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Abstract

Valuation of claims for a large trader with liquidity risk is investigated.
For a large trader, liquidity risk is extremely important and permanent price
impact as well as liquidity costs need to be considered. In this paper, we
model the effect of illiquidity via trading speed (rate of change in holdings)
and assume trading action may have permanent impact on the underlying
asset. Utility based pricing is used to price and hedge contingent claim.
This paper shows that the value functions of these problems are the unique
viscosity solutions of a fully nonlinear second-order PDE. An example in
which the optimal solution is obtained explicitly and some numerical results
are presented.

1 Introduction

Liquidity risk is considered as the most important risk in finance industry these
days. Although there seems no unanimous agreement on the definition of liquidity
risk, there has been a growing literature on “illiquidity” which is to model the
effect of illiquidity and to solve important problems within the model. Apparently,
modeling of liquidity risk is challenging but very important.

In the literature on market liquidity for the underlying asset, there are two
approaches for modeling; one is temporary price impact and the other is per-
manent price impact. The first one is the effect of liquidity cost incurred while
changing position as a price-taking trader. Roughly speaking, this arises on short
time scales as the result of trading, and can be thought of as a trader having to
work through the limit order book to acquire his desired change of holding. The
second one is the effect of a large trader on the underlying asset (called feedback
effect), caused by the fact that a large trader has just traded some quantity of
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the asset. By the large trader we mean there is some lasting impact caused by its
trading action.

Models for the effect of liquidity costs without considering permanent price
impact have some similarities to those for transaction costs, in the sense that
illiquidity adds some extra costs to trade. The effect of illiquidity makes trading
more difficult or costly. Many researchers built on the model for market liquidity
risk outlined in Cetin et al. (2004). Essentially the spot price of the underlying
in the model depends on the size of the block being traded through the stochastic
supply curve. For example if one wants to purchase a huge amount of shares
of stock, there may not be enough supply at the market price, so one will end
up paying above the market price for such a big block of shares. In Cetin et
al (2010), authors use strategies with minimal super-replication cost inclusive of
liquidity premium to price contingent claims in continuous time setting. Ku et al.
(2012) derived a partial differential equation which provides discrete time delta
hedging strategies whose expected hedging errors approach zero almost surely as
the length of the revision interval goes to zero. The equation gives the value of
the call from the sellers point of view. In all the literature above, the approach
does not take into account the impact on the evolution of underlying asset from
the actions of a trader and is suitable for models accounted for small traders.

There also has been a growing literature for large traders. Frey and Stremme
(1997) modeled the effect of the dynamic hedging strategies on the equilibrium
price of the underlying asset and used general aggregate demand reaction function
that depends on the traders exogenous stochastic income. Also see for example
Jarrow (1994), Frey (1998), Platen and Schweizer (1998), and Bank and Baum
(2004). These papers assume trading actions have a lasting effect on the stock
price evolution. For the literature on optimal liquidation in which the aim is to
unwind an initial position by some fixed time horizon, we refer to Almgren and
Chriss (2001), Almgren (2003), and Forsyth (2011). These papers try to liquidate
a given initial position optimally by some fixed time. Longstaff (2001) considered
the optimal portfolio choices in an illiquid market where the trading strategies
were assumed to be of bounded variation. The paper of Avellaneda and Lipkin
(2003) discussed stock pinning on option expiration date and the price impact of
delta-hedging.

In this paper, we investigate the option pricing and hedging problem for a large
trader considering both temporary price impact and permanent price impact.
Specifically, we assume illiquidity will pose some kind of nonlinear transaction
cost on trading and a trading action will have a lasting impact on the stock price
evolution. A trader will face costs in trying to trade very rapidly. Thus the
effect of illiquidity costs depends on the rate of change of holding, rather than
the size of change of holding. Rogers and Singh (2010), and Forsyth (2011) also
assume that the effect of illiquidity costs is dependent on the speed of trades. We
assume, moreover, there may be a lasting impact on the underlying asset due to
this rapid trading action. We use the utility based approach to price European
options in a market with liquidity risk. Utility indifference pricing is proven to be
a powerful method to price options in the market with friction, such as a market
with transaction cost in Hodges and Neuberger (1989) and Davis et al. (1993)
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or a market with non-traded assets in Henderson (2002). We apply the utility
indifference approach to price European options in illiquid markets.

We study the utility maximization problems, and derive two Hamilton-Jacobi-
Bellman equations to characterize the value functions for this optimal control
problem. We define the option price to be the difference between the initial wealth
of the two utility maximization problems achieving the same expected utility. We
use viscosity solutions to characterize HJB equations and prove the existence and
uniqueness of solutions of the HJB equations. We provide an example incorpo-
rating liquidity risk and permanent price impact, which gives an explicit solution
for optimal strategy. We give a detailed discussion of this example and numerical
results.

The paper is organized as follows. Section 2 introduces our model and explains
the utility maximization problem. Section 3 is devoted to results on existence and
uniqueness of solutions for the HJB equations that arise from the optimal control
problem. Section 4 provides an example and discusses the numerical results in
detail. Section 5 presents some conclusions of the paper.

2 The Model

We consider a financial market which consists of a risk-free asset and one risky
asset S on a given probability space (Ω,F , P ) with a filtration {Ft : t ≥ 0}.
The price of the risk-free asset (the amount of cash in a bank account) grows at
interest rate r.

