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Abstract

This paper investigates the macroconomics of real interest rates when
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a standard continuous-time deterministic model of international ex-
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push one country towards its leverage limit induces substantial pre-
cautionary saving and a collapse of real interest rate relative to the
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est rates and the broader implications for macroeconomic modelling.
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1 Introduction

A central challenge in contemporary monetary and macroeconomics is allow-

ing for the impact of leverage on household consumption, corporate invest-

ment and other spending decisions. The unsustainble build up of household

debt in the UK and other countries, and subsequent deleveraging, has been

a prominent feature of the macroeconomic environment since the global �-

nancial crisis of 2007-2009. High levels of household debt are one reason why

consumer spending has shown relatively modest response to the substantial

monetary and �scal stimulus since the crisis.

The objective of this paper is to explore one aspect of this broader mod-

elling challenge, the relationship between household leverage and real interest

rates, in a fully general equilibrium but non-monetary setting (so nominal

prices are completely �exible and goods markets always clear). We present a

simple model of patient and impatient households, in which shocks can po-

tentially increase household indebtedness towards maximum levels of possible

borrowing. A temporary negative shock to the income of indebted households

can result in a large but temporary declines in real interest rates. Households

seek to avoid reaching their leverage constraints because they are then unable

to smooth consumption over time. In consequence the precautionary motive

saving grows increasingly stronger the closer households are to their leverage

constraints. In equilibrium this increased desire to save results in shortlived

but substantial reductions of the real interest rate. Thus in our setting real

interest rates are determined not only by tastes and productive technology,

but also by household balance sheets, and can vary substantially over time

as household net worth varies.

Our quanti�cation of this phenomena is based on a model with some

strong assumptions. There are two `countries' (or alternatively groups of
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households). Within each of these countries all households have the same

preferences and experience the same shocks to their income. For simplicity

we assume that income shocks are diversi�able at the global level, with a loss

in one country fully o�set by a gain in the other.

The key di�erence between the two countries is that households in one are

relatively impatient while households in the other are relatively patient. In

the absence of uncertainty this leads to a very standard outcome, described

in several macroeconomic textbooks (usually presented in the context of an

open economy extension of the Ramsey-Cass-Koopmans model of capital ac-

cumulation). In this deterministic baseline there is a continual increase in

indebtedness of impatient households. At the same time patient households

save and acquire claims on impatient households. The equilibrium real inter-

est rate is then a weighted average of the rate of time preference of di�erent

households. Overtime the share of consumption of the patient country in-

creases and the wealth of the impatient country declines. As a result global

real interest rates fall gradually towards the rate of time preference of the

most patient `country'.

We introduce income uncertainty, with the crucial additional assumption

that �nancial markets are incomplete: there is no mechanism for direct insur-

ance of the diversi�able income shocks.1 As a consequence debt here must do

double duty: �rst for transfer of resources over time; and second for manage-

ment of temporary income shocks. The outcome is then a capital structure

tradeo�. Rather than allowing debt to accumulate inde�nitely over time,

impatient households seek to reach a target level of debt which balances the

bene�ts of greater �exibility in managing future income shocks against the

desire to consume today rather than tomorrow. We do not seek to explain

1In our setting, in which income uncertainty is fully diversi�able, the combination of
income uncertainty and complete �nancial markets is equivalent to a deterministic model.

3



this market incompleteness, but it is consistent with both casual observation

and standard microeconomic theory suggesting that informational, contrac-

tual and other frictions make it di�cult to insure against temporary income

loss.

A �nal element in our model is the presence of a constraints on lever-

age i.e. some maximum level of household borrowing. Some such constraint

is required (even in the deterministic baseline) because otherwise impatient

households would borrow unlimited amounts and service this debt with fur-

ther borrowing. Rather than seek to determine this maximum level of lever-

age endogenously, we simply impose it as an extra parameter. As it turns

out the exact level of maximum borrowing maks little di�erence to the pre-

dictions of the model about interest rate dynamics. Instead the gap between

the maximum possible debt and the desired debt levels that arises from the

tradeo� between time-preference and the management of income shocks is

relatively constant (when measured in standard deviations of the time distri-

bution of household net worth). Tightening or relaxing the debt constraint

does not alter predictions about the impact of income shocks on real interest

rates.

With incomplete insurance of income shocks leverage a�ects real interest

rates through a potentially large precautionary motive for saving. If house-

holds reach their maximum leverage then they are no longer protected against

loss of income. They therefore seek to avoid this outcome, saving more and

consuming less the closer they are to their maximum possible leverage. Cap-

ital market equilibrium requires a lower real rate of interest, compared to

the baseline without leverage constraints, in order to persuade both patient

and impatient households to consume enough to o�set this increased saving.

In our setting, close to the leverage constraint, this precautionary motive
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for saving can become very strong indeed, driving down global real interest

rates to well below the rate of time preference of even the most patient house-

holds. Real interest rates can easily become negative, and in the asymptotic

but unattained limit of unlimited negative shocks to income over a small time

period they fall to −∞.

Our results are di�erent � both quantitively and qualitatively � from what

would emerge from the routine practice of exploring a linearised solution

around a steady state (linearisation around a deterministic steady state is

not in fact possible for our model, because no determinisitic steady state

exists; and as we show linearisation around some measure of average steady

state debt, e.g. the median of the time-distribution of debt, substantially

understates the impact of income shocks on real interest rates). We obtain

fully non-linear solution using the relatively sophisticated mathematics of

continuous time stochastic dynamic programming. These methods, widely

known and applied in the physical sciences, have only recently found favour

in the economics literature.

While we can relegate all the technicalities of solution to an Appendix,

the modelling assumptions that we use iin applying these methods are not

entirely innocuous. In particular, we assume that household income is memo-

ryless, with expected income �xed and accumulated income following a brow-

nian motion with drift. The reasons for this choice are technical. It allows

us to obtain numerical solution from two second order ordinary di�erential

equations in a single state variable, the �nancial claims of one country on an-

other; but this simplicity comes with some cost. Our model has no 'autarkic'

baseline solution (if no borrowing is allowed at all then there is no meaning-

ful solution). Also we are subject to the (technical) criticism that such an

income process should result in household wealth breaching the borrowing
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constraint almost certainly in �nite time. In fact we can show that the con-

dition that the borrowing constraint is never attained in �nite time serves to

identify a unique solution to our model. Our model is unusual because while

no partial equilibrium solution exists there is a general equilibrium soution.

Generalisations the present model could include some or all features of

a complete (two country) Ramsey model: per country output that depends

on both capital and labour input, together with investment and wage rates.

In this paper, however, we ignore all these extensions; our goal is to study a

minimal model where the combined e�ects of income uncertainty and leverage

constraints on global real interest rates can be explored. In our conclusions we

discuss the relevance of the strong prudential savings impact on real interest

rates that we uncover in richer and more realistic settings.

Further technicalities of our solution are described in the Appendix. As is

typical of many intertemporal optimisation problems with uncertainty, there

are no closed form expressions of model solution, in our case for interest

rates and consumption. We also capture the singularities that emerge on

the boundaries of maximum borrowing using asymptotic approximations. In

order to simultaneously enforce these boundary conditions at both the lower

and upper boundaries, the solution is then calculated using a standard partial

di�erential solution technique (the pseudo-spectral method).

The paper is organised as follows. Section 2 locates our work in relation

to previous literature. Section 3 sets out our model, distinguishing the base-

line deterministic special case and outlining our solution method. Section 4

presents numerical calculations of our solution and investigates the result-

ing dynamics of interest rates and consumption. Section 5 concludes. The

technical Appendix appears at the end of paper.
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2 Related literature

=Our analysis is related to previous work on both the microeconomics of pru-

dential savings and the macroeconomics of real interest rates. The prudential

savings motive has long been recognised to result in sometimes substan-

tial departures from complete market or certainty equivalent formulations of

the consumption/ saving decision (for discussion see Browning and Lusardi

[1996]). There is an extensive theoretical and empirical analysis, at the level

of the individual household, on the particular mechanism that supports our

paper, a combination of incomplete markets and borrowing constraints that

increases incentives for prudential saving. This is especially useful for un-

derstanding the observed empirical regularities of consumption function (an

accessible discussion, with extensive review of the literature, is provided by

Carroll [2001]).

Such constraints have also been incorporated in models of general equi-

librium, most notably by Aiyagari [1994] who in a set up closely related

to our own shows how prudential saving in order to cope with uninsured

income risk can lower the real interest rate relative to a complete markets

benchmark. His analysis focuses on purely idiosyncratic risk. We instead fo-

cus on aggregate risk that is diversi�able at the global level, and investigate

the consequences for the cross-sectional distribution of household net worth.

