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Abstract

A well-posedness theory for the initial value problem for hydroelastic waves in two spatial
dimensions is presented. This problem, which arises in numerous applications, describes the
evolution of a thin elastic membrane in a two-dimensional potential flow. We use a model for
the elastic sheet that accounts for bending stresses and membrane tension, but which neglects
the mass of the membrane. The analysis is based on a vortex sheet formulation, and following
earlier analyses and numerical computations in 2D interfacial flow with surface tension, we
use an angle-arclength representation of the problem. We prove short-time well-posedness in
Sobolev spaces. The proof is based on energy estimates, and the main challenge is to find a
definition of the energy and estimates on high-order nonlocal terms so that an a priori bound
can be obtained.

1 Introduction

The hydroelastic problem describes the interaction between elastic bodies and hydrodynamic flow.
We are interested in the particular version of this problem where an elastic sheet or membrane
evolves in a potential flow. This problem is important in biology, medicine, and ocean engineering,
and arises, for example, as a model for the dynamics of flapping flags [1], heart valves [28], ice
sheets in the ocean [36], and very large floating structures [35]. A review which summarizes recent
work on the analysis, numerical simulation, and applications of the hydroelastic problem is given by
Korobkin, Parau and Vanden Broeck [29].

This paper presents an existence and uniqueness theory for the initial value problem for hy-
droelastic waves. Recently, Plotnikov and Toland [32] derived nonlinear equations that model the
interaction of a thin, heavy elastic sheet with a three-dimensional inviscid, irrotational fluid. Their
derivation is based on the Cosserat theory of shells satisfying Kirchoff’s hypothesis, and accounts
for bending stresses in the sheet as well as a membrane stretching tension. A similar model for
the bending stress can be derived from minimization of the Willmore energy functional. Here, we
consider a model for the 2D hydroelastic time-evolution problem (that is, a 1D interface evolving
in 2D fluid flow) that is consistent with the hydroelastic formulation of Plotnikov and Toland, but
which neglects the mass of the elastic membrane. The model is derived follwing the approach of
[12]. Our main result is the local well-posedness of this problem.

The mathematical analysis of fluid-structure interaction presents significant challenges, and the
only rigourous results for the hydroelastic problem that we are aware of are on the existence of steady
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traveling waves [33, 38, 39]. There is more work on the well-posedness of models for the interaction
of a viscous (Navier-Stokes) fluid with an elastic membrane or solid. For example, Cheng et al. [14]
have developed an existence and uniqueness theory for the problem of a nonlinear elastic ‘bio-fluid’
shell interacting with a viscous incompressible bulk fluid governed by the Navier-Stokes equations.
Their model for the elastic shell involves a bending stress which extremizes the Willmore energy
functional, similar to here, and a membrane or surface energy that is a function of the local area
ratio. Wang et al. [40] prove the local well-posedness of an elastic surface model consisting of
a viscous incompressible membrane fluid, but neglect the interaction with the bulk fluid. Their
work generalizes an earlier analysis by Hu et al. [27]. Other work includes existence results for the
interaction of a viscous fluid with, respectively, an elastic body moving in the fluid interior (e.g.
[20]), finite thickness elastic shells [15], and regularized models of elastic plates (e.g. [13]). At first
glance, one might surmise that theory developed in this paper can follow from the zero viscosity limit
of [14]. A difficulty with this idea is that the Navier-Stokes and Euler’s equations admit different
kinds of boundary conditions, and the relationship between the zero viscosity limit of Navier-Stokes
and Euler remains an open problem.

The approach developed in this paper relies on a boundary integral formulation of the hydroelastic
problem. The analysis uses several important ideas from the numerical work of Hou, Lowengrub and
Shelley (HLS) [25] and the analysis of Ambrose [3] of the initial value problem for vortex sheets with
surface tension. These works recast the evolution equation by using the tangent angle θ and the
arclength s as the dependent variables, rather than the natural Cartesian variables x and y. This
choice of variables simplifies the curvature terms in the evolution equations. Additionally, they make
a special choice of the tangential velocity V (α, t) of the interface (which may be chosen arbitrarily,
and defines the parameterization α) so that sα is independent of α. With this choice of V , the
parameterization, normalized so that α is between 0 and 2π, is an equal arclength parameterization.
There is a jump in velocity at the interface which is then a vortex sheet, and we denote the vortex
sheet strength by γ. These choices simplify the analysis since the leading order or high derivative
terms are linear as functions of θ and γ.

The analysis requires special care in the handling of terms with the highest number of spatial
derivatives, which are contained within a singular integral operator known as the Birkhoff-Rott
integral. To facilitate this, our proof makes use of the small scale decomposition (SSD) introduced
in HLS. In the SSD, the leading order or highest derivative terms that are dominant at small
spatial scales are identified and written in a simple form involving Hilbert transforms, rather than
the more complicated Birkhoff-Rott integral. The small scale decomposition was used in HLS for
computational purposes, but here it is employed in an essential way to simplify terms that need to
be treated carefully in the analysis.

The main result of this paper is that the initial value problem for the hydroelastic flow of a
periodic interface is well-posed in Sobolev spaces. In particular, given periodic initial data θ(⋅, ) ∈Hs

and γ(⋅,0) ∈Hs−3/2 for s large enough (so that the interface variables x(α, t) and y(α, t) are in Hs+1)
there is a nonzero time in which the solution exists, is unique, has the same regularity as the initial
conditions, and depends continuously on the data.

The proof uses energy methods. The analysis is similar to that for vortex sheets with surface
tension in [3], and the main challenge compared to the previous analysis is that the elasticity intro-
duces higher order (nonlocal) terms, some of which are nonlinear. This requires a different definition
of energy and more care in the energy estimates to achieve closure, that is, a bound on the time
derivative of the energy by a function of the energy itself, which is a critical step in the proof.

The rest of this paper is organized as follows. In §2 we present an instructive example that illus-
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trates the essential features of the energy estimate. Governing equations and preliminary estimates
are presented in §3 and §4. The main existence proof is given in §5, and uniqueness and continuous
dependence of the solution on the data is demonstrated in §6. Concluding remarks are given in §7.
The appendix §8 derives an expression for the pressure jump at the interface that is used in the
model.

1.1 Function spaces, norms, operators, and notation

Derivatives with respect to the independent variables t and α will be denoted either by using the
partial derivative operators ∂t and ∂α, or with subscripts; thus ft = ∂tf, fα = ∂αf, fαα = ∂2αf, and
so on.

We comment now about the function spaces we will use. We use the L2-based Sobolev spaces in
the 2π-periodic setting. For f ∈Hk with k ∈ N, we use the following as the norm:

∥f∥k = (∫
2π

0
f2(α) + (∂kαf(α))2 dα)

1/2

.

For f ∈Hk+ 1
2 , with k ∈ N, we use the following as the norm:

∥f∥k+ 1
2
= (∫

2π

0
f2(α) + (∂kαf(α))(H∂k+1α f(α)) dα)

1/2

.

Here, H is the periodic Hilbert transform, which has symbol Ĥ(ξ) = −isgn(ξ). (Notice that if f has
mean zero, then H2f = −f. For more information on the periodic Hilbert transform, the interested
reader might consult [24]). Using Plancherel’s Theorem, it is clear that

∥f∥k+ 1
2
=
⎛
⎝∑ξ

(1 + ∣ξ∣2k+1)∣f̂(ξ)∣2
⎞
⎠

1/2

,

so this is equivalent to any other usual definition of the Hk+ 1
2 norm.

We will frequently use the notation Λ for the operator Λ =H∂α; with this definition, the symbol
of Λ is Λ̂(ξ) = ∣ξ∣, and this implies that Λ is self-adjoint. This implies the following, which we will
use many times:

d

dt
∫

2π

0
gΛg dα = 2∫

2π

0
gΛgt dα = 2∫

2π

0
gtΛg dα. (1)

This will be relevant as we estimate the growth of quantities which are equivalent to Hk+ 1
2 norms.

We will sometimes use the projection P, which removes the zero mode of a periodic function:

Pf = f − 1

2π
∫

2π

0
f(α) dα.

We may sometimes denote the mean of a periodic function as ⟪f⟫, so that we could say Pf = f −⟪f⟫.
We also introduce the mean-zero antiderivative operator, ∂−1α . This is defined through its symbol as

∂̂−1α f(k) = 1
ik
f̂(k), for k ≠ 0, and ∂̂−1α f(0) = 0.
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2 An instructive example

Let c1, c2, c3, c4, and c5 all be positive constants. We consider the following linear system, which
has the same types of leading-order terms as the hydroelastic wave system we will be studying.

θt =H(γα) + (c1 − c2)∂−1α H(γ),

γt = −c3θαααα + (c4 − c5)θαα.

The coefficients of the second terms on the right-hand sides, which are c1−c2 and c4−c5, are written
this way to make clear that we will be able to estimate these terms regardless of whether these
coefficients are positive or negative. For the purpose of the present example, we take (θ, γ) to be
a solution of this system which is sufficiently smooth for all of the integrals we are about to use to
make sense.

The energy we will estimate will serve as an upper bound for a constant times the square of the
H3-norm of θ and the square of the H3/2-norm of γ. We let E(t) be given by

E(t) = E0(t) +E1(t) +E2(t) +E3(t) +E4(t),

where

E0(t) =
1

2
∫

2π

0
θ2 + γ2 dα,

E1(t) =
c3
2
∫

2π

0
(∂3αθ)2 dα,

E2(t) =
1

2
∫

2π

0
(∂αγ)(Λ∂αγ) dα,

and E3 and E4 will be defined shortly.
Taking the time derivative, it is straightforward that the growth of E0 is bounded in terms of E ∶

dE0

dt
≤ cE. (2)

We next take the time derivative of E1 ∶

dE1

dt
= ∫

2π

0
(∂3αθ)(∂3αθt) dα.

Substituting from the evolution equation for θ, this is

dE1

dt
= c3 ∫

2π

0
(∂3αθ)(H∂4αγ) dα + c3(c1 − c2)∫

2π

0
(∂3αθ)(H∂2αγ) dα. (3)

Next, we take the time derivative of E2 ∶

dE2

dt
= ∫

2π

0
(∂αγ)(Λ∂αγt) dα.

Plugging in from the evolution equation, this is

dE2

dt
= −c3 ∫

2π

0
(∂αγ)(Λ∂5αθ) dα + (c4 − c5)∫

2π

0
(∂αγ)(Λ∂3αθ) dα.
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We use the fact that Λ is self-adjoint, and we use the definition Λ =H∂α ∶

dE2

dt
= −c3 ∫

2π

0
(H∂2αγ)(∂5αθ) dα + (c4 − c5)∫

2π

0
(H∂2αγ)(∂3αθ) dα.

We integrate by parts twice in the first integral on the right-hand side:

dE2

dt
= −c3 ∫

2π

0
(H∂4αγ)(∂3αθ) dα + (c4 − c5)∫

2π

0
(H∂2αγ)(∂3αθ) dα. (4)

We add (3) and (4), finding that the terms with the most derivatives cancel. We are left with

dE1

dt
+ dE2

dt
= [(c4 + c1c3) − (c5 + c2c3)]∫

2π

0
(H∂2αγ)(∂3αθ) dα. (5)

Notice that this integral is not bounded in terms of the energy, since the energy controls three
derivatives of θ and 3/2 of a derivative of γ; thus, this integral contains terms with 1/2 of a derivative
more than we can control. We will cancel this by using E3 and E4, which we now define as

E3(t) =
d1
2
∫

2π

0
(∂2αθ)2 dα,

E4(t) =
d2
2
∫

2π

0
γ(Λγ) dα.

The positive constants d1 and d2 will be specified soon.
We take the time derivative of E3 ∶

dE3

dt
= d1 ∫

2π

0
(∂2αθ)(∂2αθt) dα.

Plugging in from the evolution equation, this is

dE3

dt
= d1 ∫

2π

0
(∂2αθ)(H∂3αγ) dα + d1(c1 − c2)∫

2π

0
(∂2αθ)(H∂αγ) dα.