We define the set of trading strategies to be the set of all {Ft}-adapted pro-
cesses with left continuous paths that have right limits. We let πt be the number
of shares of asset S held at time t. We shall assume that πt to be a finite-variation
process, where πt =

∫ t
0
vξ dξ and vξ is uniformly bounded by M <∞. The trading

speed can be expressed as

vt =
dπt
dt

We restrict the set of trading strategies available to the trader by the condition
that a trader cannot change his position too fast, i.e., the changes in the number of
shares of asset S held over any time interval never exceed M -multiple of the length
of the time interval. We note that M might be determined by market conditions
such as the daily trading volume of the asset. We also assume that a trading
strategy is allowed if it keeps the wealth (mark-to-market value) bounded below,
which ensures that a trader cannot take advantage of certain pathological varieties
of arbitrage such as doubling strategies. We denote by Γ = {vt : 0 ≤ t ≤ T} the
set of admissible trading strategies available to the trader.

2.1 The permanent price impact

In this paper, we consider the pricing problem in illiquid markets for a large
trader whose trading action will have a lasting impact on the underlying price
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evolution. The price of the risky asset St follows an {Ft}-adapted geometric
Brownian motion, except the effect of the price impact. The lasting price impact
is modeled by imposing a function of the trading speed into the drift term of the
risky asset price as follows:

dSt = (µ+ g(vt))Stdt+ σStdWt, t ∈ [0, T ] (1)

where g(·) represents the effect of the price impact (possibly identifying as zero,
if one wishes). This function is assumed to be smooth and g(0) = 0.

2.2 The effect of Liquidity costs

In illiquid markets, the market provides different prices for buying and selling
stock, depending on how many shares she wants to trade, or how rapidly she
wants to change the position. Let S(t, vt, ω) be the stock price per share at
time t ∈ [0, T ] that a trader pays/receives for a trading speed vt ∈ R. The actual
execution price of the stock to be paid/received is different from the price initially
quoted. In practice, if a trader wants to change in her holding with speed vt the
actual traded price S(t, vt, ω) will not be equal to the market price St due to the
effect of illiquidity. More specifically, when vt > 0, the stock is purchased and
the buying price will be greater than St. When vt < 0, the stock is sold and the
selling price will be less than St. We assume the (stochastic) traded price of stock
is given by

S(t, vt, ω) = f(vt)St, −M ≤ vt ≤M (2)

where f(·) is a smooth, positive and nondecreasing function with f(0) = 1. We
assume S(t, vt, ω) increases as vt increases, which is consistent with the intuition.
The faster the buying speed, the higher the average paid price per share. The
quicker the selling speed, the lower the average received price per share of stock.

2.3 Utility indifference pricing for European options

The idea of utility maximization approach to pricing a European option is as
follows. The utility indifference price for a contingent claim C is the price at
which a trader is indifferent (in the sense that her expected utility under optimal
trading is unchanged) between receiving p now to pay a claim CT at time T and
receiving nothing and having no obligation.

Assume the trader has initially B0 units of risk-free asset (amount in a bank
account). If the trader writes n units of a European option for price p, she will
receives n multiple of p at time 0 for writing the option, and she needs to buy or
sell stock to maximize expected utility of wealth she will obtain after fulfilling the
obligation for the option CT at maturity T . The trader will try to maximize her
expected utility of the wealth at maturity T even If she does not take the short
position for the option.

Let U(·) be a utility function. Utility functions are assumed to be concave,
strictly increasing and twice continuously-differentiable functions. We also assume
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that U(·) satisfies the linear growth condition, i.e., U(x) ≤ K(1 + |x|) for some
constant K.

First, we consider the expected utility maximization for final wealth with the
option obligation. Assume that at time t, the stock price is St and the trader holds
Bt units in the bank account and πt shares of stock. The large trader controls the
trading speed vt to adjust her stock position, so vt is the control variable. Let K
be the compact subset of R corresponding to the set Γ of admissible strategies at
time t.

We define

Jw(t, π, S,B, v) = E

{
U (πTST +BT − nCT )

∣∣∣ πt = π, St = S,Bt = B

}
where CT is the payoff of the European option at maturity T and n is the number
of the options sold. The value function of the trader with the option obligation
is given by

V w(t, π, S,B) = max
v∈Γ

Jw(t, π, S,B, v)

Next we consider the expected utility maximization of final wealth without
option obligation. Define

J(t, π, S,B, v) = E

{
U (πTST +BT )

∣∣∣ πt = π, St = S,Bt = B

}
The value function of the trader without having option obligation is given by

V (t, π, S,B) = max
v∈Γ

J(t, π, S,B, v)

Let the initial stock price at time 0 is S0. Then the utility indifference price for
the option at time t = 0 is the real number p satisfying the following equation

V w(0, π0, S0, B0 + np) = V (0, π0, S0, B0)

Clearly, the utility indifference price p depends on her prior exposure (π0, S0, B0)
and utility function U(·).
From (1) and (2), we have the following dynamics of state variables

dπt = vtdt

dSt = (µ+ g(vt))Stdt+ σStdWt

dBt = rBtdt− f(vt)Stvtdt

From the definitions of value functions and the dynamics of state variables, it
is evident that the dynamic programming principle yields the same HJB equation
for these two value functions. The only difference between the two value functions
is that they have different terminal conditions. By a familiar argument, the value
function V w(t, π, S,B) and V (t, π, S,B) are expected to satisfy the following HJB
equation:
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0 = max
v∈K

{
∂W

∂t
+ v

∂W

∂π
+ (µ+ g(v))S

∂W

∂S
− f(v)Sv

∂W

∂B
+ rB

∂W

∂B
+
σ2S2

2

∂2W

∂S2

}
which can be rewritten as

0 = max
v∈K

{
v
∂W

∂π
− f(v)Sv

∂W

∂B
+ (µ+ g(v))S

∂W

∂S

}
+
∂W

∂t
+ rB

∂W

∂B
+
σ2S2

2

∂2W

∂S2

with the terminal conditionW (T, π, S,B) = U (πS +B − nCT ) for V w(t, π, S,B),
and W (T, π, S,B) = U (πS +B) for V (t, π, S,B).

