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Abstract

We propose a portfolio risk model which in-
tegrates market risk with liquidation costs.
The model provides a framework for com-
puting liquidation-adjusted risk measures
such as Liquidation-adjusted VaR (LVaR).
Calculation of liquidation-adjusted Value-
at-Risk (LVaR) for simulated and real-life
examples reveals a substantial impact of
liquidation costs on portfolio risk for port-
folios with large concentrated positions.

1 Liquidation risk

Quantitative models commonly used in fi-
nancial risk management have mainly fo-
cused on the statistical modeling of varia-
tions in the (mark-to-)market value of fi-
nancial portfolios, in order to estimate a
risk measure – such as Value-at-Risk or Ex-
pected shortfall – related to market losses
over a given time horizon. These risk mea-
sures are then used for determining for ex-
ample capital requirements or margin re-
quirements in order to provision for losses
in extreme risk scenarios. Typically, when
such losses materialize, the financial insti-
tution is led to liquidate a sizable portion
of its portfolio and the realized liquida-
tion value may be quite different from the

(pre-liquidation) market value used in the
model. The difference – which represents
the liquidation cost – can be significant if
the portfolio contains large, concentrated
positions. Not accounting for this liquida-
tion cost in risk calculations may result in
a serious underestimation of portfolio losses
in a stress scenario.

Several risk management fiascos have
been associated with the underestimation
of liquidation costs and liquidity risk for
portfolios with large positions. A spectac-
ular example was provided by the JP Mor-
gan CIO losses in 2012, when the bank suf-
fered a $6.2 Bn loss while unwinding CDS
index positions amounting to several hun-
dred billions of dollars in gross notional
[U.S. Senate, 2013, JP Morgan, 2014]. Al-
though JP Morgan deployed a sophisti-
cated Value-at-Risk model for monitoring
the CIO portfolio, the VaR calculation was
focused on market losses and did not antic-
ipate the market moves generated by the
CIO’s subsequent asset liquidations.

These considerations call for a compre-
hensive approach for integrating liquida-
tion risk into portfolio risk measures; this
issue is particularly relevant for financial in-
stitutions managing large portfolios.

1



2 A model for liquidation
losses

Consider a portfolio with positions in n as-
sets classes, whose values at date tk = k∆t
are denoted S1

k ,...,S
n
k . We assume that,

in the absence of systematic effects from
large trades, the “fundamental” return of
asset i in period [tk, tk+1] is given by a ran-
dom variable ϵik, where the random vectors
(ϵ1k, ..., ϵ

n
k)k≤0 are assumed to be indepen-

dent, with mean m∆t and covariance ma-
trix Σ∆t:

Si
k+1 − Si

k

Si
k

= ϵik+1 where

E(ϵik) = mi∆t, Cov(ϵik, ϵ
j
k) = Σi,j∆t.

The fundamental covariance matrix Σ cap-
tures structural relations between asset re-
turns. In the examples below, Σ will be
taken constant but in practice one may also
incorporate some dynamics for Σ in the
model.

In absence of market impact, the value
of a buy-and-hold portfolio with αi shares
of asset i, i = 1..n, is given by:

Vk =

n∑
i=1

αiS
i
k

and changes according to

Vk+1 − Vk =
n∑

i=1

αiS
i
kϵ

i
k+1

Institutional portfolios are subject to con-
straints, often defined as limits on bal-
ance sheet ratios: capital ratio, liquidity
ratio, leverage ratio; other examples are
performance constraints, such as limits on
drawdowns. Following a large loss in as-
set values, the constraint may be breached,
in which case the portfolio may need to

be deleveraged, i.e. some assets need to
be sold over a short time period in or-
der to comply with the constraint. This
is the phenomenon of distressed asset sales
or fire sales [Cont and Wagalath, 2013,
Shleifer and Vishny, 2011].

