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Abstract. The Riemann solutions to a reduced 3 × 3 mathematical model governing blood
flow in medium to large size vessels with discontinuous material properties are constructed in a
uniform manner for the case of subcritical initial data. A tube law involving discontinuous mechanical
properties is used to close the system. Consequently, the task of constructing the Riemann solutions
becomes very complicated and challenging. Two combined wave curves in the state space named
L–M and R–M curves are defined in order to deal with resonance or weak hyperbolicity of the
governing system. The classification of the L–M and R–M curves depends on the existence and
monotonicity of two basic composite wave curves, which are analyzed in complete detail. All possible
wave configurations with classical and resonant waves are studied in detail. Moreover, the cases of
vessel collapse are also included, even though for the case of arteries, under physiological conditions,
this is only of academic value. The resulting Riemann solution comprehensively explains the effects
of rapid and discontinuous change of material properties on the velocity of blood flows and the cross
sectional area of blood vessels. In the future, the Riemann-problem solutions obtained here could be
of use for constructing useful numerical schemes for solving the initial-boundary value problem for
complex vessel networks.
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1. Introduction. Models for the physiological flows through flexible tubes are
a rich source of interesting mathematical problems associated with partial differential
equations. In particular, a simplification of the full fluid-structure interaction problem
that describes the interactions between the pressure of the fluid and compliant walls
gives rise to non-linear hyperbolic systems. For background see, for example, [16], [27],
[28], [9], [8], and references therein. When the material properties that characterize
blood vessels, such as the Young’s modulus, are constant, then such systems are
strictly hyperbolic, have conservative form, their solutions are well understood and
satisfactory numerical methods can be devised; see [31], [4], [1], and [22] for instance.

Difficulties arise when one attempts to include geometrical and mechanical proper-
ties which vary rapidly or even discontinuously, such as in stenosed or stented vessels.
In these cases an abrupt variation of the undistorted cross-sectional area or an abrupt
variation of the Young’s modulus of the vessel wall can induce transitions through the
critical state. Then a complex cross-sectional profile appears where both subcritical
and supercritical conditions appear [29], [18].

Recently, Toro and Siviglia [32] put forward a mathematical model that consists
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of a 3× 3 first-order non-conservative system. It is given as

∂tA+ ∂x(Au) = 0,
∂t(uA) + ∂x(Au

2 + AΨ
ρ
)− Ψ

ρ
∂xA = 0,

∂tK = 0,

(1.1)

where A(x, t) is the cross sectional area of the blood vessel, u(x, t) is the averaged
velocity of blood for the cross section, ρ is the blood density assumed to be constant,
Ψ and K represent the transmural pressure and time-independent material properties
of the blood vessel respectively. Usually, several other terms are added to take into
account, for example, viscous resistance of the flow per unit length of the blood vessel,
body forces, and the other properties of the cardiovascular system, see e.g. [32, 4, 5].
Here we neglect all these effects. For a model that includes more physical parameters
see [33]. A constitutive relation, named the tube law, is required to close the system
(1.1), and is given as

Ψ(A;K) := p− pe = K(x)

[(

A

A0

)m

− 1

]

. (1.2)

Here p is the pressure due to the force exerted by the vessel walls and the pumping
action of the heart, while pe is the external pressure at which the cross sectional area
and the radius of the tube reach an equilibrium state, i.e. A = A0 and R = R0. For
the sake of simplicity, in this work pe and m are assumed to be constant. In particular,
the parameter m = 1

2 correctly describes wave propagation patterns in networks of
arteries, as extensively reported in the existing literature [1, 23].

The first-order system (1.1) is resonant hyperbolic; see [32], [15] and [25]. Weak
solutions to resonant hyperbolic systems have been defined in the theory introduced
by Dal Maso, LeFloch and Murat in [7]. Due to the non–conservative terms, the strict
hyperbolicity and uniqueness are lost. This common feature can also be found in the
other well–known resonant hyperbolic systems; see, e.g. [25, 15, 26, 14, 19, 2, 3, 20,
30, 21, 11, 10]. Mathematically, resonant hyperbolic systems can be decoupled into
a strictly hyperbolic part and a stationary source part. The strictly hyperbolic part
has been extensively studied in the literature; see [22, 31] and references therein. The
stationary source part, however, entirely depends on the physical process that the
model describes. Moreover, the resonance is very difficult to analyze under a uniform
framework due to the coincidence of the stationary source and one of the nonlinear
wave families of the strictly hyperbolic part.