3 Existence and uniqueness of the solutions of
HJB equation

In section 3, we obtain the existence and uniqueness of the solutions for HJB equa-
tion that arises from the optimal control problem in Section 2. This result implies
that the value functions of our stochastic control problem is a unique viscosity
solution of a nonlinear second-order PDE. The notion of viscosity solutions was
introduced by Crandall and Lions. For a general view of the theory, we refer to
the user’s guide by Crandall et al. (1992). We consider a nonlinear second-order
PDE of the form

−∂W (t, x)

∂t
+H(x,DxW (t, x), D2

xW (t, x)) = 0

where(t, x) ∈ [0, T ] × D and H(x, p,M) is continuous mapping from D × RN ×
SN → R, where SN denotes the set of symmetric N ×N matrices.

For the PDE in this paper, H(x, p,M) has the following specific form:

H(x, p,M) = −max
v∈K

{
[v, (µ+ g(v))x2,−vf(v)x2 − rx3] · [p1, p2, p3]T

}
− σ2

2
(0, x2, 0)M(0, x2, 0)T

where x = (x1, x2, x3) ∈ D, p = (p1, p2, p3) ∈ R3, and M ∈ S3. D denotes a
subset of R3 such that x2 > 0 and x1x2 + x3 > −K for some constant K.

Theorem 3.1. The value function V w(t, π, S,B) is a viscosity solution of

−∂W
∂t
−max

v∈K

{
v
∂W

∂π
− f(v)Sv

∂W

∂B
− rB∂W

∂B
+ (µ+ g(v))S

∂W

∂S

}
− σ2S2

2

∂2W

∂S2
= 0

(3)

on [0 T ]×D.
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Proof. (i) Let the state x = (π, S,B) and we first prove that V w(t, x) is a viscosity
subsolution of (3) on [0, T ] × D. For this, we need to show that for all smooth
function φ(t, x), such that V w(t, x) − φ(t, x) has a local maximum at (t0, x0) ∈
[0, T ]×D, the following inequality holds:

−∂φ(t0, x0)

∂t
−max

v∈K

{
v
∂φ(t0, x0)

∂π
− (f(v)St0v + rBt0)

∂φ(t0, x0)

∂B

+ (µ+ g(v))St0
∂φ(t0, x0)

∂S

}
−
σ2S2

t0

2

∂2φ(t0, x0)

∂S2
≤ 0

Without loss of generality, we assume that V w(t0, x0) = φ(t0, x0), and V w ≤ φ
on [0, T ]×D. Suppose that, on the contrary, there exist function φ and control
variable v0 ∈ Γ where Γ is the set of all admissible controls, satisfying the property
that there exists an open set O(t0, x0) containing (t0, x0) such that φ(t0, x0) =
V w(t0, x0) and φ(t, x) ≥ V w(t, x) for all (t, x) ∈ O(t0, x0). Then there exists θ > 0
such that

−∂φ(t, x)

∂t
−max

v∈K

{
v
∂φ(t, x)

∂π
− (f(v)Sv + rB)

∂φ(t, x)

∂B

+ (µ+ g(v))S
∂φ(t, x)

∂S

}
− σ2S2

2

∂2φ(t, x)

∂S2
> θ

for all (t, x) ∈ O(t0, x0). Let τ be the stopping time

τ = inf
{
t ∈ [t0, T ], (t, x) 6∈ O(t0, x0)

}
.

Then, for t0 ≤ t ≤ τ and fixed v ∈ Γ, we have

J(t0, πt0 , St0 , Bt0 , v) ≤ Et0
[
V w(τ, Sτ , πτ , Bτ )

]
≤ Et0

[
φ(tτ , Sτ , πτ , Bτ )

]
By Dynkin’s formula, we have

E
[
φ(tτ , πτ , Sτ , Bτ )

]
= φ(t0, πt0 , St0 , Bt0) + Et0

[ ∫ τ

t0

∂φ(t, x)

∂t
+ v

∂φ(t, x)

∂π

−(f(v)Sv+rB)
∂φ(t, x)

∂B
+ (µ+ g(v))S

∂φ(t, x)

∂S
− σ2S2

2

∂2φ(t, x)

∂S2
dt

]
≤ φ(t0, πt0 , St0 , Bt0)− Et0

[ ∫ τ

t0

θdt
]

Taking the supremum over all admissible control v ∈ Γ, we have

φ(t0, πt0 , St0 , Bt0) = V w(t0, πt0 , St0 , Bt0) = max
v∈Γ

J(t0, πt0 , St0 , Bt0 , v)

≤ φ(t0, πt0 , St0 , Bt0)− Et0
[ ∫ τ

t0

θdt
]

This contradicts the fact that θ > 0. Therefore V w(t, π, S,B) is a viscosity sub-
solution.
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(ii) Next, we prove V w(t, x) is a viscosity supersolution of (3) on [0 T ] × D.
Given (t0, πt0 , St0 , Bt0) ∈ [0, T ] × D, let φ(t, x) ∈ C1,2([0, T ] × D) such that
V w(t, x) − φ(t, x) has a local minimum in O(t0, x0). Without loss of generality,
we assume that V w(t0, x0) = φ(t0, x0) and V w(t, x) ≥ φ(t, x) on O(t0, x0). Let τ
be the stopping time

