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Abstract

For a smooth curve γ, we define its elastic energy as E(γ) = 1
2

∫
γ
k2(s)ds where k(s) is

the curvature. The main purpose of the paper is to prove that among all smooth, simply
connected, bounded open sets of prescribed area in R2, the disc has the boundary with the
least elastic energy. In other words, for any bounded simply connected domain Ω, the following
isoperimetric inequality holds: E2(∂Ω)A(Ω) ≥ π3. The analysis relies on the minimization of
the elastic energy of drops enclosing a prescribed area, for which we give as well an analytic
answer.

1 Introduction

Let Ω be a smooth, bounded simply connected open set in the plane (the exact smoothness which
is required will be made precise in Section 2) and let us denote by ∂Ω its boundary. Following L.
Euler, we define its elastic energy as

E(∂Ω) =
1

2

∫
∂Ω
k2(s)ds (1)

where s is the curvature abscissa and k is the curvature. We will denote by A(Ω) the area of Ω and
L(Ω) its perimeter. The aim of this paper is to prove the following isoperimetric inequality.

Theorem 1.1 For any bounded, smooth, simply connected open set Ω ⊆ R2

E2(∂Ω)A(Ω) ≥ π3 (2)

where equality holds only for the disc.

In other words, using the behavior of the elastic energy on rescaling, we get that for every A0 > 0,
the disc is the unique solution for the minimization problem

min{E(∂Ω) : A(Ω) ≤ A0,Ω bounded, smooth, simply connected open set of R2}.

More precisely, if we perform any scaling of ratio t, we have E(t∂Ω) = t−1E(∂Ω) and A(t∂Ω) =
t2A(∂Ω). Therefore, it is classical to prove that the following three minimization problems are
equivalent (in the sense that any solution of one gives a solution of the others after a suitable
scaling):

∗The authors were supported by the Isaac Newton Institute programme ”Free Boundary Problems and Related
Topics” 2014 and the ANR Optiform research programme, ANR-12-BS01-0007.

1



(i) minE2(∂Ω)A(Ω)

(ii) min{E(∂Ω) : A(Ω) ≤ A0}

(iii) minE(∂Ω) +A(Ω)

Let us make some comments. For a detailed bibliography on closed elasticae, we refer to the
classical [7] or the more recent [8]. Inequality (2) was already known for convex domains. Indeed,
by a famous inequality due to M. Gage [5], for any bounded convex domain

E(∂Ω)A(Ω)

L(Ω)
≥ π

2

with equality for the disc. Therefore,

E2(∂Ω)A(Ω) ≥ E2(∂Ω)A(Ω)
4πA(Ω)

L2(Ω)
≥ π2

4
× 4π = π3,

the first inequality being the classical isoperimetric inequality, and the second the Gage inequality.
If the convexity hypothesis is dropped, then the Gage inequality is false (as shown by the counter-
example of Figure 1).

The simply connectedness assumption is necessary. Indeed, if we take as a domain Ω the ring

ΩR = {(x, y) : R <
√
x2 + y2 < R+

1

R
},

we get E(∂ΩR) = π
R + πR

R2+1
, while

A(ΩR) = π(R+
1

R
)2 − πR2 = 2π +

π

R2

showing that E2(∂ΩR)A(ΩR)→ 0 when R→ +∞.
In the same way, the boundedness assumption is also necessary. Let us consider the following

unbounded domain, subgraph of a Gaussian function, but with finite area and elastic energy:

Ωα = {(x, y) ∈ R2 : −∞ < x < +∞, 0 < y < e−αx
2/2}.

We have

A(Ωα) =

∫ +∞

−∞
e−αx

2/2dx =

√
2π

α
,

while

E(∂Ωα) =
1

2

∫ +∞

−∞

(α2x2 − α)2e−αx
2

(1 + α2x2e−αx2)
5
2

dx =
α

3
2

2

∫ +∞

−∞

(u2 − 1)2e−u
2

(1 + αu2e−u2)
5
2

du,

and we see that E2(∂Ωα)A(Ωα)→ 0 as α→ 0.
This shows that the assumptions in Theorem 1.1 can not be weakened. The proof of Theorem

1.1 is a classical variational proof (existence, regularity, analysis of the optimality conditions), but
the existence part is by no means easy since we need a control on the perimeter of a minimizing
sequence. The boundedness constraints on E(Ω) and A(Ω) do not ensure that the perimeter is
uniformly bounded, as shown by a counter-example like a dumbell, see Figure 1.

One has to be particularly careful that a minimizing sequence may a priori have a diameter going
to infinity. The key point of our strategy is to analyze first the minimization of the elastic energy
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Figure 1: A dumbbell with bounded area and elastic energy with a large perimeter

of drops enclosing a fixed area, i.e. closed loops without self-intersection points, which are smooth
except one point, where the tangents are opposite. The result for drops, will straight forward imply
the conclusion of Theorem 1.1, relying on a result of B. Andrews (see [1] and Theorem 4.1 in Section
4).

Here is our plan.

• We solve the minimization problem

min{E(∂Ω) +A(Ω) : Ω open, smooth, bounded, simply connected}, (3)

which is equivalent to (2).

• We fix some radius R > 0 and replace problem (3) by

min{E(∂Ω) +A(Ω) : Ω ⊆ BR open, smooth, simply connected}, (4)

where BR is the ball centered at 0 of radius R. We prove that every simply connected domain
in BR satisfies L(Ω) ≤ R2E(∂Ω). This is a key point for proving existence.