We integrate by parts once in the first integral on the right-hand side:

dE3

dt
= −d1 ∫

2π

0
(∂3αθ)(H∂2αγ) dα + d1(c1 − c2)∫

2π

0
(∂2αθ)(H∂αγ) dα. (6)

We next take the time derivative of E4 ∶

dE4

dt
= d2 ∫

2π

0
γ(Λγt) dα.

We plug in from the evolution equation, finding the following:

dE4

dt
= −c3d2 ∫

2π

0
γ(Λ∂4αθ) dα + d2(c4 − c5)∫

2π

0
γ(Λ∂2αθ) dα.

For the first integral on the right-hand side, we use the fact that Λ is self-adjoint, and we use the
definition Λ =H∂α, and we also integrate by parts once (we also use Λ =H∂α in the second integral):

dE4

dt
= c3d2 ∫

2π

0
(H∂2αγ)(∂3αθ) dα + d2(c4 − c5)∫

2π

0
γ(H∂3αθ) dα. (7)
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We now add (5), (6), and (7), to find the following:

dE1

dt
+ dE2

dt
+ dE3

dt
+ dE4

dt
= [−d1 + c3d2 + c4 + c1c3 − c5 − c2c3]∫

2π

0
(H∂2αγ)(∂3αθ) dα

+ d1(c1 − c2)∫
2π

0
(∂2αθ)(H∂αγ) dα + d2(c4 − c5)∫

2π

0
γ(H∂3αθ) dα. (8)

If we choose
d1 = c4 + c1c3, d2 =

c5 + c2c3
c3

,

then the first integral on the right-hand side of (8) vanishes. We then have

dE1

dt
+ dE2

dt
+ dE3

dt
+ dE4

dt
= d1(c1 − c2)∫

2π

0
(∂2αθ)(H∂αγ) dα + d2(c4 − c5)∫

2π

0
γ(H∂3αθ) dα.

Since the remaining integrals involve at most one derivative of γ and at most three derivatives of θ,
this can be estimated in terms of the energy:

dE1

dt
+ dE2

dt
+ dE3

dt
+ dE4

dt
≤ cE. (9)

Adding (2) and (9), we get

dE

dt
= dE0

dt
+ dE1

dt
+ dE2

dt
+ dE3

dt
+ dE4

dt
≤ cE.

This implies that the energy grows at most exponentially. Since the constants d1, d2, and c3 are
positive, we have the following:

min{1

2
,
c3
2
}(∥θ∥23 + ∥γ∥23/2) ≤ E(t) ≤ E(0)ect.

Thus, the norm of (θ, γ) grows at most exponentially.

3 Equations of motion

In this section, we formulate the evolution equations for periodic hydroelastic waves, using the θ−L
formulation of Hou, Lowengrub, and Shelley [25], [26]. This formulation has previously been used by
the first author to develop the well-posedness theory of vortex sheets, water waves, and Hele-Shaw
flows [3], [4], [5], [7]. Other authors have also used this formulation to prove results for water waves
and Hele-Shaw flows including well-posedness, stability, and regularity results, among others [16],
[17], [19], [21], [23], [42], [43].

We consider an interface S separating two inviscid, irrotational, incompressible fluids. The lower
(respectively, upper) fluid is denoted by a subscript 1 (respectively, 2). The one-dimensional free
surface is (x(α, t), y(α, t)), where α is the parameter along the curve, and t is time. We take the
curve to be 2π-periodic, so that

x(α + 2π, t) = x(α, t) + 2π, y(α + 2π, t) = y(α, t),
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for all α and t. We let t̂ and n̂ be the unit tangent and normal vectors along the curve, defined as

t̂ = (xα, yα)
sα

, n̂ = (−yα, xα)
sα

,

with the arclength element, sα defined by

s2α = x2α + y2α.

We let U and V denote the normal and tangential velocities of the free surface, so that

(x, y)t = U n̂ + V t̂. (10)

We introduce θ, the tangent angle that the curve forms with the horizontal, defined as θ =
tan−1(yα/xα). We can infer evolution equations for sα and θ from (10) [25]; we find

sα,t = Vα − θαU, (11)

θt =
Uα + V θα

sα
. (12)

We make note of the following geometric identities:

t̂α = θα ⋅ n̂, n̂α = −θα ⋅ t̂. (13)

Of course, we also have the relationship between curvature and tangent angle:

κ = θα
sα
.

While the normal velocity is dictated by the physics of the problem, the tangential velocity is not.
That is to say, changing the tangential velocity only changes the parameterization of the interface,
and so we may use the tangential velocity to enforce our preferred parameterization. Our preferred
parameterization is a normalized arclength parameterization: we would like sα to be independent of
α. If we let L(t) denote the length of one period of the curve, then we would like sα,t(α, t) = L(t)/2π
for all t. If this equation holds at the initial time, then it will hold at later times as long as

sα,t =
Lt
2π
.

Since L(t) = ∫
2π
0 sα(α, t) dα, we see from (11) using the periodicity of V (α, t) that

Lt = −∫
2π

0
θαU dα.

Considering again (11), this implies

Vα = Lt
2π

+ θαU = P(θαU). (14)

Integrating, we thus have
V = ∂−1α P(θαU) + V (0, t). (15)
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The integration constant V (0, t) is later chosen so that the mean of V is the same as the mean of
W ⋅ t̂.

Since there is no vorticity in the bulk of the fluid, we are able to use a vortex sheet formulation.
The average of the upper and lower fluid velocities evlauated at the interface S is denoted by
W = (W1,W2) and is specified by the Birkhoff-Rott integral. In terms of the complex notation
(x, y)→ x + iy, the Birkhoff-Rott integral is given by

W1 − iW2 =
1

4πi
PV∫

2π

0
γ(α′) cot(1

2
(z(α) − z(α′))) dα′. (16)

The curve z is the complex form of the interface (x, y) ∶

z(α, t) = x(α, t) + iy(α, t).

The normal velocity is the normal component of the Birkhoff-Rott integral:

U =W ⋅ n̂. (17)

The function γ is the vortex sheet strength; it is the jump in velocity (lower minus upper fluid)
across the interface. Since the velocity potential on each side of the interface satisfies a Bernoulli
equation, upon taking the limit at the interface, an evolution equation for the jump in potential
across the interface can be found. Differentiating this leads to the following evolution equation for
γ ∶

γt = −
2

ρ1 + ρ2
[p]α +

2π

L
((V −W ⋅ t̂)γ)α − 2A( L

2π
Wt ⋅ t̂ +

π2

L2
γγα − (V −W ⋅ t̂)Wα ⋅ t̂ + gyα) . (18)

where [p] = (p1 − p2)∥S is the jump in pressure at the interface and g is the acceleration due to
gravity. For details of the derivation of (18), the reader could consult [7] or [10] . The jump in
pressure across the interface is given by (see §8)

[p] = Eb(κss +
κ3

2
− c(t)κ) (19)

In the above, ρ1 and ρ2 are the densities of fluid 1 and fluid 2, respectively. The Atwood number,
A, is A = ρ1−ρ2

ρ1+ρ2
, and Eb is the bending modulus.

We present a nondimensionalized version of the equation for γ. Lengths are nondimensionalized
by a representative length of the periodic domain l, pressure is made dimensionless by EB/l3, the

surface tension parameter c(t) by EB/l2, velocity by
√
lg, γ by l

√
g, and time by

√
l/g. Introduce

the dimensionless parameter

S = EB
(ρ1 + ρ2)lg

.

The nondimensional equation for γ is then

γt = S (−καα
s2α

− κ
3

2
+ c̄1κ)

α

+ ((V −W ⋅ t̂)γ)α
sα

− 2A [(Wt ⋅ t̂)sα − (V −W ⋅ t̂)Wα ⋅ t̂ +
1

8
∂α (γ

2

s2α
) + yα] .
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If we use the relationship κ = θα/sα, and distribute the derivative on the first term on the right-hand
side, this is

γt = S (−∂
4
αθ

s3α
− 3θ2αθαα

2s3α
+ c̄1

θαα
sα

) + ((V −W ⋅ t̂)γ)α
sα

− 2A [(Wt ⋅ t̂)sα − (V −W ⋅ t̂)Wα ⋅ t̂ +
1

8
∂α (γ

2

s2α
) + yα] . (20)

3.1 Approximating the Birkhoff-Rott integral

We introduce a bit of notation which is helpful to us as we switch back forth between real and
complex notation. We let Φ ∶ R2 → C be the complexification map,

Φ(a, b) = a + ib.

Thus, for instance, z = Φ(x, y). We will denote the complex conjugate with ∗, as in z∗ = x − iy.
We introduced previously the periodic Hilbert transform, H, but we only discussed it in terms

of its symbol. There is an integral form of the Hilbert transform; if f ∈ L2, say, then

Hf(α) = 1

2π
PV∫

2π

0
f(α′) cot(1

2
(α − α′)) dα′.

We notice that (16), the formula for the Birkhoff-Rott integral, looks something like the Hilbert
transform. We thus introduce the following operator, which is the error in approximating an integral
like (16) with a Hilbert transform:

K[zd]f(α) =
1

4πi
∫

2π

0
f(α′) [cot(1

2
(zd(α) − zd(α′))) −

1

zα(α′)
cot(1

2
(α − α′))] dα′. (21)

Here, we have introduced the quantity zd, which is defined as

zd(α, t) = z(α, t) − z(0, t);

we have already used in (21) the fact that z(α, t) − z(α′, t) = zd(α, t) − zd(α′, t). It is convenient to
use zd instead of z because zd is determined uniquely from θ, while z is not. Notice furthermore
that ∂αz = ∂αzd. We will also need the commutator of the Hilbert transform with multiplication by
a smooth function:

[H,φ]f(α) =H(φf)(α) − φ(α)H(f)(α).

The operators K[zd] and [H,φ] are both smoothing operators; estimates demonstrating this smooth-
ing will be given in Section 4 below.

We will not provide the full details here, but having introduced these operators, we are able to
write Wα as follows:

Wα = π
L
H(γα)n̂ −

π

L
H(γθα)t̂ +m, (22)

where m is a collection of smoother terms given by

Φ(m)∗ = zαK[zd] ((
γ

zα
)
α

) + zα
2i

[H, 1

z2α
](zα ( γ

zα
)
α

) . (23)
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Formulas (22) and (23) were initially developed by the first author in [3], and used subsequently in
several papers, including most recently [5].

We now give a useful formula for V −W ⋅ t̂. Notice that we can use (13) to find that (W ⋅ t̂)α =
Wα ⋅ t̂ + (W ⋅ n̂)θα. Since Vα = Lt

2π
+ θαU, and since U =W ⋅ n̂, we see that

(V −W ⋅ t̂)α = −Wα ⋅ t̂ +
Lt
2π
.

We substitute from (22) to find

(V −W ⋅ t̂)α = π
L
H(γθα) −m ⋅ t̂ + Lt

2π
.

This can be rewritten by using the operator P; note that the left-hand side has no mean, and that
a Hilbert transform has no mean. Thus, we have the following:

(V −W ⋅ t̂)α = π
L
H(γθα) − P(m ⋅ t̂).

We apply the operator ∂−1α , and we also introduce the notation VW = V −W ⋅ t̂ ∶ get

VW = ∂−1α (π
L
H(γθα) − P(m ⋅ t̂)) . (24)

We note that it is implicit in this that the mean of V is chosen to be the same as the mean of W ⋅ t̂;
this is possible since the equation defining V is an equation for Vα, and the mean of V is then free
to be chosen.

We close this section with an expression for θt. We start from (12), and we use the equation
U =W ⋅ n̂ to find

Uα =Wα ⋅ n̂ − (W ⋅ t̂)θα.

Together with (22), this implies

θt =
2π2

L2
H(γα) +

2π

L
VW θα +

2π

L
m ⋅ n̂. (25)

3.2 Calculation of (Wt ⋅ t̂)sα

In this section, we will rewrite (Wt ⋅ t̂)sα, which appears on the right-hand side of (20). To begin,
we can write Wt as

Φ(W∗
t ) =

1

4πi
PV∫ γt(α′) cot(1

2
(z(α) − z(α′))) dα′

− 1

8πi
PV∫ γ(α′)(zt(α) − zt(α′)) csc2 (1

2
(z(α) − z(α′))) dα′.