In his setting, since there are no aggregate disturbances, the real interest

rate is �xed; in ours the real interest rate, while also always lying below the

level predicted by the complete markets benchmark, responds dynamically

to aggregate income shocks.

These models of prudential saving are one part of a much broader lit-

erature exploring the implications of market incompleteness (see amongst

others Magill and Shafer [1991], Magill and Quinzii [1994, 1996]). Much
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of this literature explores relatively general abstract speci�cations and in-

vestigates variety of other issues, including the existence and uniqueness of

equilibrium, Pareto optimality and e�ciency and potential departures from

fundamentals (`bubbles') in the prices of �nancial assets. Our model is also

one of incomplete markets, but with a simple and de�ned structure developed

in order to focus on the speci�c issue of the relationship between household

leverage and real interest rates.

There are other contributions to the literature examining the choice be-

tween consumption and savings and the level of real interest rates at the

global level. Caballero et al. [2008] develop a model to explain the combina-

tion of large global savings imbalances and declining real interest rates that

emerged in the early 2000s following the Asian crisis. Their basic model is

deterministic and hence excludes the precautionary savings motive central to

our own analysis. They examine the impact of a fall in the level of 'pledga-

bility' of productive assets in one country (R interpreted as emerging market

countries) relative to that of productive assets in the other country (U in-

terpreted as advanced countries such as the US). This pledgability might

be determined for example by the perceived e�ectiveness of institutions of

macroeconomic management, law, investor protection and corporate gover-

nance. An reduction in pledgability in (R) (which they suggest was triggered

by the Asian crisis) leads to a fall in global real interest rates (the demand

for �nancial assets is unchanged, the supply has fallen, so for asset market

equilibrium to be maintained global real interest rates must fall); and also

the emergence of a permanent current account surplus in R and permanent

current account de�cit in U (because savers in R now acquire assets from U).

Related work by Caballero and Krishnamurthy [2009] is closer to our own

analysis. They also investigate how a change in demand for assets impacts on
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real interest rates, but in their case the focus is on the emergence of a demand

for safe assets issued in the US and held by international investors. Unlike our

own model both domestic and overseas investors have the same rate of time

preference. They further assume logarithmic preferences so consumption

is always the same �xed proportion of domestic wealth. Two substantive

di�erences from our own analysis can be highlighted: �rst that they assume

a di�usion process (a random walk with drift) for the level of cash �ows

produced by productive assets, whereas we assume a similar di�usion process

for accumulated cash �ows; and second that their stochastic shocks cannot be

diversi�ed away by lending and borrowing between countries, instead shocks

to the level of cash �ows are re�ected in changes in asset prices and wealth.

They also avoid a full solution of the optimal decisions of overseas investors,

instead assuming an exogenous stochastic in�ow of investment funds and

exogenous deterministic withdrawal of external investment. They then show

how an increase in demand for safe assets from overseas investors pushes

down domestic interest rates, reduces the premia on risky assets held by US

investors, and leads to greater leverage by the intermediaries that issue US

�nancial securities. Leverage is thus related to real interest rates but there

is no leverage constraint the approach to which triggers a fall of real interest

rates.

Another recent body of work examines the implications of investor lever-

age for asset pricing, investment and how changes in the monetary conditions

and in collateral requirements can create a `leverage cycle', mechanisms which

seem to have played a central role in the global �nancial crisis (Geanakoplos

[2009, 2010] reviews much of this work). Our own work has a complementary

focus on the role of leverage in income and consumption, while ignoring the

role of traded �nancial assets.
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From the technical perspective, we build on a number of other models

using continuous time dynamic stochastic optimisation to analyse corporate

operational and �nancing decisions in the presence of �nancing constraints

(see for example Brunnermeier and Sannikov [2014], Bolton et al. [2011]; a

further contribution to and fuller review of this line of research is provided by

Isohätälä et al. [2014]). These avenues of research have some parallel with the

literature on the �nancial accelerator, established as a standard approach for

macroeconomic modelling by Bernanke et al. [1999]. These newer contribu-

tions though suggest that similar balance sheet mechanisms can a�ect a wide

range of household and corporate decisions, not just �xed capital investment

as in the standard �nancial accelerator, and that these balance sheet impacts

can be highly non-linear and therefore not well captured by the linearisation

methods routinely used in macroeconomic modelling.

3 The model

3.1 Assumptions

There are two countries each consisting of a large number of identical house-

holds. Within each country every households receives the same income, has

the same preferences and so makes the same consumption decisions. This

allows us to work with a representative household for each country. The

households maximise the expected discounted utility of future consumption.

Normalising the `mass' of households in each country to unity, and using a

bar over variables and parameters to distinguish the more patient country

from the less patient, the objective for a representative household in each

10



country can be written as:

ˆ ∞
τ=t

e−ρ(τ−t)u(c) dτ and (1)

ˆ ∞
τ=t

e−ρ̄(τ−t)ū (c̄) dτ (2)

with ρ̄ < ρ.

Output of the two countries (and of each household in the two countries)

is given by:

a dt+ s dz and (3)

ā dt− s dz (4)

i.e. expected output is �xed and the only uncertainty is a idiosyncratic

Wiener process fully diversi�ed at the global level. The goods market always

clears, so:

c+ c̄ = a+ ā. (5)

The sole asset are debt claims w denominated in units of the single good,

which we assume are claims of the impatient country on the patient country

(the claims of the patient country on the impatient country are given by

w̄ = −w). The interest rate on these claims is given by r. The level of

consumption is determined given the current wealth level w. The change in

claims therefore satis�es the stochastic di�erential equation:

dw = (a+ rw − c) dt+ s dz = (−ā+ rw + c̄) dt− s dz (6)
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Completing the model speci�cation, there are limits on borrowing

w∗ < w < w̄∗ (7)

with −w∗ > 0 representing the maximum borrowing of the impatient country

and w̄∗ > 0 the maximum borrowing of the patient country.

The model is parsimonious with only two standard instantaneous utility

functions (u (c), ū (c̄)) and seven other parameters (a, ā, ρ, ρ̄, w∗, w̄∗, and

s).

3.2 Solving the model

Here we provide an overview of the solution of the model, emphasising the

supporting economic intuition and comparing the stochastic speci�cation s >

0 with the deterministic baseline s = 0. Technical details regarding the

solution are described in the Appendix. With s = 0 we have a standard

deterministic model to which the maximum principle would normally be

applied yielding a semi-closed form solution. With s > 0 the model can

be solved using dynamic programming; the solution however is no longer

closed form, rather it is characterised by a second order ordinary di�erential

equation for c (w) which must be numerically solved.

In the s→ 0 limit of our stochastic model, and in a textbook deterministic

model, the consumption in the impatient country is described by the standard

Euler equation:

ċ = (r − ρ)

[
−u

′′(c)

u′(c)

]−1

. (8)

We have assumed ρ > r > ρ̄, so that in the deterministic case consumption

in the impatient country declines continuously over time at a rate that de-
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pends on the intertemporal elasticity of consumption (−u′′ (c)/u′ (c))−1 (and

consumption in the patient country correspondingly increases).

Accounting for a non-zero noise, the time-evolution of the consumption

follows the stochastic di�erential equation or SDE (with a corresponding SDE

for consumption in the patient country):

dc =

{
(r − ρ)

[
−u

′′(c)

u′(c)

]−1

+
1

2
s2

[
−u

′′′(c)

u′′(c)

]
c′(w)2︸ ︷︷ ︸

precautionary saving term

}
dt+ sc′(w) dz︸ ︷︷ ︸
from income uncertainty

(9)

In the stochastic case s > 0 there are two additional terms which do not

appear in the deterministic Euler equation. The additional term in dt, for

any given level of interest rates r and consumption c (w), reduces the rate of

decline in consumption of the impatient household compared to the deter-

ministic case. The second additional terms is the di�usion in dz representing

the impact of income uncertainty on the level of consumption.

The dependency of consumption c (w) on the state variable (the level of

wealth w) is then described by the following second-order ordinary di�erential

equation:2

(ρ− r)u′ (c) = (a+ rw − c)u′′ (c) c′ + 1

2
s2
[
u′′′ (c) (c′)

2
+ u′′ (c) c′′

]
(10)

In the deterministic case this becomes

c′ (w) =
r − ρ

a+ rw − c

[
−u

′′ (c)

u′ (c)

]−1

an equation which can also be obtained directly from (9) and (6).