Consider for example the case of a port-
folio with equity/capital E and subject to a
leverage constraint Lmax, representing the
maximum allowed leverage ratio. Prior to
a stress scenario, the leverage is given by:

V

E
≤ Lmax.

In the event of a loss of l (%), the leverage
ratio increases from V

E to

V (1− l)

E − l V

It is then straightforward to show that if
the loss exceeds a threshold

l∗ =
1

V

ELmax − V

Lmax − 1
< l <

E

V

then the leverage constraint Lmax is
breached and the portfolio needs to be
deleveraged: a portion 1 − Lmax(E−lV )

V (1−l) of
holdings needs to be liquidated. The vol-
ume of assets sold thus depends on the
magnitude of the loss: Figure 1 shows
the volume of liquidation for a portfolio
with initial leverage V

E = 25 and lever-
age limit Lmax = 33, as a function of the
loss l (blue line). In practice, the delever-
aging policy may deviate from this sim-
ple linear example, but its qualitative fea-
tures remain valid: the volume of asset
sales is zero for losses below a threshold,
increases with the loss size and saturates
beyond a certain loss level (which repre-
sents total liquidation). We represent this
through a response function f , which repre-
sents the proportion of the portfolio which
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is deleveraged, as a function of the port-
folio loss (red curve in Figure 1). The
fraction of the portfolio liquidated at pe-
riod k in response to price moves is then

f
(
Vk
V0

)
− f

(
Vk
V0

+
n∑

i=1

αiS
i
k

V0
ϵik+1

)
. We as-

sume that assets are liquidated proportion-
ally to the initial holdings (this assumption
may be relaxed, see below).
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Figure 1: Volume of liquidation as a func-
tion of portfolio loss.

Liquidation of large volumes of as-
sets has an impact on the market price
[Almgren and Chriss, 2000, Kyle, 1985]:
assuming this impact to be lin-
ear [Cont et al., 2014, Kyle, 1985,
Obizhaeva, 2012], this leads to the
following price dynamics, where the new
terms correspond to the price impact of
deleveraging:

Si
k+1 − Si

k

Si
k

= ϵik+1︸︷︷︸
Fundamental return

(1)

− αi

Di

f

(
Vk

V0

)
− f

Vk

V0
+

n∑
j=1

αjS
j
k

V0
ϵjk+1


︸ ︷︷ ︸

Feedback from liquidation

where Di represents a liquidity parame-
ter, or market depth, for asset class i, esti-
mated using the methodology proposed in
[Obizhaeva, 2012].

Equation (1) gives a decomposition of
the asset returns into a “fundamental”
component and an endogenous – or self-
induced – component which is generated
by the fund’s own deleveraging and de-
pends on asset liquidity. This endoge-
nous component is zero in “normal” sce-
narios, but when the portfolio experiences
large losses, leading to partial liquidation,
this term may become non-zero, gener-
ating larger-than-expected portfolio losses
and an increase in observed correlations, as
described below.

As shown in [Cont and Wagalath, 2013],
this model has a continuous-time limit de-
scribed by a multi-asset diffusion (local
volatility) model

dP i
t

P i
t

= µi
tdt+ (σtdWt)i 1 ≤ i ≤ n

where the drift µi
t and the instantaneous

covariance ct = σtσ
′
t are given by

µi
t = mi +

Λi

2
f ′′
(
Vt

V0

)
< πt,Σπt >

V 2
0

ct = σtσ
′
t = Σ+

1

V0
f ′
(
Vs

V0

)
[Λπ′

sΣ+ ΣπsΛ
′] (2)

+
1

V 2
0

(f ′)2
(
Vs

V0

)(
π′
sΣπs

)
ΛΛ′

where πt =
(
α1P

1
t , ..., αnP

n
t

)′
is the dol-

lar allocation of the portfolio and Λ =(
α1
D1

, ..., αn
Dn

)′
represents the positions ex-

pressed as a fraction of market depth. Here
we have denoted by v′ the transpose of a
vector (or matrix) v.1

Equation (2) shows that the dependence
structure of asset returns is (temporar-
ily) modified during liquidation: the re-
alized covariance matrix is equal to the

1For detailed mathematical proofs we refer to
[Cont and Wagalath, 2013].
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fundamental covariance matrix Σ plus
a (liquidity-dependent) excess covariance
term which depends on the volume of as-
sets liquidated in each asset class relative to
market depth. This generates larger-than-
expected losses and amplifies the realized
volatility of the portfolio, precisely in bad
scenarios where it is compelled to engage
in fire sales.