• In order to be able to exploit the optimality conditions we have to deal with self-intersection
points and with the points where the optimal set is touching the boundary of the ball BR.
For this reason, we analyze the problem

min{E(∂Ω) +A(Ω) : Ω ⊆ BR open, smooth, simply connected drop}. (5)

We refer to Section 3 for a precise definition of drops. We prove that an optimal drop does
not have self-intersection points and, if R is large enough, it does not touch the boundary of
the ball BR (up to a translation, inside the ball). Henceforth, optimality conditions allow us
to exhibit precisely the optimal drop and to evaluate its energy. This drop turns out to be
unique.

• We come back to problem (4) and prove that a limit of minimizing sequence can not have self-
intersection points and can not touch the boundary of BR, provided that R is large enough.
Consequently, optimality conditions can be written on all its boundary. The elimination of
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self-intersection points relies on the previous result on drops, since the presence of at least
one such point would make the energy not smaller than the double of the energy of the
optimal drop, which turns out to be larger than the energy of a disc of radius 2−1/3. As
optimality conditions can be written on the full loop, the shape is a circle (of radius 2−1/3)
as a consequence of the result of Andrews [1]), solving in this way (3).

2 Preliminaries

All curves γ : [0, L]→ R2 are parametrized by the arc-length. We denote θ the angle of the tangent
to γ with respect to the axis Ox. The curvature of γ at the point γ(s) will be denoted k(s) and it
is equal to θ′(s). Since we shall work with curves with finite elastic energy, the function θ belongs
to the Sobolev space H1(0, L). Using the embedding H1(0, L) ⊆ C0,α[0, L], for any α < 1/2, the
function θ is, in particular, continuous.

All curves we work in this paper have finite elastic energy

E(γ) =
1

2

∫
[0,L]
|θ′(s)|2ds < +∞.

Lemma 2.1 Let M > 0 and γ : [0, L] → R2 be a curve parametrized by the arc length such that
E(γ) ≤ M . There exists l = l(M) > 0 such that for every s0 ∈ [0, L − l] the curve is a graph in
a local system of coordinates with a first axis aligned on θ(s0), on a segment [0, l√

2
], of a function

g : [0, l√
2
]→ R with g(0) = γ(s0), g′(0) = 0 and such that ∀t ∈ (0, L) |g′(t)| ≤ 1.

Proof Let us fix s0 and consider the smallest s1 > s0 such that |θ(s1) − θ(s2)| = π
4 . If s1 does

not exist, then the conclusion follows directly.
We reproduce the curve γ[s0,s1] eight times, taking successively a reflection with respect to the

line passing trough the point γ(s1) and orthogonal to the tangent at γ(s1), then the same procedure
for the image of γ(s0) and a last reflection in order to close the loop.

s

s
0

1

s0

s1

Figure 2: Initial curve γ|[s0,s1] and the (rescaled) loop built from the curve

Let us denote by C the curve which is the boundary of the convex envelope of the loop. From
[5], we have ∫

C
k2ds ≥ π|H1(C)|

Area(C)
≥ π|H1(C)|

|H1(C)|2
4π

≥ 4π2

8(s1 − s0)
.

4



But

8

∫
γ[s0,s1]

|θ′|2ds ≥
∫
C
k2ds

thus

128M ≥ 4π2

s1 − s0
,

hence

s1 − s0 ≥
π2

32M
.

Denoting l = π2

32M , we conclude the proof.
2

Remark 2.2 The assertion of this lemma is of course available on backwards, so that the curve is
locally a graph in a neighborhood of each point, over an interval of controlled length.

Lemma 2.3 Let γ : [0, L]→ R2 be a curve parameterized by the arc length such that E(γ) < +∞.
If ε > 0 is given and 0 ≤ s < t ≤ L are such that

|θ(s)− θ(t)| = ε,

then ∫
[s,t]
|θ′|2ds ≥ ε2

L
.

Proof As
∫

[0,L] |θ
′|2ds < +∞, we write

|θ(s)− θ(t)| =
∣∣∣∣∫ t

s
θ′(u)du

∣∣∣∣ ≤ |t− s| 12 (

∫
[s,t]
|θ′|2)

1
2

which gives the result. 2

Remark 2.4 The idea coming out of the lemma is that if there is an ε-variation of the angle, the
elastic energy on that section of the curve is at least a constant times ε2, the constant depending
on the global length of the curve.

Let BR be a ball of radius R.

Lemma 2.5 Let γ : [0, L] → R2 be a smooth loop parameterized by the arc length such that
E(γ) < +∞ and γ([0, L]) ⊆ BR. Then

L ≤ 2R2E(γ).

Proof Denoting γ(s) = (x(s), y(s)), we have

L =

∫ L

0
x′2(s) + y′2(s) = −

∫ L

0
x(s)x′′(s) + y(s)y′′(s)ds.

But |x(s)x′′(s)+y(s)y′′(s)| ≤ (x2(s)+y2(s))
1
2 (x′′2(s)+y′′2(s))

1
2 ≤ R|k(s)|. Therefore, the conclusion

of the lemma follows from the Cauchy-Schwarz inequality

L2 ≤ R2L

∫ L

0
k2(s)ds.

2
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Assume that a simply connected open set Ω is bounded by a loop γ which does not have self
intersections on (s0, s0 + L). We shall call this piece of curve, a free branch. Let us first give the
optimality conditions satisfied by any free branch of an optimal domain. On such a free branch,
we can perform any (small and compactly supported, smooth) perturbation.

Theorem 2.6 (Optimality conditions) Let γ be any free branch of a minimizer Ω of the energy
E(∂Ω) +A(Ω). Then s 7→ k(s) is C∞ on γ and satisfies:

(B1) k′′ = −1
2k

3 + 1

(B2) k′2 = −1
4k

4 + 2k + 2C, for some constant C

(B3) ∃Q ∈ R2, such that ∀M ∈ γ: QM2 = 2k + 2C, for some constant C

(B4) ∃Q ∈ R2, such that ∀M ∈ γ: QM.ν = 1
2k

2 where ν is a normal vector to γ.