In this paper we carry out a mathematical study of (1.1). According to [32], the
mathematical structure of (1.1) is similar to other well studied resonant hyperbolic
systems, e.g. the shallow water equations with bottom topography [20, 10] and the
isentropic gas dynamic equations in a nozzle with variable cross-sectional area [26, 14,
19]. The framework for the construction of the Riemann solutions to these entirely
different models is similar. However the challenge for incorporating the resonance in
the system is different from model to model. This leads to a considerable body of
literature on the topic of the Riemann problem of resonant hyperbolic systems.

LeFloch and Thanh investigated the Riemann problem for the shallow water
equations with discontinuous bottom topography in [20, 21]. There they studied
existence and uniqueness of the Riemann solutions based on the possible mutual
positions of the wave curves in the state plane. However they omitted one possible
type of solutions, which is denoted as the wave configuration E in [10]. Moreover
they did not give complete proofs for the existence and uniqueness of the solutions.
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Especially for the conjectures in [21, Remark 4, p. 7641, Remark 6, p. 7646]. It
is worth remarking that the numerical solution by the Godunov scheme proposed by
them converged to the wrong solution in their test 7; see [21, p. 7658]. They concluded
that this phenomenon was due to a limitation of the physical model itself, rather than
due to an error in the exact Riemann solver. The analogous construction for the
Riemann solution to the equations of gas dynamics in a nozzle with discontinuous
cross-sectional area can be found in [19, 30].

Recently, inspired by Marchesin and Paes-Leme in [26], Han et al. [11, 10] com-
pletely solved the Riemann problem for the equations of gas dynamics in a nozzle with
discontinuous cross-sectional area and the shallow water equations with discontinu-
ous bottom topography respectively. In [11, 10], a velocity function was introduced
to get rid of the stationary wave curves. The existence and monotone behavior of the
velocity function played a crucial role in the classification of the cases of the Riemann
problem. The composite wave curves were defined in the state plane for the construc-
tion of solutions to Riemann problems. The multiplicity of Riemann solutions was
attributed to the bifurcation on the composite wave curves in the state plane. This
makes the approach in [11, 10] to the Riemann solutions different from the previ-
ous work in [19, 30, 21]. In addition, the existence and uniqueness of the Riemann
solutions for corresponding models have been completely established for any given
Riemann initial data under the framework in [11, 10].

The present work is devoted to the complete construction of the Riemann solution
for the 3× 3 first–order nonlinear resonant hyperbolic system (1.1) following [11, 10].
Note that the tube law (1.2), which is analogous to the equation of state in gas
dynamics, see e.g. [24, 30, 11], involves the mechanical property variable K. For
the Riemann problem we consider the variable K is discontinuous. This makes the
construction of the Riemann solutions very challenging, much more so than for the
analogous extended systems for shallow water with discontinuous bottom topography
[20, 21, 10] and gas dynamics equations in ducts with continuous equation of state [30,
11]. For the mathematical complications of the Riemann problem for homogeneous
gas dynamics systems with non-smooth equation of state, we refer to [6] and references
therein.

The Riemann solutions without the resonant waves have been partially studied
by Toro and Siviglia in [32]. There they neglected the resonant waves. According
to [32], there exist three elementary waves for the governing system. One is the
stationary wave which is associated to a linearly degenerate characteristic field due
to jump discontinuities of geometrical and mechanical properties of the blood vessels,
e.g. external pressures, muscle forces, wall thickness, and Young’s modulus etc. The
remaining two elementary waves are nonlinear waves which are distinct from each
other and associated to genuinely nonlinearly characteristic fields. The nonlinear
waves consist of shocks and rarefactions.

The stationary wave curves are deduced from the nonlinear velocity function.
In order to completely solve the Riemann problem, the stationary wave curve was
attached to two nonlinear wave curves. These combined wave curves are defined as the
L–M and R–M curves, since they are the set of intermediate states related to the left
and right given Riemann initial data. In addition, the types of the wave configurations
are determined by the existence and monotonicity of two basic composite wave curves.
Due to them, as well as the complicated tube law (1.2), a number of critical values are
introduced; these depend on the equilibrium states, the ratio of mechanical properties
and the blood vessel areas. The relations of these critical values, the subcritical and
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the supercritical speed index of the Riemann initial data are used to classify the cases
of the L–M and R–M curves.