3 Liquidation-adjusted
VaR

As shown above, if a portfolio has large po-
sitions (relative to market depth), one can-
not ignore the impact of possible liquida-
tions on market dynamics when assessing
the portfolio’s risk. This impact is size-
dependent and, unlike usual risk calcula-
tions based on VaR or Expected Shortfall,
leads to a nonlinear scaling of portfolio risk
with the size of its positions. Our model
provides a systematic approach for taking
into account liquidation risk when assess-
ing the risk of a portfolio. As the following
example shows, the resulting adjustments
to portfolio risk can be quite substantial.

Consider for instance a portfolio, with
leverage constraint Lmax = 33, initial
leverage 25 and positions in three asset
classes with independent returns, assumed
to be Gaussian with respective annualized
volatilities 10%, 20% and 30%. The mar-
ket depths for these asset classes are taken
to be $1,000, $100 and $10 Bn respec-
tively. As a benchmark, the estimated mar-
ket depth for the SPY, the main ETF track-
ing the S&P500, is close to $1,000 Bn.

The loss distribution for this portfolio
(Figure 2 ), based on 10,000 scenarios sim-
ulated from model (1), exhibits heavy tails
associated with liquidation scenarios. We
define the (99%) Liquidation-adjusted

VaR as the 99% quantile of this loss dis-
tribution. Figure 3 displays the one-day
99% LVaR for the portfolio as a function of
portfolio size, when all notional positions
are increased proportionally, compared to
a 99% VaR based solely on market risk.
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Figure 2: Distribution of portfolio losses
with (blue) and without (red) feedback
from liquidations.
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Figure 3: Liquidation-adjusted Value-at-
Risk for a sample portfolio with 3 asset
classes.

Whereas the traditional benchmark VaR
is, as expected, linear in portfolio size, the
liquidation-adjusted VaR computed using
our model is not: it is convex as a function
of portfolio size and is much larger than a
linear VaR for large portfolio. The differ-
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ence between the two numbers reflects the
liquidity risk of the portfolio. For a portfo-
lio with small positions relative to market
depth, liquiditation-adjusted VaR is close
to a traditional VaR measure. However,
for a leveraged portfolio with large, con-
centrated positions comparable to or larger
than market depth, liquidation-adjusted
VaR can be significantly (in our example,
up to 10 times) larger than the usual VaR.

The previous calculations are based on
the assumption of proportional liquida-
tions. In practice, financial institutions
may choose other deleveraging strategies.
For example, one may establish a pecking
order in which various asset classes are liq-
uidated; this is part of the Basel 3 require-
ments for financial institutions when estab-
lishing their “living will”.

Figure 4 shows that the resulting
(liquidation-adjusted) portfolio risk de-
pends on the chosen exit strategy. This
suggests that the exposure of a financial in-
stitution to a stress scenario depends on its
plans for dealing with this stress scenario.
Though not surprising, this goes against
the conventional approach which attempts
to measure portfolio risk based on a static
snapshot of a portfolio’s positions, rather
than considering how the positions will be
eventually unwinded.