Remark 2.7 The point Q in (B3), (B4) is the same (see the proof below). The constant C in (B2),
(B3) is also the same. To see that, take a point MM on γ where the curvature k is maximum. If this
point does not exist, just extend the curve with the same ODE. Then, according to (B3), QMM is
also maximum and the normal derivative of the boundary at this point is QMM/|QMM |. Therefore
(B4) yields QMM = 1

2k
2 and plugging into (B3) gives (B2), because k′ = 0 at this point, with the

same constant.

Proof The C∞ regularity of k(s) (and θ(s)) comes from a bootstrap argument and equation (8)
below. The first condition (B1) comes from the classical shape derivative of the elastic energy
(under small perturbation of the boundary driven by some smooth vector field V : R2 → R2), see
[6, chapter 5] for more details on the shape derivative. Following e.g. the Appendix in [2], we see
that it is given by

dE(∂Ω, V ) = −
∫
γ

(
1

2
k(s)3 + k′′(s)

)
〈V, ν〉 ds

while the derivative of the area is classically

dA(Ω, V ) =

∫
γ
〈V, ν〉 ds

Condition (B1) follows since the derivative of E + A must vanish for any V . We obtain condition
(B2) multiplying (B1) by k′ and integrating.

To get condition (B3), we use another expression of the elastic energy and the area. Namely,
with the parametrization with the angle θ we have (see [2] for more details):

E(γ) =
1

2

∫
γ
θ′

2
ds := e(θ), A(Ω) =

∫ ∫
T

cos θ(u) sin θ(s) du ds := a(θ)

where T is the triangle T = {(u, s) ∈ R2 ; 0 ≤ u ≤ s ≤ L(Ω)}. We note L for L(Ω). Thus we
are led to minimize the sum e(θ) + a(θ) with the following constraints (the starting and the ending
point of the branch γ are fixed).∫ L

0
cos(θ(s)) ds = x(L)− x(0),

∫ L

0
sin(θ(s)) ds = y(L)− y(0). (6)

6



The derivative of e(θ) is (for a perturbation v compactly supported)

〈de(θ), v〉 =

∫ L

0
θ′v′ds = −

∫ L

0
θ′′vds

while the derivative of a(θ) is given by

〈da(θ), v〉 =

∫ ∫
T

cos θ(u) cos θ(s)v(s)− sin θ(s) sin θ(u)v(u)duds.

Using (6) and Fubini, we can write∫ ∫
T

sin θ(s) sin θ(u)v(u)duds = (y(L)− y(0))

∫ L

0
sin θ(s)v(s)ds−

∫ ∫
T

sin θ(u) sin θ(s)v(s)duds.

Therefore, the optimality condition for the constrained problem reads: there exists Lagrange mul-
tipliers λ1, λ2 such that, for any v:

−
∫ L

0
θ′′vds+

∫ L

0

(
cos θ(s)

∫ s

0
cos(θ(u)du+ sin θ(s)

∫ s

0
sin(θ(u)du

)
v(s)ds = (7)

= (y(L)− y(0))

∫ L

0
sin θ(s)v(s)ds− λ1

∫ L

0
sin θ(s)v(s)ds+ λ2

∫ L

0
cos θ(s)v(s)ds.

which implies (thanks to x′(s) = cos θ(s), y′(s) = sin θ(s))

−θ′′ + x′(x− x(0)) + y′(y − y(0)) = (y(L)− y(0)− λ1)y′ + λ2x
′ (8)

By integration, we get (B3) setting Q = (x(0) + λ2, y(L)− λ1).
At last, differentiating twice (B3) we get k′ = QM.τ (where τ is the tangent vector) and

k′′ = 1 − kQM.ν. Using (B1) we see that 1
2k

3 = kQM.ν, so (B4) holds where k 6= 0. Since k is a
solution of the ODE (B1), and therefore can be written with elliptic functions, it can only vanish
on isolated points and thus (B4) holds everywhere by continuity of both members. 2

In the following lemma, we assume that the simply connected open set Ω is a minimizer of the
energy E(∂Ω) +A(Ω).

Lemma 2.8 Any free branch of a minimizer Ω has a length L uniformly bounded by

L ≤ 146.

Proof We work with a free branch of γ on s ∈ (s0, s0 + L) and use the optimality conditions
above. We also know that the elastic energy of this branch is less than the total energy of the best
disk B, so that

E(γ) ≤ E(∂B) +A(B) = 3π2−
2
3 . (9)

We consider two cases. Assume first that C ≤ 1 on this branch (C is defined above in (B2),
(B3)). Then we know from (ODE3) in the Appendix that

k(s) ≤ kM (C) ≤ kM (1) ≤ 7

3
(10)

Then, from (B3)

QM2 ≤ 14

3
+ 2 =

20

3
,
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hence the arc is contained in the disc centered at Q with radius R0 =
√

20
3 .

On the other hand, if we put the origin at Q

L(γ) = L =

∫ L

0
x′2 + y′2dx = (xx′ + yy′)|L0 −

∫ L

0
xx′′ + yy′′ds.

But |x(L)x′(L) + y(L)y′(L)| ≤ R0 and |x(0)x′(0) + y(0)y′(0)| ≤ R0 while by Cauchy-Schwarz and
(9)

|
∫ L

0
xx′′ + yy′′ds| ≤ R0

∫ L

0
|k|ds ≤ R0

√
L2E(γ) ≤ R0

√
L3π2

1
3 .

Therefore, L satisfies

L ≤ 2

√
20

3
+

√
20

3
× 3π × 2

1
3

√
L, (11)

which implies (as soon as C ≤ 1)
L ≤ 90. (12)

Second case: C ≥ 1 for this branch. In this case we have from (ODE3) in the Appendix

kM (C) ≥ kM (1) ≥ 9

4
,

km(C) ≤ km(1) ≤ − 9

10
.