We then write (Wt ⋅ t̂)sα as
(Wt ⋅ t̂)sα = J [zd](γt) +R,
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with the operator J [zd] defined by

J [zd](f)(α) = Re{ zα
4πi

PV∫ f(α′) cot(1

2
(z(α) − z(α′))) dα′} ,

and the term R is given by

R = Re{− zα
8πi

PV∫ γ(α′)(zt(α) − zt(α′)) csc2 (1

2
(z(α) − z(α′))) dα′} .

We will continue to rewrite R. To begin, we put in some factors of zα(α′) and recognize a perfect
derivative:

R = Re{− zα
8πi

PV∫
γ(α′)
zα(α′)

(zt(α) − zt(α′))zα(α′) csc2 (1

2
(z(α) − z(α′))) dα′}

= Re{− zα
4πi

PV∫
γ(α′)
zα(α′)

(zt(α) − zt(α′))∂α′ (cot(1

2
(z(α) − z(α′)))) dα′} .

We then integrate by parts:

R = Re{ zα
4πi

PV∫ ∂α′ (
γ(α′)(zt(α) − zt(α′))

zα(α′)
) cot(1

2
(z(α) − z(α′))) dα′}

We apply the derivative, and write R = R1+R2, where R1 and R2 are given by the following formulas:

R1 = Re{− zα
4πi

PV∫
γ(α′)ztα(α′)

zα(α′)
cot(1

2
(z(α) − z(α′))) dα′} ,

R2 = Re{ zα
4πi

PV∫ ∂α′ (
γ(α′)
zα(α′)

) (zt(α) − zt(α′)) cot(1

2
(z(α) − z(α′))) dα′} .

Of these, we need to continue to rewrite R1, since it has significant terms we need to treat carefully.
For R2, we need to rewrite it in order to see that it contains no such significant terms. We treat R2

first, by using K ∶

R2 = −Re{zα
2i

[H,zt] (
1

zα
( γ
zα

)
α

)} +Re{zαztK[zd] ((
γ

zα
)
α

)} −Re{zαK[zd] (zt (
γ

zα
)
α

)} . (26)

We add and subtract in R1 ∶

R1 = Re{−zα
2i
H (γztα

z2α
)} −Re{zαK[zd] (

γztα
zα

)} .

To extract the important terms from this, we need a useful expression for ztα. We know that
zα = sαeiθ and sα = L/2π, so we have

ztα = Lt
2π
eiθ + iθtzα = Lt

L
zα + iθtzα.

11



Using this, we have the following for R1 ∶

R1 = Re{−zα
2
H (γθt

zα
)} +Re{−zαLt

2Li
H ( γ

zα
)} −Re{zαK[zd] (

γztα
zα

)} .

To continue, we substitute for θt from (25):

R1 = Re{−π
2zα
L2

H (γH(γα)
zα

)} +Re{−πzα
L
H (γVW θα

zα
)} +Re{−πzα

L
H (γm ⋅ n̂

zα
)}

+Re{−zαLt
2Li

H ( γ
zα

)} −Re{zαK[zd] (
γztα
zα

)} . (27)

Next, for the first two terms on the right-hand side of (27), we pull some things through the Hilbert
transform, incurring commutators in the process:

R1 =
π2

L2
γγα −

π

L
VWH(γθα) +Re{−π

2zα
L2

[H, γ
zα

] (H(γα))} +Re{−πzα
L

[H, VW
zα

] (γθα)}

+Re{−πzα
L
H (γm ⋅ n̂

zα
)} +Re{−zαLt

2Li
H ( γ

zα
)} −Re{zαK[zd] (

γztα
zα

)} . (28)

We give the name R3 to the sum of the last four terms on the right-hand side of (28), so that we
have

R1 =
π2

L2
γγα −

π

L
VWH(γθα) +R3. (29)

The conclusion of this subsection is the following formula:

(Wt ⋅ t̂)sα = −π
L
VWH(γθα) +

π2

L2
γγα +J [zd]γt +R2 +R3. (30)

We will estimate J [zd](γt), R2, and R3 in Section 4 below.

3.3 Our small-scale decomposition

We are now going to rewrite the above evolution equations in an important ways: we will emphasize
the terms in the θt and γt evolution equations which must be treated carefully in the energy estimates.

We pick up from (20), and we replace sα with L/2π. We also introduce the notation

S̃(t) = S

s3α
= 8π3S

L3
.

We also apply the α−derivative in the second term on the right hand side in (20). These considera-
tions yield the following:

γt = S̃ (−∂4αθ − θαα (3

2
θ2α −

L2c̄1
4π2

)) + 2πγ∂αVW
L

+ 2πVW γα
L

− 2A [(Wt ⋅ t̂)sα − VWWα ⋅ t̂ +
1

8
∂α (4π2γ2

L2
) − yα] .

12



Next, we substitute for both (Wt ⋅ t̂)sα from (30) and for Wα ⋅ t̂, using (22). In doing so, there is
an important cancellation, since both of these terms contribute a term π

L
VWH(γθα), with opposite

signs. After making this cancellation, we are left with

γt = S̃ (−∂4αθ − θαα (3

2
θ2α −

L2c̄1
4π2

)) + 2πγ∂αVW
L

+ 2πVW γα
L

− 2A [J [zd]γt +R2 +R3 − VWm ⋅ t̂ + π
2

L2
γγα − yα]

which is an integral equation for γt. Finally, we group together some like terms, writing the integral
equation above as

γt = −S̃∂4αθ − S̃θααQ1 + γαQ2 +Q3, (31)

where Q1, Q2, and Q3 are the following collections of smoother terms:

Q1 ∶= Q1(α, t) =
3

2
θ2α −

L2c̄1
4π2

,

Q2 ∶= Q2(α, t) =
2πVW
L

− 2Aπ2

L2
γ,

Q3 ∶= Q3(α, t) =
2πγ∂αVW

L
− 2AJ [zd]γt − 2AR2 − 2AR3 + 2AVWm ⋅ t̂ − 2Ayα.

It will be helpful to have a brief notation for the evolution equations, so we introduce the following:

(θ, γ)t = B = (B1,B2). (32)

The definitions of B1 and B2 are clearly just given by the right-hand sides of the the equations (25)
and (31).

4 Preliminary estimates

We present without proof several important lemmas that are used in the subsequent estimates. The
proofs of Lemmas 1 through 5 can be found in [3]. A version of Lemma 6 also appears in [3], but the
particular form of the statement and proof of Lemma 6 is from [18] (see also [10] and [41]). Versions
of many of these lemmas may also be found in [6] or [11].

The first lemma is a standard interpolation lemma for Sobolev spaces:

Lemma 1 Let m ≥ 0 and ` ≥m be given. Let f ∈H` be given. Then, the following inequality holds:

∥f∥m ≤ c∥f∥m/`
` ∥f∥1−m/`

0 . (33)

The remainder operator K is a smoothing operator; the following lemma makes this precise.
Establishing this requires an assumption on the chord arc quantity

q1(α,α′) =
zd(α) − zd(α′)

α − α′

which states that the interfacial curve zd is not close to self-intersecting.
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Lemma 2 Let n ≥ 2 be an integer. Assume zd ∈ Hn. Assume there exists β1 > 0 such that for all α
and α′,

∣q1(α,α′)∣ > β1.

Then K[zd] ∶H1 →Hn−1 and K[zd] ∶H0 →Hn−2, with the estimates

∥K[zd]f∥n−1 ≤ C1∥f∥1 exp{C2∥zd∥n} ,

∥K[zd]f∥n−2 ≤ C1∥f∥0 exp{C2∥zd∥n} .

We also will need a Lipschitz estimate for K, when we establish uniqueness and continuous
dependence of solutions.

Lemma 3 Let θ and θ′ be in H3. Let L and L′ be the corresponding lengths of the associated curves
zd and z′d, and let q1 and q′1 be the associated chord-arc quantities. Assume there exists positive
constants β1 and β2 such that L < β2 and L′ < β2, and for all α and α′,

∣q1(α,α′)∣ > β1, ∣q′1(α,α′)∣ > β1.

Then the following Lipschitz estimate holds, for any f ∈H3 ∶

∥K[zd]f −K[z′d]f∥3 ≤ c∥θ − θ′∥3∥f∥3.

A version of Lemma 3 was proved in [2] giving an estimate in H1 rather than H3. The same proof
goes through, however, in H3, so we omit it.

We have two different commutator estimates for the commutator of the Hilbert transform and
multiplication by a smooth function. The first of these yields less regularity for the commutator,
but requires less regularity on the functions.

Lemma 4 Let n ≥ 1 be an integer. Let φ ∈ Hn be given. Then [H,φ] ∶ H0 → Hn−1 and [H,φ] ∶
H−1 →Hn−2, with the estimates

∥[H,φ]f∥n−1 ≤ c∥φ∥n∥f∥0,

∥[H,φ]f∥n−2 ≤ c∥φ∥n∥f∥−1. (34)

Our second commutator lemma gives higher regularity of the commutator, by requiring more regu-
larity on the functions.

Lemma 5 Let j ≥ 1 be an integer. Let n ≥ 2j be an integer. Let φ ∈ Hn be given. Then, [H,φ] ∶
Hn−j →Hn, with the estimate

∥[H,φ]f∥n ≤ c∥φ∥n∥f∥n−j .

We need a lemma giving solvability of our γt integral equation (31).

Lemma 6 Assume zd ∈ Hn for n ≥ 3. The operator (I + 2AJ [zd])−1 is bounded from H0 to H0,
with the estimate

∥(I + 2AJ [zd])−1 F∥
0
≤ c1exp{c2∥zd∥3}∥F ∥0.
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5 Existence

Before proving existence of solutions, we first must introduce a regularized system of evolution
equations. We will first prove existence of solutions for the regularized system, and then prove
energy estimates for the regularized system. We will then be able to pass to the limit as the
regularization parameter vanishes, finding that solutions of the non-regularized system of evolution
equations exist.

5.1 The mollified system

We will need to be careful about reconstructing a curve from a tangent angle; this is because not
every periodic tangent angle function will lead to a periodic curve. In particular, say η is our tangent
angle function, perhaps at a step of an iteration procedure (so that η cannot be assumed to be a
solution of our evolution equation). First we concern ourselves with defining the length of the curve;
this comes from the horizontal periodicity.

The derivative of the horizontal component of the curve to be constructed from η is

xα[η,L] =
L

2π
cos(η). (35)

The horizontal periodicity requires that x[η,L](2π) − x[η,L](0) = 2π, so we have

2π = ∫
2π

0
xα[η,L](α) dα = L

2π
∫

2π

0
cos(η(α)) dα.

Solving for L, this is

L[η] = 4π2

∫
2π
0 cos(η(α)) dα

.

For yα[η,L], we want ∫
2π
0 yα[η,L](α) dα = 0. To enforce our periodicity condition on x[η,L],

we were able to choose L[η] accordingly; there is no corresponding choice we can make in this case.
Instead, we simply must project the mean away. We define yα[η,L] to be

yα[η] =
L[η]
2π

P sin(η), (36)

where P is the projection which zeros out the mean.
We must define the mollified curve, and we use the above discussion as guidance. We let θε be

given. We let the length, Lε, be defined as

Lε = L[θε].

Naturally, since S̃ = 8π3S
L3 , we will use the notation S̃ε ∶

S̃ε = 8π3S

(Lε)3
.

The derivative of the curve is given by

xεα = xα[θε, Lε] =
Lε

2π
cos(θε), (37)
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yεα = yα[θε, Lε] =
Lε

2π
P sin(θε). (38)

The mollified curve is then defined by integrating:

zεd =
Lε

2π
∫

α

0
cos(θε) + iP sin(θε) dα, (39)

and the unit normal and tangent curves are defined to be

t̂ε = (cos(θε), sin(θε)), n̂ε = (− sin(θε), cos(θε)). (40)

(Note that if θε does not satisfy P sin(θε) = sin(θε), then these vectors t̂ε and n̂ε are not actually
the unit tangent and normal vectors to the curve zεd. We will ensure that when θε is a solution of of
the evolution equation (to be defined), that the property P sin(θε) = sin(θε) holds.)

