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1 Introduction

The quantification of the downside risk of a financial position is a key issue, both for regulators and
financial institutions. It is also a challenge from a theoretical point of view. The theory of monetary
risk measures, initiated by Artzner, Delbaen, Eber & Heath (1999), provides an axiomatic framework
that has helped to clarify the issue, and whose structure has turned out to be surprisingly rich, with
strong connections to many other areas in economics, statistics, and mathematics, and in particular
to the theory of preferences in the face of risk and uncertainty. In this survey we describe some of
the major developments.

The basic idea is to quantify the downside risk as a capital requirement. A financial position is
described by its uncertain monetary outcome, that is, as a real-valued function X on some set of
possible scenarios. Its risk ρ(X) is defined as the monetary amount that needs to be added to the
position to make it acceptable. For a given notion of acceptability, the resulting functional ρ on
financial positions then has the properties of a monetary risk measure described in Section 2.

The standard example of a monetary risk measure is Value at Risk. In this case, a position is
considered to be acceptable if the probability of a loss is below a given threshold. In particular
it is assumed that this probability exists, and that it is accessible through the use of historical
data or Monte Carlo simulation. While it continues to be the industry standard, Value at Risk
has serious deficiencies. In particular, it may penalize diversification, and it does not capture the
risk of very large losses that may hide behind the threshold. Other drawbacks such as procyclical
effects and excessive reliance on specific probabilistic assumptions became apparent during the
recent financial crisis; see, for example, in The Turner Review – A regulatory response to the global
banking crisis (2009a). At a more fundamental level, the Turner Review emphasizes the issue of
Knightian uncertainty, referring to situations where probabilities are not available, or do not even
make sense.

The axiomatic approach to risk measures formulates potentially desirable properties of a mon-
etary risk measure, investigates their consequences, and designs and analyzes specific examples. A
key requirement is that diversification should not be penalized, in contrast to Value at Risk. This
means that a convex combination of acceptable positions should again be acceptable. As a result,
the monetary risk measure has the properties of a convex risk measure described in Section 2.2.
Coherence is a stronger property, but less compelling from a financial point view: In addition to
convexity, it requires that any multiple of an acceptable position should still be acceptable,

In this survey, the focus is on monetary risk measures that are convex. A convex risk measure
will typically admit a dual representation. This involves a class Q of probability measures on the
underlying space of possible scenarios and a penalty function that assigns different weights to these
measures. The probability measures can be viewed as plausible probabilistic models, but they are
taken more or less seriously, as specified by the penalty function. For a given position X, the
capital requirement ρ(X) is then computed as the worst case of the penalized expected loss over all
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probabilistic models in the class Q; see Section 3. At this general level, no probabilistic model has
to be fixed in advance. Thus, the general theory of monetary risk measures provides a conceptual
framework that admits Knightian uncertainty. However, probability measures do enter the stage
via convex duality, taking the role of stress tests.

The specific form of the dual representation depends on the space X of financial positions on
which the risk measure ρ is defined and on additional regularity properties of ρ. Section 3 describes
various standard settings. Some do not use an underlying probability measure P , others do, but
only in order to fix a class of null-sets or a notion of integrability, without using the specific structure
of the probabilistic model. The choice of the setting will play an important role in the discussion
of m-convexity, elicitability, and robustness in Sections 7, 8, and 9.

In Section 4 we review standard examples of risk measures including Average Value at Risk, also
called Expected Shortfall, divergence risk measures where the penalty function quantifies the diver-
gence from some benchmark model, and utility-based shortfall risk where acceptability is defined
in terms of expected utility. We describe their properties and provide their dual representation. In
Section 5 we use families of convex risk measures to construct a general class of risk functionals that
includes other indices of riskiness such as the “economic index of riskiness” proposed by Aumann
& Serrano (2008). These functionals are quasi-convex, but they have no longer the translation
property of a monetary risk measure.

Section 6 describes the connection between convex risk measures and variational preferences
in the face of risk and uncertainty. If preferences satisfy the classical “axioms of rationality” for-
mulated by von Neumann & Morgenstern (1944) and Savage (1954), then they admit a numerical
representation in terms of the expected utility EP [u(X)]. If these axioms are relaxed as proposed
by Gilboa & Schmeidler (1989) or, more generally, by Maccheroni, Marinacci & Rustichini (2006),
then their numerical representation is obtained by replacing the linear expectation EP [·] by the
non-linear functional −ρ(·), where ρ is either a coherent or a convex risk measure. While classical
risk aversion corresponds to the concavity of u, the convexity of the risk measure ρ captures a
different behavioral feature, described by an axiom of model risk aversion; cf. Maccheroni et al.
(2006) and Föllmer, Schied & Weber (2009).

Most of the literature on risk measures assumes that the risk measure is law-invariant, or
distribution-based. This means that positions X are described as random variables on some proba-
bility space (Ω,F , P ), and that the capital requirement ρ(X) only depends on the distribution µX
of X under P . As discussed in Section 7, the dual representation of a law-invariant convex risk
measure can be restated in a more specific form, whose building blocks are provided by Average
Value at Risk. As a special case we obtain the class of spectral risk measures proposed by Acerbi &
Tasche (2002), defined as mixtures of Average Value at Risk. These can be described as Choquet
integrals of the loss with respect to some concave distortion of the underlying probability measure
P .

Clearly, a distribution-based convex risk measure can be regarded as a statistical functional
on the class of distributions µX , also called lotteries. As such, they respect stochastic dominance
both of the first and second kind. At the level of distributions, however, it is plausible to require an
additional type of convexity, namely convexity of the level sets of the functional ρ on lotteries. Thus,
the same capital is required for a compound lottery obtained by randomizing the choice between
two lotteries µ and ν, if the capital requirement is the same for µ and ν. Distribution-based risk
measures with this convexity property are characterized in Section 7: As shown by Weber (2006)
and Delbaen, Bellini, Bignozzi & Ziegel (2014), they are utility-based, and in the coherent case they
reduce to the class of expectiles.

From a statistical point of view, it is desirable to require additional properties of a distribution-
based risk measure that are useful for backtesting and estimation procedures. In Section 8 we
discuss distribution-based risk measures that are M-estimators in the sense of Huber (1981); these
risk measues are also called elicitable. Gneiting (2011) argues that this property is crucial for the
purposes of backtesting; see, however, Acerbi & Szekely (2014) and Davis (2013) for alternative
points of view. Elicitable functionals also facilitate the application of regression techniques that
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generalize quantile regression, see e.g. Koenker (2005). As observed by Osband (1985), elicitable
monetary functionals have convex level sets on lotteries. Applying the results of Weber (2006) and
Delbaen et al. (2014) described in Section 7.5, one obtains a complete characterization of elicitable
convex risk measures.

Another desirable property is robustness. In the classical formulation of Hampel (1971), ro-
bustness requires continuity of the functional with respect to the weak topology on lotteries, hence
insensitivity with respect to tail behavior. In the context of robust statistics, it is well known
that the median, or any other quantile, is robust in this sense, while the mean is not robust. Ac-
cordingly, Value at Risk is Hampel-robust, while convex distribution-based risk measures such as
Average Value at Risk are not Hampel-robust; they are, and in fact are meant to be, sensitive with
respect to tail behavior.

The perspective changes if the concept of robustness is modified. In Section 9 we describe a
new approach to the robustness of risk measures developed by Krätschmer, Schied & Zähle (2014).
It involves a restriction of the class of admissible lotteries as in Cont, Deguest & Scandolo (2010),
and in addition a refinement of the weak topology that takes into account the tail behavior, for
example by replacing the usual Prohorov metric with a suitable Wasserstein metric. As a result,
the simple dichotomy “robust or not robust” is replaced by a continuum of degrees of robustness.
In particular, Krätschmer, Schied & Zähle (2014) introduce an index of qualitative robustness that
takes values in [0, 1] if the distribution-based risk measure ρ is convex. We illustrate its computation
for distortion risk measures and for elicitable risk measures. Its maximal value 1 is attained, for
example, by Average Value at Risk and by expectiles.

The discussion in Sections 7, 8, and 9 shows that the structure of distribution-invariant risk mea-
sures is by now well understood, using different points of view. Obviously, there is no distribution-
based risk measure that satisfies all potentially desirable properties. In particular, there is a clear
trade-off between convexity and robustness under the assumption of elicitability. If one insists on
robustness in the classical sense of Hampel (1971), then the only choice is to give up convexity and
to go back to Value at Risk, as proposed by Kou & Peng (2014). If, on the other hand, one insists
on convexity, then one can attain the largest possible degree of qualitative robustness in the sense
of Krätschmer, Schied & Zähle (2014) by taking an expectile.

In any case, the scope of risk measures is not limited to distribution-invariance, as illustrated
by the role of risk measures in the representation of variational preferences in the face of model
uncertainty in Section 6. As suggested by the example of “stressed” Value at Risk in Section 2.3,
forward-looking methods such as stress testing should be combined with all available information
concerning the distributional properties of a financial position. To a large extent, this agenda is
still open from a mathematical point of view.

Our presentation in the first sections closely follows Föllmer & Schied (2011), to which we refer
for proofs and further details, and the survey Föllmer & Knispel (2012), which contains additional
material on the close connection between monetary risk measures and actuarial premium principles.

2 Risk measures as capital requirements

A financial position will be described by its monetary outcome. Since the outcome is typically
uncertain, it will be modeled as a real-valued measurable function X on some measurable space
(Ω,F) of possible scenarios. The value X(ω) denotes the discounted net worth of the position at
the end of a given trading period if the scenario ω ∈ Ω is realized. The discounted net worth
corresponds to the profits and losses of the position and is also called the P&L. Our aim is to
quantify the downside risk of the position X as the additional capital ρ(X) that is required to make
the position acceptable from the point of view of a supervising agency.
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2.1 Monetary risk measures

We fix a linear space X of financial positions and a subset A ⊆ X of positions which are defined to
be acceptable. Our focus will be on the downside risk, and thus we require that Y ∈ A whenever
Y ≥ X for some X ∈ A. We also assume that X contains the constants, and that a constant
position is acceptable if and only if the constant is not smaller than some finite threshold. Then
the functional ρ on X defined by

ρ(X) := inf{m ∈ R|X +m ∈ A} (1)

has the following properties of a monetary risk measure.

Definition 2.1. A functional ρ : X → (−∞,∞] with ρ(0) < ∞ is called a monetary risk measure
if it is

(i) monotone, i. e., ρ(X) ≤ ρ(Y ) if X ≥ Y ,

and

(ii) cash-invariant, i. e., ρ(X +m) = ρ(X)−m for any constant m ∈ R.

A monetary risk measure will be called normalized if ρ(0) = 0.

Any monetary risk measure ρ can be represented in the form (1), using the acceptance set

Aρ := {X ∈ X |ρ(X) ≤ 0}. (2)

It can thus be viewed as a capital requirement : ρ(X) is the minimal capital that has to be added
to the position X to make it acceptable. If ρ is defined by some acceptance set A via (1) then we
have A ⊆ Aρ, and equality holds if and only if A has the following closure property;

X +m ∈ A for all m > 0 =⇒ X ∈ A. (3)

Remark 2.2. We have assumed that all financial positions are already discounted by the risk-free
interest rate r. If the risk of the undiscounted position X̃ := (1 + r)X is defined as ρ̃(X̃) := ρ(X),
then the resulting functional ρ̃ is still monotone. However, cash-invariance now takes the form

ρ̃(X̃ + (1 + r)m) = ρ̃(X̃)−m,

that is, adding m units of money to the portfolio at time 0 and investing it in a risk-free asset
reduces the capital requirement by m.

Remark 2.3. We could relax the restriction that the supporting capital can only be invested in
a risk-free asset. Suppose that we allow investment in some larger class V ⊆ X of “admissible”
assets that contains the constant 0. This means that the initial acceptance set A is enlarged to the
set AV of all positions X such that X + V ≥ A for some V ∈ V and some A ∈ A; cf. Föllmer &
Schied (2002), Föllmer & Schied (2011), Section 4.8, and Artzner, Delbaen & Koch-Medina (2009).
Clearly, this enlargement will reduce the capital requirement, that is, the resulting risk measure ρV
will satisfy ρV(X) ≤ ρ(X) for any position X.