In this work, we only focus on the Riemann solution to the subcritical speed
index initial data cases in order to restrict the length of the paper. The Riemann
solution for the supercritical speed index cases will be presented in a follow up paper
[12]. Concerning the Riemann problem with subcritical initial data, the L–M and
R–M curves are continuous as well as monotone decreasing and increasing, respec-
tively. Therefore the Riemann solution uniquely exists. Several examples are used to
illustrate this point. Moreover the exact Riemann solutions obtained can be directly
applied as reference solutions to assess the performance of numerical schemes. They
also reveal the specific wave propagation and interactions of the model coupled with
tube laws having discontinuous material properties. A special phenomenon occurs,
that both the inflow and the outflow states are critical states for certain cases; this is
due to the admissible jump of the variable accounting for mechanical properties. This
phenomenon can never occur in the other well–known resonant hyperbolic systems
with smooth constitutive relations. The current one-dimensional model is an integral
component of large multi-scale models for the cardiovascular system [28]. Therefore
this work will help in the development of models to simulate realistic configurations
of the human circulation system.

In addition we have to point out that the exact Riemann solution constructed in
this work is a weak solution under the theory introduced in [7]. For details we refer
to [13]. Moreover, the present results only works for the parameter m in region ]0, 1[
under an extra conjecture given in [12, Assumption 3.15].

This paper is organized as follows. In Section 2 we introduce the model and
analyze its mathematical properties. Here three distinct elementary waves and their
properties are studied. In Section 3 we first focus on the behavior of the two basic
composite wave curves. Based on them, we classify and formulate the L–M and R–M
curves. Several examples for different wave configurations are presented. Conclusions
are drawn in Section 4.

2. Model and mathematical properties. One dimensional blood flows in
medium to large diameter compliant vessels can be regarded as continuum and in-
compressible flows in thin–walled collapsible tubes. A simplified 3 × 3 system (1.1)
was proposed by Toro and Siviglia in [32] along with the tube law (1.2), with the
mechanical property variable K(x) taken as

K(x) =

√
π

(1− ν2)R0

Eh√
A0

,

where the additional variable h is the thickness of the vessel wall, E is the Young’s
modulus of elasticity, and ν is the Poisson ratio.

Following Ku [17], we define the local elastic tube pressure wave speed of (1.1) as

c(A,K) :=
√

A
ρ
ΨA =

√

mK
ρ

(

A
A0

)m

. (2.1)

It is analogously to the sound speed in gas dynamics, see [11]. In addition the ratio
of local velocity to local tube wave speed is named speed index given as

SI =
u

c
. (2.2)
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The superscript I is used to distinguish SI from the other variables related to the
wave speed. This speed index is analogous to Mach number or Froude number in the
fluid mechanics. Specifically, we say that the blood flow is subcritical if |SI | < 1; It
is supercritical if |SI | > 1; And it is critical if |SI | = 1.

Note that if K is constant, then (1.1) is a 2 × 2 conservative strictly hyperbolic
system. In this case the Riemann solutions are well established, see e.g. Toro [31],
LeVeque [22], Brook et al. [4], etc. Hereafter, we always assume that K is not
constant. Then the quasi linear form of the system (1.1) is

Wt +A(W)Wx = 0,

where W = (A, u, K)
T
and the Jacobian matrix A(W) is in the form

A(W) =





u A 0
ΨA

ρ
u ΨK

ρ

0 0 0



 .

The three eigenvalues of the Jacobian matrix A(W) are

λ0 = 0, λ1 = u− c, λ2 = u+ c.

The system (1.1) is weakly hyperbolic as a result of the fact that λ0 can coincide with
the other two eigenvalues. The corresponding right eigenvectors are

R0 =





1
0

(u2−c2)
c2



 , R1 =





1
u− c
0



 , R2 =





1
u+ c
0



 .

Direct calculation yields that

R0 → (1, 0, 0)T , Rj → (1, 0, 0)T as λj → 0 for j = 1, 2.

