. In case of insolvency contagion, the contagion probabilities are specified for
any pair of banks using a model for the future recovery rates. Under partial observation
of the interbank network, the linkages are unobservable and only certain characteristics of
the banks are observable, such as capital, aggregate assets, total debt, short term debt,
etc. We assume that for any pair of banks, the first-order contagion probability depends on
these banks only through their characteristics. Given these probabilities, we derive testable
conditions for large cascades.

Our results can be used in a regulatory risk management framework: a (random) finan-
cial network is acceptable if it does not allow for large cascades for a set of stress scenarios
in which certain characteristics, such as capital or liquidity reserves are stressed. Moreover,
our results point to the need to monitor the first order contagion probabilities, and specify
capital and liquidity requirements in relation to these probabilities so that the financial
network is acceptable.
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A Proofs

This appendix contains the proofs of all lemmas, propositions and theorems in the main
text.

Proof of Lemma 3

Consider the following iterative specification of the cascade. We begin by defining the set
function Φ on P([n]),

Φ(A) :=

i ∈ [n] | Ci <
∑
j∈A

(1−Rji)Lji

 ,∀A ∈ P([n]).
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We have
A ⊆ B =⇒ Φ(A) ⊆ Φ(B), (22)

and the fixed point equation (3) writes

D∗ = Φ(D∗).

We now let the increasing sequence of default sets: D0 := D0, and for k = 1, . . . , n,
Dk := Φ(Dk−1). We have that Dk−1 ⊆ Dk. Let k∗ := min{k = 1, . . . , n | Dk−1 = Dk}.
Since for k < k∗, |Dk \Dk−1| ≥ 1, it follows that k∗ ≤ n. Moreover, D∗ := Dk∗ satisfies the
fixed point equation (3). In particular, since k∗ ≤ n, it is guaranteed that Dk∗ = Dn−1.

Similarly, we let the decreasing sequence of default sets: D0 := [n], and for k = 1, . . . , n,
Dk := Φ(Dk−1). We have that Dk ⊆ Dk−1. Let l∗ := min{k = 1, . . . , n | Dk−1 = Dk}.
Since for k < l∗, |Dk−1 \ Dk| ≥ 1, it follows that l∗ ≤ n. Moreover, D∗ := Dl∗ satisfies the

fixed point equation (3) and Dl∗ = Dn−1.

It now remains to show that any fixed point of (3) is such that D∗ ⊆ D∗ ⊆ D∗. We clearly
have that

D0 = D0 ⊆ D∗ ⊆ [n] = D0

Using the monotonicity property (22), we obtain by forward induction that

Dk ⊆ D∗ ⊆ Dk, ∀k = 1, . . . , n− 1,

which concludes the proof.

Proof of Proposition 5

Let pi = P(i ∈ C1). Hence, pi = 1 if i ∈ D0 and otherwise pi ≤
∑
j βjipj , which writes for

all i = 1, 2, . . . , n as

pi ≤ 11(i ∈ D0) +
∑
j

βjipj . (23)

We thus obtain ∑
i

pi ≤
∑
i

11(i ∈ D0) +
∑
i

∑
j

βjipj

= |D0|+
∑
j

(∑
i

βji

)
pj

≤ |D0|+ β+
max

∑
j

pj .

We conclude E [|C1|] =
∑
i pi ≤

1
1−β+

max
|D0|. The second statement follows using the Markov

inequality. Namely, for any ω(n) → ∞ as n → ∞ we have P (|C1| > ω(n)|D0|) → 0 by the
Markov inequality.

Proof of Proposition 7

Recall that from (23) we have

pi ≤ 11(i ∈ D0) +
∑
j

βjipj .

23



Let p = [p1, p2, . . . , pn] denote the vector with components pi,1 be the vector with all
components equal to 1 and 1D0

be the vector with component 1 for i ∈ D0 and 0 for i /∈ D0.
By Equation (23), we have

p ≤ 1D0
+Bp.

Denoting by || · || the Euclidean norm, we have

||p|| ≤ ||1D0
+Bp|| ≤ ||1D0

||+ ||Bp|| ≤
√
|D0|+ λmax(B)||p||.