2.2 Convex and coherent risk measures

In order to capture the idea that diversification should not increase the risk, it is natural to require
quasi-convexity of the functional ρ, i. e.,

ρ(λX + (1− λ)Y ) ≤ max{ρ(X), ρ(Y )} (4)

for X,Y ∈ X and λ ∈ (0, 1). In that case, the acceptance set Aρ is convex, and this implies that ρ
is in fact a convex functional on X ; see, e. g., Föllmer & Schied (2011), Proposition 4.6.
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Definition 2.4. A monetary risk measure is called a convex risk measure if it satisfies the condition
(4) of quasi-convexity and is hence convex, i .e.,

ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y )

for X,Y ∈ X and λ ∈ (0, 1). A convex risk measure is called coherent if it is also positively
homogeneous, i. e.,

ρ(λX) = λρ(X)

for X ∈ X and λ ≥ 0.

Remark 2.5. In their seminal paper, Artzner et al. (1999) focussed on the coherent case. The
subsequent extension to the convex case was proposed independently by Frittelli & Rosazza Gianin
(2002), Heath (2000), and Föllmer & Schied (2002).

Any coherent risk measure ρ is normalized and subadditive, i. e.,

ρ(X + Y ) ≤ ρ(X) + ρ(Y )

for X,Y ∈ X . More generally: If ρ is a monetary risk measure, then any two of the three properties
of convexity, positive homogeneity, and subadditivity imply the remaining third; cf., e. g., Föllmer
& Schied (2011), Exercise 4.1.3.

Note, however, that coherence of a monetary risk measure ρ is equivalent to the condition that
the acceptance set Aρ is not only convex but also a cone. In this case, an acceptable position X
remains acceptable if it is multiplied by an arbitrarily large factor λ > 0. Obviously, this property
of a coherent risk measure is questionable from a financial point of view.

In the sequel, our main focus will be on the general convex case. In addition to the preceding
argument, this is motivated by the following remark.

Remark 2.6. Consider the situation of Remark 2.3. Suppose that the initial risk measure ρ is
coherent. If the admissible assets are subject to convex trading constraints such that the class V
is convex but not a cone, then the resulting risk measure ρV will no longer be coherent, but it will
be convex. This was one of the reasons in Föllmer & Schied (2002) to go beyond coherence and
to introduce the general notion of a convex risk measure. A similar argument applies to liquidity-
adjusted valuation and risk measures, see Remark 3.11 in Weber, Anderson, Hamm, Knispel, Liese
& Salfeld (2013).

Another reason is that we may want to define acceptability in terms of economic preferences, for
example in terms of expected utility. Suppose that a position is defined to be acceptable if its expected
utility does not fall below some given threshold. If the utility function is strictly concave, then the
corresponding risk measure will be convex but not coherent. Such utility-based risk measures will be
discussed in Section 4.2 below.

2.3 Value at Risk

The most commonly used risk measure in practice is Value at Risk at some level λ ∈ (0, 1). Its
definition requires a probability measure P on the underlying space of scenarios to which we have
sufficient access through past observations. A position X is now defined to be acceptable if the
probability P [X < 0] of a shortfall does not exceed the level λ. The resulting capital requirement
is given by

VaRλ(X) = inf{m ∈ R |P [X +m < 0] ≤ λ} (5)
=− sup{c ∈ R |P [X < c] ≤ λ} = −q+

X(λ),

where q+
X(λ) is the upper λ-quantile of the random variable X on the probability space (Ω,F , P ).
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Clearly, VaRλ is a monetary risk measure on the space X = L0(Ω,F , P ) of all random variables
on (Ω,F , P ) that are finite P -almost surely. It is also positively homogeneous. If X is Gaussian
with variance σ2

P (X), then we have

VaRλ(X) = EP [−X] + Φ−1(1− λ)σP (X),

where Φ−1 denotes the inverse of the distribution function Φ of the standard normal distribution.
Since σ2

P is a convex functional on L2(Ω,F , P ), VaRλ can be viewed as a convex risk measure on
any Gaussian subspace of L2(Ω,F , P ) if λ ≤ 0.5. This remark extends to elliptical distributions,
see Embrechts, McNeil & Straumann (2002).

However, VaRλ is not convex on the full space L0(Ω,F , P ). Indeed, take two events Ai (i = 1, 2)
such that P [Ai] ≤ λ but P [A1∪A2] > λ. Then the digital positions Xi = −IAi are both acceptable,
but the sum X = X1 +X2 is not. This shows that VaRλ is not subadditive, hence not convex. Note
also that VaRλ does not pay attention to extreme losses that occur with small probability. As a
result, considerable risks can be “hidden” behind the threshold defined by Value at Risk.

These deficiencies were recognized early on, and they have motivated the axiomatic approach to
a general theory of monetary risk measures, which was initiated by Artzner et al. (1999) in the late
nineties, and which is the topic of this survey. Other drawbacks became apparent during the recent
financial crisis; see the analysis of Value at Risk and its procyclical effects in The Turner Review – A
regulatory response to the global banking crisis (2009a). In particular, the Turner Review points to
an excessive reliance on a single probabilistic model P derived from past observations. This point is
adressed in the Revisions to the Basel II market risk framework (2009b) by considering a “Stressed
Value at Risk”, which involves alternative models P̃ derived from observations and simulations of
periods of significant financial stress.

At a more fundamental level, the Turner Review raises the issue of model uncertainty or model
ambiguity, often called Knightian uncertainty. As illustrated by Sections 3.1 and 3.2, and in partic-
ular by the discussion of preferences in the face of risk and uncertainty in Section 6, the theory of
risk measures provides a conceptual framework which does not require an underlying probabilistic
model, and thus allows one to deal with Knightian uncertainty in mathematical terms.

3 Dual representation of convex risk measures

A convex risk measure ρ possesses typically a dual representation of the form

ρ(X) = sup
Q
{EQ[−X]− α(Q)}, (6)

where the supremum is taken over probability measures Q on (Ω,F), and where α is a penalty
function with values in [0,∞] defined by

α(Q) := sup
X∈Aρ

EQ[−X]. (7)

The reason is as follows. The space X will usually be a Banach space, as in the standard settings
discussed below, and the risk measure ρ will have additional regularity properties, including lower
semi-continuity with respect to the weak topology on X . In such a situation, the Fenchel-Moreau
theorem implies that the convex functional ρ admits a dual representation in terms of its Fenchel-
Legendre transform, defined on the dual space X ′ of continuous linear functionals on X . Moreover,
the monetary properties of ρ imply that the relevant linear functionals can be identified as expec-
tations with respect to some probability measure Q, and this yields the specific representation (6).
This argument is exemplified below for some standard choices of the space X ; for a systematic dis-
cussion in a general framework and further references we refer to Frittelli & Rosazza Gianin (2002)
and Biagini & Frittelli (2009).
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Note that it is enough to take the supremum in (6) over the class Qρ := {Q |α(Q) < ∞}. The
probability measures in Qρ can be seen as plausible probabilistic models which are taken more or less
seriously, as specified by the penalty function α. The capital requirement ρ(X) is thus computed as
the worst case of the penalized expected loss EQ[−X] over all plausible models Q ∈ Qρ. Note that
the general definition of a convex risk measure does not a priori involve the choice of a probabilistic
model. But probabilistic models Q come into play via the dual representation (6), playing the role
of stress tests.

In the coherent case the acceptance set Aρ is a convex cone, and this implies α(Q) ∈ {0,∞}. A
coherent risk measure ρ with dual representation (6) thus takes the form

ρ(X) = sup
Q∈Qρ

EQ[−X]

with Qρ = {Q|α(Q) = 0}; cf. Artzner et al. (1999), Delbaen (2000), and Föllmer & Schied (2011),
Corollaries 4.19 and 4.37.

We are now going to illustrate our general setting by some standard choices of the space X . In
the first two cases, no probability measure is given in advance. In the remaining three cases, we
will fix a probability measure P on the space (Ω,F) of possible scenarios. In the third case only
the null-sets of P will matter; in the last two cases P will also determine the required notion of
integrability.

3.1 X = L ∞(Ω,F)

Let us denote by L∞(Ω,F) the Banach space of all bounded measurable functions on (Ω,F), by
M1 the class of all probability measures on (Ω,F), and byM1,f the class of all finitely additive set
functions Q : F → [0, 1] with Q[Ω] = 1.

A convex risk measure ρ on X = L∞(Ω,F) is Lipschitz continuous with respect to the supremum
norm, hence weakly lower-semicontinuous on the Banach space X . Applying the Fenchel-Moreau
theorem, combined with the monetary properties of ρ and the weak compactness ofM1,f , we obtain
the representation

ρ(X) = max
Q∈M1,f

{EQ[−X]− α(Q)}, (8)

where α(Q) is defined as in (7) for any Q ∈M1,f , cf. Föllmer & Schied (2011), Theorem 4.16.
The representation (8) reduces to the dual representation (6) in terms of σ-additive probability

measures, with max instead of sup, if α(Q) = ∞ for any Q ∈ M1,f that is not σ-additive. This
condition is satisfied if and only if ρ is continuous from below in the sense that

Xn ↗ X pointwise on Ω =⇒ ρ(Xn)↘ ρ(X).

Moreover, continuity from below is equivalent to the Lebesgue property, that is,

Xn → X pointwise on Ω =⇒ ρ(X) = lim
n
ρ(Xn) (9)

whenever the sequence (Xn) ⊆ X is uniformly bounded; cf., e. g., Föllmer & Schied (2011), Theorem
4.22 and Exercise 4.2.2.

If the equality on the right hand side of equation (9) is replaced by the inequality ρ(X) ≤
lim infn ρ(Xn), then ρ is said to have the Fatou property, and this is equivalent to continuity from
above. The Fatou property is clearly necessary for a dual representation (6) in terms of probability
measures Q ∈M1, but it is in general not sufficient.

3.2 X = Cb(Ω)

Assume that Ω is a separable metric space and that F is the corresponding σ-field of Borel sets.
Consider a convex risk measure ρ on L∞(Ω,F), assuming that ρ is tight in the sense that there
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exists an increasing sequence of compact sets Kn ⊆ Ω such that

lim
n↑∞

ρ(λ1Kn) = ρ(λ) for any λ ≥ 1.

The restriction of the convex risk measure ρ to the space X = Cb(Ω) of bounded continuous functions
on Ω possesses a robust representation of the form

ρ(X) = max
Q∈M1

{EQ[−X]− α(Q)} for any X ∈ Cb(Ω),

where
α(Q) := inf{α(Q̃)|Q̃ ∈M1,f , EQ̃[·] = EQ[·] on Cb(Ω)}.

Moreover, if Ω is a Polish space, then the level sets {Q ∈M1|α(Q) ≤ c} are relatively compact for
the weak topology onM1; cf. Föllmer & Schied (2011), Propositions 4.27 and 4.30.

For the following cases we fix a probability measure P on (Ω,F) and denote byM1(P ) the class
of all probability measures Q ∈M1 which are absolutely continuous with respect to P .

3.3 X = L∞(Ω,F , P )

Let ρ be a convex risk measure on L∞(Ω,F) that respects the null sets of P , i. e., ρ(X) = ρ(Y )
whenever the equivalence relation X = Y P -a. s. holds. Then ρ can be regarded as a convex
risk measure on the Banach space X = L∞(Ω,F , P ) of equivalence classes. In this case, the dual
representation

ρ(X) = sup
Q∈M1(P )

{EQ[−X]− α(Q)} (10)

holds if and only if ρ is continuous from above, i. e.,

ρ(Xn)↗ ρ(X) whenever Xn ↘ X P -a. s.

or, equivalently, iff ρ has the Fatou property

ρ(X) ≤ lim inf
n↑∞

ρ(Xn)

for any bounded sequence (Xn)n∈N in L∞(Ω,F , P ) which converges P -a. s. to X. Moreover, the
supremum in (10) is attained for each X ∈ L∞(Ω,F , P ) iff ρ is continuous from below; cf. Delbaen
(2002) and Föllmer & Schied (2011), Theorem 4.33 and Corollary 4.35.