τ = inf
{
t ∈ [t0, T ], (t, x) 6∈ O(t0, x0)

}
Given t0 < t1 < τ , consider the control variable vt = v ∈ Γ where v is a constant
for t ∈ [t0, t1]. From the dynamic programming principle, we have

V w(t0, πt0 , St0 , Bt0) ≥ Et0
[
V w(t1, πt1 , St1 , Bt1)

]
Also, we know

V w(t1, πt1 , St1 , Bt1) ≥ φ(t1, πt1 , St1 , Bt1)

By Dynkin’s formula

E
[
φ(t1, πt1 , St1 , Bt1)

]
= φ(t0, πt0 , St0 , Bt0) + Et0

[ ∫ t1

t0

∂φ(t, x)

∂t
+ v

∂φ(t, x)

∂π

− (f(v)Sv + rB)
∂φ(t, x)

∂B
+ (µ+ g(v))S

∂φ(t, x)

∂S
+
σ2S2

2

∂2φ(t, x)

∂S2
dt

]
.

From the fact that

V w(t0, πt0 , St0 , Bt0) ≥ Et0
[
V w(t1, πt1 , St1 , Bt1)

]
≥ Et0

[
φ(t1, πt1 , St1 , Bt1)

]
and V w(t0, πt0 , St0 , Bt0) = φ(t0, πt0 , St0 , Bt0),

Et0

[ ∫ t1

t0

∂φ(t, x)

∂t
+ v

∂φ(t, x)

∂π
− (f(v)Sv + rB)

∂φ(t, x)

∂B
+ (µ+ g(v))S

∂φ(t, x)

∂S
+
σ2S2

2

∂2φ(t, x)

∂S2
dt

]
≤ 0

Letting t1 → t0, we have

∂φ(t0, x0)

∂t
+v

∂φ(t0, x0)

∂π
−(f(v)Sv+rB0)

∂φ(t0, x0)

∂B
+(µ+g(v))S

∂φ(t0, x0)

∂S
+
σ2S2

2

∂2φ(t0, x0)

∂S2
≤ 0

Taking the supremum over v ∈ K, we can conclude

−∂φ(t0, x0)

∂t
−max

v∈K

{
v
∂φ(t0, x0)

∂π
− (f(v)Sv + rB0)

∂φ(t0, x0)

∂B

+ (µ+ g(v))S
∂φ(t0, x0)

∂S

}
− σ2S2

2

∂2φ(t0, x0)

∂S2
≥ 0

Thus, V w(t, π, S,B) is a viscosity supersolution of (3).
From (i) and (ii), V w(t, π, S,B) is both a viscosity supersolution and subsolu-

tion of (3), and hence the proof is completed.
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We showed that V w(t, π, S,B) is a viscosity solution of

0 = max
v∈K

{
v
∂W

∂π
− f(v)Sv

∂W

∂B
+ (µ+ g(v))S

∂W

∂S

}
+
∂W

∂t
+ rB

∂W

∂B
+
σ2S2

2

∂2W

∂S2

on [0 T ]×D with the terminal condition

W (T, π, S,B) = U (πS +B − nCT ) ,

and also V (t, π, S,B) is a viscosity solution of

0 = max
v∈K

{
v
∂W

∂π
− f(v)Sv

∂W

∂B
+ (µ+ g(v))S

∂W

∂S

}
+
∂W

∂t
+ rB

∂W

∂B
+
σ2S2

2

∂2W

∂S2

on [0 T ]×D with the terminal condition

W (T, π, S,B) = U (πS +B) .

In the following we show the value function is the unique viscosity solution of
(3). For this, we use the following theorem by Crandall et al. (1992). For the
completeness of the paper, we restate it in here.

Theorem 3.2. (Crandall, Lions and Ishii) For i = 1, 2, let Di be locally
compact subsets of RN , and D = D1 × D2, let ui be upper semicontinuous in
[0, T ]×Di, and J2,+

[0,T ]×Diui(t, x) the parabolic superjet of ui(t, x), and φ be twice

continuously differentiable in a neighborhood of [0, T ]×D.
Set

ω(t, x1, x2) = u1(t, x1) + u2(t, x2)− φ(t, x1, x2)

for (t, x1, x2) ∈ [0, T ]×D, and suppose (t̂, x̂1, x̂2) is a local maximum of ω relative
to [0, T ]×D. Moreover, assume that there is an r > 0 such that for every M > 0
there exists a C such that for i = 1, 2

bi ≤ C whenever (bi, qi, Xi) ∈ J2,+
[0,T ]×Diui(t, x)

|xi − x̂i|+ |t− t̂| ≤ r and |ui(t, xi)|+ |qi|+ ‖Xi‖ ≤M

Then for each ε > 0 there exists Xi ∈ S(N) such that
(i)

(bi, Dxiφ(t̂, x̂), Xi) ∈ J̄2,+
[0,T ]×Diui(t̂, x̂) for i = 1, 2

(ii)

−(
1

ε
+ ‖D2φ(x̂)‖)I ≤

(
X1 0
0 X2

)
≤ D2φ(x̂) + ε(D2φ(x̂))2

(iii)

b1 + b2 =
∂φ(t̂, x̂1, x̂2)

∂t

where for a symmetric matrix A, ‖A‖ := sup{ξTAξ : |ξ| ≤ 1}.
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Now we present the following comparison principle in our case.