We thus have for λmax(B) < 1 that ||p|| ≤
√
|D0|

1−λmax(B) . Furthermore by the Cauchy-Schwarz

inequality,

E [|C1|] =
∑
i∈[n]

pi = ||1Tp|| ≤ ||1T || ||p|| =
√
n||p||.

We conclude (if λmax(B) < 1)

E [|C1|] ≤
1

1− λmax(B)

√
n|D0|,

and the second statement follows using the Markov inequality.

Proof of Proposition 9

Starting the contagion from D0, the expectation of the number of nodes that defaults at first
step is at most |η(k) max(k, |D0|), while in the second step is at most |η(k)2 max(k, |D0|)|
and so on. We thus have

E [|C1|] ≤ |D0|+ η(k) max(k, |D0|) + η(k)2 max(k, |D0|) + . . . ,

and so when η(k) < 1, we obtain E [|C1|] ≤ 1
1−η(k) max(k, |D0|). Again, the second statement

follows using Markov inequality.

Proofs of Theorems 11, 15

It is discussed in [17] how to adapt the arguments in [21] to the case of directed inhomoge-
neous random graphs for the supercritical case when ||T+

β̂
|| > 1 (note that ||T+

β̂
|| = λmax(B̄)

in the finite-type case). We now give a proof for the subcritical case, i.e., ||T+

β̂
|| < 1, by

adapting the arguments of [21] to the case of directed inhomogeneous random graphs.

We first consider the case when the set of types is finite. The result will follow by
comparing the neighborhood of a vertex in the graph to a subcritical branching process;
see Remark 12. Recall that we have ni banks of type si and ni/n→ µi as n→∞. Let C(i)
denote the set of banks that can be reached from bank i through contagious links. Then
j ∈ C(i) if and only if there is a directed path from i to j by contagious links. We say
that bank i is systemically important if and only if the component C(i) has at least K log n
banks, where K is a large constant to be chosen below. We let A be the set of systemically
important banks, i.e.,

A := {i ∈ [n] | |C(i)| ≥ K log n}.

Starting from v ∈ D0 with type si and for any ε > 0, we can upper bound the neigh-
borhood of v by the Galton-Watson process X+

i (1 + ε) which starts at a particle of type
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si and such that the number of children of type sk ∈ S of a particle of type sj ∈ S has a

Poisson distribution with mean (1 + ε)b̄jk = (1 + ε)µkβ̂(sj , sk), for all 1 ≤ j, k ≤ r.

For ε small enough the branching process X+
i (1+ε) is subcritical. Consider the generat-

ing function of |(1 + ε)X+
i | which is given for any z > 0 by Gi(z) = E[z|X

+
i (1+ε)|]. Using the

independence of the Poisson numbers of particles of each type in the first generation and
the fact that the generating function of Poisson distribution with mean λ is exp(λ(z − 1))
we have

G(z) = z exp
(
B̄(G(z)− 1)

)
,

where G(z) = [G1(z), . . . , Gr(z)]
′. In the subcritical case when λmax B̄ < 1, it is known (by

the implicit function theorem) that this generating function has a finite solution for z in
a neighborhood of 1 and it follows that Gi(z) < ∞ for all i = 1, 2, . . . , r when z < 1 + ε.
Moreover, there exists δ > 0 such that

P
(
|X+
i (1 + ε)| ≥ k

)
≤ e−δk.

Choosing K = 2/δ, we conclude that P(v ∈ A) ≤ n−2 for all v ∈ [n]. By union bound over
all banks, we have w.h.p. |A| = 0 and thus |C1|/|D0| = Op(log n).

For the general case, it suffices to bound β̂ = β̂(n) for large n from the above by a
subcritical finite-type kernel β̂′ and the result follows similarly as above; see [21].

Proof of Corollary 21

Let π∗ε be the smallest fixed point of I in [0, 1], when a fraction ε of all nodes represent
fundamental defaults, i.e., this is the smallest solution in [0, 1] to the fixed point equation

π = Iε(π) := ε+
∑
j,k

∑
θ≥1

kµ(j, k)

λ
p(j, k, θ)P(Bin(j, π) ≥ θ),

and let π̂ > 0 be the smallest positive solution of

π = I0(π) :=
∑
j,k

∑
θ≥1

kµ(j, k)

λ
p(j, k, θ)P(Bin(j, π) ≥ θ).