3.4 X = Lp(Ω,F , P )

In many applications, it is convenient to deal with unbounded instead of bounded random vari-
ables. This requires an extension of the theory of risk measures to spaces larger than L∞(Ω,F , P ).
Canonical choices are the Banach spaces Lp(Ω,F , P ) with 1 ≤ p < ∞, cf. Scandolo (2003) and
Kaina & Rüschendorf (2009). For a convex risk measure ρ on X = Lp(Ω,F , P ) the Fatou prop-
erty is equivalent to lower-semicontinuity of ρ with respect to the Lp-norm. In this case, the dual
representation takes the form

ρ(X) = sup
Q∈Mq(P )

{EQ[−X]− α(Q)}, X ∈ Lp(Ω,F , P ), (11)

with dual exponent q := p/(p− 1) ∈ (1,∞]; here we use the notation

Mq(P ) := {Q ∈M1(P )|dQdP ∈ L
q(Ω,F , P )}.

Moreover, if the convex risk measure ρ is finite on Lp(Ω,F , P ), then it is even Lipschitz continuous
with respect to the Lp-norm, and the representation (11) holds with max instead of sup. For a
systematic discussion of risk measures on Lp(Ω,F , P ) we refer to Kaina & Rüschendorf (2009).
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3.5 Risk measures on Orlicz hearts

The Lp-spaces discussed in the previous section can be embedded into the general framework of
Orlicz spaces and Orlicz hearts. The study of convex risk measures on such spaces was initiated
by Cheridito & Li (2009). As shown by Krätschmer, Schied & Zähle (2014), this approach is
particularly useful if we want to study statistical properties of risk measures such as robustness. We
will discuss this issue in Section 9.

Let Ψ : [0,∞) → [0,∞] be a Young function, i. e., a left-continuous, non-decreasing convex
function such that limx↓0 Ψ(x) = 0 and limx↑∞Ψ(x) =∞. The Orlicz space

LΨ := LΨ(Ω,F , P ) = {X ∈ L0 : E[Ψ(c|X|)] <∞ for some c > 0}

is a Banach space if endowed with the Luxemburg norm

‖X‖Ψ := inf{a > 0 : E[Ψ(|X|/a)] ≤ 1}.

The Orlicz heart

HΨ := HΨ(Ω,F , P ) = {X ∈ L0 : E[Ψ(c|X|)] <∞ for all c > 0}

is a linear subspace of LΨ that reduces to the trivial space {0} if Ψ attains the value ∞. From now
on we assume that Ψ is a real-valued and hence continuous. In this case, we have

L∞ ⊆ HΨ ⊆ LΨ ⊆ L1,

and the Orlicz heart HΨ is a Banach space, namely the closure of L∞ in LΨ with respect to the
Luxemburg norm ‖ · ‖Ψ.

The equality HΨ = LΨ holds if and only if the Young function Ψ satisfies

Ψ(2x) ≤ CΨ(x) (12)

for some constant C and for large enough x. This condition, often called the “∆2-condition”, will
play a crucial role in our discussion of robustness properties of a risk measure in Section 9. It is
clearly satisfied by the Young functions Ψ(x) = xp/p for p ∈ [1,∞), and so we have HΨ = LΨ = Lp

in the classical situation of Lp-spaces.
In contrast, the exponential Young function Ψ(x) = ex − 1 does not satify the ∆2-condition.

Here the Orlicz heart

HΨ =
{
X ∈ L1 : EP [ec|X|] <∞ for all c > 0

}
(13)

is strictly contained in the Orlicz space

LΨ =
{
X ∈ L1 : EP [ec|X|] <∞ for some c > 0

}
.

The Orlicz heart HΨ defined in (13) is the natural domain of the entropic risk measures discussed
below in Section 4.4 and Section 9: They are finite on the Orlicz heart but not on the Orlicz space.

For a finite Young function Ψ, its conjugate function Ψ∗(y) := supx≥0{xy − Ψ(x)}, y ≥ 0, is
again a Young function, and the conjugate of Ψ∗ is given by Ψ.

We can now state the main representation result for convex risk measures which are finite on
the Orlicz heart HΨ; cf. Cheridito & Li (2009), Theorem 4.3.

Proposition 3.1. Suppose that ρ is a finite convex risk measure on the Orlicz heart HΨ. Then ρ
admits the dual representation

ρ(X) = max
Q∈MΨ∗ (P )

{EQ[−X]− α(Q)}, X ∈ HΨ, (14)

where
MΨ∗(P ) := {Q ∈M1(P ) | dQdP ∈ L

Ψ∗(P )}.

Clearly, this result contains the representation (14) of finite convex risk measures on Lp-spaces
as a special case.
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4 Examples

In this section we fix a probability measure P on (Ω,F), and we assume that the probability space
(Ω,F , P ) is atomless. The following risk measures are all distribution-based in the sense that the
capital requirement ρ(X) only depends on the distribution of X, viewed as a random variable on
(Ω,F , P ). They will first be considered on the space X = L∞(Ω,F , P ), but they will all admit a
canonical extension to the larger space L1(Ω,F , P ); see Theorem 7.3 below.

4.1 Average Value at Risk

We have seen that Value at Risk at some fixed level α is positively homogeneous but not convex,
and thus it is not a coherent risk measure. However, if we take the average

AVaRλ(X) := 1
λ

∫ λ

0
VaRα(X) dα (15)

up to some level λ ∈ (0, 1], then we obtain the basic example of a coherent risk measure, known as
Average Value at Risk, Conditional Value at Risk, Tail Value at Risk, or Expected Shortfall. Since
VaRα is decreasing in α, we have

AVaRλ(X) ≥ VaRλ(X), (16)

that is, AVaRλ prescribes higher capital requirements than VaRλ. In fact, AVaRλ can be charac-
terized as the smallest distribution-based convex risk measure that dominates VaRλ.

For any λ ∈ (0, 1], AVaRλ is a coherent risk measure whose dual representation takes the form

AVaRλ(X) = max
Q∈Qλ

EQ[−X] (17)

with
Qλ := {Q� P | dQdP ≤

1
λ};

cf., e. g., Föllmer & Schied (2011), Theorem 4.52. Average Value at Risk can also be written as

AVaRλ(X) = 1
λEP [(qX(λ)−X)+]− qX(λ) = 1

λ inf
z∈R
{EP [(z −X)+]− λz} (18)

for any λ-quantile qX(λ) of X, cf. Föllmer & Schied (2011), Lemma 4.51.
All these representations yield a natural extension of Average Value at Risk from L∞(Ω,F , P )

to the space L1(Ω,F , P ). If X has a continuous distribution, then we have qX(λ) = VaRλ(X) and
λ = P [X ≤ qX(λ)]. In this case, the first equation in (18) reduces to

AVaRλ(X) = EP [−X| −X > VaRλ(X)], (19)

that is, AVaRλ(X) can be described as the conditional expectation of the loss −X, given that the
loss exceeds the level VaRλ(X).The second representation in (18) is useful in the context of the
computation of efficient risk-return-frontiers, see Uryasev & Rockafellar (2001).

Average Value at Risk plays a prominent role in the Swiss Solvency Test, see e.g. Filipović &
Vogelpoth (2008). From a theoretical point of view, it provides the main building block for general
distribution-based convex risk measures, as will be explained in Section 7.

4.2 Utility-based risk measures

For a given convex and increasing loss function ` : R→ R we define the shortfall risk of a position
X as

R(X) = EP [`(−X)].

The functional R is convex and monotone on X , and it is thus a risk functional in the sense of
Section 5 below. However, R is not cash-invariant, and hence it is not a convex risk measure.
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Remark 4.1. In the special case `(x) = x+ we have `(−X) = X− = −min(X, 0), and so we recover
the classical actuarial definition

R(X) = EP [X−] (20)

of mean risk (“mittleres Risiko”), as it was introduced in 1868 by K. F. W. Hattendorf; cf. Hat-
tendorff (1868). Interpreted as the price of a put option, the same functional is proposed in Jarrow
(2002), where it is called the Put Option Premium.

Let us fix a threshold l0 in the interior of the range of `, and let us define the acceptance set

A := {X ∈ X |R(X) = EP [`(−X)] ≤ l0}.

Then A is convex, and the resulting capital requirement according to (1) is a convex risk measure
that will be denoted by ρ`; it was introduced in Föllmer & Schied (2002). For a given position X,
the amount m = ρ`(X) is a solution to the equation

R(X +m) = EP [`(−X −m)] = l0, (21)

and the solution is unique if ` is strictly increasing. Hence, one can use stochastic root finding
techniques for its numerical computation; see Dunkel & Weber (2010).

Note that the acceptance set can be rewritten as

A = {X ∈ X |EP [u(X)] ≥ u0}

in terms of the utility function u(x) := −`(−x), with u0 = −l0. For this reason, the convex risk
measure ρ` is called a utility-based risk measure, or utility-based shortfall risk.

Proposition 4.2. A utility-based risk measure ρ` admits a dual representation (10) with minimal
penalty function

α(Q) = inf
λ>0

1
λ(l0 + EP [`∗(λdQdP )]), (22)

where `∗ denotes the Fenchel-Legendre transform of `.

For the proof see Föllmer & Schied (2011), Theorem 4.115. In the special case of a power loss
function `(x) = 1

px
p1(0,∞)(x) with p ≥ 1, the penalty function is given by

α(Q) = (p l0)
1
p
∥∥dQ
dP

∥∥
q

in terms of the dual exponent q = p/(p− 1); cf. Föllmer & Schied (2011), Example 4.118.
As we shall see in Section 8 below, utility-based risk measures play a key role as soon as we take

a statistical point of view and require a risk measure to be “elicitable”.

4.3 Divergence risk measures and optimized certainty equivalents

For a lower semicontinuous convex function g : R+ → R ∪ {∞} with g(1) < ∞ and superlinear
growth g(x)/x → ∞ as x ↑ ∞, the corresponding g-divergence of a probability measure Q ∈ M1

with respect to P is defined by
Dg(Q|P ) := EP

[
g
(
dQ
dP

)]
if Q� P and by Dg(Q|P ) =∞ otherwise. By Jensen’s inequality we have Dg(Q|P ) ≥ Dg(P |P ) =
g(1).

If P is viewed as a benchmark model, then one can choose as penalty function a g-divergence
with respect to P . The resulting convex risk measure ρg defined by

ρg(X) = sup
Q∈M1(P )

{EQ[−X]−Dg(Q|P )}

11



is called a divergence risk measure. Denoting by g∗(y) := supx>0{xy − g(x)} the convex conjugate
function of g, the risk measure ρg can also be represented by the variational identity

ρg(X) = inf
y∈R
{EP [g∗(y −X)]− y}; (23)

cf., e. g., Föllmer & Schied (2011), Theorem 4.122.
Divergence risk measures arise naturally in a number of cases:

• For λ ∈ (0, 1] and the function g defined by g(x) = 0 for x ≤ λ−1 and g(x) = ∞ otherwise,
the divergence risk measure ρg coincides with Average Value at Risk at level λ. Here we have
g∗(y) = 1

λy 1(0,∞)(y), and hence the variational identity (23) coincides with formula (18).

• For g(x) = x log x, the g-divergence reduces to the relative entropy H(Q|P ) of Q with respect
to P , and then ρg is also called an entropic risk measure; see Section 4.4.

• Inserting the penalty function (22) into the dual representation (10), the utility-based risk
measure ρ` with loss function ` and threshold l0 can be rewritten as

ρ`(X) = sup
Q∈M1(P )

{EQ[−X]− inf
λ>0
{l0 + EP [`∗(λdQdP )]}}

= sup
λ>0

sup
Q∈M1(P )

{EQ[−X]− EP [gλ(dQdP )]}

in terms of the convex functions gλ(y) := 1
λ(`∗(λy) + l0). It can thus be described as the

supremum of certain divergence risk measures, namely

ρ`(X) = sup
λ>0

ρgλ(X).

• For a utility function u : R→ R ∪ {−∞} with u(0) = 0, Ben-Tal & Teboulle (1987) and Ben-
Tal & Teboulle (2007) introduced the optimized certainty equivalent of a financial position
X ∈ X , defined as

Su(X) := sup
η∈R
{η + EP [u(X − η)]}.

This can be interpreted as the present value of an optimal split of the uncertain future income
X into a certain amount η that is made available right now and an uncertain future amount
X−η. Denote by g(z) := supx∈R{xz−`(x)} the convex conjugate function of the loss function
` associated to u via `(x) = −u(−x). Then the variational identity (23) yields

Su(X) = −ρg(X).