2This equation is a transformation of the equation of optimality, or Hamilton-Jacobi-
Bellman equation, which characterises the consumption policy that maximises the ex-
pected discounted utility objective equation (1). See Appendix for details.
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The global interest rate r is the only market price and this adjusts to

ensure aggregate demand equals aggregate supply (i.e. goods market clearing

given by (5)). This requires (as shown in the Appendix) that:

r(w) =

[
−u′′(c)

u′(c)

]−1

ρ+
[
− ū′′(c̄)

ū′(c̄)

]−1

ρ̄[
−u′′(c)

u′(c)

]−1

+
[
− ū′′(c̄)

ū′(c̄)

]−1 − 1

2
s2c′

2

[
−u′′′(c)

u′′(c)

]
+
[
− ū′′′(c̄)

ū′′(c̄)

]
[
−u′′(c)

u′(c)

]−1

+
[
− ū′′(c̄)

ū′(c̄)

]−1 . (11)

In the deterministic case (s = 0) the global interest rate is a weighted average

of the time preference of the two households, with the weight on the impatient

country's time preference,

[
−u

′′(c)

u′(c)

]−1/{[
−u

′′(c)

u′(c)

]−1

+

[
− ū

′′(c̄)

ū′(c̄)

]−1}

increasing with its consumption share. In the stochastic case (s > 0) there is

an additional term, generated by the prudential saving of the two countries,

correcting the rate of interest downwards to restore goods market equilibrium.

Equations (10), (11) and (5) together yield a somewhat complicated look-

ing but fairly easily numerically solved ordinary di�erential equation for c (w).

In the deterministic case this ODE is �rst order and requires one boundary

condition for solution, which in the presence of the leverage constraint is sim-

ply c (w∗) = a + r (w∗)w∗(the deterministic model can then be solved as a

function of state using Eq. (10) or as a function of time using the maximum

principle). The wealth and the consumption of impatient country decline

continuously over time until eventually the lower boundary w∗ is reached at

which point c declines to a+ rw∗.

In the stochastic setting with uncertainty of output the ODE is second

order and two boundary conditions are required for solution. We establish the

existence of unique solution by considering the behaviour of the steady state

14



or `ergodic' probability density function f(w) of w. This ergodic distribution

can be thought of as the steady state cross-sectional probability density of

state variables for a large population of all of which are governed by the same

dynamic stochastic equations of motion. However this is not an appropriate

interpretation for our model because we assume all households are hit by

the same shocks, so at any point in time all households in a given country

have the same wealth. Instead this ergodic distribution should be thought

of as the time-independent or unconditional distribution of w obtained by

sampling the economy at a random points of time.

The ergodic distribution can be obtained from the solution of a further

�rst-order ordinary di�erential equation (the stationary limit of the Fokker-

Planck equation describing the evolution of the density function f(w, t) over

time):

1

2
s2f ′′(w) = [r′ (w)w + r (w)− c′(w)] f(w) + [a+ r (w)w − c] f ′(w). (12)

This is solved with two boundary conditions. The �rst is the normalisation

condition appropriate for a probability density function that F (w̄∗) = 1. The

second, re�ecting our assumption that households never attain the boundary

w∗, is that f (w∗) = 0 (our asymptotic approximation for c (w) is the only

solution for c (w) consistent with f(w∗) = 0. As shown in the Appendix, this

implies the further asymptotic expansion:

f (w) = (w − w∗)
1
2 + o((w − w∗)

1
2 ).

An acceptable solution for our model, if it exists, requires two condi-

tions on the ergodic density function, that f(w∗ = 0 and f(w̄∗) = 0. These

conditions ensure that while households may approach the boundaries for
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maximum borrowing, they never actually reach these boundaries (if instead

the boundaries were attainable then once on the boundary the household

could no longer smooth consumption and the in�nite local variance in in-

come creates an unlimited penalty in terms of the objective Eq. (1) i.e. the

optimisation is no longer well de�ned.). The Appendix shows that such a

solution with f(w∗) requires a singularity in consumption/ utility at this

boundary given by:

lim
w→w∗

u′′′[c(w)]

u′[c(w)]
(c′(w))2 =∞,

with a corresponding singularity at the upper boundary. The Appendix

further establishes the existence of unique asymptotic approximations to c(w)

satisfying these singularities. Thus the approximation at w∗ derives from the

boundary behaviour

c(w) = c0 + c1(w − w∗)
1
2 + o((w − w∗)

1
2 ),

where c0 and c1 are constants and an equivalent formulation at w̄ast. This is

the only solution of our model with an accompanying ergodic density satis-

fying f (w∗) = 0 and f(w̄∗) = 0.

4 Numerical solution

We have calculated numerical solutions of the stochastic version of the model

in the case of iso-elastic instantaneous utility.3 The parameter assumptions

are as follows (using a bar to indicate parameters of the households in the

impatient country):

3Mathematica notebooks for and standalone demonstrations of this numerical solution
can be found at www.leveragecycles.lboro.ac.uk
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Parameter Impatient country Patient country

Rate of time preference ρ = 0.05 ρ̄ = 0.03

Inverse intertemporal elasticity of

substitution

ε = 1.5 ε̄ = 1.5

Expected output per annum a = 1 ā = 1

Standard deviation of output per

annum

0 ≤ s ≤ 0.5

Leverage constraint w ≥ w∗ = −5 w ≤ w̄∗ = +5

Figures 1-10 report our numerical solutions with these assumed parame-

ters (for some �gures we use only the single value s = 0.2). Figure 1 shows

the rate of interest r(w) as a function of w for di�erent levels of income un-

certainty s. The inset to the �gure shows a magni�ed section r(w) near w∗.

Close to the leverage constraint the real interest rate falls well below the rate

of time preference of the patient country (ρ̄ = 0.03) and when the leverage

constraint is very close becomes negative (thus creating a positive income for

the borrowing impatient country).

Figure 2 shows the level of saving (a+rw−c(w)) as a function of w. It can

be seen that for very low levels of wealth the precautionary motive leads to

positive saving as the indebted households seek to reduce their leverage and

increase w. For higher levels of wealth then the time preference dominates

and there is dissaving.

Figure 3 shows the level of consumption c(w) as a function of w. Con-

sumption, as expected, increases with wealth. Close to the leverage con-

straint for the impatient country, consumption of the patient country rises
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sharply and consumption of the impatient country fall sharply, due to the

joint impact of lower interest rate and the prudential saving of the impatient

country seeking to keep away from the leverage constraint. The decline of

consumption is however relatively modest, compared to the fall of the inter-

est rate shown in Figure 1. A technical issue is explored in the inset to the

�gure, which examines the accuracy of the asymptotic expansion for c(w)

applied when w is close to w∗: this can be seen to be very close to linear as

required.

Figure 4 shows the ergodic density for di�erent values of the standard

deviation of income s. For low levels of s, 5% of annual income a, the

ergodic density is concentrated near the maximum level of borrowing, the

�gure suggests that the density lies almost entirely between w = −4 and

w = w∗ = −5. As s increases the density both shifts to the right and widens.
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Figure 4: Probability density f as a function of wealth w and noise s.

For higher values of s, the �gure runs upto 50% of annual income a, the

density is visible over the range w = 0 to w = w∗ = −5.

Figure 5 and Figure 6 show versions of Figures 4 and then Figure 1,

using a rescaled measure of wealth with zero mean and a standard deviation

of unity. Figure 5 shows the rescaled ergodic density function f(w) (the pdf

relative to the mean) is relatively little a�ected by the standard deviation of

income s. Using this same rescaling of wealth, the interest rate function r(w)

(and consumption c(w), though this is not shown here) vary only slightly with
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Figure 5: Wealth probability density as a function of normalized wealth.

changes in the standard deviation of income s. Note also that for all values of

s shown here, from 5% to 50% of annual income, a sharp fall in r occurs once

wealth w declines to about 1.2 to 1.6 standard deviations below its mean.

Figures 7 to 9 illustrate the impulse-response dynamics of wealth and

interest rates following a fall in wealth to 1.5 standard deviations below its

mean (these �gures assume that the standard deviation of income is 20%

of annual income i.e. s = 0.2). Because this is a stochastic model the

dynamics are not a single line, rather starting from this initial point, the

future evolution of wealth is a density function that gradually spreads out

from the initial starting point. The heavy line in Fig. 7 and 8 show the

median (50th percentile) of the distribution. Below this the �gure shows the

5th and 25th percentiles, above this the 75th and 95th percentiles.

Figure 7 shows that to begin with, following a fall in wealth, with the

density of w (f(w, t)) adjusts fairly rapidly towards the long run ergodic
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density f(w), so by the end of the second year (t = 2) the median has closed

to within one standard deviation of its steady state level. Overtime the

rate of adjustment slows down, it takes until about the end of the fourth

year (t = 4) before the median is within half a standard deviation of its

steady state level, and by about year twenty (t = 20) no di�erence can be

seen in this chart between the median and its steady state level. There is a

similar patter of adjustment for the other percentiles, fast to begin with and

gradually slowing down. The adjustment of the higher percentiles is rather

slower than the lower percentiles, taking until around year 30 before there is

no further change in the 95th percentile of the distribution.