We decompose the interval I = (s0, s0+L) in three parts (some could be empty), I = I−∪I0∪I+

where
I− = {s ∈ I : k(s) ≤ 0}

I0 = {s ∈ I : 0 < k(s) < 2
1
3 }

I+ = {s ∈ I : 2
1
3 ≤ k(s)}

and we are going to prove that the length of each part is uniformly bounded, by a controlled
constant. First of all, we have seen that the integral of k2 on a period satisfies (see (ODE4) in the
Appendix)

1

2

∫ T

0
k2ds ≥ π

4

√
22

3
.

Following (9), this implies that we can not have more than 3 periods on each free branch. We begin
with I+. Obviously

E(γ) ≥ 1

2

∫
I+

k2ds ≥ 1

2
2

2
3 |I+|,

therefore
|I+| ≤ 3π × 2−

2
3 × 2

1
3 ≤ 8. (13)

For I0, we consider one of its connected components, say (α, β). Since kM (C) ≥ 9
4 > 2

1
3 and

km(C) ≤ − 9
10 < 0, we cannot have any local minimum or local maximum of k in I0 according

to (ODE2) form the Appendix. Therefore, k is either increasing from k(α) to k(β), or decreasing
from k(α) to k(β). Moreover, there are at most 6 such connected components because there are at
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most 3 periods of k. Let us consider the case of k increasing from k(α) to k(β), the other one being

similar. We have 0 ≤ k(α) ≤ k(β) ≤ 2
1
3 . By (B1), k′′ ≥ 0 on (α, β), so that k is convex. Therefore

k(α) + k′(α)(s− α) ≤ k(s) (14)

which implies

k(α) + k′(α)(β − α) ≤ k(β) ≤ 2
1
3 .

Now k(α) ≥ 0 and k′(α) =
√

2C + 2k(α)− 1
4k

4(α) ≥
√

2C thus
√

2(β −α) ≤
√

2C(β −α) ≤ 2
1
3 or

β − α ≤ 2−
1
6 .

Since, there are at most 6 such intervals, we have

|I0| ≤ 6× 2−
1
6 ≤ 6. (15)

At last we consider the case of I−. The set I− is not empty only when C > 0 and km < 0. The set
I− is composed of connected components [α, β] such that k(α) = k(β) = 0 or is included in such
connected components. Since we want to estimate from above the length of I−, it suffices to look
for the length of these connected components. There are at most 3 of these (identical) components
and k(α+β

2 ) = km by symmetry.
Now, the elastic energy of such a component satisfies

E(γα1,β1) =
1

2

∫ β1

α1

k2ds =

∫ β1

α1+β1
2

k2ds =

∫ α1+β1
2

α1

k2ds. (16)

We denote L− = β1 − α1 the length of this component. By convexity, on (α1,
α1+β1

2 ) we have

k(s) ≤ 2km
L−

(s− α1) ≤ 0,

thus

E(γα1,β1) ≥
∫ α1+

L−
2

α1

4k2
m

L2
−

(s− α1)2ds =
k2
m

6
L−.

Now, for C ≥ 1 we have (see (ODE3) in the Appendix) k2
m ≥ k2

m(1) ≥ 81
100 and E(γα1,β1) ≤ 3π2−

2
3 .

Therefore

L− ≤
600

81
× 3π2−

2
3 ≤ 44,

and the total length of
|I−| ≤ 3L− ≤ 132. (17)

In conclusion, for C ≥ 1 the total length is less than (by gathering (13), (15), (17))

L ≤ 132 + 8 + 6 = 146.

2
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Figure 3: A drop

3 The optimal drop

In this section we prove the existence of a best drop minimizing the sum of the elastic energy and
the area enclosed. We introduce the class of admissible Jordan drops consisting of simply connected
open sets Ω bounded by a Jordan curve γ of finite length, which satisfies

θ(0) = θ(Lγ)− π, E(γ) < +∞,

where Lγ is the length of γ. A drop will be denoted (Ω, γ), Ω being the open set enclosed by the
Jordan curve γ (all Jordan curves are oriented in the positive sense).

For some R > 0, we consider the problem

inf{E(γ) +A(Ω) : (Ω, γ) is a drop,Ω ⊆ BR}. (18)

Note that by a similar argument as in Lemma 2.5, the length of Jordan drop γ can not exceed
8R2E(γ). Indeed, the same argument works for the drop, if the singularity lies at the origin, we
have x2 + y2 ≤ 4R2 since the diameter of the drop is less than 2R.

Here is the main result.

Theorem 3.1 Problem (18) has at least one solution.

Remark 3.2 With no assumptions on the radius R, it could be possible that the optimal drop
(Ω, γ) touches the boundary of the ball but it may not have self intersections.

Proof For simplicity of the notation, the ball BR will be denoted B and the area of Ω will be
denoted by |Ω|. We start with the following.

Lemma 3.3 Let (Ω, γ) be a drop contained in B. If for some ε > 0 there exists 0 ≤ s < t ≤ Lγ
with

θ(t) = θ(s)− π − ε

then there exists a new drop (Ω̃, γ̃) in B such that∫
γ̃
|θ̃′|2 ≤

∫
γ
|θ′|2 − ε2

2Lγ
and |Ω̃| ≤ |Ω|.
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[Proof of the Lemma] Assume s and t satisfy the hypotheses. Then, from continuity of θ, there
exists s < s < t < t such that

θ(s) = θ(s)− ε

2
and θ(t) = θ(t) +

ε

2
.

Moreover, there exists s ≤ s′ < t′ ≤ t such that

θ(t′) = θ(t), θ(s′) = θ(s)

and for every u ∈ (s′, t′)
θ(u) ∈ (θ(t′), θ(s′)).

