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October 28, 2014

Abstract

We study a financial network where forced liquidations of an illiquid asset have a negative
impact on its price, thus reinforcing network contagion. We prove uniqueness of the clearing
asset price and liability payments under no, partial, and full multilateral netting of interbank
liabilities. We show that partial versus full multilateral netting increases bank shortfall,
and reduces clearing asset price and aggregate bank surplus. We also show that partial
multilateral netting can be worse than no netting at all.
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1 Introduction

We study a financial network in which banks can be thought of as dealers in an over the counter
(OTC) market and their costumers. Banks hold interbank liabilities, cash, and shares of an
illiquid asset. The settlement of interbank liabilities may force banks to liquidate some shares
of the illiquid asset. This has a negative impact on the price of the illiquid asset. Marking
to market of banks’ balance sheets reinforces network contagion: lower asset prices may force
other banks to default on their interbank liability payments. This results in an entanglement
of price mediated contagion and network mediated contagion.

We model the price impact by a given inverse demand function, similarly as in [11]. In
equilibrium, this leads to a clearing price and liability payments, given as solution of a fixed
point equation. Existence of the fixed point follows by Tarski’s fixed-point theorem, as shown
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in [11]. Uniqueness has remained an open problem. As first main result of this paper, we prove
uniqueness under some mild and natural technical assumptions. Key assumption is that the
cash proceeds from asset liquidations are strictly increasing in the number of shares liquidated.
We also provide an algorithm for computing the fixed point that terminates in at most m steps,
where m denotes the number of banks in the network.

We then study the effect of full and partial multilateral netting on the clearing price, bank
shortfall and aggregate surplus in equilibrium. We find that aggregate surplus depends on the
multilateral netting policy only through the clearing price of the illiquid asset. As second main
result of this paper, we show that partial versus full multilateral netting has adverse effects on
the clearing price, bank shortfall and aggregate surplus. Full multilateral netting maximizes
the clearing price and thus the aggregate surplus and minimizes bank shortfall. Moreover, we
illustrate by example that the effects of partial versus full multilateral netting can be strictly
adverse, and that no netting can be better than partial multilateral netting.

Our paper is part of the literature that seeks to explore the risks in financial networks in
presence of a central clearing counterparty (CCP), see e.g., [15, 19, 6, 4, 7, 13, 14, 18]. The
influential paper [15] shows that the efficiency of a CCP critically depends on the tradeoff
between bilateral netting across derivative classes and multilateral netting via the CCP. The
tradeoff is assessed based on the average interbank liability and the main insight is that par-
tial netting of derivative classes may remove bilateral netting opportunities and thus increase
average liability. In this paper, we consider another type of adverse effects of partial netting
than [15]. Our setup is deliberately chosen such that under any partial multilateral netting
arrangement the total liability of all banks decreases. Our results are driven by the tradeoff
between this decrease in the total liability and the increase of the number of counterparties to
which a bank is exposed. Full netting limits contagion to a single round, as opposed to the
case of uncleared networks in which contagion can go through several rounds. Under certain
conditions, partial netting leads to even more rounds of contagion in the network due to the
increase in the number of counterparties and thus to strict adverse effects.

Our paper is also related to the literature where various mechanisms may reinforce network
contagion, e.g, [20, 1, 17, 2, 3, 5], and the literature on price mediated contagion in networks
of common asset holdings [8, 9].

The reminder of the paper is structured as follows. In Section 2 we introduce the financial
network and inverse demand function that models the negative price impact of forced liqui-
dations on the illiquid asset. In Section 3 we prove existence and uniqueness of the clearing
equilibrium and provide a finite algorithm for the fixed point. In Section 4 we study partial and
full multilateral netting of interbank liabilities. Section 5 concludes. The proofs of all lemmas
and theorems in the main text are given in Appendix A.

2 Financial network

We consider the payment network model of [11] which extends the model of [16] where we
account for the price impact of the liquidation of external assets. The financial network consists
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of m interlinked financial institutions (“banks”) i ∈ [m] = {1, . . . ,m}. These can be thought
of as dealers in an OTC market and their customers. Since customers are included, we assume
there is no outside creditor to the financial network. Dealer-to-customers and dealer-to-dealer
contracts have the same bilateral and multilateral netting opportunities. This is consistent
with the post-reform environment, in which, with some exceptions, customer-to-dealer trades
are required to be centrally cleared [14].