For the exact evolution equations, we have θt = Uα+V θα
sα

. If we study ∫
2π
0 sin(θ(α, t)) dα in this

case, we find
d

dt
∫

2π

0
sin(θ(α, t)) dα = 1

sα
∫

2π

0
cos(θ)(Uα + V θα) dα.

We notice that cos(θ)θα = ∂α sin(θ), and we integrate by parts for this term. We also recall (14),
which says that Vα = Lt

2π
+ θαU. These considerations yield the following:

d

dt
∫

2π

0
sin(θ(α, t)) dα = 1

sα
∫

2π

0
[cos(θ)Uα − sin(θ)θαU] dα − Lt

L
∫

2π

0
sin(θ) dα.

Integrating by parts in the first term, we see that

d

dt
∫

2π

0
sin(θ(α, t)) dα = −Lt

L
∫

2π

0
sin(θ) dα.

This implies that the mean of sin(θ) grows or decays exponentially, with the exponential growth
rate related to L and Lt. Thus, for a solution, θ, of the exact evolution equations, we see that if the
mean of sin(θ) is initially zero, then it will remain zero at positive times.

We introduce the following analogue of (32) for the mollified system:

(θε, γε)t = (Bε1 + µε,Bε2), (41)

where we must now define Bε1, Bε2, and µε. Of these, Bε1 and Bε2 will be rather clearly similar to B1
and B2, but with mollification operators applied in a variety of places. The other term, µε, will be
used to enforce our periodicity requirement, that P(sin(θε)) = sin(θε). We remark that µε is taken
to be a function of t only, and to not depend on α; that is, µε will be related to spatial averages of
other quantities, and will thus be a constant function with respect to the spatial variable.

The previous argument, for the non-mollified system, showed that the structure of the non-
mollified evolution equations implies d

dt ∫
2π
0 sin(θ(α, t)) dα = 0. For solutions of the mollified system,

we no longer have the exact structure that we used previously, and we instead define µε to achieve
our desired goal. In particular, we have the following:

d

dt
∫

2π

0
sin(θε) dα = ∫

2π

0
θεt cos(θε) dα = ∫

2π

0
Bε1 cos(θε) dα + µε ∫

2π

0
cos(θε) dα.
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Since we want this to equal zero, we make the following definition of µε ∶

µε = −∫
2π
0 Bε1 cos(θε) dα

∫
2π
0 cos(θε) dα

= − L
ε

4π2 ∫
2π

0
Bε1 cos(θε) dα. (42)

The point of this is that, if (θε, γε) solves (41), then P(sin(θε)) = sin(θε). In light of (35) and (36),
this implies

∣zεα(α, t)∣ =
Lε(t)

2π
, ∀α,

as desired; this would not be the case if the mean of sin(θε) were nonzero.
We let the mollifier with parameter ε be denoted χε; this operator acts through truncation of

the Fourier series, zeroing out modes with wavenumber larger than 1/ε. As such, χε is a projection,
so that χ2

ε = χε.
We now define Bε1 and Bε2. To begin, we make the following definitions:

Bε1 = 2π2

(Lε)2
χεH(γεα) +

2π

Lε
χε (V εW (χεθεα)) +

2π

Lε
mε ⋅ n̂ε, (43)

Bε2 = −S̃εχε∂4αθε − S̃εχε (Qε1(χεθεαα)) + χε (Qε2(χεγεα)) +Qε3. (44)

In some of the terms the mollification operator χε appears twice; the reason for this is so that we
can perform integration by parts in the energy estimate. The placement of mollifiers will become
clear in the proof of Theorem 10. At this point, we have almost completely specified the mollified
system. What remains now is to give the definition of some of the mollified versions of the auxiliary
quantities, such as V εW and Qε1, among others.

V εW = ∂−1α ( π
Lε
H((χεγε)(χεθεα)) − P(mε ⋅ t̂ε)) . (45)

Qε1 =
3

2
(χεθεα)2 −

(Lε)2c̄1
4π2

, (46)

We define mε the same way that m is defined in (23), but we use the mollified quantities instead:

Φ(mε)∗ = zεαK[zεd] ((
γε

zεα
)
α

) + z
ε
α

2i
[H, 1

(zεα)2
](zεα (γ

ε

zεα
)
α

) . (47)

The mollified Birkhoff-Rott integral, Wε, is similarly defined the same way as W, but in terms
of the new quantities. We have

Φ(Wε)∗ = 1

4πi
PV∫

2π

0
γε(α′) cot(1

2
(zεd(α) − zεd(α′))) dα′.

Then, we define Uε to be
Uε =Wε ⋅ n̂ε.

We also need the mollified version of (22)

Wε
α = π

Lε
H(γεα)n̂ε −

π

Lε
H(γεθεα)t̂ε +mε, (48)
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We let V ε be the mollified version of V, which was defined in (15):

V ε = ∂−1α P(θεαUε) + V ε(0, t). (49)

We next define Qε2 and Qε3. Of these, Qε2 is straightforward and Qε3 will take some effort. We let
Qε2 be given by

Qε2 =
2πV εW
Lε

− 2Aπ2

(Lε)2
γε. (50)

To define Qε3, we first need to rewrite, again, the γt equation (to deal with the fact that it is
actually an integral equation). We write it as

γt = −2AJ [zd]γt +Ξ,

where
Ξ = −S̃∂4αθ − S̃Q1 + γαQ2 + Q̃3,

with Q̃3 given by

Q̃3 =
2πγ∂αVW

L
− 2AR2 − 2AR3 + 2AVWm ⋅ t̂ − 2Ayα.

Then, we can solve for γt ∶
γt = (I + 2AJ [zd])−1Ξ.

We can then rewrite Q3 as

Q3 = Q̃3 − 2AJ [zd](I + 2AJ [zd])−1Ξ.

We can then define Q̃ε3 and Ξε ∶

Q̃ε3 =
2πγεV εW
Lε

− 2ARε2 − 2ARε3 + 2AV εWmεt̂ε − 2Ayεα,

Ξε = −S̃ε∂4αθε − S̃εQε1 + γεαQε2 + Q̃ε3.

This, naturally, still leaves us needing to define Rε2 and Rε3; we will do this in a moment. First,
however, we define Qε3 as

Qε3 = Q̃ε3 − 2AJ [zεd](I + 2AJ [zεd])−1Ξε. (51)

For R3, the original statement of its definition involved Lt and ztα; we now rewrite R3 by
substituting for these:

R3 = Re{−πzα
L

[H, VW
zα

] (γθα)} +Re{− π
zα
H (γm ⋅ n̂

zα
)}

+Re

⎧⎪⎪⎪⎨⎪⎪⎪⎩

zα (∫
2π
0 θαU dα)

2Li
H ( γ

zα
)
⎫⎪⎪⎪⎬⎪⎪⎪⎭
−Re{zαK[zd] (

γ∂α(U n̂ + V t̂

zα
)} .
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Defining Rε3 is then straightforward:

Rε3 = Re{−πz
ε
α

Lε
[H,

V εW
zεα

] (γεθεα)} +Re{− π
zεα
H (γ

εmε ⋅ n̂ε

zεα
)}

+Re

⎧⎪⎪⎪⎨⎪⎪⎪⎩

zεα (∫
2π
0 θεαU

ε dα)
2Lεi

H (γ
ε

zεα
)
⎫⎪⎪⎪⎬⎪⎪⎪⎭
−Re{zεαK[zεd] (

γε∂α(Uεn̂ε + V εt̂ε

(zεα)
)} . (52)

For R2, we rewrite (26) by substituting for zt ∶

R2 = −Re{zα
2i

[H,U n̂ + V t̂] ( 1

zα
( γ
zα

)
α

)} +Re{zα(U n̂ + V t̂)K[zd] ((
γ

zα
)
α

)}

−Re{zαK[zd] ((U n̂ + V t̂) ( γ
zα

)
α

)} .

Defining Rε2 is then straightforward:

Rε2 = −Re{z
ε
α

2i
[H,Uεn̂ε + V εt̂ε] ( 1

zεα
(γ

ε

zεα
)
α

)} +Re{zεα(Uεn̂ε + V εt̂ε)K[zεd] ((
γε

zεα
)
α

)}

−Re{zεαK[zεd] ((Uεn̂ε + V εt̂ε)(
γε

zεα
)
α

)} . (53)

5.2 Auxiliary estimates

In this section, we give estimates for quantities like Wε or V εW , in terms of norms of θε and γε. We
note that the same estimates apply when there is no regularization, i.e., when ε = 0, and the proof
is exactly the same. The estimates on regularized quantitites is used in the proof of Theorem 10,
while those for unregularized quantities is used in the proof of Theorem 12.

Lemma 7 Let (θε, γε) ∈ O be given, such that θε satisfies ⟪sin(θε)⟫ = 0. Then, the following esti-
mates are satisfied:

∥zεα∥Hs ≤ c(1 + ∥θε∥Hs), (54)

∥zεd∥Hs+1 ≤ c(1 + ∥θε∥Hs), (55)

∥t̂ε∥Hs ≤ c(1 + ∥θε∥Hs) (56)

∥n̂ε∥Hs ≤ c(1 + ∥θε∥Hs) (57)

∥mε∥Hs ≤ c1∥γε∥Hs−3/2 exp{c2∥θε∥Hs}, (58)

∥Uε∥Hs−3/2 ≤ c1∥γε∥Hs−3/2 exp{c2∥θε∥Hs}, (59)

∥Wε ⋅ t̂ε∥Hs−1/2 ≤ c1∥γε∥Hs−3/2 exp{c2∥θε∥Hs}, (60)

∥V εW ∥Hs−1/2 ≤ c1∥γε∥Hs−3/2 exp{c2∥θε∥Hs}, (61)

∥V ε∥Hs−1/2 ≤ c1∥γε∥Hs−3/2 exp{c2∥θε∥Hs}, (62)

∥Qε1∥Hs−1 ≤ c(1 + ∥θε∥Hs), (63)
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∥Qε2∥Hs−3/2 ≤ c1∥γε∥Hs−3/2 exp{c2∥θε∥Hs}, (64)

∥Qε3∥Hs−3/2 ≤ c1 (∥γε∥2Hs−3/2 + 1) exp{c2∥θε∥Hs}, (65)

∣µε∣ ≤ c1∥γε∥Hs−3/2 exp{c2∥θε∥Hs}. (66)

where the constants are independent of ε.
Proof: The estimate (54) follows immediately from (37) and (38), together with (a) a standard
composition estimate [37], and (b) the fact that the definition of O includes a bound on the length.
The estimates (56) and (57), in light of (40), are similar. Since zεd is defined in (39) by integrating
xεα and yεα, the estimate (55) follows.

To establish (58), we use Lemma 2 to bound the first term on the right-hand side of (47), and
we use Lemma 5 to bound the second term on the right-hand side of (47). To establish (58), we also
rely on (54) and (55). The estimate (59) follows from (48) and the bound (58) on mε. To establish
the estimate on Wε ⋅ t̂ε, we use (Wε ⋅ t̂ε)α = Wε

α ⋅ t̂ε + Uεθεα; the estimate then follows by taking
the tangential component of (48) and using the previous estimate on Uε. The estimates on V εW and
V ε readily follow from (45) and (49) and the bound on mε. The estimates of Qε1 and Qε2 are easily
obtained from their definitions (46) and (50) using prior estimates.