Figure 8 shows the corresponding impulse response for real interest rates,

if wealth falls to 1.5 standard deviations below its mean. Because of the

highly non-linear dependency of interest rates r(w) on wealth w (Figure 1),

there is an even greater change in the rate of adjustment of interest rates over

time, extremely rapid during the �rst year (upto t = 1), slowing substantially
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over the next three years (until t = 4) and gradually correcting back to the

long run ergodic density, to the extent discernible in the �gure has been fully

restored after twenty years (t = 20).

Figure 9 reports measures of three di�erent `half-lives' of the dynamics of

f(w, t), providing some further insight into these non-linear dynamics, and

how these vary with the magnitude of the standard deviation s. Because

the system is non-linear there is no single half life summarising the dynamics

of the system so instead the �gure reports three measures. These are the

three di�erent adjustment speeds (half lives) for the three most slow moving

components of the series of exponential functions in the frequency domain

used to approximate the dynamics of f(w, t) by our pseudo spectral partial

di�erential equation solver employed for numerical solution. As the density

approaches the steady state f(w)the slowest moving dynamics (the heavy

top line in this �gure) dominate; but further from steady state more rapid

dynamics, represented by the lower lines, become more important. The �gure

indicates that all elements of the dynamics slow down approximately linearly
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as s increases, at least upto when is around s forty percent of annual income.

Finally Figure 10 reports the cumulative density of r, presented with a log

scale on the vertical axis to make it easy to read o� the di�erent percentiles of

the steady state density. As can be seen by reading across from the left-hand

axis, for the heavy line in the �gure, the 5th percentile of the distribution for

our baseline choice of s = 0.2 is at about 2.5% � i.e. about one twentieth of

the time real interest rates will be below 2.5% � compared to a median value

of around 3.7%. Increasing the value of s has little impact on the median but

has a quite substantial impact on the lower percentiles of the distribution,

with 5th percentile falling to around 1.5% as s rises to 50%.

5 Conclusions

This paper has investigated the impact of aggregate income shocks on real

interest rates in a simple setting with two groups of households (or countries).
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One are impatient households who prefer to operate near to their maximum

levels of borrowing, the other patient households who provide the loans to

impatient households.

The previous research most closely related to ours, that of Aiyagari [1994],

focusses on the microeconomic implications of leverage constraints and unin-

sured income shocks, investigating the resulting cross-sectional distribution

of household wealth and the e�ect on the equilibrium interest rate. The com-

peting forces of time preference, which encourages impatient households to

gradually run down their wealth in order to consume now instead of in the

future, and prudential saving, to avoid the constraint of the maximum bor-

rowing limit, result in a distribution of household net worth over the range of

net worth. Our modelling framework is similar but we focus instead on the

macroeconomic implications and the resulting time distribution of household

wealth and aggregate interest rates. With this focus in mind we assume away

all idiosyncratic risk and require instead that all risk is aggregate and a�ects

our two countries (or groups of households) to an equal but opposite extent.

The main prediction that emerges from this set up is that changes in

household wealth (leverage) have a non-linear and sometimes very substan-

tial impact on real interest rates. Increased prudential saving when impatient

households are pushed close to the borrowing limit requires a large drop in

real interest rates to maintain goods market equilibrium, with aggregate con-

sumption equal to aggregate income. Even though the set up is simple the

non-linearities in the relationship between wealth, interest rates and con-

sumption mean that the responses to such shocks are quite varied. Small

or positive shocks have relatively little a�ect. In contrast a large decline in

income and wealth (big enough to reduce wealth to one and half standard

deviations below the mean or more) has a substantial impact on real interest
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rates. Larger shocks than than this can result in negative real interest rates,

four per cent or more below median levels. These interest rate responses

to income shocks are remarkably robust, arising even with quite substantial

variations in parameter values.

We also �nd that interest rates climb back fairly rapidly following a down-

ward disturbance. This return of interest rates to normal levels is especially

fast for large initial shocks. The fall of interest rates reduces the burden of

debt repayment (and even becomes a source of income if real interest rates

turn negative) in turn allowing indebted households both to rebuild their

net worth relatively rapidly and to maintain levels of consumption. These

transitory income gains for highly indebted households also means that the

impact on consumption of these income shocks is relatively modest compared

to the impact on real interest rates; even when pushed very close to their

borrowing limits households can maintain relatively high consumption levels.

Dynamics are comparatively slow closer to normal levels of leverage.

Our analysis complements the analysis of low global real interest rates by

Caballero and Krishnamurthy [2009]. As in their setting a savings imbalance

can push down interest rates real interest rates. Their analysis, based on dif-

ferences in preferences amongst assets, speaks more to long term equilibrium

level of interest rates and the spread between low risk and high risk assets.

We instead investigate the impact of leverage on the dynamics of real interest

rates.

Our characterisation of the �nancing constraints that underpin these re-

sults are, admittedly, very sharp. There are no mechanisms (such as social

security, concessional international lending or debt forgiveness) to allow our

households greater �exibility in coping with income uncertainty. Higher pru-

dential saving is the only available response. But we do demonstrate how
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allowing for leverage constraints and incomplete �nancial markets can result

in very di�erent predictions than of a standard deterministic macroeconomic

model. The open question for future research is therefore exploring how

leverage can impact on other aspects of macroeconoimc behaviour. Brunner-

meier and Sannikov [2014] and parallel work by three of the present authors

Isohätälä et al. [2014] show how similar dramatic non-linearities in behaviour

can arise when there are constraints on �rm �nancing, leading potentially to

a 'net worth trap' with leverage stuck at high levels for an extended period.

There is thus a substantial agenda for future work, extending the analysis of

the macroeconoimcs of leverage to include a range of other macroeconomic

mechanisms, including price dynamics and hence a role for monetary policy,

allowing for asset price dynamics, generalising from our pure exchange based

economy to one with a production and investment dynamics, and allowing

for potentially costly transfer of productive resources from one sector to an-

other. Our paper is one relatively small step towards a full understanding of

the macroeconomics of leverage.

A Appendix: Model Solution

This appendix contains technical details regarding the model solution that

were omitted in the main text. It �rst states the stochastic model (the

deterministic model is the special case s = 0). It then examines the solution

to both versions of the model, beginning �rst with the deterministic case

s = 0 for which solution is well known and then turning second to the

stochastic case s > 0.

The deterministic case is solved using the Maximum Principle, the stan-

dard method for solving such problems in the macroeconomic textbooks.
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This yields (i) well known `Euler' equations in which the rate of change of

consumption in each country depends on the di�erence between world inter-

est rates and their rate of time preference, and also on their intertemporal

elasticity of substitution over time (ii) the Euler equations yield a simple

expression for the world interest rate as a weighted average of the rates of

time preference of the two countries; and using these results (iii) closed form

or semi-closed form solution for consumption as a function of time.

The stochastic case is analysed using dynamic programming. This yields

(i) stochastic di�erential equations for consumption (these are the coun-

terparts to the deterministic Euler ordinary di�erential equations) with an

additional term re�ecting that country's absolute prudence; (ii) a generali-

sation of the simple expression for world interest rates; (iii) a simple second

order ordinary di�erent equation for c (w) with the possibility of numerical

solution determining the consumption as a function of borrowing w (in the

deterministic case this is a �rst order ODE).

The full solution requires imposing boundary conditions, either a transver-

sality condition (in the case of the deterministic model without leverage

constraints), or constraints imposed at the values of w where the leverage

constraints bind (in the stochastic case these can be obtained by a simple

application of the Ito calculus; in the deterministic case from the transver-

sality condition).

A.1 Solution to the deterministic version of the model

In this case the equation of motion for w becomes:

ẇ = (a+ rw − c) .
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To apply the Maximum Principle we can write the Hamiltonian (where v(t)

are the co-state variable for the evolution of wealth w; this can be interpreted

either as a Lagrangian multiplier for the constraint implied by the equation

of motion for w at each point of time t or as the derivative of the dynamic

programming value function with respect to w).