Theorem 3.3. Let V1(t, x) be a upper semicontinuous viscosity subsolution of
(3), and let V2(t, x) be a lower semicontinuous viscosity supersolution of (3).
Assume V1 and V2 satisfy the linear growth condition, i.e., Vi(t, x) ≤ K(1 +
|x|), i = 1, 2, for some constant K. If V1(t, x) ≤ V2(t, x) on ∂([0, T ] × D), then
V1(t, x) ≤ V2(t, x) for all (t, x) ∈ [0, T ]×D.

Proof. Step 1: We can rewrite the equation in the following form:

−∂W (t, x)

∂t
+H(x,DxW (t, x), D2

xW (t, x)) = 0 (4)

where

H(x, p,M) = −max
v∈K

{
[v, (µ+ g(v))x2,−vf(v)x2 − rx3] · [p1, p2, p3]T

}
− σ2

2
(0, x2, 0)M(0, x2, 0)T

Denote

Ĥ(x, p) = −max
v∈K

{
[v, (µ+ g(v))x2, ] · [p1, p2, p3]T

}
Let V1(t, x) be a viscosity subsolution of (4). For ρ > 0, define

V ρ1 (t, x) = V1(t, x)− ρ

t+ T
, (t, x) ∈ [0, T ]×D

Then we have
d

dt
(− ρ

t+ T
) =

ρ

(t+ T )2
> 0

So we can claim V ρ1 (t, x) is a viscosity subsolution of (4). In fact,

−∂V
ρ
1 (t, x)

∂t
+H(x,DxV

ρ
1 (t, x), D2

xV
ρ
1 (t, x)) ≤ − ρ

(t+ T )2
≤ − ρ

4T 2
(5)

Step 2: For any 0 < δ < 1 and 0 < γ < 1, define

Φ(t, x, y) = V ρ1 (t, x)− V2(t, y)− 1

δ
|x− y|2 − γeT−t(x2 + y2)

and

φ(t, x, y) =
1

δ
|x− y|2 + γeT−t(x2 + y2)

Since V1(t, x) and V2(t, x) satisfy the linear growth condition, we have

lim
|x|+|y|→∞

Φ(t, x, y) = −∞
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and Φ(t, x, y) is continuous in (t, x, y). Therefore, Φ(t, x, y) has a global maximum
at a point (tδ, xδ, yδ). Note that

Φ(tδ, xδ, yδ) = V ρ1 (tδ, xδ)− V2(tδ, yδ)−
1

δ
|xδ − yδ|2 − γeT−tδ(x2

δ + y2
δ ).

In particular,
Φ(tδ, xδ, xδ) + Φ(tδ, yδ, yδ) ≤ 2Φ(tδ, xδ, yδ)

which means

V ρ1 (tδ, xδ)− V2(tδ, xδ)− γeT−tδ(x2
δ + x2

δ)

+V ρ1 (tδ, yδ)− V2(tδ, yδ)− γeT−tδ(y2
δ + y2

δ )

≤2V ρ1 (tδ, xδ)− 2V2(tδ, yδ)−
2

δ
|xδ − yδ|2 − 2γeT−tδ(x2

δ + y2
δ ).

Thus we have

2

δ
|xδ − yδ|2 ≤ [V ρ1 (tδ, xδ)− V ρ1 (tδ, yδ)] + [V2(tδ, yδ)− V2(tδ, yδ)] (6)

By the linear growth condition, there exist K1, K2 such that V ρ1 (t, x) ≤ K1(1+|x|)
and V2(t, x) ≤ K2(1 + |x|). So, exists C such that

2

δ
|xδ − yδ|2 ≤ C(1 + |xδ|+ |yδ|) (7)

We know Φ(tδ, 0, 0) ≤ Φ(tδ, xδ, yδ), which implies

Φ(tδ, 0, 0) ≤ V ρ1 (tδ, xδ)− V2(tδ, yδ)−
1

δ
|xδ − yδ|2 − γeT−tδ(x2

δ + y2
δ )

So, we have

γeT−tδ(x2
δ+y

2
δ ) ≤ V ρ1 (tδ, xδ)−V2(tδ, yδ)−

1

δ
|xδ−yδ|2−Φ(tδ, 0, 0) ≤ 3C(1+|xδ|+|yδ|)

and
γeT−tδ(x2

δ + y2
δ )

1 + |xδ|+ |yδ|
≤ 3C

Therefore there exists Cγ such that

|xδ|+ |yδ| ≤ Cγ

It implies that (xδ, yδ) is bounded by Cγ and there exists a subsequence (tδ, xδ, yδ)
which converges to some (t0, x0, y0). By (7), we conclude

lim
δ→0

xδ = x0 = y0 = lim
δ→0

yδ and lim
δ→0

tδ = t0

11



Step 3: Suppose that there exists (t̂, x̂) ∈ [0, T ]×D satisfying

V1(t̂, x̂) ≥ V2(t̂, x̂)

and we work for a contradiction. Then there is real a > 0 such that

V1(t̂, x̂)− V2(t̂, x̂) = 2a

Equation (6) and the semicontinuities of V ρ1 (t, x) and V2(t, x) give us

lim
δ→0

2

δ
|xδ − yδ|2 = 0

Letting δ → 0, we have

lim
δ→0

Φ(tδ, xδ, yδ) ≤ lim
δ→0

(V ρ1 (tδ, xδ)− V2(tδ, yδ))