Indeed, we define
t′ = inf{t : t > s, θ(t) = θ(t)},

and
s′ = sup{s : s < t′, θ(s) = θ(s)}.

Then we notice that the curve γ[s′,t′] is a graph in the direction θ(s′), otherwise it would contradict
the choice of s′ and t′. Setting the orientation of the curve in the trigonometric sense, we are in

s'

t'

θ(s')

Figure 4: The curve is a graph in the direction θ(s′)

configuration similar to Figure 5. Using the graph property, we can translate continuously the piece
of the curve γ|[s′,t′] in a parallel way in the direction θ(s′) until this piece touches again γ.

We denote sα ∈ [s′, t′] and tα ∈ [0, L] \ [s′, t′] the couples of touching points. We denote s1,
respectively s2, the minimal and maximal values of sα. Then, one of the curves starting with s2

and ending in t2, or starting in t1 and ending in s1 is a drop. Precisely, it is the one which does
not contain the point γ(0). Without loosing generality we can assume it is the curve s2 → t2 and
rename the point (s2, t2) = (s∗, t∗) and denote this curve γ̃. We notice that g̃ can not touch any the
piece of curve γ|[s,s′]. If there would be a contact point, this contact is generated by the translation
of γ|[s′,t′] and has to be precisely (s∗, t∗). But in this case, t∗ lies in the interval [t, s′], so the curve
starting at t∗ and ending at s∗ is a drop, which does not touch the piece of curve γ|[t′,t].

In this way, we built a new drop (Ω̃, γ̃), which encloses a domain contained in Ω and, in view

of Lemma 2.3 has an elastic energy smaller by at least an increment of ε2

4Lγ
.
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s'
t'

θ(s')

Ω

s'
t'

θ(s')

s*
t*

Figure 5: Translation of γ|[s′,t′] in the direction θ(s′)

[Proof of the Theorem 3.1 (continuation)] Coming back to the proof of Theorem 3.1, les us con-
sider (Ωn, γn) be a minimizing sequence of drops. We may assume that E(γn), |Ωn| and Lγn are
convergent. Assume that for every n we have Lγn ≤ L∗. In order to work on a fixed Sobolev space
H1(0, L∗), we assume that θn is formally extended by the constant θn(Lγn) on (Lγn , L

∗]. Up to a
subsequence, we can assume that θn converges uniformly on [0, L∗] to some function θ. We define
the limit curve γ in the following way: Lγ = limn→∞ Lγn and γ : [0, Lγ ]→ R2, γ(s) =

∫ s
0 e

iθ(s)ds+a,
where a = limn→∞ γn(0).

Let us fix ε > 0. Then, from the previous lemma, for every s < t and n large enough we have

θn(t) ≥ θn(s)− π − ε.

Indeed, otherwise we would replace (Ωn, γn) by (Ω̃n, g̃n) decreasing the energy by a fixed increment
ε2

4L∗ , where L∗ is a bound of the lengths. This is in contradiction with the minimality of the
sequence.

In particular, passing to the limit we get that for every ε > 0 and for every s < t

θ(t) ≥ θ(s)− π − ε.

Since ε is arbitrary, we get
θ(t) ≥ θ(s)− π. (19)

From the compactness of the class of closed subsets of BR endowed with the Hausdorff metric, and
the embedding of H1(0, L∗) into C0,α[0, L∗], we may assume that for some open set Ω ⊆ BR

Ωc
n

H−→ Ωc,

and the convergence of θn leads to

γn([0, Lγn ])
H−→ γ([0, Lγ ]).

We refer to [3] or [6] for precise properties of the Hausdorff convergence. We know that in general
1Ω ≤ lim inf

n→∞
1Ωn , so that |Ω| ≤ lim

n→∞
|Ωn|. Nevertheless, in our situation the perimeters being

uniformly bounded, we get 1Ωn → 1Ω in L1(BR). Moreover, ∂Ω ⊆ γ([0, Lγ ]) and Ω is simply

12



connected (i.e. any loop contained in Ω is homotopic to a point in Ω), but not necessarily connected.
The curve γ is possibly self-intersecting, but not crossing, i.e. at every self-interesting point, the
tangent line is the same, while looking locally around the point, the pieces of curve passing through
it are (in view of Lemma 2.1) graphs of functions. From the simple connectedness hypothesis, these
functions are necessarily ordered. From Lemma 2.3 and the fact that the elastic energy is finite,
the number of pieces of curve passing through the touching point is uniformly finite. The situation
displayed in Figure 6 may occur.

Figure 6: Self touching curve, disconnecting the limit

We shall prove that γ can not have self intersection points, other that the type above. The
key ingredients are the local representation of the curve as a graph and inequality (19). We shall
analyze the different contact types between two pieces of γ. Since the curves are graphs on an
interval [− l√

2
, l√

2
], and the representing functions are ordered, we shall look to the orientation of

each piece of curve.

Case 1. Opposite orientation, not disconnecting. Two branches of γ touching at some

s

t

Ω

Ω

θ(s)

Figure 7: Case 1: opposite orientation, not disconnecting.

point γ(s) = γ(t), are represented as graphs of the functions gs, gt, on [− l√
2
, l√

2
]. We assume that

gs(0) = γ(s) = γ(t) = gt(0) and choose the couple (s, t) such that for some ε > 0 we have

∀u ∈ (0, ε) gs(u) > gt(u),

otherwise we change the contact point. This inequality would imply the existence of points s′ > s
and t′ < t such that θ(t′) < θ(s′)−π, which is in contradiction with (19), so that this situation can
not occur.