There is one period t = 0, 1. At t = 0, bank i holds γi ≥ 0 units of a liquid asset (cash),
and yi ≥ 0 units of an illiquid asset. Cash has constant value one. The illiquid asset has a
positive fundamental value P at t = 1. The total illiquid asset holdings of the banks is denoted
by ytot :=

∑
i∈[m] yi.

Nominal interbank liabilities. Interbank liabilities realize at t = 1. They are represented
by a matrix of nominal liabilities (Lij), where Lij ≥ 0 denotes the cash-amount that bank i
owes bank j at t = 1. The total nominal liabilities of bank i sum up to

Li =
∑
j∈[m]

Lij .

Bank i in turn claims a total nominal cash amount of
∑

j∈[m] Lji from the other banks. The
nominal balance sheet of bank i is then given by:

• Assets: γi +
∑

j∈[m] Lji + yiP,

• Liabilities: Li + nominal net worth.

The nominal cash balance is γi +
∑

j∈[m] Lji − Li.

Price impact of liquidations. If bank i’s nominal cash balance is negative, then it has a
liquidity shortfall and sells some of its shares of the illiquid asset. This has a negative price
impact on the illiquid asset, which we model by an inverse demand function similarly as in [11].
We assume there is an outside market for the illiquid asset that can absorb the total illiquid asset
holdings of the banks at a distressed price. It is beyond the scope of this paper to endogenize
both the demand function for the illiquid asset and the financial network payments. Instead,
we consider a given inverse demand function satisfying some mild technical assumptions and
we analyze the interplay between the forced liquidations and the payment equilibrium in the
network of interbank liabilities.

The inverse demand function f(x, P ) gives the equilibrium price for the illiquid asset when
x units of the asset are sold. We assume that f(x, P ) satisfies

(i) f(0, P ) = P ,

(ii) x 7−→ f(x, P ) is non-increasing;

(iii) x 7−→ xf(x, P ) is strictly increasing for x ∈ [0, ytot].
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The first property states that in absence of liquidations the price is given exogenously by P .
The second property states that the price is non-increasing with the excess supply x. The third
property specifies that the cash proceeds from liquidations do increase with the liquidated
quantity x. This third assumption, although very natural1, turns out to be also be necessary
for the uniqueness of an equilibrium: [10] show that the [11] model features multiple equilibria.

We denote by Pmin = f(ytot, P ) the price when the total illiquid asset holdings of the banks
ytot are sold. We then have

f(x, P ) ≥ Pmin > 0, for all x ∈ [0, ytot].

If the revenue from selling yi units of the illiquid asset does not cover the negative cash-
balance, then bank i defaults on its interbank liabilities. Interbank claims are of equal seniority,
so that counterparty bank j will in turn receive a proportion

Πij =

{
Lij/Li if Li > 0,

0 otherwise,
(1)

of the cash-value of bank i’s total assets. This means that the assets are distributed among
the creditors according to the proportionality rule, see e.g. [16].

Negative price externalities resulting from liquidity shortages are intertwined with nega-
tive network externalities resulting from non-payment of liabilities. In the next section, we
characterize jointly the clearing price and the clearing total liability vector in equilibrium.

3 Existence and uniqueness of equilibrium

In equilibrium, the previous characterization of actual cash flows and price impact lead to a
clearing price P ∗ and total liability vector L∗ = (L∗1, . . . , L

∗
m), which can be determined as a

fixed point, Φ(P ∗,L∗) = (P ∗,L∗), of the non-linear map Φ on [Pmin, P ] × [0, (L1, . . . , Lm)],
given by 

Φ0(p, `) = f

∑
i∈[m]

(Li − γi −
∑

j∈[m] `jΠji)
+

p
∧ yi, P


Φi(p, `) = Li ∧

yi · p+ γi +
∑
j∈[m]

`jΠji

 , i ∈ [m],

(2)

similar as in [16, 11].

We have the following lemma.

Lemma 1. The mapping Φ is monotone, continuous and bounded.