4 Taming the Whale

In 2012, JP Morgan’s Chief Invest-
ment Office (CIO) had accumulated large
protection-buyer positions in high yield
CDS indices, such as HY.11 and HY.10, to-
gether with a large ’offsetting’ protection-
seller position in the CDX IG9 index which
peaked at $278 Bn in gross notional value
[U.S. Senate, 2013, JP Morgan, 2014], and
roughly one-fourth of this size in HY in-
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Figure 4: Liquidation-adjusted Value-at-
Risk for different liquidation strategies. 1:
liquidating most liquid asset first. 2: pro-
portional liquidation. 3: liquidating least
liquid asset first.

dices. While the VaR of the position
was estimated to be around $500 million,
its progressive liquidation between end of
March and August 2012 resulted in re-
ported losses of $6.2 Bn.

Reports on the CIO losses have fo-
cused on mismanagement, lack of trans-
parency inside the organization, mismark-
ing of positions and spreadsheet errors
[U.S. Senate, 2013]. But the way risk was
computed and provisioned for was not the
main focus of recommendations in any of
the reports. Yet, according to the report
by JP Morgan’s Management Task Force
[JP Morgan, 2014], the risk of these posi-
tions was evaluated using a Value-at-Risk
metric which scales linearly with portfo-
lio size and liquidation risk was not pro-
visioned.

Figure 5 shows the one-year realized cor-
relation between CDX IG9 and CDX IG10,
two closely related indices, calculated on
a rolling window. The breakdown of this
correlation after March 2012, i.e. when the
CIO starts liquidating its massive positions
in CDX IG9, is a signature of the mar-
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ket impact of CIO’s trading and suggests
that the concepts of endogenous risk and
liquidation-adjusted risk measure are rele-
vant for this case.
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Figure 5: 1-year realized correlation be-
tween CDX IG9 and CDX IG10 returns

The liquidation of the $278 Bn posi-
tions on CDX IG9 lasted around 5 months
[U.S. Senate, 2013] which enables us to cal-
ibrate the average daily liquidation rate
αf ′ = $ 278 Bn

5×20 in equation (2).

Figure 6 compares the 95% 5-month
Value-at-Risk with and without liquidation
adjustments, for a portfolio with positions
in CDX IG9 and offsetting positions in
HY11 with a 1:4 ratio, as a function of gross
notional in CDX IG9. For a notional value
of around $278 Bn in CDX IG9, which is
the size of the London Whale’s positions
in Q1 2012, we find a liquidation-adjusted
Value-at-Risk around $10.5 Bn, signifi-
cantly larger than the benchmark Value-at-
Risk, which is of the order of $0.5 Bn, the
difference being entirely attributable to liq-
uidation costs. This suggests that the Lon-
don Whale losses could have been antici-
pated in a more realistic manner if liquida-
tion costs had been properly accounted for
in the risk calculations.

The fact that the realized loss was ac-

tually smaller than the 95% Liquidity-
adjusted VaR is revealing: in fact, the real-
ized loss of $ 6.2 Bn corresponds to the 80%
quantile of the portfolio, which shows that
we do not require an extreme market move,
or ’tail event’, to generate such a large loss!
Given such a large, leveraged position, even
a moderate shock can lead to a large loss.
The magnitude of the loss is due not to the
extreme nature of the initial shock but to
the market impact resulting from the sheer
size of the portfolio.
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Figure 6: 95% 5-month VaR for positions
in CDX IG9 (size in Bn $).

5 Conclusion

We have proposed a tractable modeling
framework for including liquidation costs
in the risk analysis of financial portfolios:
our approach consists in modeling the im-
pact of liquidation by adding a price im-
pact term in a ’base model’ for the dy-
namics of asset returns. In the exam-
ples described above, the base model is
a (Black-Scholes) model with constant co-
efficients and IID returns and the price
impact is linear, but this is simply an
example and both these ingredients may
be modified. These extensions –nonlinear
price impact, presence of multiple sources
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of price impact, non-constant coefficients
– are explored in a companion paper
[Cont and Wagalath, 2014].

These ingredients provide the building
blocks of an operational framework for cal-
culating portfolio risk measures which cor-
rectly account for liquidation costs, exhibit
nonlinear scaling with portfolio size and
distinguish between liquid and illiquid po-
sitions.
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