≤ lim
δ→0

sup(V ρ1 (tδ, xδ)− lim
δ→0

inf(V2(tδ, yδ))

≤ V ρ1 (t0, x0)− V2(t0, x0)

also

Φ(tδ, xδ, yδ) ≥ Φ(t̂, x̂, x̂)

≥ V ρ1 (t̂, x̂)− V2(t̂, x̂)− γeT−t̂(x̂2 + x̂2)

≥ V1(t̂, x̂)− V2(t̂, x̂)− ρ

t̂+ T
− γeT−t̂(x̂2 + x̂2)

≥ 2τ − ρ

t̂+ T
− γeT−t̂(x̂2 + x̂2)

When γ and ρ are small enough, we have

2a− ρ

t̂+ T
− γeT−t̂(x̂2 + x̂2) ≥ a

So, we obtain
a ≤ Φ(tδ, xδ, yδ)

and
a ≤ lim

δ→0
Φ(tδ, xδ, yδ) ≤ V ρ1 (t0, x0)− V2(t0, x0)

Since V1 ≤ V2 on ∂([0, T ]×D), we have

V ρ1 = V1 −
ρ

t+ T
≤ V2 on ∂([0, T ]×D)

So (t0, x0, y0) 6∈ ∂([0, T ]×D) and hence (tδ, xδ, yδ) is a local maximizer of Φ(t, x, y).

Step 4: By Theorem 3.2, for ε > 0 there exists b1δ, b2δ, Xδ, Yδ such that

12



(b1δ,
2

δ
(xδ − yδ) + 2γeT−tδxδ, Xδ) ∈ J̄2,+

[0,T ]×DV
ρ
1 (tδ, xδ), (8)

(b2δ,
2

δ
(xδ − yδ)− 2γeT−tδyδ, Yδ) ∈ J̄2,−

[0,T ]×DV2(tδ, yδ). (9)

and

b1δ − b2δ =
∂φ(tδ, xδ, yδ)

∂t
= −γeT−tδ(x2

δ + y2
δ )

Equations (5) and (8) imply that there exists c > 0 such that

−b1δ +H(xδ,
2

δ
(xδ − yδ) + 2γeT−tδxδ, Xδ) ≤ −c (10)

and equation (9) implies

−b2δ +H(yδ,
2

δ
(xδ − yδ)− 2γeT−tδyδ, Yδ) ≥ 0 (11)

From equations (10) and (11)

b1δ−b2δ+H(yδ,
2

δ
(xδ−yδ)−2γeT−tδyδ, Yδ)−H(xδ,

2

δ
(xδ−yδ)+2γeT−tδxδ, Xδ) ≥ c

(12)
By the maximum principle (Theorem 3.2), we have

−
(1

ε
+‖D2φ(tδ, xδ, yδ)‖

)
I ≤

(
Xδ 0
0 −Yδ

)
≤ D2φ(tδ, xδ, yδ)+ε(D

2φ(tδ, xδ, yδ))
2

D2φ(tδ, xδ, yδ) =
2

δ

(
I3 −I3
−I3 I3

)
+ 2γeT−tδ

(
I3 0
0 I3

)
and

(D2φ(x̂))2 =
8

δ2

(
I3 −I3
−I3 I3

)
+

8γeT−tδ

δ

(
I3 −I3
−I3 I3

)
+4γe2(T−tδ)

(
I3 0
0 I3

)
We rewrite

xδXδx
T
δ − yδYδyTδ =(xδ, yδ)

(
Xδ 0
0 −Yδ

)(
xδ
yδ

)
≤(xδ, yδ)

[
2

δ

(
I3 −I3
−I3 I3

)
+ (2γeT−tδ + 4εγ2e2(T−tδ))

(
I3 0
0 I3

)
+ ε

8 + 8γδeT−tδ

δ2

(
I3 −I3
−I3 I3

)](
xδ
yδ

)
Letting γ → 0 and ε = δ

4 , we have

xδXδx
T
δ − yδYδyTδ ≤

4

δ
(xδ − yδ)2,

13



yδYδy
T
δ − xδXδx

T
δ ≥ −

4

δ
(xδ − yδ)2

By (12)

H(yδ,
2

δ
(xδ − yδ) + 2γeT−tδyδ, Yδ)−H(xδ,

2

δ
(xδ − yδ) + 2γeT−tδxδ, Xδ) ≥ b2δ − b1δ + c

Ĥ(yδ,
2

δ
(xδ − yδ)− 2γeT−tδyδ)− Ĥ(xδ,

2

δ
(xδ − yδ) + 2γeT−tδxδ)

> (b2δ − b1δ) +
σ2

2
(yδYδy

T
δ − xδXδx

T
δ ) + c

≥ γeT−tδ(x2
δ + y2

δ )− 4σ2

2δ
(xδ − yδ)2 + c

Letting γ −→ 0

Ĥ(yδ,
2

δ
(xδ − yδ))− Ĥ(xδ,

2

δ
(xδ − yδ)) > −

4σ2

2δ
(xδ − yδ)2 + c

We have limδ→0
2
δ |xδ − yδ|

2 = 0 and from the continuity of Ĥ, and limδ→0 xδ =
x0 = limδ→0 yδ, we have

0 = lim
δ→0

[
Ĥ(yδ,

2

δ
(xδ − yδ))− Ĥ(xδ,

2

δ
(xδ − yδ))

]
> c

which leads to a contradiction.

Therefore the uniqueness of viscosity solutions is obtained from Theorem 3.3.