1Removing this assumption would mean that the cash proceeds from liquidations may decrease with the
number of liquidated shares, which means that the marginal price of the asset becomes zero or negative beyond
a certain point.
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As shown in [11, 16], Lemma 1 and Tarski’s fixed-point theorem [21] implies the existence of
a clearing price and total liability vector. However, uniqueness in the setup with price impact
has remained an open problem. Our first result now solves this: uniqueness holds under very
mild assumptions.

Theorem 2. If all banks hold external assets, i.e., γi > 0 or yi > 0 for all i ∈ [m], then the
mapping Φ has a unique fixed point.

This result extends the uniqueness result of [16] who assumed no price impact on the illiquid
asset under liquidation.

Net worth. Given the unique clearing price P ∗ and total liability vector L∗, by Theorem 2,
we define the equilibrium net worth of bank i as

Ci = yiP
∗ + γi +

∑
j∈[m]

L∗jΠji − Li.

The shortfall is given by
C−i = Li − L∗i ,

and for the surplus we can easily check the following identity

C+
i = yiP

∗ + γi +
∑
j∈[m]

L∗jΠji − L∗i . (3)

The surplus of bank i depends on the network structure both through the clearing price and
liability payments. In contrast, we have the following aggregate surplus identity∑

i∈[m]

C+
i =

∑
i∈[m]

yiP
∗ +

∑
i∈[m]

γi, (4)

where we used (3) and the fact that
∑

i∈[m] Πji = 1 for all j ∈ [m]. Hence the aggregate surplus
of the banks depends on the clearing price only. In particular, if there are no price effects in
the clearing equilibrium, then the aggregate surplus does not depend on the network structure.

Using this important insight, in Section 4 we will focus on the impact of multilateral netting
on bank shortfall and on the clearing illiquid asset price.

Before that, we give the following iterative procedure to identify the clearing liability pay-
ment vector and asset price in at most m steps. This algorithm is similar to the one given
by [20] for the construction of the largest clearing vector and involves solving at each step a
system of linear equations.

Algorithm 3 (Constructing the clearing vector). Under the assumptions of Theorem 2, the
unique fixed point of the mapping Φ can be found by the following algorithm, in at most m
steps. We start with k = 0, p(0) = P and `i(0) = Li for every bank i ∈ [m]. Repeat:

(i) Set k → k + 1;
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(ii) For any bank i ∈ [m], define the total cash balance by

ci(k) := yi · p(k − 1) + γi +
∑
j∈[m]

`j(k − 1)Πji − Li;

(iii) Denote the set of illiquid banks by

D(k) := {i ∈ [m] | ci(k) < 0},

and the set of liquid banks by

L(k) := {i ∈ [m] | ci(k) ≥ 0};

(We set D(0) = ∅ and L(0) = [m].)

(iv) If D(k) = D(k − 1) terminate the algorithm;

(v) Set `i(k) = Li for all banks i ∈ L(k), `i(k) = xi for all i ∈ D(k) and p(k) = q where
(q, (xi)i∈D(k)) is determined as the maximal solution on [Pmin, p(k−1)]×

∏
i∈D(k)[0, `i(k−

1)] of the following system of equations:

xi = yi · q + γi +
∑
j∈L(k)

LjΠji +
∑

j∈D(k)

xjΠji, i ∈ D(k), (5)

q = f

 ∑
i∈D(k)

yi +
∑
i∈L(k)

(Li − γi −
∑

j∈L(k) LjΠji −
∑

j∈D(k) xjΠji)
+

q
∧ yi, P

 . (6)

Lemma 4. Algorithm 3 converges in at most m steps to the fixed point of map (2).

4 Effects of multilateral netting

We now consider the effects of multilateral netting of the interbank liabilities, in full or in part,
on clearing price of the illiquid asset, bank shortfall and aggregate surplus. Formally, we extend
the financial network by an auxiliary node i = 0. The node 0 can be interpreted as a central
clearing counterparty, or more abstractly as a facility whose role is to provide multi-lateral
netting services. In practice, such facilities exist for tri-party netting agreements, which are
performed by custodian banks in multiple deal multiple broker netting scenarios.2

Any nominal interbank liability is multilaterally netted in full or in part through node 0.
Partial multilateral netting accounts for the case when only a part of the contracts, for example
the standardized contracts, are eligible for multilateral netting. It can also account for the case
when some transactions, e.g. customer-dealer, are not eligible for central clearing.