Thus, the optimized certainty equivalent coincides, up to a change of sign, with the divergence
risk measure ρg.

Numerical procedures for the computation of divergence risk measures are discussed in Hamm,
Salfeld & Weber (2013) and Drapeau, Kupper & Papapantoleon (2014).

4.4 Entropic risk measures

For any probability measure Q on (Ω,F), the relative entropy of Q with respect to P is defined as

H(Q|P ) :=

{
EQ

[
log dQ

dP

]
if Q� P ,

+∞ otherwise.

Note that the relative entropy can be interpreted as a g-divergence for the function g(x) = x log x.
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Definition 4.3. For any constant γ > 0, the convex risk measure eγ defined by

eγ(X) := sup
Q∈M1

{EQ[−X]− 1
γH(Q|P )}

is called the entropic risk measure with parameter γ.

Using the well-known variational principle

H(Q|P ) = sup
X∈L∞(Ω,F ,P )

{EQ[−X]− logEP [e−X ]}

for the relative entropy, it follows that eγ takes the explicit form

eγ(X) = 1
γ logEP [e−γX ]; (24)

cf., e. g., Föllmer & Schied (2011), Example 4.34. Clearly, eγ is well-defined as a finite convex risk
measure on the Orlicz heart (13) with respect to the function Ψ(x) = ex − 1. It is easy to see that
eγ(X) is increasing in γ, with limits

e0(X) := lim
γ↓0

eγ(X) = EP [−X] and e∞(X) := lim
γ↑∞

eγ(X) = ess sup(−X). (25)

Thus, the limit e0 is the risk-neutral capital requirement, and the risk measure e∞ is the worst
case risk measure, defined by zero tolerance for losses, that is, by the acceptance set A = {X ∈
X |P [X < 0] = 0}.

In view of (24), the acceptance set (2) of eγ for γ ∈ (0, 1) can be written as

A = {X|EP [`γ(−X)] ≤ 1} = {X|EP [uγ(X)] ≥ 0}

in terms of the loss function `γ(x) = eγx or the utility function uγ(x) = −e−γx. This shows that eγ
is a utility-based risk measure with respect to exponential utility.

Formula (24) also shows that the functional −eγ is a certainty equivalent with respect to the
exponential utility function uγ , that is,

uγ(−eγ(X)) = EP [uγ(X)].

The entropic risk measures can actually be characterized by this property: If ρ is a monetary risk
measure and −ρ is a certainty equivalent with respect to some strictly increasing continuous function
u, then ρ must be a entropic risk measure eγ for some parameter γ ≥ 0, including the linear case
γ = 0. This follows from a classical result of Bruno de Finetti; cf. De Finetti (1931) or, e. g.,
Example 4.13 in Föllmer & Schied (2011).

For any γ ∈ [0,∞], the risk measure eγ is additive on independent positions, i. e.,

eγ(X + Y ) = eγ(X) + eγ(Y ) (26)

if X and Y are independent under P . Clearly, this additivity is preserved for any risk measure of
the form

ρ(X) =

∫
[0,∞]

eγ(X) ν(dγ)

with some probability measure ν on [0,∞]. For an axiomatic characterization of such mixtures we
refer to Goovaerts, Kaas, Laeven & Tang (2004) and Goovaerts & Laeven (2008); cf. also Gerber
& Goovaerts (1981), where an analogous problem is discussed in the context of actuarial premium
principles.
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5 Indices of riskiness

In this survey we focus on convex risk measures and on their interpretation as capital requirements.
Let us now show how they are connected to more general notions of the downside risk which are
obtained by dropping the monetary condition of cash-invariance in Definition 2.1.

Definition 5.1. A functional R : X → (−∞,∞] such that R 6≡ ∞ and limm↓−∞R(m) =∞ will be
called a quasi-convex risk functional if it is monotone as in Definition 2.1 and quasi-convex as in
(4).

Without the condition of cash-invariance we can no longer conclude that the functional R is
convex. However, R can be identified with a family of convex risk measures in the following manner.
For each r > r := inf R the level set

Ar := {X ∈ X |R(X) ≤ r}

is a convex acceptance set, and thus it defines via (1) a convex risk measure ρr given by

ρr(X) = inf{m |X +m ∈ Ar}. (27)

The acceptance sets (Ar) are clearly increasing in r, the risk measures (ρr) are decreasing, and R
can be reconstructed from (Ar) or from (ρr) via

R(X) = inf{r > r |X ∈ Ar} = inf{r > r | ρr(X) ≤ 0}. (28)

Thus any quasi-convex risk functional R corresponds to a family (ρr) of convex risk measures.
Typically, each ρr will admit a dual representation (6) with minimal penalty function α(·, r). In

this case we have ρr(X) ≤ 0 iff EQ[−X] ≤ α(Q, r) for any Q ∈ M. Thus (28) yields the following
representation of the risk functional R:

R(X) = sup
Q∈M1

r(Q,EQ[−X]), (29)

where
s 7→ r(Q, s) := inf{r ∈ R | s ≤ α(Q, r)}

denotes the left inverse of the increasing function α(Q, ·). We refer to Drapeau (2010), Brown,
De Giorgi & Sim (2010), and Drapeau & Kupper (2013) for a systematic discussion and a wide
variety of case studies.

Any convex risk measure is clearly a quasi-convex risk functional in the sense of Definition 5.1.
We have already seen one example of a risk functional that is not a monetary risk measure, namely
the shortfall risk R(X) = EP [`(−X)] discussed in Section 4.2; in this case the functional is actually
convex.

Remark 5.2. More generally, we could replace the expectation EP [·] in the definition of shortfall
risk by ρ(−·), where ρ is a normalized convex risk measure. In terms of the utility function u(x) =
−`(−x), the resulting risk functionals take the form

R(X) = ρ(u(X));

the corresponding utility functionals U = −R will be characterized in Section 6. Let us now apply
this extension to the loss function `(x) = x+ that appears in Hattendorf ’s classical definition (20)
of mean risk; see Remark 4.1. The resulting risk functionals

R(X) = ρ(min(X, 0))

are convex and monotone, they satisfy the condition ρ(−m) = m for m ≥ 0, and they only depend
on the loss min(X, 0). This class of “loss-based risk measures” was proposed and analyzed by Cont,
Deguest & He (2013).
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Let us now introduce a different class of examples that includes the “economic index of riski-
ness” RAS proposed by Aumann & Serrano (2008) and the “operational measure of riskiness” RFH

proposed by Foster & Hart (2009).
We begin by fixing a convex acceptance set A ⊆ X in the general setting of Section 2. We

assume that A has the closure property (3) and contains 0. Instead of asking how much capital is
needed to make a given position X acceptable, we now focus on the maximal acceptable exposure,
defined as

λ(X) := sup{λ ≥ 0|λX ∈ A} ∈ [0,∞].

Definition 5.3. The functional R : X → [0,∞] defined by

R(X) = λ(X)−1

is called the index of riskiness corresponding to the acceptance set A.

Proposition 5.4. The index of riskiness R is a quasi-convex risk functional in the sense of Defi-
nition 5.1, and it is positively homogeneous.

Indeed, the functional R is clearly monotone and positively homogeneous, and it is easy to check
that its level sets {R(·) ≤ r} are convex.

Let us now focus on the case where the acceptance set is defined in terms of shortfall risk, that
is,

A := {X ∈ X |EP [`(−X)] ≤ l0}.

for some convex loss function ` and some threshold l0 as in Section 4.2. In this case, the index of
riskiness R(X) is the inverse of the unique solution λ(X) of

EP [`(−λX)] = l0

or, alternatively, of
EP [u(λX)] = u0,

where u(x) = −`(−x) and u0 = −l0. Clearly, the index R is now distribution-based, that is,
R(X) only depends on the distribution of X, viewed as a random variable on the probability space
(Ω,F , P ). Moreover, it is easy to see that R is monotone with respect to stochastic dominance both
of the first and the second kind, cf. Section 7.3.

Example 5.5. For exponential utility u(x) = 1− ex with threshold u0 = 0, we obtain the economic
index of riskiness RAS(X) proposed by Aumann & Serrano (2008). It is defined by the equation

EP [exp(−(RAS(X))−1X)] = 1,

and its inverse (RAS)−1 can be interpreted as the critical risk aversion level for the position X with
respect to exponential utility.

Example 5.6. For logarithmic utility u(x) = log(1 + x) with threshold u0 = 0, we obtain the
operational index of riskiness RFH introduced by Foster & Hart (2009). It is defined by the equation

EP [log(X +RFH)] = logRFH .

Thus it can be viewed as the critical wealth level for the position X with respect to logarithmic
utility.

For both examples, Hart (2011) has shown that the index of riskiness R can be characterized
as the numerical representation of a suitably defined preference order �U of “uniform dominance”,
that is,

R(X) ≤ R(Y )⇐⇒ X �U Y. (30)
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Take the class U of smooth utility functions u with decreasing absolute risk aversion, increasing
relative risk aversion, and such that a given position X is not accepted at every level of wealth, that
is, E[u(X+w)] ≤ u(w) for some w > 0. In order to characterize the index RAS of Aumann-Serrano,
Hart (2011) defines wealth-uniform dominance X �WU Y by the condition that, for any u ∈ U ,

EP [u(X + w)] ≤ u(w) for all w > 0 =⇒ EP [u(Y + w)] ≤ u(w) for all w > 0

that is, rejection of X at every level of wealth implies rejection of Y at any level of wealth. In order
to characterize RFH , utility-uniform dominance X �UU Y is defined by the condition that, at any
level of wealth w > 0,

EP [u(X + w)] ≤ u(w) for all u ∈ U =⇒ EP [u(Y + w)] ≤ u(w) for all u ∈ U

that is, rejection of X + w by all u ∈ U implies rejection of Y + w by all u ∈ U .
The indices RAS and RFH both satisfy the equivalence (30) with the corresponding choice of

the preference order. Moreover, any positively homogeneous risk functional that represents the
preference order must be a positive multiple of the index; cf. Hart (2011) and Aumann & Serrano
(2008).

6 Convex risk measures and variational preferences

In this section we describe the connection between convex risk measures and the numerical repre-
sentation of preferences in the face of model uncertainty.

Consider a preference order � on the space X = L∞(Ω,F) of financial positions, and suppose
that � admits a numerical representation, that is,

X � Y ⇐⇒ U(X) ≥ U(Y )

where U is some functional on X with values in [−∞,∞). In the paradigm of expected utility, the
functional U takes the form

U(X) = EP [u(X)] =

∫
u(x)µX(dx)

where P is a probability measure on (Ω,F), u is continuous and strictly increasing, and µX de-
notes the distribution of X under P , also called a “lottery”. The classical axioms of rationality
as formulated by von Neumann & Morgenstern (1944) characterize such preferences at the level
of lotteries µX ; a corresponding characterization at the level of positions X was given by Savage
(1954). Moreover, risk aversion of the preference order in the sense that EP [X] � X is characterized
by concavity of the function u.

Lotteries and positions can be seen as special cases of stochastic kernels X̃ from (Ω,F) to R,
often called acts or horse race lotteries; cf., e. g., Kreps (1988). Indeed, a lottery µ corresponds to
the kernel X̃(ω, ·) ≡ µ, a position X to the kernel X̃(ω, ·) = δX(ω). Let us now fix the class X̃ of
all stochastic kernels X̃(ω, dx) for which there exists some constant c such that X̃(ω, [−c, c]) = 1
for all ω ∈ Ω. For preferences � on X̃ , Anscombe & Aumann (1963) have formulated a version
of the rationality axioms which is equivalent to a numerical representation by an expected utility
functional of the form

Ũ(X̃) = EP

[∫
u(x) X̃(·, dx)

]
. (31)

Let now ρ be a convex risk measure on L∞(Ω,F) with dual representation (6), and take some
increasing continuous function u : R→ R. Consider the utility functional Ũ : X̃ → R defined by

Ũ(X̃) := −ρ
(∫

u(x) X̃(·, dx)

)
= inf

Q∈M1

{
EQ

[∫
u(x) X̃(·, dx)

]
+ α(Q)

}
, (32)
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where the linear expectation functional EP in (31) is replaced by the concave functional −ρ. The
“variational" preference order � on X̃ defined by

X̃ � Ỹ :⇐⇒ Ũ(X̃) ≥ Ũ(Ỹ )

satisfies the following properties:

• Monotonicity : The preference order � on X̃ is monotone with respect to the embedding of
the space of standard lotteriesM1,c(R) in X̃ , i. e.,

X̃(ω, ·) �(1) Ỹ (ω, ·) for all ω ∈ Ω =⇒ X̃ � Ỹ ,

where �(1) denotes first order stochastic dominance; cf. Section 7.3.