Theorem 3.4. The value function V w(t, π, S,B) is the unique viscosity solution
of (3) on [0, T ]×D with the terminal condition W (T, π, S,B) = U (πS +B − nCT ).
Also, the value function V (t, π, S,B) is the unique viscosity solution of (3) on
[0, T ]×D with the terminal condition W (T, π, S,B) = U (πS +B).

4 Example and Numerical experiments

4.1 Example

To illustrate our model, we provide a simple example which is interesting enough
to give us the explicit solution. Consider the functions of trading speed vt, f(vt) =
1 + αvt and g(vt) = βvt for α > 0 and β > 0. Then we have the following SDE
for market price and actual traded price:

dSt = (µ+ βvt)Stdt+ σStdBt,

S(t, vt, ω) = (1 + αvt)St, −M ≤ vt ≤M.

14



In here α is positive and indicates the depth of illiquidity (the parameter for
liquidity costs). β is also positive and indicates the permanent price impact
factor. We substitute for f(vt) = 1 + αvt and g(vt) = βvt in (3). With a little
analysis, we have

0 = max
v∈K

{
−αS ∂W

∂B
v2+

(
∂W

∂π
+ βS

∂W

∂S
− S ∂W

∂B

)
v

}
+µS

∂W

∂S
+
∂W

∂t
+rB

∂W

∂B
+
σ2S2

2

∂2W

∂S2

Note that

{
−αS ∂W∂B v

2 +
(
∂W
∂π + βS ∂W∂S − S

∂W
∂B

)
v

}
is a quadratic function of

v. Since W (t, π, S,B) is strictly increasing with respect to B, so ∂W
∂B > 0. Also,

the fact that S > 0 and α > 0 gets

−αS ∂W
∂B

< 0

Therefore, the maximum of

{
−αS ∂W∂B v

2+
(
∂W
∂π + βS ∂W∂S − S

∂W
∂B

)
v

}
is achieved

by

v∗ =
1
S
∂W
∂π + β ∂W∂S −

∂W
∂B

2α∂W∂B

since 2α∂W∂B is always positive, and the sign of v∗ is determined by considering
1
S
∂W
∂π + β ∂W∂S −

∂W
∂B . There are three possible cases:

Case (i):

∂W

∂B
>

1

S

∂W

∂π
+ β

∂W

∂S

The optimal solution v∗ < 0 where the maximum is achieved by selling the stock
and increasing our holdings in bank account. Marginal utility per dollar of stock
holding plus marginal utility on stock price caused by the permanent price impact
factor is less than marginal utility per dollar on bank account. To maximize the
utility, it is recommended to transfer money from holding stocks to the bank
account.

Case (ii):

∂W

∂B
<

1

S

∂W

∂π
+ β

∂W

∂S

The optimal solution v∗ > 0 where the maximum is achieved by buying the
stock and decreasing our holdings in bank account. Marginal utility per dollar of
stock holding plus marginal utility on stock price caused by the permanent price
impact factor is greater than marginal utility per dollar on bank account. To
maximize the utility, it is recommended to transfer cash from bank account to
stock holdings.
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Case (iii):

∂W

∂B
=

1

S

∂W

∂π
+ β

∂W

∂S

The optimal solution v∗ = 0 where the maximum is achieved by doing nothing.
Marginal utility per dollar of stock holding plus marginal utility on stock price
caused by the permanent price impact factor is equal to marginal utility per dollar
on bank account. There is no transaction needed.

If a value function is defined in the 4-dimensional space (t, π, S,B), the opti-
mization problem is a free boundary problem. At a fixed time t, the above result
suggests that the state space can be divided into buy and sell regions by a surface.
On the surface, the trading speed is 0 and there is no transaction. The buy region
is characterized by

∂W

∂B
− 1

S

∂W

∂π
< β

∂W

∂S

and the sell region is characterized by

∂W

∂B
− 1

S

∂W

∂π
> β

∂W

∂S
.

We now consider the exponential utility function given by

U(x) = 1− exp(−λx)

where the index of risk aversion is −U
′′

(x)
U ′(x) = λ, independent of the investor’s

wealth. The integral version of state variable BT is written as

BT = Bt exp
(
r(T − t)

)
−
∫ T

t

er(T−u)f(vu)Suvudu.

Then

V (t, π, S,B)

= max
v∈Γ

E

{
1− exp

(
− λ
(
πTST +BT

)) ∣∣∣ πt = π, St = S,Bt = B

}
=1−min

v∈Γ
E

{
exp

(
− λ
(
πTST +B exp

(
r(T − t)

)
−
∫ T

t

er(T−u)f(vu)Suvudu
)) ∣∣∣ πt = π, St = S,Bt = B

}
=1− exp

(
− λB exp

(
r(T − t)

))
Q(t, π, S)

where Q(t, π, S) is a continuous function in π and S, and defined by Q(t, π, S) =
1− V (t, π, S, 0). With a little analysis, we have

0 = max
v∈K

{
− αSλ exp(r(T − t))Q(t, π, S)v2 +

(
∂Q

∂π
+ βS

∂Q

∂S
− Sλ exp(r(T − t))Q(t, π, S)

)
v

}
+ µS

∂Q

∂S
+
∂Q

∂t
−Bλ exp(r(T − t))r + rBλ exp(r(T − t))Q(t, π, S)

∂Q

∂B
+
σ2S2

2

∂2Q

∂S2

16



Q(T, π, S) = 1− exp(−λπS)

and letting Qw(t, π, S) = 1− V w(t, π, S, 0),

Qw(T, π, S) = 1− exp(−λ(πS − nCT )).