The estimate on Qε3 defined in (51) is the most involved. We first obtain bounds on Rε2 and Rε3
of the form ∥Rεi ∥Hs−3/2 ≤ c1∥γε∥Hs−3/2 exp{c2∥θε∥Hs} for i = 2, 3. The estimate on Rε2 follows from
using Lemma 5 to bound the first term on the right hand side of (53) and Lemma 2 to bound the
second and third terms. The estimate on Rε3 uses Lemma 4 to bound the first term on the right
hand side of (52) and Lemma 2 to bound the fourth term; estimates on the second and third terms
are straighforward, with the Schwartz inequality used to obtain a bound on the integral quantity

∫
2π
0 θαU dα. Proceeding with the estimate on Qε3, we use previous estimates to obtain a bound on

the first term in (51):

∥Q̃ε3∥Hs−3/2 ≤ c1 (∥γε∥2Hs−3/2 exp{c2∥θε∥Hs} + ∥θε∥Hs) . (67)

Next, since we have assumed s is sufficiently large so that Ξε ∈H0, Lemma 6 implies that the second
term in (51) satisfies (I + 2AJ [zεd])−1Ξε = γεt ∈ H0, and in particular ∥γεt ∥0 ≤ c. We then find an
estimate on the second term in (51), J [zεd]γεt , from H0 to the higher norm Hs−1. To obtain this
estimate, we write

J [zεd]γεt = Re( iz
ε
α

4π
PV∫

2π

0
γε′t cot

zεd − zε′d
2

dα′)

= Re(−zεαK[zεd]γεt + izεα[H,
1

zεα
](γεt )) ,

and then apply Lemmas 2 and 4 to get

∥J [zεd]γεt ∥Hs−1 ≤ c∥γεt ∥H0 exp{c∥θε∥Hs}
≤ c1 exp{c∥θε∥Hs} . (68)

Combining (67) with (68) gives the estimate (65). Finally, the estimate on µε is readily obtained
from its definition (42) using previous estimates and the Schwartz inequality.
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5.3 The energy estimate

We state the Picard theorem for ordinary differential equations on a Banach space; the particular
statement we quote is from [31], and a similar statement can be found in [44].

Theorem 8 (Picard) Let O ⊆ B be an open subset of a Banach space, B. Let F ∶ O → B. Assume
that F is locally Lipschitz continuous, i.e., that for all x ∈ O, there exists an open neighborhood of
x, Ux ⊆ O, and c > 0 such that for all x1, x2 ∈ Ux,

∥F (x1) − F (x2)∥B ≤ c∥x1 − x2∥B .

Then, for every x0 ∈ O, there exists T > 0 and x ∈ C1((−T,T );O) such that x is the solution of the
initial value problem

dx

dt
= F (x), x(0) = x0.

In order to use the Picard theorem, we introduce the following open set, O. Let positive constants
d̄1, d̄2, and d̄3 be given. We let O be the subset of Hs ×Hs−3/2 such that for all (f1, f2) ∈ O, the
following three conditions are satisfied:

∥(f1, f2)∥Hs×Hs−3/2 < d̄1, L[f1] < d̄2, (69)

∣q1[f1](α,α′)∣ > d̄3, ∀α,α′. (70)

The conditions in (69) state that the set O is a subset of an open ball, such that the curves generated
by tangent angle f1 all have bounded length. The condition in (70) states that the curves generated
by tangent angle f1 are not close to self-intersection.

Theorem 9 Let (θ0, γ0) ∈ O be given, with θ0 satisfying ⟪sin(θ0)⟫ = 0. There exists Tε > 0 and
(θε, γε) ∈ C1((−T ε, T ε);O) such that (θε, γε) is the unique solution of the initial value problem
given by (41) with initial data (θ0, γ0).

We have thus demonstrated the existence of solutions to the mollified system. We would like to
pass to the limit as ε → 0+. However, we cannot do this yet, as the time interval from Theorem 9
could go to zero as ε vanishes. Our next step is to prove an energy estimate, uniformly in ε, for the
solutions (θε, γε). We can then use the continuation theorem for ordinary differential equations on
a Banach space to find that the solutions of the mollified system exist on a common time interval;
after this, we will be able to pass to the limit as the regularization vanishes.

Theorem 10 Let (θ0, γ0) ∈ O be given, with θ0 satisfying ⟪sin(θ0)⟫ = 0. Let ε > 0 be given. Let
(θε, γε) ∈ C([0, T ];O) be a solution of (41), with initial conditions (θ0, γ0). (Note that this T may
depend on ε.) Then there exist constants c1 ∈ (0,∞), c2 ∈ (0,1), and c3 ∈ (0,∞), depending only on
s, d̄1, d̄2, d̄3, ∥θ0∥Hs , and ∥γ0∥Hs−3/2 , such that

∥θε∥2Hs + ∥γε∥2Hs−3/2 ≤ −c1 ln(c2 − c3t). (71)

Proof: We will define an energy functional, E, such that

1

2
(∥θε∥2s + ∥γε∥2s−3/2) ≤ E, (72)
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and such that there exist constants C1 > 0 and C2 > 0 such that

dE

dt
≤ C1 exp{C2E}. (73)

The inequality (73) implies

E(t) ≤ −− ln(e−C2E(0) −C1C2t)
C2

. (74)

In light of (72), and renaming the constants, we see that (71) is then satisfied. Thus, we need only
to establish (73). Throughout the proof, we make frequent use of the properties of the mollifier of
Ξε, i.e., that it is self-adjoint and commutes with derivatives.

As in the example of Section 2, we will define the energy a bit at a time. The energy will be
given by

E = E0 +E1 +E2 +E3 +E4 +E5,

where we will now give the definition of E0, E1, and E2. The rest of the terms will be defined as
needed. We have

E0 =
1

2
∫

2π

0
(θε)2 + (γε)2 dα,

E1 =
c1(t)

2
∫

2π

0
(∂sαθε)2 dα,

E2 =
c2(t)

2
∫

2π

0
(∂s−2α γε)Λ(∂s−2α γε) dα.

We see that property (72) is satisfied as long as c1(t) ≥ 1, c2(t) ≥ 1, for all t, and Ei ≥ 0 for i ∈ {3,4,5}.
When we choose c1, c2, E3, E4, and E5, all of these properties will be satisfied.

To begin, we take the time derivative of E0 ∶

dE0

dt
= ∫

2π

0
θεθεt + γεγεt dα.

Since s is sufficiently large, it is immediate, from the evolution equation (41), the definitions (42),
(43), (44), and related equations, as well as the estimates of Section 5.2, that this can be bounded
in terms of the energy:

dE0

dt
≤ C1 exp{C2E}.

We next take the time derivative of E1 ∶

dE1

dt
= dc1
dt

⋅ 1

2
∫

2π

0
(∂sαθε)2 dα + c1 ∫

2π

0
(∂sαθε)(∂sαθεt ) dα. (75)

We note that ∂αµ
ε = 0, so there is no contribution from µε in (75). To proceed with (75), we will

write a formula for ∂sαθ
ε
t . Applying ∂sα to (43), we get

∂sαθ
ε
t =

2π2

(Lε)2
χεH(∂s+1α γε) + 2π

Lε
(χε(∂sαV εW )(χεθεα)) +

2π

Lε
χε (V εW (χε∂s+1α θε)) +Φ1, (76)
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where Φ1 is given by the formula

Φ1 =
2π

Lε
∂sα (mε ⋅ n̂ε) + 2π

Lε
χε

⎛
⎝

s−1

∑
j=1

(s
j
)(∂jαV εW )(χε∂s−j+1α θε)

⎞
⎠
.

All of the summands here involve at most s − 1 derivatives of V εW , and at most s derivatives of θε.
Therefore, the estimates of Section 5.2 and (72) immediately imply that ∥Φ1∥0 ≤ C1 exp{C2E}.

We then plug (76) into (75). Using the property that the mollifier χε is self-adjoint and commutes
with derivatives, we compute the following:

dE1

dt
= 2π2c1

(Lε)2 ∫
2π

0
(χε∂sαθε)(χεH∂s+1α γε) dα + 2πc1

Lε
∫

2π

0
(χε∂sαθε)(∂sαV εW )(χεθεα) dα

+ 2πc1
Lε
∫

2π

0
(χε∂sαθε)(χε∂s+1α θε)V εW dα + dc1

dt
⋅ 1

2
∫

2π

0
(∂sαθε)2 dα + ∫

2π

0
(∂sαθε)Φ1 dα. (77)

For the third term on the right-hand side of (77), we recognize a perfect derivative and integrate by
parts:

dE1

dt
= 2π2c1

(Lε)2 ∫
2π

0
(χε∂sαθε)(χεH∂s+1α γε) dα + 2πc1

Lε
∫

2π

0
(χε∂sαθε)(∂sαV εW )(χεθεα) dα +Ψ1, (78)

where Ψ1 is defined as

Ψ1 = −
πc1
Lε
∫

2π

0
(χε∂sαθε)2∂αV εW dα + dc1

dt
⋅ 1

2
∫

2π

0
(∂sαθε)2 dα + c1 ∫

2π

0
(∂sαθε)Φ1 dα. (79)

Before we are able to choose c1, we must compute dE2

dt
, which we now do. To begin, we have

simply
dE2

dt
= dc2
dt

⋅ 1

2
∫

2π

0
(∂s−2α γε)Λ(∂s−2α γε) dα + c2 ∫

2π

0
(∂s−2α γεt )(H∂s−1α γε) dα. (80)

We next must compute ∂s−2α γεt ∶

∂s−2α γεt = −S̃εχε∂s+2α θε − S̃εχε ((χε∂sαθε)Qε1) + χε ((χε∂s−1α γε)Qε2) +Φ2, (81)

where Φ2 is defined as

Φ2 = −
s−3

∑
j=0

(s − 2

j
)S̃εχε ((∂j+2α θε)(∂s−2−jα Qε1)) +

s−3

∑
j=0

(s − 2

j
)χε ((χε∂j+1α γε)(∂s−2−jα Qε2)) + ∂s−2α Qε3.

From the estimates of Section 5.2, since the summands here involve at most s − 1 derivatives of θε,
at most s − 2 derivatives of γε, and at most s − 2 derivatives of Qi for i ∈ {1,2,3}, the estimates of
Section 5.2 imply ∥Φ2∥1/2 ≤ C1 exp{C2E}.

We plug (81) into (80), and we again repeatedly use the fact that χε is self-adjoint (as well as
the fact that χε = χ2

ε) ∶

dE2

dt
= −c2S̃ε ∫

2π

0
(χεH∂s−1α γε)(χε∂s+2α θε) dα − c2S̃ε ∫

2π

0
(χεH∂s−1α γε)(χε∂sαθε)Qε1 dα

+c2 ∫
2π

0
(χεH∂s−1α γε)(χε∂s−1α γε)Qε2 dα+

dc2
dt

⋅1
2
∫

2π

0
(∂s−2α γε)Λ(∂s−2α γε) dα+c2 ∫

2π

0
(Λ∂s−2α γε)Φ2 dα.

(82)
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We integrate the first term on the right-hand side of (82) by parts twice, and we recall the definition
of S̃ε ∶

dE2

dt
= −8π3Sc2

(Lε)3 ∫
2π

0
(χεH∂s+1α γε)(χε∂sαθε) dα + c2S̃ε ∫

2π

0
(χεH∂s−1α γε)(χε∂sαθε)Qε1 dα +Ψ2, (83)

where Ψ2 is defined as

Ψ2 = c2 ∫
2π

0
(χεH∂s−1α γε)(χε∂s−1α γε)Qε2 dα +

dc2
dt

⋅ 1

2
∫

2π

0
(∂s−2α γε)Λ(∂s−2α γε) dα

+ c2 ∫
2π

0
(Λ∂s−2α γε)Φ2 dα. (84)

We now add (78) and (83), and group the like terms:

dE1

dt
+ dE2

dt
= [2π2c1

(Lε)2
− 8π3Sc2

(Lε)3
]∫

2π

0
(χεH∂s+1α γε)(χε∂sαθε) dα

+ 2πc1
Lε
∫

2π

0
(χε∂sαθε)(∂sαV εW )(χεθεα) dα − c2S̃ε ∫

2π

0
(χεH∂s−1α γε)(χε∂sαθε)Qε1 dα +Ψ1 +Ψ2. (85)

To make the first term on the right-hand side of (85) vanish, we choose c1 and c2 to satisfy

2π2c1
(Lε)2

− 8π3Sc2
(Lε)3

= 0;

this is satisfied as long as
c1
c2

= 4πS

Lε
.

Recall also the previous conditions c1 ≥ 1 and c2 ≥ 1. Therefore, we choose

c2 = max{Lε, L
ε

S
} , c1 =

4πSc2
Lε

. (86)

Clearly c2 ≥ 1 by definition; for c1, it follows that c1(t) ≥ 1 for all t since the horizontal periodicity
of the interface implies Lε(t) ≥ 2π for all t. Having made these choices for c1 and c2, we have

dE1

dt
+dE2

dt
= 2πc1

Lε
∫

2π

0
(χε∂sαθε)(∂sαV εW )(χεθεα) dα−c2S̃ε ∫

2π

0
(χεH∂s−1α γε)(χε∂sαθε)Qε1 dα+Ψ1+Ψ2.