• Archimedian axiom: For X̃, Ỹ , Z̃ ∈ X̃ with Z̃ � Ỹ � X̃ there exist α, β ∈ (0, 1) such that

αZ̃ + (1− α)X̃ � Ỹ � βZ̃ + (1− β)X̃.

• Weak certainty independence: If for X̃, Ỹ ∈ X̃ and for some ν ∈ M1,c(R) and α ∈ (0, 1] we
have αX̃ + (1− α)ν � αỸ + (1− α)ν, then

αX̃ + (1− α)µ � αỸ + (1− α)µ for all µ ∈M1,c(R).

• Uncertainty aversion: If X̃, Ỹ ∈ X̃ are equivalent under �, then

αX̃ + (1− α)Ỹ � X̃ for all α ∈ [0, 1].

Conversely, Maccheroni et al. (2006) have shown that the preceding four axioms imply that
preferences can be represented by a utility functional Ũ of the form (32), where ρ is a convex risk
measure on L∞(Ω,F); cf. also Föllmer, Schied & Weber (2009) and Föllmer & Schied (2011),
Theorem 2.88. While risk aversion corresponds to concavity of the function u, the convexity of the
risk measure ρ captures a different behavioral feature, namely uncertainty aversion.

To illustrate the axiom of uncertainty aversion, consider two acts X̃ and Ỹ on Ω := {0, 1} such
that X̃(ω) = Ỹ (1 − ω). Under Knightian uncertainty, with no information about probabilities
for the two possible scenarios, it is natural to assume that the two acts X̃ and Ỹ are equivalent
with respect to the given preference order � on X̃ . In the case of uncertainty aversion, a mixture
Z̃ = αX̃ + (1 − α)Ỹ is preferred over both X̃ and Ỹ . To explain why, consider the simple special
case X̃(ω) = δω. Then we have Z̃(1) = αδ1 + (1 − α)δ0 and Z̃(0) = (1 − α)δ1 + αδ0. Thus model
uncertainty is reduced in favor of risk, since the unknown probability of success is now known to
be bounded by α and 1 − α. For α = 1

2 , the resulting lottery Z̃(ω) = 1
2(δ1 + δ0) is completely

independent of the scenario ω, i. e., Knightian uncertainty is completely replaced by the classical
risk of a simple coin toss.

Weak certainty independence can be strengthened to

• Full certainty independence: For all X̃, Ỹ ∈ X̃ , µ ∈M1,c(R), and α ∈ (0, 1] we have

X̃ � Ỹ =⇒ αX̃ + (1− α)µ � αỸ + (1− α)µ.

In this case the risk measure ρ in (32) is actually coherent, and (32) reduces to the utility functional

Ũ(X̃) = inf
Q∈Qρ

EQ[

∫
u(x) X̃(·, dx)];

cf. Gilboa & Schmeidler (1989) and, e. g., Föllmer & Schied (2011), Theorem 2.86. Under the
additional assumptions of law-invariance and comonotonicity, the right-hand side can be described
as a Choquet integral with respect to a concave distortion of an underlying probability measure P ;
cf. Section 7.2 and also Yaari’s “dual theory of choice”, c.f. Yaari (1987).

Thus convex and coherent risk measures play a crucial role in recent advances in the theory of
preferences in the face of risk and uncertainty. For further extensions, where the cash-invariance of
ρ is replaced by a weaker condition of cash-subadditivity, we refer to Cerreia-Vioglio, Maccheroni,
Marinacci & Montrucchio (2011) and Drapeau & Kupper (2013).
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7 Distribution-based Risk Measures

From now on we fix a probability measure P on (Ω,F). As in Section 4 we assume that the
probability space (Ω,F , P ) is atomless. Hence it supports a random variable U with uniform
distribution on (0, 1). Thus, any probability distribution µ on the real line can be represented as
the distribution of a random variable X on (Ω,F , P ); for example, we can take X = q(U), where q
denotes a quantile function of µ.

Definition 7.1. A monetary risk measure ρ on X ⊆ L0(Ω,F , P ) is called law-invariant or distribution-
based if ρ(X) only depends on the distribution of X under P , i. e., if ρ(X) = ρ(Y ) whenever X and
Y have the same distribution under P .

Value at Risk as defined in (5) is clearly distribution-based, and the same is true for the risk mea-
sures Average Value at Risk, utility-based shortfall risk, and the divergence risk measures discussed
in Section 4.

7.1 The Kusuoka representation

As shown by Jouini, Schachermayer & Touzi (2006), law-invariance of a convex risk measure ρ on
X = L∞(Ω,F , P ) implies continuity from above, and therefore ρ admits a dual representation of
the form (10). Moreover, the minimal penalty function α(Q) depends only on the law of the density
dQ
dP under P . It follows that the general dual representation can be restated in the following more
explicit form, often called the Kusuoka representation; cf. Kusuoka (2001) in the coherent case and
Kunze (2003), Dana (2005) and Frittelli & Rosazza Gianin (2005) in the general convex case.

Theorem 7.2. A convex risk measure ρ on X = L∞(Ω,F , P ) is distribution-based if and only if

ρ(X) = sup
µ∈M1((0,1])

(∫
(0,1]

AVaRλ(X)µ(dλ)− β(µ)

)
, (33)

where β denotes the minimal penalty function given by

β(µ) = sup
X∈Aρ

∫
(0,1]

AVaRλ(X)µ(dλ).

The Kusuoka representation shows that Average Value at Risk provides the basic building blocks
for a distribution-based convex risk measure. We refer to Föllmer & Schied (2011), Theorem 4.62,
for the proof, and also to Drapeau, Kupper & Reda (2011) for an extension of the representation
theorem to distribution-based risk functionals in the sense of Definition 5.1.

The Kusuoka representation also implies that a distribution-based convex risk measure ρ admits
a canonical extension to a distribution-based convex risk measure ρ on L1 with values in R∪{+∞}.
It is given by (33), or by the representation (11) with p = 1 and q = ∞. Moreover, the continuity
properties of the extended risk measure ρ can be described precisely in terms of the Orlicz hearts
HΨ ⊆ L1 on which ρ takes finite values. The following theorem summarizes results of Filipovic &
Svindland (2012) and Cheridito & Li (2009).

Theorem 7.3. Let ρ be a distribution-based convex risk measure on L∞(Ω,F , P ). Then there exists
a unique extension of ρ to a distribution-based convex risk measure

ρ : L1(Ω,F , P )→ R ∪ {+∞}

that is lower-semicontinuous with respect to the L1-norm. Moreover, if the extension is finite on
some Orlicz heart HΨ with finite Young function Ψ, then it is continuous on HΨ with respect to the
Luxemburg norm ‖ · ‖Ψ.
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From now on, any distribution-based convex risk measure ρ will be considered as a functional
on X = L1(Ω,F , P ) with values in (−∞,∞], if not stated otherwise.

In the coherent case the acceptance set Aρ is a cone, and hence the penalty function β can only
take the values in 0 or ∞. Thus a coherent risk measure ρ is distribution-based if and only if

ρ(X) = sup
µ∈M

∫
(0,1]

AVaRλ(X)µ(dλ) (34)

for some classM⊆M1((0, 1]), and the maximal representing class is given byM = {µ|β(µ) = 0}.
Note that ρ reduces to the linear case ρ(X) = EP [−X] if and only if the representing set in (34)
reduces toM = {δ1}. In any other case ρ will charge a risk premium on top of the expected loss:

ρ(X) > EP [−X] (35)

for any non-constant position X ∈ L1(Ω,F , P ). In particular, we have EP [X] > 0 whenever
0 6= X ∈ Aρ.

7.2 Choquet integrals and concave distortions

Let us now focus on the special class of distribution-based risk measures which can be represented
as mixtures of Average Value at Risk, i. e.,

ρµ(X) :=

∫
[0,1]

AVaRλ(X)µ(dλ) (36)

for some probability measure µ on the unit interval [0, 1]. Such a risk measure is coherent, and it is
also called a spectral risk measure; cf. Acerbi & Tasche (2002).

Let g denote the increasing and concave function on the unit interval defined by g(0) = 0 and
the right-hand derivative

g′+(t) =

∫
(t,1]

s−1 µ(ds), 0 < t < 1, (37)

and note that g(1) = 1. Using Fubini’s theorem, we can rewrite the mixture (36) in terms of the
function g as

ρµ(X) = ρg(X) := g(0+) ess sup(−X) +

∫ 1

0
VaRλ(X) g′+(λ)dλ. (38)

Alternatively, ρµ = ρg can be written as a Choquet integral ; cf. Föllmer & Schied (2011), Theorem
4.70.

Theorem 7.4. Any spectral risk measure ρµ = ρg can be written as the Choquet integral∫
(−X) dc :=

∫ ∞
0

c[−X > x] dx+

∫ 0

−∞
(c[−X > x]− 1) dx (39)

of the loss −X with respect to the capacity c defined as the concave distortion c = g ◦ P of the
underlying probability measure P . For this reason, ρg is also called a distortion risk measure with
distortion function g.

Conversely, take any concave distortion function g on the unit interval, that is, an increasing
concave function g on [0, 1] with g(0) = 0 and g(1) = 1. Then there is a unique probability measure
µ on [0, 1] such that g is given by (37); cf., e. g., Föllmer & Schied (2011), Lemma 4.69. Thus any
Choquet integral

∫
(−X) dc with respect to a concave distortion c = g ◦P can be represented in the

form (36) as a mixture of Average Value at Risk.
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Example 7.5. Average Value at Risk at level λ ∈ (0, 1) can be viewed as a spectral risk measure
ρµ with µ = δλ. Thus it is a distortion risk measure with distortion function g(x) = (x/λ) ∧ 1.

Example 7.6. For a positive integer n consider the concave distortion function g(x) = 1−(1−x)n.
The corresponding risk measure ρg was proposed in Cherny & Madan (2009) and is sometimes called
MINVAR. For independent copies X1, . . . , Xn of X we get

ρ(X) = EP [max{−X1, . . . ,−Xn}] = −EP [min{X1, . . . , Xn}],

i. e., ρ(X) can be described as the expectation under P of the maximal loss occurring in the portfolio
X1, . . . , Xn. The risk measures MAXVAR, MAXMINVAR and MINMAXVAR are defined in the
same manner by the distortion functions x1/n, (1− (1− x)n)1/n and 1− (1− x1/n)n. We can also
replace the positive integer n by any real parameter β ≥ 1; cf. Cherny & Madan (2009) and Madan
& Cherny (2010).

Any risk measure ρµ of the form (36) is comonotonic, i. e., ρµ satisfies

ρµ(X + Y ) = ρµ(X) + ρµ(Y ) (40)

whenever two positions X and Y are comonotone in the sense that

(X(ω)−X(ω′))(Y (ω)− Y (ω′)) ≥ 0 for all (ω, ω′) ∈ Ω× Ω;

cf., e. g., Föllmer & Schied (2011), Theorem 4.88 combined with Corollary 4.77. Conversely, any
distribution-based and comonotonic convex risk measure can be written as a spectral risk measure
(36) for some probability measure µ on [0, 1]. Equivalently, it can thus be viewed as the Choquet
integral (39) of the loss with respect to some concave distortion c = ψ ◦ P ; cf., e. g., Föllmer &
Schied (2011), Theorem 4.93, or Delbaen (2000) and Delbaen (2002).

Remark 7.7. Consider a general distortion function g on the unit interval, that is, g is increasing
with g(0) = 0 and g(1) = 1. Then the distortion risk measure ρg defined by the Choquet integral
ρg(X) =

∫
(−X)dc in (39) with respect to the capacity c = g ◦ P is still a positively homogeneous

and comonotonic monetary risk measure. However, if g is not concave then ρg is no longer convex,
and hence not coherent. For example, VaRα can be viewed as the distortion risk measure with non-
concave distortion function g(x) = I(α,1](x). For a characterization of this general class of distortion
risk measures see Schmeidler (1986) or Kou & Peng (2014).