We denote by αij ∈ [0, 1] the fraction of nominal interbank liability Lij that is intermediated
through node 0. We deliberately assume that αij ≤ 1. That is, we can interpret Lij as gross

2See www.isitc.org/market_practice.

6

www.isitc.org/market_practice.


nominal liability of bank i towards bank j, before bilateral netting. The case αij > 1 would
correspond to the situation when partial clearing of the liabilities of bank i towards bank
j increases its nominal liabilities due to the breaking of bilateral netting opportunities. The
tradeoff between bilateral netting and multilateral netting and that partial clearing may lead to
an increase in the average liability in the network is well understood for a variety of distributions
of the liabilities [15, 12]. With αij ≤ 1, our results are driven by network effects and not by
the break-up of bilateral netting opportunities. The total liabilities of the banks decrease in
nominal terms, but the network is “rewired” as described in the following.

We denote α = (αij)i,j∈[m] ∈ [0, 1]m×m, and write 0 for the all-zero matrix, and 1 for the
all-one matrix. We denote the net exposure of node i to node 0 under partial clearing by

Λi(α) =
∑
j∈[m]

αjiLji −
∑
j∈[m]

αijLij . (7)

The net exposure of bank i to the other banks,

Λi(1) =
∑
j∈[m]

Lji −
∑
j∈[m]

Lij , (8)

is equal to the exposure of bank i to node 0 under full multilateral netting, i.e., α = 1.

The total nominal liabilities of node i (towards the node 0 and the other banks) sum up to

L̂i(α) =

{∑
j∈[m](1− αij)Lij + Λ−i (α), i ∈ [m];∑
j∈[m] Λ+

j (α), i = 0.

We define the relative liability weights for bank i ∈ [m] by

Π̄ij(α) =


(1−αij)Lij

L̂i(α)
, j 6= 0;

Λ−i (α)

L̂i(α)
, j = 0;

(9)

and for node 0 by

Π̄0j(α) =
Λ+
j (α)

L̂0(α)
.

Using the above equations, we can interpret the partial clearing as a “rewiring” of the
financial network. The “rewired” network introduces for each bank, in case of partial clearing,
liabilities to more banks than the initial network. The resulting relative interbank liability
weights are given as

Π̂ij(α) = Π̄ij(α) + Π̄i0(α)× Π̄0j(α), i, j ∈ [m].

Indeed, it is straightforward to verify that∑
i∈[m]

Π̂ij(α) = 1 and Π̂ij(0) = Πij .
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In equilibrium, this leads to a clearing price P̂ ∗ = P̂ ∗(α) and total liability vector L̂∗ =
(L̂∗1, . . . , L̂

∗
m) = L̂∗(α), which can be determined as a fixed point, Φ̂(P̂ ∗, L̂∗) = (P̂ ∗, L̂∗), of the

non-linear map Φ̂ on [Pmin, P ]× [0, (L̂1, . . . , L̂m)], given by
Φ̂0(p, `) = f

∑
i∈[m]

(L̂i − γi −
∑

j∈[m] `jΠ̂ji)
+

p
∧ yi, P


Φ̂i(p, `) = L̂i ∧

yi · p+ γi +
∑
j∈[m]

`jΠ̂ji

 , i ∈ [m],

(10)

similar to (2). Theorem 2 implies that the mapping Φ̂ has a unique fixed point under the stated
assumptions. As before, we define the equilibrium net worth of each bank i ∈ [m] by

Ĉi(α) := yiP̂
∗(α) + γi +

∑
j∈[m]

L̂∗j (α)Π̂ji(α)− L̂i(α).

The shortfall is given by
Ĉ−i (α) = L̂i(α)− L̂∗i (α).

Similarly to (4), the aggregate surplus satisfies∑
i∈[m]

Ĉ+
i (α) =

∑
i∈[m]

yiP̂
∗(α) +

∑
i∈[m]

γi.