We first show that such a solution exists in (0, 1). Note that I0(0) = 0, I0(1) ≤ 1 and I0
is an increasing function of π. Then in order to prove the existence of such a positive π̂ it
suffices to show that I ′(π) > 1 for π close to zero.

Claim 24. Assume that for some Θ ∈ N, γ ∈ R+ and β ∈ (2, 3):

∑
k

Θ∑
θ=1

kµ(j, k)p(j, k, θ) ≥ γj−β+1

for all j ∈ N. Then there exists π0 ∈ (0, 1) such that we have I ′0(π) > 1 for all π ∈ (0, π0].

Proof. We have for π ∈ (0, 1) and ∆ ∈ N

I ′0(π) =
∑
j,k

∑
θ≥1

jkµ(j, k)

λ
p(j, k, θ)P(Bin(j − 1, π) = θ − 1)

≥ 1

λ

2∆∑
j=∆+1

∑
k

Θ∑
θ=1

jkµ(j, k)p(j, k, θ)P(Bin(j − 1, π) = θ − 1).

25



We now set π0 = 1
∆ so that we have for π ≤ π0 and ∆ large enough

I ′0(π) ≥ 1

λ

2∆∑
j=∆+1

∑
k

Θ∑
θ=1

jkµ(j, k)p(j, k, θ)e−(j−1)π ((j − 1)π)θ−1

(θ − 1)!

≥ e−2

λ(Θ− 1)!

2∆∑
j=∆+1

j
∑
k

Θ∑
θ=1

kµ(j, k)p(j, k, θ)

≥ γe−2

λ(Θ− 1)!

2∆∑
j=∆+1

j−β+2

>
γe−2

λ(Θ− 1)!
∆−β+3.

Hence by choosing ∆ large enough, e.g.,

∆ ≥
(

γe−2

λ(Θ− 1)!

) 1
3−β

,

and setting π0 = 1/∆ we have I ′0(π) > 1 for all π ≤ π0 and the claim thus follows.

Since Iε is continuous we have limε→0+ π∗ε = π̂. The corollary now follows by Theorem 18.

Proof of Theorem 22

We adapt the arguments in [10] to consider the default cascade in directed power-law
random graphs. Assume that

(
d̄in(i)

)
i∈[n]

follows a power law distribution with parameter

β ∈ (2, 3), i.e., there are 0 < γ1 < γ2 , x0 > 0 and 0 < ζ ≤ 1
β−1 such that for all x0 ≤ x ≤ nζ

γ1x
−β+1 ≤ 1− F (n)

in (x) ≤ γ2x
−β+1,

and F
(n)
in (x) = 0 for x < x0, but F

(n)
in (x) = 1 for x > nζ .

Note that D0 ⊆ C1 and, since there is not any contagious link from the banks in C1
to the banks outside of C1, the first default outside C1 happens for a bank i ∈ [n]/C1
if at least two of the debtors of j are inside C1. We will show in the following that if∑
i∈C1 d̄out(i) � dc(n) := n

1−ζ(3−β)
2 then w.h.p. there are no bank outside C1 that has at

least 2 debtors in C1 and therefore the default cascade process does not actually evolve
outside C1.

For every bank j ∈ [n]/C1, we define an indicator random variable Xj which is 1 when
bank j has at least 2 debtors in C1 and we let X =

∑
j∈[n]/C1 Xj . We show in the following

that EX = o(1), thus implying that w.h.p. X = 0.

For j ∈ [n]/C1 let pj = EXj = P(Xj = 1), so that we have

pj = P

(∑
i∈C1

Eij ≥ 2

)
,

where Eij is the indicator random variable that is equal to 1 precisely when Lij > 0. Hence,

the random variable Eij is Bernoulli distributed with expected value equal to d̄out(i)d̄in(j)
Wn

.
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We now use a Chernoff-bound-like technique to bound this probability. We have for all
θ > 0 and j ∈ [n]/C1:

P

(∑
i∈C1

Eij ≥ 2

)
= P

(
exp(θ

∑
i∈C1

Eij) ≥ e2θ

)

≤
E
[
exp(θ

∑
i∈C1 Eij)

]
e2θ

=

∏
i∈C1 E[exp(θEij)]

e2θ

=

∏
i∈C1

(
eθ d̄out(i)d̄in(j)

Wn
+ 1− d̄out(i)d̄in(j)

Wn

)
e2θ

≤

∏
i∈C1 exp

(
(eθ − 1) d̄out(i)d̄in(j)

Wn

)
e2θ

=

exp

(
(eθ − 1)

d̄in(j)
∑
i∈C1

d̄out(i)

Wn

)
e2θ

� exp

(
(eθ − 1)

d̄in(j)dc(n)

λn
− 2θ

)
.