Case 2. Contact of two branches of the same orientation. From the simple connectedness,

13



s
tΩ

Ω

θ(s)

Ω

Figure 8: Case 2: same orientation

this situation implies that the touching point γ(s) belongs to at least three branches, in particular
between the graphs of gs and gt, there is a graph corresponding to piece of curve with opposite
orientation. There are two possibilities: either this new contact corresponds to a point t′ ∈ (t, L)
or to s′ ∈ (0, s). The first situation is in fact the case 1 between the contact points s and t′. The
second situation leads also to Case 1, but for the contact points s′ and t′, so we conclude that the
second case can not hold.

Case 3. Opposite orientation, disconnecting. This is the only remaining possibility for self-

s
t

Ω

Ω θ(s)

Figure 9: Case 3: simple touch, disconnecting

intersections. There may be several contact points, but every contact point is simple, otherwise
we would fall in Case 2. So let us denote {(sα, tα)}α the couple of parameters corresponding to
the contact points. Because of the simple connectedness and of the absence of contact poins as in
cases 1 and 2, we have that if sα < sβ then tβ < tα. Consequently, we can identify the contact
point (s∗, t∗) such that between s∗ and t∗ there is no other contact, by setting s∗ = supα sα and
t∗ = infα tα. Of course, s∗ and t∗ can not collapse. Indeed, in view of Lemma 2.3 applied to γ|[sα,tα]

if collapse occurs then the elastic energy would blow up. So γ|[s∗,t∗] is a Jordan curve for which

14



all the area enclosed is part of Ω, otherwise, because of the simple connectedness, a branch of the
curve must pass through the contact point, bringing it to the case 2.

So γ|[s∗,t∗] is a drop, with lower elastic energy than γ and enclosing a surface less than or equal
to |Ω|. This means that γ|[s∗,t∗] is a solution for problem (18).

2

Lemma 3.4 There exists R0, such that if the radius R of the ball BR in Theorem 3.1 satisfies
R ≥ R0, then there exists a translation of the optimal drop which does not touch the boundary of
BR.

Proof The proof relies on Lemma 2.8. Let R ≥ R0 (the value of R0 will be precised at the end of
the proof). Assume that (Ω∗, γ∗) is an optimal drop for problem (18) which touches the boundary,
such that there is no translation moving the drop at positive distance from the boundary. This
means that the touching points between γ∗ and BR are distributed in such a way that they do not
fit in an arc of length less than πR. Using Lemma 2.8, if R is large, e.g. R ≥ 300, then the center
of BR has to be inside Ω∗ together with a disc of radius 150. Indeed, the longest piece of curve
between two contact points or between a contact point and the singularity has a length less than
146. Consequently, the energy of (Ω∗, γ∗) is larger than the area of the disc of radius 150: π · 1502,
in contradiction with its optimality. Taking R0 = 300, the lemma is proved. 2

Figure 10: An optimal drop touching the boundary

Theorem 3.5 There exists a unique optimal drop (Ω∗, γ∗) which minimizes the energy E(γ)+A(Ω)
among all drops in R2. This one is fully characterized by the optimality conditions (B1)-(B2) with
a unique constant C which can be determined.
Moreover

E(γ∗) +A(Ω∗) > π > 3π2−
5
2 =

1

2
[E(∂B2−1/3) +A(B2−1/3)].

Remark 3.6 Figure 11 gives the representation of the optimal drop.

Proof The proof of existence follows from Theorem 3.1 and Lemma 3.4. The optimality conditions
(B1)-(B4) can be written on the whole γ (except at the singularity) according to Theorem 2.6. We
start for s = 0 at the origin which is the singular point with an horizontal tangent (θ(0) = 0).
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Figure 11: The optimal drop

By (B4) and starshaped property, the point Q is necessarily on the x-axis, the curvature k(s) is
negative for s > 0 small and k(s)→ 0 when s→ 0. The function k(s) is periodic but we will prove
below (see the end of the proof) that we have only one period for the optimal drop and the curve
is symmetric around the x-axis. Therefore to characterize the optimal drop, we can proceed in the
following way: for any constant C > 0, we solve the ODE

k′′ = −1
2k

3 + 1
k(0) = 0

k′(0) = −
√

2C

(20)

which has a unique solution. Let us denote by sM the value where k is maximum with k(sM ) = kM
(respectively sm and km = k(sm) for the minimum). The point MM of abscissa sM is necessarily
on the x-axis and its tangent is vertical. Thus, we look for the value of C for which θ(sM ) =∫ sM

0 k(s)ds = π/2.

We claim that conversely, if we find a value of C for which
∫ sM

0 k(s)ds = π/2, then we have
found the optimal drop. Indeed, since it satisfies the optimality conditions, it suffices to check that
the curve we obtain by x(s) =

∫ s
0 cos θ(t)dt and y(s) =

∫ s
0 cos θ(t)dt with θ(s) =

∫ s
0 k(t)dt is an

admissible drop. Since MM is the point where the curvature is maximum, according to (B3), it
is the point on γ which is the farthest to Q. But since the tangent is vertical at this point it is
necessarily on the x-axis: y(sM ) = 0 and the total length of the curve is 2sM . Now, since k is
symmetric with respect to sM (see (ODE1) in the Appendix), k(sM +t) = k(sM−t) which provides
after integration: θ(sM + t) = π − θ(sM − t). This identity gives θ(2sM ) = π and

x(2sM ) =

∫ sM

0
cos θ(t)dt+

∫ 2sM

sM

cos θ(t)dt =

∫ sM

0
cos θ(t) + cos(π − θ(t))dt = 0

y(2sM ) =

∫ sM

0
sin θ(t)dt+

∫ 2sM

sM

sin θ(t)dt =

∫ sM

0
sin θ(t) + sin(π − θ(t))dt = 2y(sM ) = 0

which shows that the curve γ is a drop.
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Thus to prove uniqueness of the optimal drop, we need to prove that we can find only one C > 0
for which I(C) :=