Using (10) and the definition of the net exposure (8), we find that the shortfall vector
(Ĉ−1 , . . . , Ĉ

−
m) solves the fixed point equation

Ĉ−i (α) =

L̂i(α)− γi − yiP̂ ∗ −
∑
j∈[m]

L̂∗j (α)Π̂ji

+

=

∑
j∈[m]

L̂j(α)Π̂ji − Λi(1)− γi − yiP̂ ∗ −
∑
j∈[m]

L̂∗j (α)Π̂ji

+

=

∑
j∈[m]

(
L̂j(α)− L̂∗j (α)

)
Π̂ji − Λi(1)− γi − yiP̂ ∗

+

=

∑
j∈[m]

Ĉ−j (α)Π̂ji(α)− γi − yiP̂ ∗ − Λi(1)

+

.

(11)

From (11) we see that the shortfall of bank j 6= i is borne by bank i according to the propor-
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tionality rule Π̂ji(α). Similarly, we find that the clearing price P̂ ∗ = P̂ ∗(α) satisfies

P̂ ∗ = f

∑
i∈[m]

(
L̂i − γi −

∑
j∈[m] L̂

∗
j Π̂ji

)+

P̂ ∗
∧ yi, P


= f

∑
i∈[m]

(∑
j∈[m] Ĉ

−
j (α)Π̂ji(α)− γi − Λi(1)

)+

P̂ ∗
∧ yi, P

 .

(12)

The fixed point equation Φ̂(P̂ ∗, L̂∗) = (P̂ ∗, L̂∗) is thus equivalent to (11)–(12).

We now analyze the effect of partial versus full multilateral netting on banks’ shortfall,
clearing price, and aggregate surplus.

Theorem 5. For any α ∈ [0, 1]m×m, partial versus full multilateral netting increases the
shortfall of bank i,

Ĉ−i (α) ≥ Ĉ−i (1),

reduces the clearing price of the illiquid asset,

P̂ ∗(α) ≤ P̂ ∗(1),

and reduces the aggregate surplus,∑
i∈[m]

Ĉ+
i (α) ≤

∑
i∈[m]

Ĉ+
i (1).

The following example illustrates the adverse effects of partial versus full multilateral netting
listed in Theorem 5, and it shows that partial multilateral netting may also be worse than no
netting.

Example 6. We consider the financial network consisting of m = 5 banks as shown in Figure 1,
where L21 = 2x, L13 = L14 = x and L45 = X � x. Assume that γ2 ≥ 2x so that bank 2 can
pay its liability in full. We also set γ1 = 0 and y1 > 0 and γ4 > 0, with x � γ4 and y4 = 0.
Only bank 1 holds the liquid asset, so the price of this asset depends only on the quantity
liquidated by bank 1.

Under no netting (α = 0) and under full netting (α = 1), we have Ĉ−1 (0) = Ĉ−1 (1) = 0

and there are no liquidations by bank 1. As a consequence, P̂ ∗(0) = P̂ ∗(1) = P . Also, we have
Ĉ−4 (0) = Ĉ−4 (1) = X − x− γ4. Banks 2, 3 and 5 do not have any shortfall.

Consider now the case when all liabilities are cleared, except for L13. That is, we set
α = 1− e13, where eij denotes the matrix which is all zero except for the element (i, j) which

is one. We have Ĉ−4 = X − x− γ4. This shortfall of bank 4 is borne by both banks 1 and 5 in

the respective proportions, Π̂41 = x
X+x and Π̂45 = X

X+x . The total shortfall imposed on bank 1
is thus given by x

X+x × (X − x− γ4), which is approximately x when X � x. Therefore, bank

9



Figure 1: Partial multilateral netting may be worse. The dashed line indicates uncleared
liabilities.

1 has a liquidity shortfall that drives the price of the illiquid asset down. More precisely, the
clearing price P̂ ∗ satisfies

P̂ ∗(α) = f


(

x
X+x × (X − x− γ4)− γ1

)+

P̂ ∗
∧ y1, P

 < P = P̂ ∗(0),

as soon as x
X+x × (X − x− γ4) > γ1. We also have that for Ĉ−1 (α) ≤ Ĉ−1 (0) and, for all i 6= 1,

Ĉ−i (α) = Ĉ−i (0). We thus conclude that the partial netting may increase the shortfall of all
banks and consequently decreases the asset price.