(87)
The integrals on the right-hand side of (87) cannot be estimated in terms of the energy; we must
choose E3 to achieve an additional cancellation. First, however, we will rewrite (87) in order to more
fully understand the terms which cannot be bounded in terms of the energy.

Applying ∂sα to V εW , using (45), and extracting the leading-order term, we have

∂sαV
ε
W = π

Lε
(χεθεα)H(χε∂s−1α γε) + π

Lε
[H,χεθεα] (χε∂s−1α γε)

+ π

Lε

s−2

∑
j=0

(s − 1

j
)H ((χε∂jαγε)(χε∂s−jα θε)) − ∂sα (mε ⋅ t̂ε) . (88)
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We substitute (88) and (46) into (87), and we also use (86) to substitute for c1. We collect like terms,
and we collect lower-order terms, arriving at the following:

dE1

dt
+ dE2

dt
= c2 ∫

2π

0
[2πSc̄1

Lε
− 4π3S

(Lε)3
(χεθεα)2] (χε∂sαθε)(χεH∂s−1α γε) dα +Ψ3, (89)

where Ψ3 is given by

Ψ3 = Ψ1 +Ψ2 +
8π3Sc2
(Lε)3 ∫

2π

0
(χε∂sαθε)(χεθεα)

⎛
⎝

s−2

∑
j=0

(s − 1

j
)H ((χε∂jαγε)(χε∂s−jα θε))

⎞
⎠
dα

+ 8π3Sc2
(Lε)3 ∫

2π

0
(χε∂sαθε)(χεθεα) ([H,χεθεα] (χε∂s−1α γε)) dα

− 8πSc2
(Lε)2 ∫

2π

0
(χε∂sαθε)(χεθεα)(∂sα(mε ⋅ t̂ε)) dα. (90)

We define E3 and E4 as

E3 =
c3(t)

2
∫

2π

0
(χε∂s−1α θε)2 dα,

E4 =
1

2
∫

2π

0

√
c4(α, t)(∂s−3α γε)Λ (

√
c4(α, t)(∂s−3α γε)) dα.

Note that E4 is in the form ∫ gΛg dα, so we may make use of (1) when taking its time derivative.
We will specify c3(t) and c4(α, t) in short order; these will satisfy c3 ≥ 0 and c4 ≥ 1, so that E3 ≥ 0,
E4 ≥ 0, and also so that derivatives of

√
c4 remain bounded. These conditions ensure that (72) is

satisfied. In order to take the time derivatives of E3 and E4, it is again helpful to have formulas for
spatial derivatives of θεt and γεt ∶

∂s−1α θεt =
2π2

(Lε)2
χεH∂

s
αγ

ε +Φ4, (91)

∂s−3α γεt = −S̃εχε∂s+1α θε +Φ5, (92)

where Φ4 and Φ5 are given by

Φ4 =
2π

Lε
χε∂

s−1
α (V εW (χεθεα)) +

2π

Lε
∂s−1α (mε ⋅ n̂ε) , (93)

Φ5 = −S̃εχε∂s−3α (Qε1(χεθεαα)) + χε∂s−3α (Qε2(χεγεα)) + ∂s−3α Qε3. (94)

We compute the time derivative of E3 ∶

dE3

dt
= dc3
dt

⋅ 1

2
∫

2π

0
(χε∂s−1α θε)2 dα + ∫

2π

0
c3(χε∂s−1α θε)(χε∂s−1α θεt ) dα. (95)

We substitute (91) into (95):

dE3

dt
= 2π2

(Lε)2 ∫
2π

0
c3(χε∂s−1α θε)(χεH∂sαγε) dα +Ψ4, (96)
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where Ψ4 is defined as

Ψ4 = ∫
2π

0
c3(χε∂s−1α θε)(χεΦ4) dα +

dc3
dt

⋅ 1

2
∫

2π

0
(χε∂s−1α θε)2 dα. (97)

Next, we compute the time derivative of E4 ∶

dE4

dt
= ∫

2π

0

∂c4
∂t

⋅ 1

2
√
c4

(∂s−3α γε)Λ(
√
c4(∂s−3α γε)) dα + ∫

2π

0

√
c4(∂s−3α γεt )Λ(

√
c4(∂s−3α γε)) dα.

We comment now on the factor Λ(√c4(∂s−3α γε)). We rewrite this first by using the definition Λ =
H∂α, and the product rule:

Λ(
√
c4(∂s−3α γε)) =H(

√
c4(∂s−2α γε)) +H ( 1

2
√
c4

(∂αc4)(∂s−3α γε)) .

Next, for the first term on the right-hand side, we pull
√
c4 through the Hilbert transform, incurring

a commutator:

Λ(
√
c4(∂s−3α γε)) =

√
c4H∂

s−2
α γε + [H,

√
c4](∂s−2α γε) +H ( 1

√
c4

(∂αc4)(∂s−3α γε)) .

Now, making use of this formula, and substituting from (92), we find the following:

dE4

dt
= −8c4π

3S

(Lε)3 ∫
2π

0
(χε∂s+1α θε)(χεH∂s−2α γε) dα +Ψ5, (98)

where Ψ5 is defined as

Ψ5 = ∫
2π

0
(
√
c4S̃

εχε∂
s+1
α θε)H ( 1

2
√
c4

(∂αc4)(∂s−3α γε)) dα

+ ∫
2π

0
(
√
c4S̃

εχε∂
s+1
α θε)[H,

√
c4](∂s−2α γε) dα + ∫

2π

0
(
√
c4Φ5)Λ(

√
c4(∂s−3α γε)) dα

+ ∫
2π

0

∂c4
∂t

⋅ 1

2
√
c4

(∂s−3α γε)Λ(
√
c4(∂s−3α γε)) dα. (99)

Next, we combine the time derivatives of E1, E2, E3, and E4. We integrate by parts in the
integrals on the right-hand sides of (96) and (98), adding the results to (89):

dE1

dt
+ dE2

dt
+ dE3

dt
+ dE4

dt

= ∫
2π

0
[2πSc2c̄1

Lε
− 4π3Sc2

(Lε)3
(χεθεα)2 −

2π2c3
(Lε)2

+ 8π3Sc4
(Lε)3

] (χε∂sαθε)(χεH∂s−1α γε)

+ 8π3

(Lε)3 ∫
2π

0
(∂αc4)(χε∂sαθε)(χεH∂s−2α γε) dα +Ψ3 +Ψ4 +Ψ5. (100)

Then, we choose c3 and c4 so that the first integral on the right-hand side of (100) vanishes; recall
that we have said c4 = c4(α, t); this is because our choice of c4 will involve (χεθεα)2. Recall further
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that we have stated that we will choose c4 so that c4 ≥ 1; by bounding c4 away from zero, we ensure
that the factors of

√
c4 which appear in denominators are not troublesome. Also recall that the

constant c̄1 may be either positive or negative, while c2 is positive. We write c̄1 using its positive
and negative parts:

c̄1 = (c̄1)+ − (c̄1)−,

with these defined the usual way ((c̄1)+ = max{0, c̄1} and (c̄1)− = −min{0, c̄1}, so that (c̄1)+ ≥ 0 and
(c̄1)− ≥ 0). Then, we choose c3 and c4 so that c3 ≥ 0, c4 ≥ 1, and

2πSc2(c̄1)+

Lε
− 2πSc2(c̄1)−

Lε
− 4π3Sc2

(Lε)3
(χεθεα)2 −

2π2c3
(Lε)2

+ 8π3Sc4
(Lε)3

= 0.

We can accomplish our desired goals with the following choices of c3 and c4 ∶

c3 =
LεSc2(c̄1)+

π
+ 4πS

Lε
,

c4 =
(Lε)2c2(c̄1)−

4π2
+ c2

2
(χεθεα)2 + 1.

The remaining terms on the right-hand side of (100) can then be bounded in terms of the energy. ∎

5.4 Existence and regularity

We now state and complete the proof of our existence theorem.

Theorem 11 Let (θ0, γ0) ∈ O be given, with θ0 satisfying ⟪sin(θ0)⟫ = 0. There exists T > 0 and
there exists (θ, γ) ∈ C([0, T ]; Ō) such that (θ, γ) satisfies (25), (20) with (θ(⋅,0), γ(⋅,0)) = (θ0, γ0).

Note that the set Ō denotes the closure of the open set O.
Proof: Theorem 10 implies that the norm of solutions of the mollified problem, (θε, γε), cannot
immediately blow up; indeed, the estimate (71) indicates that the solutions (θε, γε) are bounded
independently of ε. By the continuation theorem for autonomous ODEs on a Banach space [31], this
implies that the solutions all exist on a common time interval. We conclude there exists T > 0 such
that for all ε > 0, solutions of the initial value problem (θε, γε) are in C([0, T ]O). (We note that to
draw this conclusion, we must also check that the time derivative of the length is bounded and that
the chord-arc condition continues to be satisfied. We note that these conclusions also follow from
(71), since the time derivatives of these quantities can be controlled by the norm of (θ, γ).)

We have proved that there exists T > 0 and (θε, γε) ∈ C([0, T ];O) which solve the mollified
evolution equations (41), with this T independent of ε. Since O is a bounded subset of Hs ×Hs−3/2,
and since we have taken s to be sufficiently large, this implies that each of θεα, θ

ε
t , γ

ε
α, and γεt are

uniformly bounded periodic functions. Thus, θε and γε are bounded, equicontinuous families. By
the Arzela-Ascoli theorem, there exists (θ, γ) ∈ C([0,2π] × [0, T ]) × C([0,2π] × [0, T ]) such that a
subsequence of (θε, γε) converges uniformly to (θ, γ) on [0,2π] × [0, T ]. We will now show that this
pair, (θ, γ), is in the closure of O, and also that it solves the non-mollified evolution equation, (32).

Since each of θ and γ are in C([0,2π] × [0, T ]), we see that they are also in L2([0,2π]) at
each time. By Lemma 1, we can conclude that the subsequence of (θε, γε) actually converges to

(θ, γ) in Hs′ × Hs′−3/2, for any s′ satisfying 3/2 ≤ s′ < s. For any such s′, this implies (θ, γ) ∈
L∞([0, T ];Hs′ ×Hs′−3/2).
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Since the solutions θε all satisfy (70), we can pass to the limit, finding

∣q1[θ](α,α′)∣ ≥ d̄3 > 0, ∀α,α′.

Furthermore, the solutions θε all satisfy

∫
2π

0
sin(θε) dα = 0;

since, along our subsequence, θε converges uniformly to θ, we can pass to the limit, finding P(sin(θ)) =
sin(θ). We can pass to the limit as ε vanishes (along our subsequence) in µε as well. Recalling (42),
and again in light of the regularity which we have already established, we see that

lim
ε→0+

µε = − L

4π2 ∫
2π

0
B cos(θ) dα = − 1

2π
∫

2π

0
(Uα + V θα) cos(θ) dα.

We have previously calculated this integral; it is equal to

Lt
2πL

∫
2π

0
sin(θ) dα.

Since we have seen that this integral is equal to zero, we see that µε vanishes as ε vanishes.
We now integrate (41) by integrating in time:

(θε, γε) = (θ0, γ0) + ∫
t

0
(Bε1 + µε,Bε2) ds,

for any t ∈ [0, T ]. We have established sufficient regularity thus far to be able to pass to the limit
(along our subsequence) here, finding

(θ, γ) = (θ0, γ0) + ∫
t

0
(B1,B2) ds.

Differentiating this with respect to time, we have shown that (θ, γ) is indeed a solution of (32), as
desired.

It remains to demonstrate that (θ, γ) ∈ C([0, T ];Hs ×Hs−3/2). For any t ∈ [0, T ], the sequence
(θε(⋅, t), γε(⋅, t)) is uniformly bounded (with respect to both ε and t) in Hs ×Hs−3/2. Since the unit
ball of a Hilbert space is weakly compact, there exists a weak limit along a (further) subsequence.
However, this weak limit must clearly be (θ, γ); this implies that (θ, γ) ∈ L∞([0, T ];Hs ×Hs−3/2).