7.3 Law-invariance and stochastic dominance

For random variables X and Y in X = L1(Ω,F , P ) with distributions µX and µY , distribution
functions FX and FY , and quantile functions qX and qY , consider the two partial orders

X �(1) Y :⇐⇒ FX(x) ≤ FY (x) for all x ∈ R
⇐⇒ qX(α) ≥ qY (α) for all α ∈ (0, 1)

and

X �(2) Y :⇐⇒
∫ x

−∞
FX(z) dz ≤

∫ x

−∞
FY (z) dz for all x ∈ R

⇐⇒
∫ λ

0
qX(α) dα ≥

∫ λ

0
qY (α) dα for all λ ∈ (0, 1), (41)

often called stochastic dominance of the first and the second kind. Equivalently we can write

X �(i) Y :⇐⇒
∫
u dµX ≥

∫
u dµY for all u ∈ U (i),
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where U (1) (resp. U (2)) denotes the class of all increasing (resp. all increasing and concave) functions
u : R→ R.

Now let ρ be a monetary risk measure ρ on X . Then ρ is distribution-based if and only if it
respects stochastic dominance of the first kind, i. e.,

X �(1) Y =⇒ ρ(X) ≤ ρ(Y ).

Indeed, since (Ω,F , P ) is assumed to be atomless, there exists a random variable U with uniform
distribution on (0, 1), and law-invariance together with monotonicity of the monetary risk measure
ρ implies

ρ(X) = ρ(qX(U)) ≤ ρ(qY (U)) = ρ(Y ), (42)

since qX ≥ qY if X �(1) Y . Conversely, (42) implies ρ(X) = ρ(Y ) whenever X and Y have the same
distribution.

Proposition 7.8. If ρ is distribution-based and convex, then it respects stochastic dominance both
of the first and the second kind, that is,

X �(i) Y =⇒ ρ(X) ≤ ρ(Y ). (43)

for i = 1, 2.

As to stochastic dominance of the second kind, note first that the second part of (41) translates
into the equivalence

X �(2) Y ⇐⇒ AVaRλ(X) ≤ AVaRλ(Y ) for all λ ∈ (0, 1), (44)

since VaRα(X) = −qX(α) for almost all α ∈ (0, 1). The representation (33) of distribution-based
convex risk measures in terms of Average Value at Risk shows that the inequality is preserved for
any convex and distribution-based risk measure ρ. Moreover, we obtain the equivalence

X �(2) Y ⇐⇒ ρ(X) ≤ ρ(Y ) for any ρ ∈ R, (45)

where R can be an arbitrary class of distribution-based convex risk measures that contains AVaRλ

for any λ ∈ (0, 1). For example we could take the class of comonotonic risk measures ρµ in the
preceding subsection; cf., e. g., Dhaene, Kukush & Pupashenko (2006) and Dhaene, Vanduffel,
Goovaerts, Kaas, Tang & Vyncke (2006).

Conversely, convexity of ρ follows from (43) combined with the following property of comonotonic
convexity : For X,Y ∈ X and λ ∈ (0, 1),

ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ) if X and Y are comonotonic; (46)

cf. Song & Yan (2009), Theorem 3.6 and also Proposition 7.10 below. This yields the following
criterion for convexity of a distribution-based monetary risk measure.

Proposition 7.9. A distribution-based monetary risk measure ρ on X = L∞(Ω,F , P ) is convex if
and only if it satisfies both (43) and (46), that is, ρ respects stochastic dominance of the second kind
and has the property of comonotonic convexity.

In the same way, distribution-based coherent risk measures on X can be characterized as posi-
tively homogeneous monetary risk measures on X which respect stochastic dominance of the second
kind and satisfy the following property of comonotonic subadditivity :

ρ(X + Y ) ≤ ρ(X) + ρ(Y ) if X and Y are comonotone; (47)

cf. Song & Yan (2009), Theorem 3.2.
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7.4 Risk measures on lotteries

Let ρ be a distribution-based monetary risk measure on X . We denote by µX the distribution of
X ∈ X under P , and by

M(X ) = {µX |X ∈ X}

the resulting class of probability measures on R. For all our choices of X , the set M(X ) will be
convex, due to our assumption that the underlying probability space is atomless. For X = Lp

with p ∈ (0,∞), M(X ) is the class of all probability measures µ such that
∫
|x|pµ(dx) < ∞; for

p = 0 we get the class M1(R) of all probability measures on R, for p = ∞ the class M1,c of
probability measures on R with compact support. The probability measures inM(X ) will also be
called lotteries.

Since ρ(X) only depends on µX , the risk measure ρ can be identified with the functional R on
M(X ) defined by

R(µX) = ρ(X).

The monetary properties of ρ translate into the following properties of the functional R:

• R is monotone with respect to stochastic dominance of the first kind:

µ �(1) ν =⇒ R(µ) ≥ R(ν). (48)

• R has the translation property

R(Tmµ) = R(µ)−m, (49)

where Tmµ denotes the shifted measure Tmµ(A) := µ(A−m).

In order to characterize convexity of the monetary risk measure ρ on X in terms of the functional
R onM(X ), note first that the lotteries µX can be identified with their upper quantile functions qX ,
defined as right-continuous inverses of their distribution functions. The following criterion translates
the criterion of Song and Yan in Proposition 7.9 into properties of the functional R:

Proposition 7.10. The distribution-based monetary risk measure ρ is convex if and only if the
functional R has the following two properties:
i) R respects second order stochastic dominance, i.e.,

µ �(2) ν =⇒ R(µ) ≥ R(ν).

ii) For two measures µ0 and µ1 in M(X ) with quantile functions q0 and q1 and for any λ ∈ (0, 1),
we have

R(µλ) ≤ λR(µ1) + (1− λ)R(µ0)

where µλ denotes the measure corresponding to the convex combination qλ = λq1 + (1− λ)q0 of the
quantile functions, that is, µλ is the distribution of qλ(U) ∈ X , where U is uniformly distributed on
(0, 1).

To check that properties i) and ii) of the functional R imply convexity of the risk measure ρ,
take Xi ∈ X (i = 0, 1) and λ ∈ (0, 1). Define X̃i := qi(U), where qi is a quantile function for Xi

and U is uniformly distributed on (0, 1), and denote by µλ and µ̃λ the distributions of the convex
combinations Xλ := λX1 + (1− λ)X0 and X̃λ := λX̃1 + (1− λ)X̃0 . Then we have

AV aRα(Xλ) ≤AV aRα(λX1) +AV aRα((1− λ)X0)

=AV aRα(λX̃1) +AV aRα((1− λ)X̃0)

=AV aRα(X̃λ)
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for any α ∈ (0.1); here we have used subadditivity of AVaR in the first step, law-invariance in the
second, and comonotonicity in the third. This implies

µ̃λ �(2) µλ,

due to our characterization (44) of second order stochastic dominance in terms of Average Value at
Risk. Using first property i) and then property ii) of R, we obtain

ρ(Xλ) = R(µλ) ≤ R(µ̃λ)

≤ λR(µ̃1) + (1− λ)R(µ̃0)

= λρ(X1) + (1− λ)ρ(X0),

and thus ρ is indeed a convex risk measure.

7.5 Mixture-Convexity

Let ρ be a distribution-based monetary risk measure on X , and let R denote the corresponding
functional onM(X ) defined by 7.4. In Proposition 7.10 we have characterized convexity of the risk
measure ρ on X in terms of the functional R onM(X ). At the level of distributions, however, we
may also want to consider the following convexity properties which are defined in terms of mixtures
of probability measures.

Definition 7.11. Let us say that the risk measure ρ is mixture-convex, or simply m-convex, if the
functional R is convex onM(X ), that is,

R(αµ+ (1− α)ν) ≤ αR(µ) + (1− α)R(ν)

for all µ, ν ∈ M(X ) and any α ∈ (0, 1). More generally, we say that ρ is m-quasi-convex if R is
quasi-convex on M(X ), that is, R has convex lower level sets {R(·) ≤ r}. In the same way, ρ will
be called m-quasi-concave if R has convex upper level sets {R(·) ≥ r}.

Due to the translation property (49), m-quasi-convexity of ρ is equivalent to the condition that
the acceptance set

AR := {µ ∈M(X ) |R(µ) ≤ 0},

now defined at the level of distributions, is a convex set of probability measures. In other words,
if two lotteries µ and ν are acceptable, then any compound lottery αµ + (1 − α)ν obtained by
randomizing the choice between µ and ν with some probability α ∈ (0, 1) should also be acceptable.
Similarly, ρ is m-quasi-concave if and only if the rejection set AcR is convex; cf. Bellini & Bignozzi
(2014) Lemma 2.2.

Example 7.12. The risk measure AV aRλ is coherent, and in particular convex, at the level of
random variables. However, its acceptance set at the level of distributions is not convex. Thus
AV aRλ is not m-quasi-convex; see Weber (2006).

Now consider any utility-based risk measure ρ` defined as in Subsection 4.2 for some increasing
loss function `, that is,

ρ`(X) = inf{m |EP [`(−X −m)) ≤ l0}. (50)

At the level of distributions, the corresponding acceptance set

{µ ∈M(X ) |
∫
`(−x)µ(dx) ≤ l0} (51)

is clearly convex, and so is its complement. Thus utility-based shortfall risk ρ` is both m-convex
and m-concave. Moreover, convexity of the loss function ` is equivalent to the first kind of convexity
of the risk measure, namely to the convexity of the functional ρ` on X .
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Conversely, as shown by Weber (2006) under some mild regularity conditions, a distribution-
based monetary risk measure ρ must be of the form (50) for some increasing loss function ` as soon
as both the acceptance set AR at the level of distributions and its complement AcR are convex. In
particular, a distribution-based monetary risk measure ρ is utility-based as soon as it is convex and
also both m-quasi-convex and m-quasi-concave.

In order to state this characterization theorem more precisely, we describe the appropriate
topological setting; this will also be needed for our discussion of robustness properties in Section 9.
Recall first that the weak topology onM1(R) is generated by the maps µ→

∫
fdµ for all f ∈ Cb(R),

and that it is metrizable by the Prohorov metric

dProh(µ, ν) = inf{ε > 0 : µ(A) ≤ ν(Aε) + ε for all Borel sets A ⊆ R}, (52)

where Aε := {x ∈ R : infa∈A |x− a| ≤ ε} denotes the ε-hull of A.
To increase sensitivity to the tails, we refine the weak topology as follows. Choose a continuous

“gauge function” ψ : R → [1,∞) . We denote by Cψ the space of all continuous functions on the
real line such that |f | ≤ c|ψ| for some c > 1 , and we define the class of probability measures

Mψ
1 :=

{
µ ∈M1(R) |

∫
ψdµ <∞

}
.

Definition 7.13. The ψ-weak topology is defined as the topology onMψ
1 that is generated by the

maps µ→
∫
fdµ for f ∈ Cψ(R) or, equivalently, by the Prohorov ψ-metric

dψ(µ, ν) := dProh(µ, ν) +
∣∣∫ ψdµ−

∫
ψdν

∣∣. (53)

Example 7.14. For the polynomial gauge function ψp(x) = 1 + |x|p with p ∈ [1,∞), the ψp-weak
topology is also generated by the Wasserstein metric of order p, that is,

dW,p(µ, ν) :=
(∫ 1

0
|Fµ(u)− Fν(u)|pdu

) 1
p ,

where Fµ and Fν denote the distribution functions of µ and ν; see Krätschmer, Schied & Zähle
(2014) and the references therein.

The following theorem and its corollary are due to Weber (2006).

Theorem 7.15. Let ρ be a distribution-based monetary risk measure on X = L∞(Ω,F , P ), and let
AR denote the corresponding acceptance set at the level of distributions. Assume there exists x ∈ R
with δx ∈ AR such that for any y ∈ R with δy ∈ AcR we have

(1− α)δx + αδy ∈ AR

for sufficiently small α > 0. Then the following statements are equivalent:

(i) AR is ψ-weakly closed for some gauge function ψ, and the sets AR and AcR are both convex.

(ii) There exists a left-continuous loss function ` : R → R and some scalar l0 in the interior of
the convex hull of the range of ` such that

AR =
{
µ ∈M1,c |

∫
`(−x)µ(dx) ≤ l0

}
.