Remark 7. Recall that the partial netting can also be interpreted as excluding the customer-
dealer transactions from multi-lateral clearing. In the example above, we can think of node 3
as the customers of node 1. We conclude that excluding customer-dealer transactions from
multi-lateral netting may have negative effects on shortfall and the asset price.

5 Conclusion

We have shown a uniqueness result for the payment and price equilibrium in a network of
liabilities. Our results hold under mild and natural assumptions on the price impact function:
monotonicity of the price impact function and strict monotonicity of the proceeds of liquidation
in the liquidated quantity.

We have also considered the transformation of the network of liabilities by using multilateral
netting and analyzed its impact on the equilibrium payment vector and the asset price. Under
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full multilateral netting, shortfall and price impact of forced liquidations are minimized, while
not including certain liabilities in the netting agreement may lead to more forced liquidations,
higher price impact and shortfall. The adverse effects of partial versus full clearing are not due
to removing bilateral netting opportunities as in previous papers, such as [15, 12]. Our results
are driven entirely by network effects.

We have not considered a regulated clearing counter party (CCP) for the multilateral net-
ting. A regulated CCP would also have capital requirements. The capitalization and design of
a CCP is of critical importance and is treated in [4]. However, multilateral netting is the main
aspect of central clearing, and our results expose the risks of partial clearing on asset prices
and shortfall. Our example would still hold in case of an undercapitalized CCP, and partial
clearing may still be worse than no clearing.

A Proofs

In this section we present the proofs of all lemmas and theorems in the main text.

Proof of Lemma 1

First, note that Φ0(p, `) is a non-decreasing continuous function of p and `. Also for i ∈ [m], we
have that Φi(p, `) is a non-decreasing continuous function of p and `, as it is the composition
of the non-decreasing continuous maps ` → yp + γ + ΠT ` and ` → ` ∧ L. Last, note that,
Φ(Pmin,0) ≥ (Pmin,0) and Φ(P,L) ≤ (P,L). This implies that the map Φ is bounded, which
concludes the proof.

Proof of Theorem 2

First note that by assumption, yip + γi > 0 for all p > 0 and for all banks i ∈ [m]. By [16,
Theorem 1], when the price of the illiquid asset is fixed at p > 0, there exists a unique clearing
vector of the interbank payments. Let us denote it by `∗(p) and we have that p → `∗(p) is
continuous and non-decreasing by Lemma 1.

Let us denote by

ζ(p) :=
∑
i∈[m]

(Li − γi −
∑

j∈[m] `
∗
j (p)Πji)

+

p
∧ yi ∈ [0, ytot],

the total liquidated value at price p. To prove our theorem we need to show that the function
f(ζ(·), P ) has a unique fixed point.

Now note that the function ζ(.) is continuous non-increasing and the inverse demand function
f(., P ) is continuous non-decreasing. Thus, f(ζ(·), P ) is a non-decreasing continuous function.
Furthermore, we have that f(ζ(P ), P ) ≤ P and that f(ζ(Pmin), P ) ≥ Pmin, since Pmin is the
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priced reached when all available quantity if the asset is liquidated. Therefore, by Tarski’s fixed
point theorem, there exists a fixed point of the function f(ζ(·), P ).

Suppose now by way of contradiction that there exist two fixed points p1 and p2, with
p1 < p2 such that f(ζ(p1), P ) = p1, and f(ζ(p2), P ) = p2.

Since ζ(.) is non-increasing, we have ζ(p1) ≥ ζ(p2). Moreover, if ζ(p1) = ζ(p2) then

f(ζ(p1), P ) = f(ζ(p2), P ),

which contradicts p1 < p2 and ζ(p1) = ζ(p2). Thus, ζ(p1) > ζ(p2). By property (iii) of the
demand function, we have that ζ(p1)f(ζ(p1), P ) > ζ(p2)f(ζ(p2), P ), and thus

ζ(p1)p1 > ζ(p2)p2. (13)

Denote by D(p1) and D(p2) the set of defaulted banks when the price of the illiquid asset
is p1 and respectively p2. We have

D(p1) := {i | Li − γi −
∑
j∈[m]

`∗j (p1)Πji > yip1}, and

D(p2) := {i | Li − γi −
∑
j∈[m]

`∗j (p2)Πji > yip2}.