To show continuity in time in Hs ×Hs−3/2, we must show that for any t∗ ∈ [0, T ],

lim
t→t∗

∥θ(⋅, t) − θ(⋅, t∗)∥s + ∥γ(⋅, t) − γ(⋅, t∗)∥s−3/2 = 0. (101)

(Of course, if t∗ = 0 or t∗ = T, then the limit in (101) is to be taken as a one-sided limit.) We see
in (101) that we are trying to establish convergence in a Hilbert space (i.e., we are showing that
(θ(⋅, t), γ(⋅, t)) converges to (θ(⋅, t∗), γ(⋅, t∗)) in Hs ×Hs−3/2, which is a Hilbert space). To establish
convergence in a Hilbert space, it is sufficient to establish weak convergence, plus convergence of the
norm.

For weak convergence, we focus on θ, but there is no esential difference with γ. Let any s′

satisfying 0 < s′ < s be given. We know that θ(⋅, t) → θ(⋅, t∗) in Hs′ . Let φ ∈ H−s be given. Since
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0 < s′ < s, we have −s < −s′, and thus H−s′ is dense in H−s. Since we know that for all t ∈ [0, T ], we
have θ(⋅, t) ∈ Hs, subject to the uniform bound that comes from the energy estimate, we can let K
denote the upper bound; so for any t ∈ [0, T ], we have ∥θ(⋅, t)∥Hs ≤ K. Let δ > 0 be given. Choose

φδ ∈H−s′ be given such that ∥φ − φδ∥H−s ≤ δ
3(1+K)

. Then we compute the following:

⟨θ(⋅, t) − θ(⋅, t∗), φ⟩ = ⟨θ(⋅, t) − θ(⋅, t∗), φδ⟩ + ⟨θ(⋅, t) − θ(⋅, t∗), φ − φδ⟩.

The second term on the right-hand side is bounded by 2Kδ
3(1+K)

≤ 2δ
3
. The first integral can be made

smaller than δ
3

by taking t sufficiently close to t∗. This proves the weak convergence.

Finally, all that remains is to prove that the Hs ×Hs−3/2 norm of (θ, γ) is continuous in time.
We omit the details of this, as the argument is identical to the corresponding argument in [3]. ∎

6 Uniqueness and continuous dependence

That solutions are unique follows from continuous dependence, so we will actually prove continuous
dependence here. We have proved above that solutions (θ, γ) exist in the space Hs ×Hs−3/2. We
therefore will assume that we have two solutions, (θ, γ) and (θ′, γ′) in this space, and estimate the
difference in a lower-regularity space, which we choose as H3 ×H3/2. This space is chosen to be high
enough so that the estimates have positive powers of derivatives, but low enough so that the terms
can be bounded by ∣∣θ∣∣Hs and ∣∣γ∣∣Hs−3/2 .

Before beginning, we note that we will use the estimates in Lemma 7 with unregularized quan-
tities, i.e., for ε = 0. We also remark that the estimate that we now perform, for (θ − θ′, γ − γ′) in
H3 ×H3/2, will be very similar to the energy estimate above for the existence proof.

Theorem 12 Let (θ0, γ0) ∈ O and (θ′0, γ′0) ∈ O be given, with ⟪sin(θ0)⟫ = ⟪sin(θ′0)⟫ = 0. If there
exists T > 0 such that there exists (θ, γ) ∈ C([0, T ];O) which solves (25), (31) with (θ(⋅,0), γ(⋅,0)) =
(θ0, γ0), and (θ′, γ′) ∈ C([0, T ];O) which solves (25), (31) with (θ′(⋅,0), γ′(⋅,0)) = (θ′0, γ′0), then
there exists c > 0 such that

sup
t∈[0,T ]

(∣L −L′∣ + ∥θ − θ′∥H3 + ∥γ − γ′∥H3/2) ≤ c (∣L(0) −L′(0)∣ + ∥θ0 − θ′0∥H3 + ∥γ0 − γ′0∥H3/2) . (102)

Moreover, the solution of the initial value problem (25), (31) with initial data (θ0, γ0) ∈ O is unique.

Proof: We define Ed to be
Ed = Z0 +Z1 +Z2 +Z3 +Z4,

where

Z0 =
1

2
(L −L′)2 + 1

2
∫

2π

0
(θ − θ′)2 + (γ − γ′)2 dα,

Z1 =
d1(t)

2
∫

2π

0
(∂3αθ − ∂3αθ′)2 dα,

Z2 =
d2(t)

2
∫

2π

0
(∂αγ − ∂αγ′)H(∂2αγ − ∂2αγ′) dα.
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The coefficients d1 and d2 will be chosen as we make the estimate. We will also define Z3 and Z4

in due course. We note, however, that (as in the proof of Theorem 10), all of these choices will be
made to ensure that Ed controls a norm; in particular, we will have

1

2
(∥θ − θ′∥2H3 + ∥γ − γ′∥2H3/2) ≤ Ed.

Before we begin to estimate Ed, we discuss the strategy. We will show that if (θ, γ) and (θ′, γ′)
are in O, then

dEd
dt

≤ cEd.

Solving this inequality, we find
Ed(t) ≤ Ed(0)ect.

This implies both continuous dependence and uniqueness. If we want Ed(t) to be small, then we
can achieve this by taking Ed(0) to be sufficiently small. This is for the H3 ×H3/2 norm; higher
norms follow by interpolation. This is the continuous dependence. For uniqueness, we note that if
Ed(0) = 0, then Ed(t) = 0, so we have θ = θ′ and γ = γ′.

It is important to be able to estimate differences of the various quantities associated to (θ, γ)
and (θ′, γ′), so we will make such estimates now, before beginning the estimate of Ed. The simplest
associated quantites are the unit tangent and normal vectors; the following bounds follow from
standard Lipschitz estimates for sine and cosine:

∥t̂ − t̂′∥H3 = ∥(cos(θ) − cos(θ′), sin(θ) − sin(θ′))∥H3 ≤ c∥θ − θ′∥H3 ≤ cE1/2
d ,

and similarly,

∥n̂ − n̂′∥H3 ≤ cE1/2
d .

Then, since zα = L
2π

t̂, a bound for zα − z′α follows:

∥Φ−1 (zα − z′α)∥H3 ≤ ∥(L −L
′

2π
) t̂∥

H3

+ L′

2π
∥t̂ − t̂′∥

H3 ≤ cE
1/2
d . (103)

Next, we estimate m −m′. We write

Φ(m −m′)∗ = I + II,

with the definitions

I = zαK[zd] ((
γ

zα
)
α

) − z′αK[z′] ((
γ′

z′α
)
α

) ,

II = zα
2i

[H, 1

z2α
](zα ( γ

zα
)
α

) − z
′
α

2i
[H, 1

(z′α)2
](z′α ( γ

′

z′α
)
α

) .

We rewrite I by adding and subtracting:

I = (zα − z′α)K[zd] ((
γ

zα
)
α

) + z′α(K[zd] −K[z′]) ((
γ

zα
)
α

) + z′αK[z′] ((
γ

zα
)
α

− ( γ
′

z′α
)
α

) .
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With the assumed uniform bounds on θ and γ, and using (103), the first term on the right-hand

side is bounded by cE
1/2
d . For the second term, we apply Lemma 3, and we thus see that this term

is also bounded by cE
1/2
d . For the third term on the right-hand side, its norm in H3 is bounded by

cE
1/2
d since K[z′] is a smoothing operator (i.e., we use Lemma 2).
We now turn our attention to the term II. We start by adding and subtracting:

II = zα − z
′
α

2i
[H, 1

z2α
](zα ( γ

zα
)
α

) + z
′
α

2i
[H, 1

z2α
− 1

(z′α)2
](zα ( γ

zα
)
α

)

+ z
′
α

2i
[H, 1

(z′α)2
](zα ( γ

zα
)
α

− z′α ( γ
′

z′α
)
α

) .

The first term on the right-hand side can be immediately bounded by cE
1/2
d . The third term can

be bounded by cE
1/2
d by using Lemma 4. For the second term on the right-hand side, we bound it

not by using smoothing properties of commutators, but by not regarding it as a commutator at all.
That is, we write the term out, letting the function f temporarily denote f = zα(γ/zα)α ∶

[H, 1

z2α
− 1

(z′α)2
] f =H (( 1

z2α
− 1

(z′α)2
) f) − ( 1

z2α
− 1

(z′α)2
)Hf.

Each of the terms on the right-hand side can clearly be bounded by cE
1/2
d . This completes the

estimate of m −m; we conclude

∥m −m′∥H3 ≤ cE1/2
d . (104)

We next estimate VW − V ′
W . From formula (24), after adding and subtracting several times, and

using the above estimates for t̂ − t̂′ and m −m′, the following estimate can be found:

∥VW − V ′
W ∥H2 ≤ cE1/2

d . (105)

We omit the details of most other differences to be estimated, since they are similar to the above.
However, we do remark that one interesting estimate is for the difference (I + 2AJ [zd])−1 − (I +
2AJ [z′d])−1. We consider invertible linear operators B1 and B2, and we see that

B−1
1 −B−1

2 = B−1
1 B2B

−1
2 −B−1

1 B1B
−1
2 = B−1

1 (B2 −B1)B−1
2 . (106)

Thus, we see that we can make a Lipschitz estimate for the inverses by estimating the inverses
individually and by making a Lipschitz estimate for the forward operators. If we let B1 = I+2AJ [zd]
and B2 = I + 2AJ [z′d], then B1 and B2 are bounded invertible operators by Lemma 6, and we see
from (106) that we need to be able to estimate B2−B1 = 2A(J [z′d]−J [zd]). Since we can decompose
J as commutators plus terms involving K, and since we know how to make Lipschitz estimates for
both of these kinds of terms, we are able to make the estimate for the difference.

We can use these estimates to conclude

dZ0

dt
≤ cEd. (107)

Now, we get to the most important part of the proof of the theorem, which is to take the time
derivative of Z1 and Z2. We have

dZ1

dt
= d1 ∫

2π

0
(∂3αθ − ∂3αθ′)(∂3αθt − ∂3αθ′t) dα +

dd1
dt

⋅ 1

2
∫

2π

0
(∂3αθ − ∂3αθ′)2 dα. (108)
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Applying ∂3α to (25), we get

∂3αθt =
2π2

L2
H∂4αγ +

2π

L
(∂3αVW )θα +

2π

L
VW (∂4αθ) + Y1,

where Y1 is defined as

Y1 =
6π

L
(∂2αVW )(∂2αθ) +

6π

L
(∂αVW )(∂3αθ) +

2π

L
∂3α(m ⋅ n̂).

Of course, we get the corresponding formula for ∂3αθ
′. These considerations allow us to substitute

into (108):

dZ1

dt
= d1 ∫

2π

0
(∂3αθ − ∂3αθ′)(

2π2

L2
H∂4αγ −

2π2

(L′)2
H∂4αγ

′) dα

+d1 ∫
2π

0
(∂3αθ−∂3αθ′) (

2π

L
(∂3αVW )θα −

2π

L′
(∂3αV ′

W )θ′α) dα+d1 ∫
2π

0
(∂3αθ−∂3αθ′) (

2π

L
VW (∂4αθ) −

2π

L′
V ′
W (∂4αθ′)) dα

+ d1 ∫
2π

0
(∂3αθ − ∂3αθ′)(Y1 − Y ′

1) dα +
dd1
dt

⋅ 1

2
∫

2π

0
(∂3αθ − ∂3αθ′)2 dα. (109)

There are five integrals on the right-hand side of (109), and we give these names; we write

dZ1

dt
= Υ1 +Υ2 +Υ3 +Υ4 +Υ5.

We must manipulate and estimate these, and we begin now with Υ1.
We add and subtract to write Υ1 as follows:

Υ1 = d1 ∫
2π

0
(∂3αθ−∂3αθ′)(

2π2

L2
)(H∂4αγ −H∂4αγ′) dα+d1 ∫

2π

0
(∂3αθ−∂3αθ′)(

2π2

L2
− 2π2

(L′)2
)H∂4αγ′ dα.