∫ sM
0 k(s)ds = π/2. Let us write∫ sM

0
k(s)ds =

∫ 2sm

0
k(s)ds+

∫ sM

2sm

k(s)ds = 2

∫ sm

0
k(s)ds+

∫ sM

2sm

k(s)ds

where we used the symmetry of k with respect to sm, see (ODE1). This symmetry also shows that
k(2sm) = 0. We are going to prove uniqueness of C (and therefore of the optimal drop) by proving
that the function C 7→

∫ sM
0 k(s)ds is strictly decreasing. Let us perform the change of variable

u = k(s) in each above integral. It comes, using (B2) to express k′:∫ sM

2sm

k(s)ds =

∫ kM

0

u√
2C + 2u− u4/4

du (21)∫ sm

0
k(s)ds = −

∫ km

0

u√
2C + 2u− u4/4

du

Now to compute the derivative of the first integral I1(C) with respect to C, we make the change
of variable u = kMx, it comes

I1(C) =

∫ 1

0

k2
Mx√

2C + 2kMx− k4
Mx

4/4
dx

We compute the derivative of I1 using dkM
dC = 2/(k3

M − 2) (see (ODE3) in the appendix) and an
easy computation gives

dI1

dC
=

∫ 1

0

6k2
Mx(x− 1)

(k3
M − 2)

(
2C + 2kMx− k4

Mx
4/4
)3/2 dx

which is clearly negative. In the same way, we get for the second integral I2(C) =
∫ sm

0 k(s)ds:

dI2

dC
= −

∫ 1

0

6k2
mx(x− 1)

(k3
m − 2) (2C + 2kmx− k4

mx
4/4)3/2

dx

which is also negative, proving the uniqueness of a solution C for the equation I1(C)+2I2(C) = π/2.
Let us remark that a simple computation yields I(0) = 2π

3 while the limit of I(C) when C goes to
+∞ is −π

2 confirming that there exists a solution to our problem.

Let us estimate from below the energy of the optimal drop. Denote by s1 = 2sm the first positive
zero of k, we recall that sm is the first minimum of k and km = k(sm), sM the first maximum of k
and kM = k(sM ). From (B2) km and kM are the real roots of the polynomial (which is concave)

PC(X) = −1

4
X4 + 2X + 2C. (22)

The maximum of PC is at X = 2
1
3 and PC(0) = 2C. We have

km < 0 ≤ 2
1
3 ≤ kM (23)

(km can not be nonnegative, otherwise the set Ω∗ would be convex).
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Moreover, when C increases, kM (C) is increasing while km(C) is decreasing (with increasing
absolute value |km(C)|), because we translate the curve y = −1

4x
4 + 2x up).

If we denote S = kM +km and P = kmkM the sum and the product of those two roots, classical
elimination and relation between roots provide

S2 = P − 8C

P
− 8

S
= P +

8C

P
(24)

while the two complex roots z0, z0 satisfy z0 + z0 = −S, z0z0 = −8C
P .

Since P ≤ 0 and C > 0, the last equation gives S > 0. Let us come back to the computation of
the elastic energy of the optimal drop (Ω∗, γ∗)

E(γ∗) =

∫ sM

0
k2ds.

Now
∫ sM

0 k2ds ≥
∫ sM
sm

k2ds and k is increasing from sm to sM (since k′ can only vanish at zeroes of
PC(X), which only correspond to maxima kM and minima km). We perform the change of variable

x = k(s) on this interval dx = k′(s)ds =
√

2C + 2k − 1
4k

4ds. Therefore

E(γ∗) ≥
∫ sM

sm

k2ds =

∫ kM

km

x2√
2C + 2x− 1

4x
4
dx.

We want to find a lower bound of this integral. For this purpose, we write (following (22))

PC(x) =
1

4
(kM − x)(x− km)(x2 + Sx− 8C

P
).

Now, the parabola y = 1
4(x2+Sx− 8C

P ) is symmetric with respect to−S
2 , an since kM+km

2 = S
2 ≥ −

S
2 ,

the maximum of y on the interval [km, kM ] is equal to

F 2 =
1

4
(k2
M + SkM −

8C

P
) =

1

4
(2k2

M + kmkM −
8C

P
) =

1

4
(3k2

M + 2kmkM + k2
m), (25)

where we have used (24) for the last equality. Thus∫ kM

km

x2√
2C + 2x− 1

4x
4
dx ≥ 1

F

∫ kM

km

x2√
(kM − x)(x− km)

dx.

This last integral can be computed explicitly and gives

E(γ∗) ≥ 1

F

3k2
M + 2kmkM + 3k2

m

4

π

2
. (26)

We have F ≤ 1
2

√
3k2

M + 2kmkM + 3k2
m and (26) gives

E(γ∗) ≥ π

4

√
3k2

M + 2kmkM + 3k2
m. (27)

It remains to get a bound for the quantity H = 3k2
M + 2kmkM + 3k2

m which depends only on C.
We discuss two cases.
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Case A. If C ≥ 1, H = k2
M +2kM (kM +km)+3k2

m ≥ k2
M +3k2

m. Both mappings C 7→ k2
m, C 7→ k2

M

are increasing, thus C ≥ k2
M (1) + 3k2

m(1). We study P1(X) = −1
4X

4 + 2X + 2

P1(
7

3
) = −241

324
and P1(

9

4
) =

95

1024
,

we get
9

4
≤ kM (1) ≤ 7

3
. (28)

While from P1(−1) = −1
4 and P1(− 9

10) = 1439
40000 , we get

−1 ≤ km(1) ≤ − 9

10
. (29)

It follows that H ≥
(

9
4

)2
+ 3( 9

10

)2
= 2997

400 ≈ 7.4925.