J = u (c) + v(t) (a+ rw − c)

Optimal control is the choice of time path for c that maximises the Hamil-

tonian at each point in time, implying the �rst order condition:

∂J

∂c
= u′ (c)− v(t) = 0 (13)

and is subject to the dynamic constraint:

v̇(t) = ρv(t)− ∂J

∂w
= (ρ− r) v(t) (14)

together with the additional transversality condition:

lim
t→∞

e−ρtv(t)w (t) = lim
t→∞

e−ρtu′ (c)w (t) = 0 (15)

Note that we treat r (t) as a function of time t but not as a function of

household debt w. The reason for this is because we are assuming that the

population of each country consists of a large number of identical households.

The interest rate depends upon aggregate debt of all households, not the debt

of any individual household. Even though all households are the same and

make the same decisions � they do not take account of the fact that their

(collective) consumption decisions will have an a�ect on the interest rate r.

If instead households were to co-ordinate their decisions then they could take
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the dependency of r on w into account and the constraint on their decision

making becomes:

v̇(t) = ρv(t)− ∂J

∂w
= [ρ− r (w)− r′ (w)w] v(t)

Assuming that such co-ordination of decision making is not possible, dif-

ferentiating the �rst order condition (13) w.r.t. t and substituting into (14)

we obtain:

v̇(t) = ċu′′ (c) = (ρ− r) v(t) = (ρ− r)u (c)

so:

ċ =

[
−u

′′ (c)

u′ (c)

]−1

(r − ρ) (16)

This is the familiar `Euler equation' determining the dynamics of consump-

tion with a corresponding `Euler equation' for the other country:

˙̄c =

[
− ū

′′ (c̄)

ū′ (c̄)

]−1

(r − ρ̄) (17)

A challenge to solving for c is that r(t) is unknown. If we combine

Eqs. (16) and (17) and with the �rst derivative of the resource constraint

c+ c̄ = a+ ā, we obtain:

ċ+ ˙̄c =

[
−u

′′ (c)

u′ (c)

]−1

(r − ρ) +

[
− ū

′′ (c̄)

ū′ (c̄)

]−1

(r − ρ̄) = 0

revealing that the interest rate is a weighted average of the time preference

of the two households in the two countries with the weights depending on
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their intertemporal elasticity of consumption:

r =

[
−u′′(c)

u′(c)

]
ρ+

[
− ū′′(c̄)

ū′(c̄)

]
ρ̄[

− ū′′(c̄)
ū′(c̄)

]
+
[
−u′′(c)

u′(c)

] ,

and so:

ċ =

[
−u′′(c)

u′(c)

] [
− ū′′(c̄)

ū′(c̄)

]
[
− ū′′(c̄)

ū′(c̄)

]
+
[
−u′′(c)

u′(c)

](ρ̄− ρ) = − ˙̄c. (18)

A.2 Solution of stochastic problem using dynamic pro-

gramming

Using a dynamic programming approach, the goal is to solve for consump-

tion c (w) as function of net lending/borrowing w (rather than as in the

deterministic case for c (t) as a function of time t). We begin by �nding

the consumption of an individual household, and then proceed to make the

representative agent assumption, equating the consumption of the individual

with that of the aggregate. In this subsection we use the Hamilton-Jacobi-

Bellman equation and Itô calculus to derive the equations for optimality for

household decision making.

The goal of the impatient household is to maximise the objective function,

Eq. (1) (the derivation for the patient household entirely parallels that for

the impatient household, so is supressed here). Let V be the function for

which the objective is maximal:

V (w0) = max
c

E
ˆ ∞

0

e−ρtu[c(t)] dt, (19a)

In order to solve for the optimal consumption rule we must be careful to

distinguish between the wealth and consumption of an individual household
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indexed by j (wj, cj) from the wealth and consumption of the representative

agent (w, c). The value function V (wj, w) for the individual agent satis�es

the Hamilton-Jacobi-Bellman equation (note that the interest rate r is unaf-

fected by individual household wealth i.e. each household is a price taker in

the capital market):

ρV (wj, w) = max
c

u (c) +

(
a+ r (w)wj − cj, a+ r (w)w − c

)Vwj

Vw



+
1

2
s2

(
1, 1

)Vwjwj
Vwjw

Vwjw Vww


1

1


 , (20)

Maximising the right-hand sides of Eq. (20), the �rst order conditions for

the choice of cj is

Vwj
= u′ (cj) = u′j. (21)

To obtain an ODE for the optimal consumption c we di�erentiate the HJB,

Eq. (20), with respect to w and substitute for optimal consumption obtaining:

(ρ− r)Vwj
=

(
a+ r (w)wj − cj, a+ r (w)w − c

)Vwjwj

Vwjw



+
1

2
s2

(
1 1

)Vwjwjwj
Vwjwjw

Vwjwjw Vwjww


1

1

 , (22)
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We next proceed to aggregation. In equilibrium, since all households are

alike, wj = w and cj = c i.e. the j subscripts can be dropped. We need

though to consider small departures of consumption out of equilibrium in

order to evaluate the derivatives in Eq. (22). For this purpose, since only

small deviations are of interest, we can assume that the consumption decision

rule, when individual household wealth wj departs slightly from the wealth

of the representative household w, takes the linearised form:

c(w,wj) = c (w) + r (wj − w)

i.e. the optimal consumption rule is to consume just enough so as to maintain

a constant di�erence between wjand w now and in the future.

With this assumption we then �nd (from di�erentiation of Eq. (21) and

taking the limit wj → w) that:

Vwjwj
= ru′′(c)

Vwjw = (c′ (w)− r)u′′(c)

Vwjwjwj
= r2u′′′(c)

Vwjwjw = r (c′ (w)− r)u′′′(c) + r′ (w)u′′(c)

Vwjww = (c′ (w)− r)2
u′′′(c) + (c′′ (w)− 2r′ (w))u′′(c)

and substitution back into Eq. (22) then yields the following ODE for c(w):

[ρ− r(w)]
u′(c)

u′′(c)
= [a+ r(w)w − c]c′ + 1

2
s2

[
u′′′(c)

u′′(c)
c′

2
+ c′′

]
(23)

Just as in the deterministic case we can obtain an equation for r in terms of

consumption and the utility function. Di�erentiating c(w) using Itô's lemma,
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we get

dc =

{
[a+ r(w)w − c]c′(w) +

1

2
s2c′′(w)

}
dt+ sc′(w) dz

=

{
[r(w)− ρ]

[
−u

′′(c)

u′(c)

]−1

+
1

2
s2

[
−u

′′′(c)

u′′(c)

]
c′(w)

2

}
dt+ sc′(w) dz,

where on the second line we have used Eq. (23).

The equivalent equation for the patient country reads (prime on c̄ denot-

ing w derivatives so that c̄w̄ = −c̄′):

dc̄ =

{
[r(w)− ρ̄]

[
− ū

′′(c̄)

ū′(c̄)

]−1

+
1

2
s2

[
− ū

′′′(c̄)

ū′′(c̄)

]
c′(w)

2

}
dt− sc̄′(w̄) dz.

These two equations are the stochastic counterparts to the Euler equations

describing the evolution of consumption in the deterministic case. Adding

them and using c′(w) = −c̄′(w) yields:

d(c+ c̄)

dt
= [r(w)− ρ]

[
−u

′′(c)

u′(c)

]−1

+ [r(w)− ρ̄]

[
− ū

′′(c̄)

ū′(c̄)

]−1

+
1

2
s2

{[
−u

′′′(c)

u′′(c)

]
+

[
− ū

′′′(c̄)

ū′′(c̄)

]}
c′(w)2. (24)

and this results in the following expression for the world real interest

r(w) =

[
−u′′(c)

u′(c)

]−1

ρ+
[
− ū′′(c̄)

ū′(c̄)

]−1

ρ̄[
−u′′(c)

u′(c)

]−1

+
[
− ū′′(c̄)

ū′(c̄)

]−1 − 1

2
s2

[
−u′′′(c)

u′′(c)

]
+
[
− ū′′′(c̄)

ū′′(c̄)

]
[
−u′′(c)

u′(c)

]−1

+
[
− ū′′(c̄)

ū′(c̄)

]−1 c
′2. (25)

The �rst term here is the expression for r that applies in the deterministic

case. The second additional term in 1
2
s2c′(w)2 is a correction that depends
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on the absolute prudence,

[
−u

′′′(c)

u′′(c)

]
,

[
− ū

′′′(c̄)

ū′′(c̄)

]
,

and absolute risk aversion

[
−u

′′(c)

u′(c)

]
,

[
− ū

′′(c)

ū(c̄)

]

of the two countries. Eq. (23) together with r(w) as given by Eq. (25) form

an ordinary di�erential equation from where the aggregate consumption c

can be solved.