The theorem shows that utility-based risk measures play a central role as soon as we insist on
law-invariance and on convexity of both the acceptance set AR and the rejection set AcR. More
precisely:
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Corollary 7.16. Assume that the monetary distribution-based risk measure ρ on X = L∞(Ω,F , P )
satisfies the equivalent conditions of the preceding theorem.

(i) The risk measure ρ is convex if and only if the loss function ` is convex, and in this case ρ is
a utility-based risk measure.

(ii) The risk measure ρ is coherent if and only if `(x) = l0 + αx+ − βx− with α ≥ β > 0.

Definition 7.17. The coherent risk measures in Corollary 7.16 (ii) are also called expectiles; see
Newey & Powell (1987) and Section 8 below.

Remark 7.18. Theorem 7.15 does not require that the risk measure is convex. In particular, it
includes VaRα as a special case, with non-convex loss function `(x) = I(0,∞)(x) and l0 = α. For a
convex risk measure ρ, Delbaen et al. (2014) have shown that only the assumption of convex level
sets {R(·) = r} is needed in order to conclude that ρ is utility-based. However, in this general
situation the loss function may become infinite.

8 Elicitability

Capital regulation requires banks and insurance companies to project their balance sheets into
the future and to compute capital requirements from the distribution of balance sheet items. As
functionals of unknown future distributions, capital requirements prescribed by distribution-based
risk measures are predicted quantities, which are estimated within probabilistic models on the basis
of available data. Backtesting refers to a comparison of these predictions with past experience, with
the aim to validate the models and the forecast procedures that are used.

An approach that is commonly used in practice consists in computing the average score

Ŝ =
1

n

n∑
i=1

S(xi, yi), (54)

given a history of observations yi with unknown distribution µ from some class of distributionsM,
and a history of predictions xi for the relevant statistical functional T (µ). Performance is considered
to be good if the average score Ŝ is small.

As argued by Gneiting (2011), such a performance criterion will be meaningful only if the scoring
function S is consistent with the functional T in the following sense. For large n and for a constant
estimate x, the average score will typically be close to the expectation

∫
S(x, y)µ(dy) if the data

are driven by the distribution µ. Therefore, for any µ ∈ M, the corresponding value T (µ) of the
functional should minimize the expected score

∫
S(·, y)dµ. In this case, the scoring function S is

called consistent for the functional T onM. The functional T is called elicitable on M if it admits
a consistent scoring function; cf. Gneiting (2011). For example, the mean T (µ) =

∫
ydµ(y) is

elicitable with scoring function S(x, y) = (y − x)2.
Since elicitability might be desirable from a statistical point of view, it is important to know

which distribution-based risk measures ρ are elicitable in the sense that the associated functional R
admits a consistent scoring function. Value at Risk at some level α is elicitable. More precisely, the
scoring function S(x, y) = α(y− x)+ + (1− α)(y− x)− is consistent for the α-quantile, viewed as a
multi-valued functional on distributions; cf. Gneiting (2011). In contrast, Average Value at Risk is
not elicitable; see Remark 8.5 below.

For a general convex distribution-based risk measure ρ, the question of elicitability was studied,
e.g., in Gneiting (2011), Ziegel (2014), Embrechts & Hofert (2014), Emmer, Kratz & Tasche (2013),
Kou & Peng (2014), Bellini & Bignozzi (2014) and Bellini, Klar, Müller & Rosazza Gianin (2014).
In this section we describe the main results. The crucial observation is that elicitability of ρ implies
that ρ is both m-convex and m-concave, as defined in Section 7. But in view of Theorem 7.15 and
Corollary 7.16, this means that ρ must be utility-based, and that it will be an expectile if we also
require that ρ is coherent.
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8.1 Elicitable functionals

The following definition of a scoring function and the additional regularity requirements are due to
Bellini & Bignozzi (2014).

Definition 8.1. A function S : R2 → [0,∞) is called a scoring function if it has the following
properties:

(i) S(x, y) = 0 if and only if x = y;

(ii) for any y, x 7→ S(x, y) is increasing for x > y and decreasing for x < y;

(iii) for any y, S(x, y) is continuous in x.

Let us say that a scoring function S is regular if, in addition, it is continuous in y and satisfies,
for all x in some neighborhood of 0, the inequality S(x, y) ≤ ψ(y) with some gauge function ψ.

Now consider a real-valued functional T defined on some convex set of probability measures
M⊆M1.

Definition 8.2. The functional T is called elicitable on M, if there exists a scoring function S
such that

T (µ) = argminx∈R

∫
S(x, y)µ(dy) (55)

for any µ ∈ M, that is, T (µ) is the unique minimizer of the function x 7→
∫
S(x, y)µ(dy). In this

case, we say that T is elicited by the scoring function S, and that S is strictly consistent for T with
respect toM.

In the context of robust statistics, an elicitable functional is also called an M-estimator ; see
Huber (1964) or Huber (1981).

The following observation is due to Osband (1985).

Lemma 8.3. If T is elicitable onM then T has convex level sets, that is,

T (µ) = T (ν) =⇒ T (αµ+ (1− α)ν) = T (µ) = T (ν)

for all µ, ν ∈M and any α ∈ [0, 1].

Together with Theorem 7.15 and Corollary 7.16, this observation provides the key to the char-
acterization of elicitable convex risk measures described below.

8.2 Elicitable Risk Measures

Let ρ be a distribution-based monetary risk measure on L∞, and let R denote the corresponding
functional on M(L∞). Recall from Section 7.4 that the monetary properties of ρ translate into
monotonicity ofR with respect to stochastic dominance of the first kind and the translation property
(49).

Now assume that the functional R is elicitable on M(X); in this case, also the risk measure
ρ will be called elicitable. Combining the monetary properties of R with Osband’s Lemma 8.3,
we easily obtain the following convexity properties of R at the level of distributions; cf. Bellini &
Bignozzi (2014), Lemma 2.2.

Corollary 8.4. If the functional R is elicitable, then it is both m-convex and m-concave, that is,
the acceptance set AR := {µ : Rρ(µ) ≤ 0} and the rejection set AcR = {µ : Rρ(µ) > 0} at the level
of distributions are both convex.

Remark 8.5. The Corollary shows that Average Value at Risk is not elicitable since it is not m-
convex; see Example 7.12. See, however, Acerbi & Szekely (2014) for a discussion of back-testing
in this case.
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Combining Corollory 8.4 with Theorem 7.15 and Corollary 7.16, we see that elicitability of ρ
typically implies that ρ must be utility-based. More precisely, Bellini & Bignozzi (2014) show that
the regularity conditions of Theorem 7.15 are satisfied if ρ is elicited by a scoring function S that
is regular in the sense of Definition 8.1. In this way, they obtain the following classification of
distribution-based convex risk measures that are elicitable, cf. Bellini & Bignozzi (2014), Theorem
4.9.

Theorem 8.6. Let ρ be a distribution-based monetary risk measure on L∞, and assume that ρ is
elicitable with a regular scoring function S.

(i) If ρ is convex, then ρ is utility-based shortfall risk with some convex loss function `.

(ii) If ρ is coherent, then ρ is an expectile with α ≥ 1
2 , as described in Corollary 7.16 (ii).

(iii) If ρ is coherent and comonotonic, then ρ reduces to the linear risk measure ρ(X) = EP [−X].

Conversely, a utility-based risk measure ρ` with convex loss function ` and threshold l0 in the
interior of the range of ` is always elicitable; cf. Bellini & Bignozzi (2014), Theorem 4.6 & Remark
4. Assuming without loss of generality `(0) = 0 = l0, ρ` can be elicited by the regular scoring
function

S(x, y) =

∫ y−x

0
`(u)du. (56)

Remark 8.7. Instead of insisting on convexity, Kou & Peng (2014) focus on the class of distortion
risk measures ρg defined with respect to a general distortion function g, that is, ρg(X) is the Choquet
integral

∫
(−X)dc with respect to the capacity c = g◦P ; see Remark 7.7. They show that, within this

class, the only elicitible risk measures are the non-convex risk measures VaRα with some α ∈ (0, 1]
or the risk-neutral risk measure EP [−X].

Remark 8.8. We refer to Acerbi & Szekely (2014) and Davis (2013) for a discussion of the question
to which extent the concept of elicitability is relevant for backtesting in the financial context.

9 Robustness

For a financial positionX, the capital requirement prescribed by a law-invariant convex risk measure
is obtained by applying the functional R to the distribution µX of X. Typically, this distribution is
estimated from historical data or from Monte Carlo simulation, that is, the empirical distribution
generated by the data is used as a proxy for µX . The capital requirement is then estimated by
applying the functional R to the empirical distribution.

The question is whether this “plug-in” method produces a good approximation of the capital
requirement. To begin with, the risk measurement procedure should be consistent in the usual
statistical sense, that is, the risk estimates should converge to R(µX). Moreover, the procedure
should be robust, that is, the distribution of the risk estimates should not be perturbed too much
by small changes of the underlying probability law that produces the data.

Robustness is usually defined in terms of the weak topology and the corresponding Prohorov
metric, following Hampel (1971). By Hampel’s famous theorem, this classical notion of robustness
can be characterized by continuity properties of the functional R with respect to the weak topology.
However, as first observed by Cont, Deguest & Scandolo (2010) and Kou, Peng & Heyde (2013),
distribution-based convex risk measures such as Average Value of Risk typically are not continuous
in this sense, and so they are not Hampel-robust. This has raised serious questions concerning the
practical relevance of risk measures other than Value at Risk, which clearly satisfies the robustness
requirement.

In their recent extensions of Hampel’s approach, Cont, Deguest & Scandolo (2010) and Krätschmer,
Schied & Zähle (2014) have raised the level at which these issues can be discussed. While Cont,
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Deguest & Scandolo (2010) discuss the robustness of risk measures with respect to restricted classes
of lotteries, Krätschmer et al. (2014) also use a refinement of the weak topology. As a result, ro-
bustness is no longer a question of yes or no. Instead, there are degrees of robustness, depending
on the choice of admissible lotteries and on the choice of the topology.

In the current section we review the results of Krätschmer, Schied & Zähle (2014) on consistency
and robustness, and we illustrate them for different classes of distribution-based risk measures. For
additional results on sensitivity in terms of Hampel’s influence function we refer to Cont, Deguest
& Scandolo (2010).

9.1 Consistency and Continuity

Let ρ be a distribution-based convex risk measure on L1, and let R denote the corresponding
functional on M(L1). If we want to estimate the capital requirement ρ(X) for a position X ∈ L1

from historical data or from Monte Carlo simulation, the question of consistency arises.
Let X1, X2, . . . denote a stationary and ergodic sequence of random variables having the same

law asX. Given the observationsX1(ω), . . . Xn(ω), it is natural to estimate the value ρ(X) = R(µX)
by

ρ̂n(ω) := R(µ̂n(ω)), (57)

where

µ̂n(ω) =
1

n

n∑
i=1

δXi(ω)

denotes the empirical distribution generated by the observations. The ergodic theorem guarantees
that, P -almost surely, the empirical distributions µn converge weakly to the distribution µX of X
as n tends to ∞. Under additional integrability assumptions, the convergence may even hold in a
stronger sense.

The question is whether we have consistency of the risk estimates ρ̂n, that is, whether ρ̂n =
R(µ̂n) converges to the true value ρ(X) = R(µX). Clearly, this will require continuity properties
of the functional R that correspond to the convergence behavior of the empirical distributions. For
example, Value at Risk behaves well with respect to weak convergence, since it is simply a quantile,
up to a change of sign, and so we get consistency in this case. However, general distribution-based
convex risk measures, and in particular their building blocks AVaRλ, are not continuous with respect
to the weak topology. In order to obtain consistency, we will therefore need a refined notion of weak
convergence, both for the convergence of empirical distributions and for the continuity properties
of the risk measure.

To this end, let Ψ : [0,∞) → [0,∞) denote a finite Young function. Recall from Section 3.5
that the corresponding Orlicz space LΨ and the Orlicz heart HΨ satisfy L∞ ⊆ HΨ ⊆ LΨ ⊆ L1. We
denote by

M(HΨ) = {µX |X ∈ HΨ}

the family of distributions generated by the Orlicz heart HΨ. If Ψ satisfies the ∆2-condition (12)
then we have HΨ = LΨ, and M(HΨ) coincides with the class Mψ

1 defined by (51) for the gauge
function ψ(x) = 1+Ψ(|x|). In particular, this holds in the classical case Ψ(x) = xp/p for p ∈ [1,∞),
where HΨ = LΨ = Lp.