The exponent in the last expression is minimized when θ is such that eθ = 2λn
d̄in(j)dc(n)

. Hence

we obtain

pj = P

(∑
i∈C1

Eij ≥ 2

)
≤ exp

(
eθ
d̄in(j)dc(n)

λn

)
e−2θ

=

(
ed̄in(j)dc(n)

λn

)2

.

Thus we have

EX ≤
∑
j∈[n]

pj �
(
edc(n)

λn

)2 ∑
j∈[n]

d̄in(j)2. (24)

We now need to give an estimate on
∑
j∈[n] d̄in(j)2.

Claim 25. For all integers r ≥ 2 and for β ∈ (2, 3) we have∑
j∈[n]

d̄in(j)2 = Θ
(
n1+ζ(3−β)

)
.

Proof. By definition, since d̄in is power-law distributed, there exists a positive real x0 such
that for every x0 ≤ s ≤ nζ we have

γ1s
−β+1 ≤ 1− F (n)

in (s) ≤ γ2s
−β+1, (25)

whereas for s < x0 we have F
(n)
in (s) = 0 and for s > nζ we have F

(n)
in (s) = 1. We define

the function hn on [0, 1] as follows. For 0 ≤ x ≤ 1 − F (n)
in (nζ) we set hn(x) = nζ and for
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1− F (n)
in (nζ) < x ≤ 1 we set hn(x) = [1− F (n)

in ]−1(x). Then we have

∑
i∈[n]

d̄in(j)2 = n

∫ 1

0

h2
n(x)dx = n

(∫ 1−F (n)
in (nζ)

0

h2
n(x)dx+

∫ 1

1−F (n)
in (nζ)

h2
n(x)dx

)

= Θ
(
n1+ζ(3−β)

)
+ n

∫ 1

1−F (n)
in (nζ)

h2
n(x)dx.

It now suffices to show that the integral on the right-hand side satisfies the bounds of the
claim. Let us also define for every x ∈ (0, 1] the functions h1,n(x) = inf{s : γ1s

−β+1 ≤ x}
and h2,n(x) = inf{s : γ2s

−β+1 ≤ x}. By (25), for any x ∈ (1− F (n)
in (nζ), 1]

{s : γ2s
−β+1 ≤ x} ⊆ {s : 1− F (n)

in (s) ≤ x} ⊆ {s : γ1s
−β+1 ≤ x},

which implies that
h1,n(x) ≤ hn(x) ≤ h2,n(x).

Note that h1,n(x) = (γ1/x)
1

β−1 and h2,n(x) = (γ2/x)
1

β−1 . We conclude∫ 1

1−F (n)
in (nζ)

(γ1

x

) 2
β−1

dx ≤
∫ 1

1−F (n)
in (nζ)

h2
n(x)dx ≤

∫ 1

1−F (n)
in (nζ)

(γ2

x

) 2
β−1

dx. (26)

For ` ∈ {1, 2}, since β ∈ (2, 3), we have∫ 1

1−F (n)
in (nζ)

(γ`
x

) 2
β−1

dx = γ
2

β−1

`

∫ 1

1−F (n)
in (nζ)

(
1

x

) 2
β−1

dx

= γ
2

β−1

`

β − 1

r − β + 1

[
(1− F (n)

in (nζ))−
2

β−1 +1 − 1
]
.

Recall that 1− F (n)
in (nζ) = Θ(n−ζ(β−1)). Thus through (26) we deduce that for β ∈ (2, 3)

n

∫ 1

1−F (n)
in (nζ)

h2
n(x)dx = Θ

(
n1+ζ(3−β)

)
.

The claim now follows.

Substituting this bound into the right-hand side of (24), we obtain:

E[X] = o

(
n1−ζ(3−β)

n2
n1+ζ(3−β)

)
= o(1),

as desired.
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