Of the two integrals on the right-hand side, the second can clearly be bounded in terms of Ed since
the definition of Z0 includes (L−L′)2 (and recall that L and L′ must both be greater than or equal
to 2π). Therefore, we have

Υ1 ≤ d1 ∫
2π

0
(∂3αθ − ∂3αθ′)(

2π2

L2
)(H∂4αγ −H∂4αγ′) dα + cEd.

To work with Υ2, we first expand ∂3αVW ∶

∂3αVW = π
L
θαHγαα +

π

L
[H,θα](γαα) +

2π

L
H(γαθαα) +

π

L
H(γ∂3αθ) − ∂2α(m ⋅ t̂).

After some adding and subtracting, the leading-order term of

2π

L
(∂3αVW )θα −

2π

L′
(∂3αV ′

W )θ′α

can then be seen to be
2π2

L2
θ2α(Hγαα −Hγ′αα);
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indeed, the contributions to Υ2 from all the other terms can then be bounded in terms of Ed. These
considerations yield the following:

Υ2 ≤ d1 ∫
2π

0
(∂3αθ − ∂3αθ′)(

2π2

L2
θ2α)(H∂2αγ −H∂2αγ′) dα + cEd.

Each of Υ3, Υ4, and Υ5 are bounded by cEd. For Υ4, this follows from the estimates such as
(104) and (105). For Υ5, the fact that it can be bounded by cEd follows immediately since dd1

dt
is

bounded; of course, we have not yet defined d1, but once we do, it will be clear that d1 and dd1
dt

are
bounded. To be slightly more precise, d1, when we do define it, will be in terms of (θ, γ) only, and
we have assumed that (θ, γ) is a bounded solution.

For Υ3, we add and subtract to reach the following:

Υ3 = d1 ∫
2π

0
(∂3αθ−∂3αθ′) (

2π

L
VW) (∂4αθ−∂4αθ′) dα+d1 ∫

2π

0
(∂3αθ−∂3αθ′) (

2π

L
VW − 2π

L′
V ′
W) (∂4αθ′) dα.

The first of these can be integrated by parts:

Υ3 =
d1
2
∫

2π

0
(2π

L
∂αVW) (∂3αθ − ∂αθ′)2 dα. + d1 ∫

2π

0
(∂3αθ − ∂3αθ′) (

2π

L
VW − 2π

L′
V ′
W) (∂4αθ′) dα.

Both of these terms, then, can be bounded by cEd. So far, then, we have calculated

dZ1

dt
= Υ1 +Υ2 +Υ3 +Υ4 +Υ5 ≤ cEd

+ ∫
2π

0
(2π2d1

L2
)(∂3α(θ − θ′))H∂4α(γ − γ′) dα + ∫

2π

0
(2π2d1θ

2
α

L2
)(∂3α(θ − θ′))H∂2α(γ − γ′) dα.

We now are ready to take the time derivative of Z2. To begin, we have

dZ2

dt
= d2 ∫

2π

0
(γαt − γ′αt)(H∂2αγ −H∂2αγ′) dα +

dd2
dt

⋅ 1

2
∫

2π

0
(γα − γ′α)(H∂2αγ −H∂2αγ′) dα.

We take the derivative of γt, finding

∂αγt = −(8π3S

L3
)∂5αθ − (8π3S

L3
)(∂3αθ)(

3

2
θ2α −

L2c̄1
4π2

) + γααQ2 + Y2, (110)

where Y2 denotes the following collection of terms:

Y2 = −S̃θαα∂αQ1 + γα∂αQ2 + ∂αQ3.

We dispense with many of the details; we only get two significant terms from dZ2

dt
, and these corre-

spond to the first two terms on the right-hand side of (110). We get the following estimate:

dZ2

dt
≤ cEd + ∫

2π

0
(−8π3Sd2

L3
)(∂5α(θ − θ′))(H∂2α(γ − γ′)) dα

+ ∫
2π

0
(−12π3Sd2θ

2
α

L3
+ 2πSd2c̄1

L
)(∂3α(θ − θ′))(H∂2α(γ − γ′)) dα. (111)
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We choose d1 and d2 so that
2π2d1
L2

− 8π3Sd2
L3

= 0.

Specifically, we make the choices

d2 = max{1,
1

S
} , d1 =

4πSd2
L

.

Then, when adding dZ1

dt
and dZ2

dt
, the leading terms cancel, leaving the following:

dZ1

dt
+ dZ2

dt
≤ cEd + ∫

2π

0
(2π2d1θ

2
α

L2
− 12π3Sd2θ

2
α

L3
+ 2πSd2c̄1

L
)(∂3α(θ − θ′))(H∂2α(γ − γ′)) dα. (112)

Using the definition of d1, this simplifies:

dZ1

dt
+ dZ2

dt
≤ cEd + ∫

2π

0
(−4π3Sd2θ

2
α

L3
+ 2πSd2c̄1

L
)(∂3α(θ − θ′))(H∂2α(γ − γ′)) dα. (113)

We now define Z3, and we will soon define Z4; these terms will allow us to cancel the integral
on the right-hand side of (113); notice that this integral is not bounded in terms of Ed, since it has
too many derivatives. We let Z3 be given by

Z3 =
d3(t)

2
∫

2π

0
(∂2αθ − ∂2αθ′)2 dα.

Taking its time derivative, we get

dZ3

dt
= d3 ∫

2π

0
(∂2αθt − ∂2αθ′t)(∂2αθ − ∂2αθ′) dα +

dd3
dt

⋅ 1

2
∫

2π

0
(∂2αθ − ∂2αθ′) dα.

Applying two spatial derivatives to θt, we get the following:

∂2αθt =
2π2

L2
H∂3αγ + Y3,

where the term Y3 is defined as

Y3 = ∂2α (2π

L
VW θα +

2π

L
m ⋅ n̂) . (114)

As above, we do not include all details, but there is only one term which is not bounded in terms of
Ed ∶

dZ3

dt
≤ cEd + ∫

2π

0
(2π2d3

L2
)(H∂3α(γ − γ′))(∂2α(θ − θ′)) dα.

In the integral on the right-hand side, we integrate by parts once:

dZ3

dt
≤ cEd + ∫

2π

0
(−2π2d3

L2
)(H∂2α(γ − γ′))(∂3α(θ − θ′)) dα. (115)

For the final piece of Ed, we define Z4. Before doing so, we note that the coefficients d1, d2, and
d3 that we have introduced thus far are functions of t only. Now, however, the term Z4 will involve
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a coefficient d4 which we must take to depend on both α and t; this is because it will be used to
cancel terms in (112) which involve θ2α. With this in mind, our definition is

Z4 =
1

2
∫

2π

0
(
√
d4(α, t)(γ − γ′))H∂α (

√
d4(α, t)(γ − γ′)) dα.

We note that the form of Z4 may at first look unusual; we note, however, that it is in the form

∫ gΛg dα, with g =
√
d4(γ−γ′), and we may thus use (1) to estimate its time derivative. Furthermore,

we will choose d4 to satisfy d4 ≥ 1 so that it is clear that derivatives of
√
d4 are bounded. Taking

the time derivative of Z4, we get

dZ4

dt
= ∫

2π

0

√
d4(γt − γ′t)H∂α (

√
d4(γ − γ′)) dα + ∫

2π

0

dd4
dt

⋅ 1

2
√
d4

(γ − γ′)H∂α (
√
d4(γ − γ′)) dα.

As for Z3, when considering Z4, there is only one significant term, and this is from the leading-order
term in (31). After our usual adding and subtracting, we arrive at

dZ4

dt
≤ cEd + ∫

2π

0
(−8π3S

L3
)
√
d4(∂4α(θ − θ′))H∂α(

√
d4(γ − γ′)) dα.

We are able to pass the second factor of
√
d4 above through H∂α, incurring only terms which can

be bounded by cEd. We are left, then with

dZ4

dt
≤ cEd + ∫

2π

0
(−8π3Sd4

L3
)(∂4α(θ − θ′))H∂α(γ − γ′) dα.

We integrate by parts in this integral, retaining just one integral that is not bounded by cEd ∶

dZ4

dt
≤ cEd + ∫

2π

0
(8π3Sd4

L3
)(∂3α(θ − θ′))H∂2α(γ − γ′) dα. (116)

We now add (113), (115), and (116), arriving at the following:

d(Z1 +Z2 +Z3 +Z4)
dt

≤ cEd

+ ∫
2π

0
(−4π3Sd2θ

2
α

L3
+ 2πSd2c̄1

L
− 2π2d3

L2
+ 8π3Sd4

L3
)(∂3α(θ − θ′))H∂2α(γ − γ′) dα. (117)

The choice of d3 and d4 depends on the sign of c̄1; this is exactly the same as occured when choosing
c3 and c4 in the proof of Theorem 10. Indeed, our choices of d3 and d4 are almost identical:

d3 =
LSd2(c̄1)+

π
+ 4πS

L
,

d4 =
L2d2(c̄1)−

4π2
+ d2

2
θ2α + 1.

With these choices, then, the integral on the right-hand side of (117) vanishes. Combining (117)
with (107), we conclude

dEd
dt

≤ cEd.

As discussed at the beginning of the proof, this completes the proof. ∎
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7 Conclusion

We have presented a well-posedness theory for the initial value problem describing the evolution of
hydroelastic waves in two dimensions. Our model assumes a thin, massless elastic sheet interacts
with an inviscid, irrotational flow. The elastic model accounts for membrane bending stresses and
surface tension. We prove short time well-posedness in Sobolev spaces. More precisely, given periodic
initial data θ(⋅, ) ∈ Hs and γ(⋅,0) ∈ Hs−3/2 for s large enough so that our estimates hold, there is a
nonzero time in which the solution exists, is unique, has the same regularity as the initial conditions,
and depends continuously on the data. The proof is based on energy estimates, and makes use of
an arclength-angle representation of the interface and a small scale decomposition first introduced
for computational reasons in [25].

In future work, we expect to treat the three-dimensional problem, as well as the problem with
mass (in either two or three dimensions). To replace the arclength parameterization, we expect to
use a generalized isothermal parameterization as discussed in [8], [9].
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8 Appendix: Pressure jump at the interface

The elastic interface deforms due to the pressure exterted on it by the fluids. In this section, the
relation (19) for the pressure jump at the interface is derived. The approach follows [12].

We imagine the 1D interface (x(α, t), y(α, t)) to be the trace in the x − y plane of a 2D elastic
sheet or plate with no variation in the z−direction. Suppressing the dependence on time, let F(s)
be the resultant internal force and M(s) the moment of internal force (both per unit length in the
z−direction) on a cross section of the sheet, which is assumed to have thickness h. The resultant
external force on the sheet is the jump in pressure at the interface, [p] = (p1 − p2)∣S . The equations
of mechanical equilibrium for the deformed sheet or plate are [22], [30]

dF

ds
= −[p]n̂, dM

ds
= F × t̂. (118)

Decompose F(s) into tangential and normal components as F(s) = T (s)t̂ +N(s)n̂, and note that
M(s) is in the z−direction so we can write M(s) = M(s)k̂. Substitute these relations into (118),
take the derivative with respect to s and use the Frenet formulae to obtain

(T ′ −Nκ)t̂ + (N ′ + κT )n̂ = −[p]n̂, (119)

M ′ = −N,

where the prime denotes derivative with respect to s. Equating normal and tangential components
in (119), we obtain the system of equations

T ′ −Nκ = 0,

N ′ + κT = −[p], (120)

M ′ +N = 0.
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We assume a linear constitutive relationship for the elastic moment [34]

M = EBκ (121)

where EB is the bending modulus. Thin shell theory provides the relation EB = Eh3/[12(1 − ν2)],
where E is Young’s modulus, ν is Poisson’s ratio and h is the plate thickness. Insert (121) into the
third equation of (120) to eliminate M and N and integrate once with respect to arclength to obtain
the relation for the pressure jump

[p] = Ebκ′′ +
EB
2
κ3 − c1(t)κ. (122)

where c1(t) is a constant (in space) of integration. The first two terms on the right hand side of
(19) represent the internal bending stress of the elastic sheet, and the thrid term is surface tension.
This result is consistent with the hydroelastic model of Plotnikov and Toland [32].
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