Now assume that the risk measure ρ is finite on the Orlicz heart HΨ. Then we know from
Theorem 7.3, that ρ is continuous on HΨ with respect to the Luxemburg norm ‖ · ‖Ψ. This is the
key to the following consistency result; cf. Krätschmer, Schied & Zähle (2014), Theorem 2.6.

Theorem 9.1. Suppose that ρ takes finite values on the Orlicz heart HΨ. Take X ∈ HΨ, and let
X1, X2, . . . be a stationary and ergodic sequence of random variables with the same law as X. Then
(57) defines a strongly consistent estimator for ρ(X), that is,

lim
n→∞

ρ̂n = ρ(X) P − a.s..
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If Ψ satisfies the ∆2-condition then the continuity properties of ρ and R can be described more
precisely as follows; cf. Krätschmer, Schied & Zähle (2014), Theorem 2.10.

Theorem 9.2. Suppose that Ψ satisfies the ∆2-condition (12). Then the following conditions are
equivalent:

(i) ρ is finite on the Orlicz heart HΨ.

(ii) If (Xn) ⊆ L∞ with ‖Xn‖Ψ → 0 as n→∞, then ρ(Xn)→ ρ(0).

(iii) The functional R is finite and continuous with respect to the ψ-weak topology onM(L∞).

(iv) The functional R is finite and continuous with respect to the ψ-weak topology on M1
ψ =

M(HΨ).

Conversely, if every distribution-based convex risk measure ρ that is finite on the Orlicz heart
HΨ satisfies the continuity condition (iii), then Ψ must satisfy the ∆2-condition; cf. Krätschmer,
Schied & Zähle (2014), Theorem 2.8.

Example 9.3. The entropic risk measure eγ discussed in Section 4.4 is finite on the Orlicz heart
HΨ of the Young function Ψ(x) = ex − 1. Clearly, Ψ does not satisfy the ∆2-condition, and in fact
eγ does not satisfy the continuity conditions (iii) and (iv).

9.2 Qualitative Robustness

We now turn to the issue of qualitative robustness, a notion that was introduced by Hampel (1971) in
terms of the weak topology. In this section we describe the refined version of qualitative robustness
that was developed by Krätschmer, Schied & Zähle (2014), extending the analysis of Cont, Deguest
& Scandolo (2010). This refinement turns out to be crucial for a deeper understanding of the
robustness properties of risk measures.

Let ρ be a distribution-based convex risk measure on L1, and let R denote the corresponding
functional onM(L1). For a statistical functional such as R, qualitative robustness means that the
laws of the estimates ρ̂n = R(µ̂n) in (57) do not change too much if there is a sufficiently small
change in the underlying probability law that drives the data. To formulate this idea precisely, we
need two metrics, a metric dA for the underlying probabilistic models and a second metric dB for
the laws of the estimates.

Suppose that the observations in (57) are generated by an i.i.d. sequence of random variables
with a common distribution µ that belongs to some class M ⊆ M1. In this case, we can choose
the classical model of an infinite product space. That is, we take Ω = RN, Xi(ω) = ω(i), F =
σ(X1, X2, . . . ), and the product measure

Pµ := µ⊗N

on (Ω,F). Thus the underlying probabilistic models Pµ are parametrized by the probability mea-
sures µ ∈ M, and hence they can be compared in terms of a metric dA on the set M ⊆M1. For
a given µ, the law of the estimator in (57) is given by the image Pµ ◦ ρ̂−1

n of Pµ under the map
ρ̂n : Ω→M1, and these laws will be compared in terms of a metric dB onM1.

Definition 9.4. Let M ⊆M1 be endowed with a metric dA, and let dB be a metric on M1. The
risk functional R is called robust onM with respect to dA and dB if for any µ ∈M and any ε > 0
there exists δ > 0 and n0 ∈ N such that

µ ∈M, dA(µ, ν) ≤ δ =⇒ dB(Pµ ◦ ρ̂−1
n , Pν ◦ ρ̂−1

n ) ≤ ε for all n ≥ n0. (58)
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In Hampel’s classical formulation of qualitative robustness, the focus is on the weak topology
onM =M1, and he uses the Prohorov metric (52) at both levels, that is, both for the underlying
probability measures µ and for the laws of the estimates; see Hampel (1971). In other words, he
chooses

dA = dB = dProh.

In their extension of Hampel’s formulation, Krätschmer, Schied & Zähle (2014) use a more flexible
approach: They continue to use the Prohorov metric for the laws of the estimates, but at the
underlying level they take a Prohorov ψ-metric of the form (53). In other words, they choose

dA = dψ, dB = dProh. (59)

As a result, the simple dichotomy “robust or not” is replaced by a graded picture with varying
degrees of robustness.

From now on we fix a finite Young function Ψ and use the corresponding gauge function ψ
defined by ψ(x) := 1+Ψ(|x|). Since ψ is unbounded, the uniform continuity required in (58) cannot
be expected without further restrictions on the setM⊆M∞. This is why the following definition
involves subsets N ⊆M that are uniformly ψ-integrating, that is,

lim
c→∞

sup
ν∈V

∫
{ψ≥c}

ψdν = 0.

Definition 9.5. The functional R is called Ψ-robust on a setM⊆M1, if it is robust with respect
to dψ and dProh on every uniformly ψ-integrating subset N ⊆M.

Remark 9.6. Since it is defined in terms of the Prohorov metric, classical Hampel-robustness
requires that only the bulk of the distributions µ and ν must be close in order to get close risk
estimates. In contrast to the Prohorov metric, the ψ-Prohorov metric also controls the distance in
the tails. For Ψ-robustness, the risk estimates are thus required to be close only if both the bulk and
the tails of µ and ν are close.

As shown by Hampel (1971), classical robustness can be characterized by continuity properties
of the functional ρ with respect to the weak topology. The following result generalizes Hampel’s
theorem to Ψ-robustness; cf. Krätschmer, Schied & Zähle (2014), Theorem 2.16.

Theorem 9.7. Suppose that Ψ satisfies the ∆2-condition (12). Then the following conditions are
equivalent:

(i) R is Ψ-robust onM1
ψ =M(HΨ).

(ii) R is Ψ-robust onM(L∞).

(iii) ρ is finite on the Orlicz heart HΨ.

Combined with Theorem 9.2, this yields a characterization of Ψ-robustness in terms of continuity
properties of the functional R with respect to the ψ-weak topology or, equivalently, of the risk
measure ρ with respect to the Luxemburg norm ‖ · ‖Ψ.

9.3 Degrees of Robustness

Let us now focus on the classical case Ψp(x) = xp/p for 1 ≤ p < ∞. The ∆2-condition is clearly
satisfied, and so we can apply the preceding theorem. Thus the functional R is Ψp-robust onM(Lp)
if and only if the risk measure ρ is finite on Lp. Moreover, to verify Ψp-robustness of R onM(Lp)
it is enough to check it on M(L∞). The following index of qualitative robustness was introduced
by Krätschmer, Schied & Zähle (2014).
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Definition 9.8. For a distribution-based convex risk measure ρ on L∞ with associated functional
R, the index of qualitative robustness is defined as

IQR(ρ) =
(

inf
{
p ∈ [1,∞) : R is Ψp−robust on M(L∞)

})−1
. (60)

For a distribution-based convex risk measure ρ the index IQR(ρ) takes values in [0, 1]. In view
of Theorem 9.7, the index can also be written as

IQR(ρ) =
(

inf
{
p ∈ [1,∞) : ρ is finite on Lp

})−1
, (61)

and thus it attains its maximal value 1 if the risk measure ρ is finite on L1.

Remark 9.9. For p ∈ (0, 1), Ψp is no longer a Young function, but the notion of Ψp-robustness is
still well defined in terms of the Prohorov ψp-metric with ψp(x) = 1 + 1

p |x|
p. Thus we could admit

the values p ∈ (0, 1) in our definition (61) of the index IQR(ρ). For a distribution-based convex risk
measure ρ there is no difference, because ρ cannot be Ψp-robust for p < 1, as shown in Krätschmer,
Schied & Zähle (2014), Proposition 2.14. For the non-convex monetary risk measure Value at Risk,
however, the infimum in (61) will become 0, and so we get IQR(VaRα) =∞ for any α ∈ (0, 1).

Let us now illustrate the computation of the index for two special classes of distribution-based
convex risk measures, the distortion risk measures in Section 7.2 and the elicitable risk measures in
Section 8.

9.3.1 Distortion risk measures

Recall from Section 7.2 the distortion risk measure

ρg(X) = g(0+) ess.sup(−X) +

∫ 1

0
VaRλ(X) g′+(λ)dλ (62)

defined in terms of some concave distortion function g on the unit interval.
Let Ψ be a finite Young function with conjugate Young function Ψ∗; see Section 3.5. Then

the risk measure ρg is finite on the Orlicz heart HΨ if and only if the function g′+ belongs to the
Orlicz space LΨ∗ defined with respect to Lebesgue measure on the unit interval. In the context of
Lp-spaces, it follows that the index of qualitative robustness of ρg is given by

IQR(ρg) =
q∗ − 1

q∗
, (63)

where

q∗ = sup
{
q ≥ 1

∣∣ ∫ 1

0
(g′+(t))qdt <∞

}
;

cf. Krätschmer, Schied & Zähle (2014), Proposition 2.22.

Example 9.10. Average Value at Risk at level λ ∈ (0, 1) has index IQR(AV aRλ) = 1, since it is
finite on L1. Note that AV aRλ can be viewed as the distortion risk measure with distortion function
g(x) = (x/λ)∧1; see Example 7.5. Since the right-hand derivative of g is bounded, we have q∗ =∞,
and thus IQR(AV aRλ) = 1 also follows from (63). More generally, a distortion risk measure ρg with
distortion function g(x) = (x/λ)β ∧ 1 for some β ∈ (0, 1] has index IQR(ρg) = β; cf. Krätschmer,
Schied & Zähle (2014), Example 2.23.

Example 9.11. Recall from Example 7.6 the special distortion risk measures proposed by Cherny
& Madan (2009). Here the index of qualitative robustness is easily computed via equation (63):
For β > 1, the risk measure MAXVAR with distortion function 1 − (1 − x)β has index 1, while
MAXVAR, MAXMINVAR and MINMAXVAR with distortion functions x1/β, (1− (1−x)β)1/β and
1− (1− x1/β)β all have index 1/β; see Krätschmer, Schied & Zähle (2014), Example 2.24.
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9.3.2 Elicitable risk measures

As we have seen in Section 8, a distribution-based convex risk measure ρ is utility-based as soon
as it is elicitable; cf. Theorem 8.6 and also Delbaen et al. (2014). In other words, there is some
convex, increasing loss function ` and some threshold l0 in the interior of the range of ` such that

ρ(X) = inf {m ∈ R : E[`(−X −m)] ≤ l0} .

Consider the Young function Ψ(x) = `(x)− `(0) and the gauge function ψ(x) = 1+Ψ(|x|). Suppose
that Ψ is finite and satisfies the ∆2-condition. Then the functional R corresponding to ρ is con-
tinuous with respect to the ψ-weak topology, and it is Ψ-robust; see Example 2.5 in Krätschmer,
Schied & Zähle (2014).

Example 9.12. In the case of a power loss function `(x) = xp1{x≥0} with threshold l0 > 0, the
associated risk measure ρ is finite on Lp, and R is continuous with respect to the ψp-weak topology
and Ψp-robust. Moreover, the index of qualitative robustness is equal to 1/p.

Example 9.13. In the coherent case, elicitability implies that the risk measure ρ is an expectile.
In other words, the loss function is of the form `(x) = l0 + αx+ − βx− with parameters α ≥ β > 0;
see Section 7.5. An expectile is clearly finite on L1, and hence its index of qualitative robustness is
equal to 1, as in the case of Average Value at Risk.

Example 9.14. An entropic risk measure eγ with γ > 0 is utility-based and hence elicitable. But
it does not stay finite on any Lp-space; see Section 4.4. Thus, its index of qualitative robustness is
equal to 0.
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