As a �nal point, the equations for the consumption can be written in a

compact way that also gives insight as to what e�ects are controlling the

interest rate. We introduce e�ective time-constants ρe� and ρ̄e�, de�ned as

ρe�(w) = ρ− 1

2
s2u

′′′

u′
(c′)2, (26a)

ρ̄e�(w) = ρ̄− 1

2
s2 ū

′′′

ū′
(c′)2. (26b)

A simple rearrangement of terms and factors gives then

(a+ rw − c)c′ = ρ̄e� − ρe�
−u′′/u′ − ū′′/ū′

− 1

2
s2c′′, (27)

where the interest rate is now the weighted average of the e�ective time

constants:

r(w) =

[
−u′′(c)

u′(c)

]−1

ρe�(w) +
[
− ū′′(c̄)

ū′(c̄)

]−1

ρ̄e�(w)[
−u′′(c)

u′(c)

]−1

+
[
− ū′′(c̄)

ū′(c̄)

]−1 . (28)
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Comparing to the deterministic limit,

(a+ rw − c)c′ = ρ̄− ρ
−u′′/u′ − ū′′/ū′

,

r(w) =

[
−u′′(c)

u′(c)

]−1

ρ+
[
− ū′′(c̄)

ū′(c̄)

]−1

ρ̄[
−u′′(c)

u′(c)

]−1

+
[
− ū′′(c̄)

ū′(c̄)

]−1 .

we see that in the stochastic case, the e�ective time-constants simply take

the place of ρ and ρ̄. In addition, the di�usion term (1/2)s2c′′ appears in

the equation, e�ectively adding consumption inertia. The new time-constants

can then be viewed as household prudence adjusted ρ, ρ̄, where the corrections

(1/2)s2u′′′/u′(c′)2, (1/2)s2ū′′′/ū′(c′)2 take account the noise and the rate of

change of consumption, e�ectively increasing household patience (of course,

there is no real change in ρ, ρ̄, rather, the behaviour of the households roughly

matches the deterministic case with lower time-constants).

A.3 Boundary conditions and asymptotic expansions

The problem speci�cation is not yet complete, as we have not yet �xed the

two boundary conditions needed to solve Eq. (23). We look for a joint solution

of the ODE for c (w) Eq. (23) and the steady state ergodic density Eq. (12)

satisfying the zero density boundary condition

lim
w→w∗

f(w) = 0,

which we interpret as requiring that household behaviour is such that it com-

pletely avoids the borrowing limit. We only consider the behaviour at the

lower boundary w∗, and attempt to �nd the shape of c and f that are con-

sistent with the above. The calculation for the upper boundary is essentially

37



identical.

A formal solution to the Fokker-Planck equation, Eq. (12) gives the er-

godic density

f(w) = C exp

{
2

s2

ˆ w

0

[a+ r(w′)w′ − c(w′)] dw′
}
,

where C is a constant of integration. In order for the zero density boundary

condition to be satis�ed, the integral in the exponent cannot be �nite, but

rather must tend to in�nity. Within the integral, only r(w) does not have

strict bounds, and inspection of Eq. (28) shows that in�nite interest rate is

only possible if ρe�(w)→ ±∞ or ρ̄e�(w)→ ±∞ as w → w∗. This is the case

regardless of the choice of u, ū, as the weighted average is always in the closed

interval [min(ρe�, ρ̄e�),max(ρe�, ρ̄e�)] even when −u′′/u′ or −ū′′/ū′ → ∞.

Therefore, either ρe� or ρ̄e� must be in�nite, or by Eq. (26),

lim
w→w∗

u′′′[c(w)]

u′[c(w)]
(c′(w))2 =∞.

Clearly this cannot be satis�ed for quadratic utility, and so we assume u′′′ 6=

0. Next task is to �nd solutions (if any) to Eq. (23) such that the above

boundary scaling is realised.

Let us suppose that 0 < c(w∗) < ∞. This avoids the possibility of the

utility functions becoming also in�nite, complicating the analysis. We look

for a solution that has the form

c(w) = c0 + c1(w − w∗)α + o((w − w∗)α), (29)

0 < α < 1.
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Near the boundary, c derivatives read

c′(w) = αc1(w − w∗)α−1 + o((w − w∗)α−1),

c′′(w) = α(α− 1)c1(w − w∗)α−2 + o((w − w∗)α−2),

and the e�ective time-constants become, denoting u∗ = u(c0), ū∗ = ū(a +

ā− c0) and analogously for the derivatives,

ρe� = −1

2
s2u

′′′
∗
u′∗
α2c2

1(w − w∗)2α−2 + o((w − w∗)2α−2),

ρ̄e� = −1

2
s2 ū

′′′
∗
ū′∗
α2c2

1(w − w∗)2α−2 + o((w − w∗)2α−2),

andtheinterestrate

r = −1

2
s2 (u′′′∗ /u

′
∗)(−ū′′∗/ū′∗) + (ū′′′∗ /ū

′
∗)(−u′′∗/u′∗)

−ū′′∗/ū′∗ − u′′∗/u′∗
α2c2

1(w − w∗)2α−2

+ o((w − w∗)2α−2)

= −1

2
s2γα2c2

1(w − w∗)2α−2 + o((w − w∗)2α−2),

where

γ =
−u′′′∗ /u′′∗ − ū′′′∗ /ū′′∗
−u′∗/u′′∗ − ū′∗/ū′′∗

.

We can now write Eq. (27), picking for each term just the terms and factors

of lowest power in (w − w∗), up to leading order as

1

2
s2α(α− 1)c1(w − w∗)α−2 − 1

2
s2γα3c3

1(w − w∗)3α−3w∗

= −1

2
s2 ū

′′′
∗ /ū

′
∗ − u′′′∗ /u′∗

−u′′∗/u′∗ − ū′′∗/ū′∗
α2c2

1(w − w∗)2α−2 + o((w − w∗)min{α−2,3α−3}) (30)

In order for the the asymptotic trial function to be correct, two of the terms
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here must be of equal order, that is

α− 2 = 3α− 3 ∨ α− 2 = 2α− 2 ∨ 3α− 3 = 2α− 2.

Only the �rst possibility gives 0 < α < 1, speci�cally

α =
1

2
.

Substituting this into Eq. (30) and neglecting the higher order terms, we are

left with

c1 +
1

2
γc3

1w
∗ = 0,

which gives as the only valid solution (assuming c′(w) > 0 near boundary;

note that γ > 0 and w∗ < 0)

c1 =

√
2

|w∗|γ
=

√
2

|w∗|
−u′∗/u′′∗ − ū′∗/ū′′∗
−u′′′∗ /u′′∗ − ū′′′∗ /ū′′∗

. (31)

This relates c0 to c1, and therefore gives us the boundary condition at the

lower edge.

Finally, we can �nd the interest rate and the ergodic density. Substituting

α and c1 into the expansion for r we get

r = −1

8
s2γc2

1(w − w∗)−1 + o((w − w∗)−1)

= −1

4
s2 1

|w∗|
(w − w∗)−1 + o((w − w∗)−1).
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The probability density function then follows

f(w) ∝ exp

{
2

s2

ˆ w

w∗
w∗
[
−1

4
s2 1

|w∗|
(w − w∗)−1 + o((w − w∗)−1)

]
dw′
}

= (w − w∗)β + o((w − w∗)β),

where the exponent

β =
1

2
. (32)

As f follows square-root law near the boundary, the zero density boundary

condition is satis�ed.

Note that the calculation has not assumed anything about the utility

function, other than that it is not quadratic (we do have to suppose that

γ > 0, but this is satis�ed by common utility functions). Furthermore, if

u[c(w∗)] and derivatives are not in�nite, then the calculation goes through

with c0 = 0 just as well.

Finally, let us consider the case that c(w∗) = 0, and let us take the

iso-elastic utility function u = (1 − ε)−1c1−ε. Again assume that c has the

form (29), but with c0 = 0 and α > 0. Repeating the above calculation gives

in the lowest order of (w − w∗):

c1α(α− 1)(w − w∗)α−2 − (1 + ε)c1α
2(w − w∗)α−2

− 2c2
1α

3(w − w∗)2α−3w∗
ε̄ε(1 + ε)

a+ ā
+ o((w − w∗)α−2) = 0. (33)

If 2α− 3 6= α− 2, or α 6= 1, we get

α(α− 1) = (1 + ε)α2,
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yielding α = 0 ∨ α = −1/ε, neither of which is valid. The other possibility

is that α = 1, which in turn gives

c1 = −1

2

a+ ā

w∗ε̄ε
.

Thus, there exists a linear solution. Note, however, that this binds both the

value and derivative of c at w = w∗. The interest rate is still negative in�nity

at the boundary:

r = −1

2
s2c1

ε̄(1 + ε)

a+ ā
(w − w∗)−1 + o((w − w∗)−1)

=
1

4
s2 1 + ε

w∗ε
(w − w∗)−1 + o((w − w∗)−1).