Clearly D(p2) ⊆ D(p1) since p1 < p2. For k ∈ {1, 2}, we have that

ζ(pk)pk = pk
∑

i∈D(pk)

yi +
∑

i∈[m]\D(pk)

(Li − γi −
∑
j∈[m]

`∗j (pk)Πji)
+

= pk
∑

i∈D(pk)

yi +
∑

i∈[m]\D(pk)

Li − γi −
∑
j∈[m]

`∗j (pk)Πji + (Li − γi −
∑
j∈[m]

`∗j (pk)Πji)
−.

Thus, we infer

ζ(p2)p2 − ζ(p1)p1 = (p2 − p1)
∑

i∈D(p2)

yi − p1

∑
i∈D(p1)\D(p2)

yi

−
∑

i∈[m]\D(p2)

∑
j∈[m]

(
`∗j (p2)− `∗j (p1)

)
Πji +

∑
i∈D(p1)\D(p2)

(
Li − γi −

∑
j∈[m]

`∗j (p1)Πji

)
+

∑
i∈[m]\D(p2)

(Li − γi −
∑
j∈[m]

`∗j (p2)Πji)
− − (Li − γi −

∑
j∈[m]

`∗j (p1)Πji)
−

+
∑

i∈D(p1)\D(p2)

(Li − γi −
∑
j∈[m]

`∗j (p1)Πji)
−.

Furthermore, since `∗(p) is non-decreasing, we have

(Li − γi −
∑
j∈[m]

`∗j (p2)Πji)
− ≥ (Li − γi −

∑
j∈[m]

`∗j (p1)Πji)
−.
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We conclude

ζ(p2)p2 − ζ(p1)p1 ≥ (p2 − p1)
∑

i∈D(p2)

yi − p1

∑
i∈D(p1)\D(p2)

yi

−
∑

i∈[m]\D(p2)

∑
j∈[m]

(
`∗j (p2)− `∗j (p1)

)
Πji

+
∑

i∈D(p1)\D(p2)

(Li − γi −
∑
j∈[m]

`∗j (p1)Πji). (14)

Using the fact that banks that are not in default pay their liabilities in full, while banks that
are in default pay the total of their assets, it follows that∑

i,j∈[m]

(
`∗j (p2)− `∗j (p1)

)
Πji =

∑
i∈[m]

(
`∗i (p2)− `∗i (p1)

)
=

∑
i∈D(p1)\D(p2)

(
Li − (γi + yip1 +

∑
j∈[m]

`∗j (p1)Πji)
)

+
∑

i∈D(p2)

(
yi(p2 − p1) +

∑
j∈[m]

(
`∗j (p2)− `∗j (p1)

)
Πji

)
.

Rearranging terms, we obtain

(p2 − p1)
∑

i∈D(p2)

yi − p1

∑
i∈D(p1)\D(p2)

yi =
∑

i∈[m]\D(p2)

∑
j∈[m]

(
`∗j (p2)− `∗j (p1)

)
Πji

−
∑

i∈D(p1)\D(p2)

(
Li − γi −

∑
j∈[m]

`∗j (p1)Πji

)
. (15)

We now plug (15) in (14) to obtain that ζ(p2)p2 − ζ(p1)p1 ≥ 0, which is in contradiction to
(13). This finishes the proof of Theorem 2.

Proof of Lemma 4

Fix the notations of Algorithm 3 and let k ≥ 1. Consider the map

(q, (xj)j∈D(k))→ (Φi(q, (xj)j∈D(k)), (Lj)j∈L(k)))i∈{0}∪D(k) (16)

defined on [Pmin, p(k − 1)]×
∏
i∈D(k)[0, `i(k − 1)], with Φ defined in (2).