Note that the term in the above PDE

−αSλ exp(r(T − t))Q(t, π, S)v2 +

(
∂Q

∂π
+ βS

∂Q

∂S
− Sλ exp(r(T − t))Q(t, π, S)

)
v

is a quadratic function of v. The maximum is achieved by

v∗ =
1
S
∂Q
∂π + β ∂Q∂S − λ exp(r(T − t))Q(t, π, S)

2αλ exp(r(T − t))Q(t, π, S)
.

The utility indifference price p at time 0 for the option is obtained by

V w(t = 0, π0, S0, B + np) = V (t = 0, π0, S0, B) (13)

Assuming π0 = 0, we have the following explicit formula for the utility indifference
price p:

p =
1

nλ exp(rT )
log

Qw(0, 0, S)

Q(0, 0, S)
.

In this case, we observe the utility indifference price p is independent of the
trader’s initial wealth.

4.2 Numerical experiments

In this section, we discuss the numerical solution to the example and present
some results. We compute the utility indifference price of a European option with
strike 100 and observe interesting properties. In the numerical experiments, the
parameter values that we used are initial stock price S0 = 100, µ = 0.05, r = 0,
and T = 0.1 years. We assume λ = 0.00001 and n = 1000. When S0 is fixed, V w

and V are functions of bank account B0 and number π0 of shares held. Figure
1 shows V w with different values of B0 and π0 in the case of α = 0.001 and
β = 0.001. When S0 and π0 are fixed, V w and V are functions of bank account
B. Figure 2 presents the price difference between the utility indifference price and
the Black-Scholes price against time over the life of the option. The Black-Scholes
price is computed by the usual Black-Sholes formula. The price difference is due
to the effect of illiquidity.
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Table 1 and 2 shows the option price at time 0 obtained by (13). Option price
p depends on π0. In this experiment, we assume the prior exposure is zero, i.e.,
π0 = 0, and compute the values for the claim. Table 1 gives a comparison of
the utility indifference prices of the European call option for different values of
α and β. We have observed when α increases (the depth of illiquidity increases)
for a fixed β, the option price increases. But when β increases (the depth of
permanent price impact increases) for a fixed α, the option price decreases. When
β is large, a large trader has more influence on the stock price evolution. This can
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be interpreted as the trader may have the power to manipulate the stock price, to
some extent, to maximize his utility. Table 2 provides a comparison of the option
prices for different α, β and number n of the options written by the trader.

α = 0.0000 α = 0.0001 α = 0.0005 α = 0.0010
β σ = 0.2 σ = 0.3 σ = 0.2 σ = 0.3 σ = 0.2 σ = 0.3 σ = 0.2 σ = 0.3

0.0000 2.8511 4.1832 2.8579 4.2324 2.8583 4.2331 2.8584 4.2332
0.0001 2.7527 3.6915 2.7873 4.1424 2.8400 4.2155 2.8492 4.2244
0.0002 2.6425 3.1454 2.6789 3.8436 2.7813 4.1564 2.8198 4.1949
0.0005 2.3285 1.7884 2.3658 2.6175 2.4983 3.7538 2.6227 3.9880

Table 1: Utility indifference price for different α, β and σ.

α = 0.00001 α = 0.00005 α = 0.00010
β n = 500 n = 1000 n = 2000 n = 500 n = 1000 n = 2000 n = 500 n = 1000 n = 2000

0.00000 2.8180 2.8584 2.9452 2.8200 2.8616 2.9484 2.8202 2.8621 2.9488
0.00001 2.8144 2.8580 2.9388 2.8192 2.8615 2.9472 2.8198 2.8620 2.9482
0.00002 2.8112 2.8369 2.8863 2.8188 2.8576 2.9373 2.8196 2.8600 2.9433
0.00005 2.7182 2.6186 2.4406 2.8024 2.8200 2.8553 2.8116 2.8416 2.9028

Table 2: Utility indifference price for different α, β and n.
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Figure 3: Optimal trading speed at fixed time

When time t is fixed, the optimal solution is independent of B in the case of
the exponential utility. Figure 3 shows the optimal trading speed v∗ for a fixed
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t. The parameters in this computation are initial stock price S0 = 100, µ = 0.05,
r = 0, and T = 0.1 years. We assume λ = 0.00001, α = 0.0001, β = 0.00001
and n = 500. Knowing the optimal trading speed, Figure 4 illustrates the trading
regions, in which it is divided into buy and sell regions by a smooth curve. On
the curve, the trading speed is 0, and there is no transaction. Above the curve,
we have

1

S

∂Q

∂π
+ β

∂Q

∂S
< λQ(t, π, S)

which corresponds to the buy region. Also, below the curve

1

S

∂Q

∂π
+ β

∂Q

∂S
> λQ(t, π, S)

which corresponds to the sell region.

Figure 4: Buy and sell regions

5 Conclusion

In this paper, we investigated option valuation based on utility maximization for a
large trader in a market with liquidity risk. We considered two effects of illiquidity;
the cost of illiquidity and permanent price impact benefits. In illiquid markets,
trading action will incur liquidity costs, but at the same time, the trader can have
influence on the stock price evolution and gain benefits from the permanent price
impact by choosing the optimal strategy. Thus, the option price, in some sense,
is determined by these two contradicting phenomena. When both the permanent
impact function and the liquidity cost function are linear in the trading speed,
the optimal solution is computed explicitly, and moreover, the state space can be
characterized and divided into the buy and sell regions.
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