So being, the density is as wanted a power law tending to zero at w∗:

f(w) ∝ exp

{
2

s2

ˆ w

w∗
w∗
[
−1

4
s2 1 + ε

|w∗|ε
(w − w∗)−1 + o((w − w∗)−1

]
dw′
}

= (w − w∗)β + o((w − w∗)β),

where the exponent β is now

β =
1

2

1 + ε

ε
. (34)

Again, this is positive, and zero density boundary condition is satis�ed.

A.4 Numerical solution of the model equation

For the numerical solution of the model equations, we used two di�erent, but

complementary methods: standard ODE initial value integrator to iteratively

�nd the solution satisfying the boundary conditions, and a pseudospectral
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method.

A.4.1 Initial value iterations

Let us write the model equations in the form

F (w, c(w), c′(w), c′′(w)) = 0, (35)

and suppose boundary conditions of the form

g∗(c(w∗), c′(w∗)) = 0, (36a)

ḡ∗(c(w̄∗), c′(w̄∗)) = 0. (36b)

Let c(w; c0, c
′
0) stand for the solution of the Cauchy problem consisting of

Eq. (35) with initial values

c(w∗; c0, c
′
0) = c0, (37a)

c′(w∗; c0, c
′
0) = c′0. (37b)

Let now x0 stand for either the values of c0 or c
′
0, and let the other be chosen

as a solution of Eq. (36a). The solution to the initial value problem can then

be parametrized in terms of x0. Let that solution be c(w;x0). The upper

boundary condition now becomes

g∗(x0) = 0,

ḡ∗(x0) = ḡ∗[c(w̄∗;x0), c′(w̄∗;x0)]

Standard root-�nding methods can be used to solve this equation.

For the Neumann boundary conditions g∗(c0, c
′
0) = ḡ∗(c0, c

′
0) = c′0− 1, we
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have numerically solved the Cauchy problem using standard Runge-Kutta

adaptive step-size integrators, here usually the Prince-Dormand embedded

8(7) pair. We found that the upper boundary values were rather sensitive

to the initial data, which meant that initial bracketing of a root x0 required

a rather dense search grid, upto 104 points over the interval [0, a + ā], if a

uniform mesh was used and no initial guess was available. For the same

reason, relatively stringent bounds for local error estimates were needed for

the adaptive step-size control: Letting yerr be the stepper method supplied

error estimate and y = (c(w), c′(w)) the corresponding numerically obtained

state, the bound

||yerr|| < εrel||y||+ εabs,

with εrel, εabs ∼ 10−11 was enforced to keep accumulated numerical error in

check and to reliably resolve the root x0.

A.4.2 Pseudospectral method

The nonlinear problem, Eq. (35), is solved using the Newton's method: We

attempt to �nd a sequence of approximations (c(k))∞k=0 converging to c, from

which we accept the �rst c(k) satisfying our convergence criterion as the

solution. The approximations are constructed as follows. Let us write the

nonlinear problem in the form

F [ω, c(ω), c′(ω), c′′(ω)] = 0, (38)

w =
−w∗ + w̄∗

2
ω +

w∗ + w̄∗

2
.

For reasons that will become obvious, we have rescaled the independent vari-

able w ∈ [w∗, w̄∗] to ω ∈ [−1, 1]. Let us here suppose Robin boundary
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conditions

αc(−1) + α′c′(−1) = γ, (39a)

βc(+1) + β′c′(+1) = γ̄. (39b)

The algorithm can be adapted to nonlinear conditions as given in Eq. (36),

however, for simplicity we only consider (39).

The (k + 1)th approximation c(k+1) is given by

c(k+1) = c(k) + ζ(k),

where the function ζ(k) solves the linear boundary value problem

L(k)ζ(k) = F (k), (40a)

αζ(k)(−1) + α′ζ(k)′(−1) = γ − αc(k)(−1)− α′c(k)′(−1),

βζ(k)(+1) + β′ζ(k)′(+1) = γ̄ − βc(k)(+1)− β′c(k)′(+1),
(40b)

and where the operator L(k) and vector F (k)are

L(k)(ω) =
∂F

∂c′′
[ω, c(k)(ω), c(k)′(ω), c(k)′′(ω)]

∂2

∂ω2

+
∂F

∂c′
[ω, c(k)(ω), c(k)′(ω), c(k)′′(ω)]

∂

∂ω

+
∂F

∂c
[ω, c(k)(ω), c(k)′(ω), c(k)′′(ω)],

(41a)

F (k)(ω) = F [ω, c(k)(ω), c(k)′(ω), c(k)′′(ω)]. (41b)

This equation can be easily derived by supposing that c = c(k) + λ(k)ζ
(k)
∗ ,

λ(k) = |c− c(k)|, and substituting that into Eq. (38). By neglecting O(λ(k)2
)

terms, the above is obtained. Informally, if the norm of ζ
(k)
∗ is su�ciently
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small, then ζ(k) ≈ λ(k)ζ
(k)
∗ .

To solve Eq. (40), we use a Chebyshev pseudospectral method. We seek a

solution, again approximate, in the subspace spanned by the N �rst Cheby-

shev polynomials Ti : [−1, 1] 7→ [−1, 1], Ti(ω) = cos(i arccosω), i = 0 . . . N ,

ζ(k) = ξ(k) + E(k), ξ(k) =
N∑
i=0

ξ̄
(k)
i Ti(ω).

Here E(k) stands for the truncation error, and the integer N , the order of

the approximation, is naturally chosen high enough for the error to become

negligible.

To determine the superposition or modal coe�cients ξ̄
(k)
i , i = 0, . . . , N ,

we ask that the residual R(k),

R(k) = L(k)ξ(k) − F (k)

vanishes at specially chosen collocation points ωi. We chose the Chebyshev-

Gauss-Lobatto (CGL) �nodes, the extremal points of TN ,

ωi = cos
π(N − i)

N
, i = 0, . . . , N.

Let ξ̂
(k)
i , i = 0, . . . , N , stand for the nodal values of ξ(k), that is, ξ(k) evaluated

at the CGL-points,

ξ̂
(k)
i = ξ(k)(ωi).

In the following, we will denote the vectors (ξ̂
(k)
0 , . . . , ξ̂

(k)
N )T and (ξ̄

(k)
1 , . . . , ξ̄

(k)
N )T

simply by ξ̂(k) and ξ̄(k).

Rather than actually solving for the modal coe�cients ξ̄(k), the problem
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is turned into an equation for the nodal vector ξ̂(k). The main ingredient

needed to achieve this is the di�erentiation operator ∂/∂ω for the RN+1 space

of nodal values, i.e. the (N + 1)× (N + 1) matrix D̂ that (letting f stand for

any polynomial of order N or less) maps a vector f̂ = (f(ω0), . . . , f(ωN))T

to f̂ ′ = (f ′(ω0), . . . , f ′(ωN))T ,

f̂ ′ = D̂f̂ .

An explicit, closed form expression for D̂ can be readily found, e.g. by forming

the Lagrange interpolating polynomial for data points f̂ and di�erentiating

that; we will omit writing D̂ down as it is not relevant for the present dis-

cussion.

As the solution for the linear problem is now sought at the collocation

points, we represent the approximate solution c(k) using its nodal values ĉ
(k)
i ,

ĉ
(k)
i = c(k)(ωi)− E(k)

c .

Here E
(k)
c is the truncation error carried from solving the linear problem. We

can forget the functions c(k) and simply seek approximations to c in the form

of the nodal vectors ĉ(k) = (ĉ
(k)
0 , . . . , ĉ

(k)
N ), and de�ne

ĉ(k)′ = D̂ĉ(k), ĉ(k)′′ = D̂2ĉ(k).