Since for all i ∈ D(k) we have that

yi · p(k − 1) + γi +
∑
j∈[m]

`j(k − 1)Πji < Li,

then on the above domain, Φ0(q, (xj)j∈D(k)), (Lj)j∈L(k)) writes as the right-hand side of (6)
and Φi(q, (xj)j∈D(k)), (Lj)j∈L(k)) writes as the right-hand side of (5) for all i ∈ D(k).
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The existence of a maximal solution in step k, (v) of Algorithm 3 is guaranteed then by
Tarski’s fixed-point theorem [21] for the map (16). Indeed, as in Lemma 1, this map is increasing
on [Pmin, p(k − 1)]×

∏
i∈D(k)[0, `i(k − 1)]. Moreover, by induction on step k of the algorithm,

this map takes values in [Pmin, p(k − 1)]×
∏
i∈D(k)[0, `i(k − 1)].

The algorithm will stop in at most m steps since at each step we have |D(k)\D(k−1)| ≥ 1.
We let k∗ the stopping time. We have

p(k∗ − 1) = Φ0(p(k∗ − 1), (`j(k
∗ − 1))j∈D(k∗−1), (Lj)j∈L(k∗−1)),

`i(k
∗ − 1) = Φi(p(k

∗ − 1), (`j(k
∗ − 1))j∈D(k∗−1), (Lj)j∈L(k∗−1)) for all i ∈ D(k∗ − 1),

Li ≤ yi · p(k∗ − 1) + γi +
∑
j∈[m]

`j(k
∗ − 1)Πji for all i ∈ L(k∗ − 1),

and thus (p(k∗ − 1, (`i(k
∗ − 1))i∈D(k−1∗), (Li)i∈L(k∗−1)) is a fixed point of the map (2). By

Theorem 2, this is the unique fixed point.

Proof of Theorem 5

We prove that Ĉ−i (α) ≥ Ĉ−i (1) and P̂ ∗(α) ≤ P̂ ∗(1). Note that Π̂ij(1) =
Λ+
i∑

j∈[m] Λ+
j

. We thus

have, for i ∈ [m],

Ĉ−i (1) =

∑
j∈[m]

Ĉ−j (1)
Λ+
i (1)∑

j∈[m] Λ+
j (1)

− γi − yiP̂ ∗(1)− Λi(1)

+

=

(
Λ+
i (1)

∑
j∈[m] Ĉ

−
j (1)∑

j∈[m] Λ−j (1)
− γi − yiP̂ ∗(1)− Λi(1)

)+

=

(
−Λ+

i (1)

(
1−

∑
j∈[m] Ĉ

−
j (1)∑

j∈[m] Λ−j (1)

)
− γi − yiP̂ ∗(1) + Λ−i (1)

)+

.

Since Ĉ−j (1) ≤ Λ−j (1) for all j ∈ [m] and γi + yiP̂
∗(1) ≥ 0 we have Ĉ−i = 0 for Λi > 0. We

thus have

Ĉ−i (1) =
(
γi + yiP̂

∗(1) + Λi(1)
)−

. (17)

Similarly P̂ ∗(1) satisfies

P̂ ∗(1) = f

∑
i∈[m]

(γi + Λi(1))−

P̂ ∗(1)
∧ yi, P

 . (18)
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We thus have, for all i ∈ [m] and α,

Ĉ−i (α) =

∑
j∈[m]

Ĉ−j (α)Π̂ji(α)− γi − yiP̂ ∗(α)− Λi(1)

+

,

≥
(
γi + yiP̂

∗(α) + Λi(1)
)−

,

and (since f is non increasing)

P̂ ∗(α) = f

∑
i∈[m]

(
∑

j∈[m] Ĉ
−
j (α)Π̂ji(α)− γi − Λi(1))+

P̂ ∗(α)
∧ yi, P


≤ f

∑
i∈[m]

(γi + Λi(1))−

P̂ ∗(α)
∧ yi, P

 .

We thus conclude that Ĉ−i (α) ≥ Ĉ−i (1) and P̂ ∗(α) ≤ P̂ ∗(1).

Moreover, the aggregate surplus satisfies:∑
i∈[m]

Ĉ+
i (1)−

∑
i∈[m]

Ĉ+
i (α) =

(
P̂ ∗(1)− P̂ ∗(α)

) ∑
i∈[m]

yi ≥ 0.
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