Case B. In the case 0 ≤ C ≤ 1, we use k2
M (C) ≥ k2

M (0) = 4, k2
m(C) ≥ 0 and |kM (C)km(C)| ≤

|kM (1)km(1)| ≤ 7
3 to get

H = 3k2
M + 2kmkM + 3k2

m ≥ 12− 14

3
=

22

3
= 7.333...

So in any case, H ≥ 22
3 . It follows from (26) that

E(γ∗) ≥ π

4

√
22

3
. (30)

Now, integrating (B4) on the curve, we get 2A(Ω∗) =
∫
γ∗
−−→
QM · ~νds = 1

2

∫
γ∗ k

2ds = E(γ∗).
Therefore

E(γ∗) +A(Ω∗) =
3

2
E(γ∗) ≥ 3π

8

√
22

3
> π > 3π2−

5
3 . (31)

Let us now conclude by proving that the optimal drop has only one period of the function k(s).
The estimate (30) we get is actually true on any possible period. Therefore, if we have a solution

(γ∗2 ,Ω
∗
2) with at least two periods, we would have E(γ∗2) ≥ π

2

√
22
3 , therefore like in (31) its total

energy would satisfy E(γ∗2) + A(Ω∗2) > 2π. Now, proceeding in a similar way as we did for the
estimate from below, we can get (details omitted) an estimate from above for an optimal drop with
only one period which is

E(γ∗) +A(Ω∗) ≤ 2π

(the exact value is E(γ∗)+A(Ω∗) ' 4.6823) therefore, any critical point with more than one period
cannot be optimal.

2

4 Proof of Theorem 1.1

With the notation settled in Sections 2 and 3 we return to problem (3), and write

inf{E(γ) + |Ω| : Ω smooth, bounded, simply connected set , ∂Ω = γ}. (32)
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First of all we recall that among all circles, the optimal one has the radius r = 2−
1
3 . Let us

consider R ≥ 300 and solve the problem

inf{E(γ) + |Ω| : Ω smooth, bounded, simply connected set,Ω ⊆ BR, ∂Ω = γ}. (33)

Using the same arguments as in Section 3, a minimizing sequence will converge to a couple (Ω, γ).
Two possibilities occur. Assume first that there are self intersections. In this case the limiting
couple (Ω, γ) contains at least two drops, as in Case 3 of Theorem 3.1. Following Theorem 3.5,
this configuration can not be optimal since the energy of Ω is larger than the double of the optimal
energy of a drop, so it is excluded.

The second situation is that (Ω, γ) does not have self-intersections. Since the radius is large
enough, for a suitable translation the loop does not touch the boundary of the ball, as in Lemma
3.4. Moreover, in this case the optimality conditions OM.ν = 1

2k
2 can be written on the full

boundary. We use now the following result of Ben Andrews see Theorem 1.5 in [1]:

Theorem 4.1 [Andrews] The only curves satisfying

QM.ν = λkα with λ > 0 and α > 1
3

are circle with center at Q.

which allows us to conclude that the curve is a circle. Its radius is equal to 2−
1
3 by direct compu-

tation. This proves Theorem 1.1.

5 Appendix: analysis of the ODE issued from optimality condi-
tions

In this section, we give several properties of the following ODE in nonstandard form

k′
2

= −1

4
k4 + 2k + 2C,

where C ∈ R is a constant. This ODE is issued from the optimality conditions on a free branch of
a minimizer for our problem, see Theorem 2.6. We also refer the reader to reference [2] for related
analysis.

Clearly, C ≥ −3
42

1
3 ≈ −0.944, otherwise the right hand side is negative. We denote km(C) ≤

kM (C) the two real roots of the polynomial PC(X) = −1
4X

4 + 2X+ 2C, or if there is no ambiguity
simply km, kM .

Here we gather some immediate facts concerning this ODE.

(ODE1) The solution of the ODE is periodic (the period is denoted by T ), symmetric with respect to
its minimum or maximum.

(ODE2) The only local minima (maxima) are actually global minima (maxima, respectively) and
correspond to k = km (k = kM , respectively), and k is monotone between these two values.

(ODE3) The mapping C 7→ kM (C) is increasing and its range is from 2
1
3 to +∞, while the mapping

C 7→ km(C) is decreasing and its range is from −∞ to 2
1
3 . Moreover, km(C) < 0 when

C > 0, 9
4 ≤ kM (1) ≤ 7

3 , −1 ≤ km(1) ≤ − 9
10 , −C ≤ km(C). As well, kM (C) ≥ 2 + C for

−3
2 × 2

1
3 ≤ C ≤ 0.
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(ODE4) The integral 1
2

∫ T
0 k2ds on one period is estimated from below

1

2

∫ T

0
k2ds ≥ π

4

√
22

3
.

The proof of (ODE1) is classical, either working with the closed orbit, or using an explicit form of
the solution thanks to elliptic functions.

The proof of (ODE2) is easy since k′ can vanish only at the zeroes of PC .

For the proof of (ODE3) we notice that dkM
dC = 2

k3M−2
> 0 and dkm

dC = 2
k3m−2

< 0, km(0) = 0, kM (0) =

2, PC(−C) < 0 =⇒ km(C) ≥ −C, PC(2 + C) = −C[1
4C

3 + 2C2 + 6C + 4] ≥ 0 and the bounds for
km(1), kM (1) have been obtained in (28), (29).

The proof of (ODE4): we have already proved this inequality in Section 3, when C ≥ 0. It remains

the case −3
42

1
3 ≤ C ≤ 0. In this case, we have km ≥ C and kM ≥ 2 +C, so 3k2

M + 2kmkM + 3k2
m ≥

4C2 + 8C + 2 ≥ 8 ≥ 22
3 , and the result follows in the same way.
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