The sequence of approximations we wish to �nd is now generated by

ĉ
(k+1)
i = ĉ

(k)
i + ξ̂

(k)
i , i = 0, . . . , N. (42)

Substituting ξ(k) into Eq. (40a) and evaluating the result at the collocation
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points, we recover the matrix equation

L̂(k)ξ̂(k) = F̂ (k), (43)

(44)

where the matrix L̂(k) and vectorF̂ (k)are de�ned as

L̂(k) = Ĝ(k)′′D̂2 + Ĝ(k)′D̂ + Ĝ(k), (45)

Ĝ(k)′···′ = diag

{
∂F

∂c′···′
[ω0, ĉ

(k)
0 , ĉ

(k)′
0 , ĉ

(k)′′
0 ], . . . ,

∂F

∂c′···′
[ωN , ĉ

(k)
N , ĉ

(k)′
N , ĉ

(k)′′
N ]

}
,

(46)

F̂ (k) = (F (k)(ω0), . . . , F (k)(ωN))T . (47)

The above does not account for the boundary values. These are incorporated

into the problem by replacing the matrix L̂(k) and vector F̂ (k) by L̂
(k)
BV and

F̂
(k)
BV , respectively. The matrix L̂

(k)
BV is equal to L̂(k) except for:

First row of L̂
(k)
BV = First row of αI + α′D̂,

Last row of L̂
(k)
BV = Last row of βI + β′D̂,

where I is the (N + 1)× (N + 1) identity matrix. Likewise, the vector F̂
(k)
BV

is equal to F̂ (k) except for:

First element of F̂
(k)
BV = γ − αĉ(k)

0 − α′ĉ
(k)′
0 ,

Last element of F̂
(k)
BV = γ̄ − βĉ(k)

N − β
′ĉ

(k)′
N .
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The equation we need to solve is then

L̂
(k)
BVξ̂

(k) = F̂
(k)
BV . (48)

It is easy to see that the �rst and last equations in this set are just the Robin

boundary conditions (41a). The (approximate) solution of the di�erential

equation Eq. (40) has now been reduced to solving an ordinary set of linear

equations, which can be done using any standard methods.

Eq. (42) together with Eq. (48) now give the sequence of approxima-

tions to c (at the CGL-nodes). Convergence is checked by monitoring the

Euclidean norm of the (nodal) residual of the nonlinear equation, F̂ (k), and

stopping the iterations at �rst k∗ such that

||F̂ (k∗)|| < δ,

where δ > 0 is some number deemed su�ciently small, typically δ ∼ 10−6.

We seed the algorithm with some initial guess ĉ(0) that is an increasing se-

quence in the range [0, a + ā]. For the baseline parameters and boundary

conditions c′(w∗) = 1, c′(w̄∗) = 1, we were able to get convergence using

a piecewise cubic, twice continuously di�erentiable initial guess such that

ĉ
(0)
0 = 0.05× (a + ā), ĉ

(0)
N = 0.95× (a + ā) and ĉ

(0)′
0 = ĉ

(0)′
N = 2/(−w∗ + w̄∗).

The initial guess was taken to be linear for central part of the range. It

should be emphasized that the Newton's method iterations are very sensitive

to the initial guess, and convergence may not be achieved if initial guess is

not good enough.

With regard to the order of the approximation, we found that N ∼ 40 is

typically su�cient, although values ∼ 200 may be needed if the solution is

changing rapidly in some parts of the interval [w∗, w̄∗].
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A.4.3 Performance considerations

The pseudospectral solver has proved to be signi�cantly faster for this partic-

ular problem, mainly owing to the fact that the Cauchy solution c(w; c0, c
′
0)

is sensitive to the initial data, and thus requiring dense search grids for the

free lower boundary variable. Furthermore, the pseudospectral solver can be

very easily adapted to ODE eigenvalue problems such as the time-dependent

Fokker-Planck equation, and extensions of the model that turn the HJB into

a partial di�erential equation.

The drawback, on the other hand, of the pseudospectral method is �rst

the e�ort of coding the algorithm (as few numerical libraries o�er pseudospec-

tral ODE solvers, further these tend to be for specialized applications); sec-

ond, more importantly, the necessity of being able to supply the algorithm

with a good enough initial guess c(0), and third, the inability to easily check

for presence of multiple solutions (as this would require searching the space

of initial guess functions, rather than just initial values).

A standard iterative solver, although slower, is therefore useful in search-

ing for plausible initial guesses to initialize the pseudospectral algorithm, and

helps also to detect presence of multiple solutions.

A.5 Time-dependent Fokker-Planck equation

In order to compute the time-dependent distribution function f(w, t), we

need to solve the Fokker-Planck equation with time derivative term retained.

Writing in terms of the probability current j, this reads

∂tf(w, t) = −∂wj(w, t), (49a)

j(w, t) = [a+ r(w)w − c(w)] f(w, t)− 1

2
s2∂wf(w, t). (49b)
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This is to be solved with the boundary and initial conditions

j(w, t)|boundaries = 0 ∀t (50a)

f(w, 0) = finit(w), (50b)

where finit is some probability distribution function.

Theorem 1 Solutions of Eq. (49) with boundary conditions and initial data

of Eq. (50) can be written in the form

f(w, t) =
∞∑
i=0

cie
−λitfi(w), (51)

where 0 = λ0 < λ1 < . . ., ci ∈ R,

ci =

ˆ w̄∗

w∗

fi(w)finit(w)

f0(w)
dw, (52)

where f0 again is the solution to the time-independent Fokker-Planck equa-

tion. The functions fi satisfy the orthogonality

ˆ w̄∗

w∗

fi(w)fj(w)

f0(w)
dw = δij. (53)

Function fi has i roots on the open interval (w∗, w̄∗).

Proof. Let us try to �nd a solution of Eq. (49) of the form

f(w, t) = X(w)T (t). (54)

Substituting this into Eq. (49) and rearranging, one obtains

T ′(t)

T (t)
= − 1

X(w)

d

dw

{
[a+ r(w)w − c(w)]X(w)− 1

2
s2X ′(w)

}
. (55)
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This reduces to two ODEs using the standard argument: Left-hand side

depends only on t while on the right only w appears. Therefore both sides

of the equation are constants. Let us denote that constant by −λ. We get:

T ′(t) = −λT (t), (56)

λX(w) =

{
[a+ r(w)w − c(w)]X(w)− 1

2
s2X ′(w)

}′
. (57)

The boundary condition Eq. (50a) now reads

[a+ r(w)w − c(w)]X(w)− 1

2
s2X ′(w)

∣∣∣∣
w=w̄∗,w∗

= 0. (58)

Together with these boundary conditions, the second ODE forms an eigen-

value problem for the eigenvalue λ and eigenfunctions X. We will use the

label i to identify di�erent λ,X, T tuples. Values of i come from an index

set that will turn out to be the natural numbers.

The �rst ODE, Eq. (55), is readily solved to give the time-dependence

Ti(t) = Ti(0)e−λit. (59)

For the second, boundary value problem Eq. (57, 58), we substitute

Xi(w) = Ξi(w)f0(w), (60)

which yields after easy manipulations

−1

2
s2 [f0(w)Ξ′i(w)]

′
= λif0(w)Ξi(w), (61a)

Ξi(w)|w=w∗,w̄∗ = 0. (61b)
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These amount to a regular Sturm-Liouville problem, and from there, the

claims of the theorem immediately follow.

Intuition regarding functions fi is that, for increasing i, they describe �ner

and �ner detail in the distribution f . Since (λi)
∞
i=0 is increasing, the �ner

details decay faster. Ultimately, the time-dependent distribution relaxes to

the steady state when the slowest of fi's, that is f1 ∝ exp(−λ1t), e�ectively

vanishes. Thus, we can estimate the relaxation time by the inverse of λ1,

τrelax =
1

λ1

. (62)

Generalizing, we can de�ne half-lifes τ
(k)
half as the times it takes for the kth

term in the series of Eq. (51) to reduce by one half:

τ
(k)
half =

ln 2

λk
. (63)

A.5.1 Numerical solution

To obtain a numerical solution to Eq. (49), we solve the eigenvalue problem

Eq. (57, 58) and use the series expansion of Eq. (51), together with coe�cients

from Eq. (52), to evaluate f(w, t). Only Nmodes �rst eigenvalue/function pairs

λi, Xi are computed, where the number of modes Nmodes is chosen depending

on the initial data finit.

In practice it has proved useful to solve for functions Φi, de�ned via,

fi(w) =
√
f0(w)Φi(w). (64)

From Eq. (53) one sees that the Φi are orthogonal with respect to unity
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weight:

ˆ w̄∗

w∗
Φi(w)Φj(w) dw = δij. (65)

Equations (57, 58) now become

LFPΦi(w) = λiΦi(w), (66a)

−µ(w)Φ(w) + s2Φ′(w)

∣∣∣∣
w=w∗,w̄∗

= 0, (66b)

where we have de�ned the linear operator LFP as

LFP = −1

2
s2 ∂2

∂w2
+

[
µ(w)2

2s2
+

1

2
µ′(w)

]
. (67)

The pseudospectral solver used to solve the HJB is repurposed to solve the

above boundary value problem. The di�erential operators in LFP are replaced

by their pseudospectral equivalents using the same approximation order N as

was used in the solution of the HJB. This yields the matrix L̂FP. Replacing

LFP by L̂FP, Eq. (66) becomes a usual matrix eigenvalue problem, which can

be solved using standard methods in numerical linear algebra.

/
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