Consequently the system (1.1) is degenerate at the critical states u = ±c. It is a
resonant or weakly hyperbolic system.

The Riemann initial data of (1.1) are two piecewise constant data given as follows

(K,A, u) (x, 0) =

{

(KL, AL, uL) , x < 0,
(KR, AR, uR) , x > 0,

(2.3)

Without loss of generality, let cL = c(AL,KL) and cR = (AR,KR) denote, respec-
tively, the local elastic tube pressure wave speed of the left and right Riemann initial
data.

Concerning the Riemann solutions to (1.1) and (2.3), there are three different
elementary waves associated to the corresponding characteristic fields. We use j-
waves, j = 0, 1, 2, to denote the waves associated to the j–characteristic fields when
the eigenvalues are distinct from each other. Specifically the 1– and 2–waves are
shocks or rarefactions. The 0-wave is a stationary wave due to the jump of the
parameter K at x = 0. When a shock or a rarefaction does not coincide with the
stationary wave, i.e. they are not located at or across the line x = 0, the parameter
K is constant across these nonlinear waves. Toro and Siviglia in [32] derived the
Rankine–Hugoniot conditions and the Riemann invariants for shocks and rarefactions
respectively. We shortly recall the shock and rarefaction curves in the next section.
The detailed derivation can be found in [32].
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2.1. Shock and rarefaction curves. Let wq = (Aq, uq)
T be any state in state

space and j = 1, 2 represent the number of the wave family. Assume that the state
w = (A, u)T is connected to wq by a j–shock. Then the shock speed σj and the
velocity u can be expressed as follows

σj(A;wq) = uq ±
cq√
m+ 1







(

A
Aq

)m+1

− 1

1− Aq

A







1
2

, (2.4)

u = uq ±
cq√
m+ 1

[(

(

A

Aq

)m+1

− 1

)

(

1− Aq

A

)

]
1
2

, (2.5)

where A > Aq, σj and u takes − when j = 1 and + when j = 2 in (2.4) and (2.5).
We use admissible shock curves Sj(wq) to denote states that can be connected to wq

by a j–shock given by

Sj(wq) =

{

(A, u) | u = uq ± cq√
m+1

[(

(

A
Aq

)m+1

− 1

)

(

1− Aq

A

)

]
1
2

with A > Aq

}

.

For any given state wq with Aq > 0, assume that w ∈ Sj(wq), then the following Lax
entropy conditions can be established for 1– and 2–shocks:

u− c < σ1(A;wq) < uq − cq, (2.6)

and

uq + cq < σ2(A;wq) < u+ c.

With particular emphasis we investigate subset of states S0
j (wq) given as

S0
j (wq) = { w | w ∈ Sj(wq) and σj(A;wq) = 0} . (2.7)

Note that S0
j (wq) refers to the states which can be connected to wq by a steady shock,

i.e. σj(A;wq) = 0. Hence from (2.4), we get

(

A

Aq

)m+2

−
[

1 + (m+ 1)

(

uq

cq

)2
]

(

A

Aq

)

+ (m+ 1)

(

uq

cq

)2

= 0. (2.8)

This motivates a function F (x) with respect to x = A
Aq

> 1 given by

F (x) := xm+2 −
[

1 + (m+ 1)

(

uq

cq

)2
]

x+ (m+ 1)

(

uq

cq

)2

. (2.9)

Note that

F ′(x) = (m+ 2)xm+1 −
[

1 + (m+ 1)

(

uq

cq

)2
]

.
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We introduce the value

x∗ =







1 + (m+ 1)
(

uq

cq

)2

m+ 2







1
m+1

,

and obtain the fact that x∗ > 1 due to
(

uq

cq

)2

> 1. Moreover the function F (x) is

decreasing when x < x∗ and increasing when x > x∗. Furthermore we have

F (x∗) = (m+ 1)







(

uq

cq

)2

−
[

1+(m+1)
(

uq
cq

)2

m+2

]
m+2
m+1







< 0.

Hence the equation F (x) = 0 with x > x∗ > 1 always has a unique solution. We
denote it as xs0j

. It can be calculated by iteration methods. Therefore the set of

states S0
j (wq) contains only one state denoted as

ŵj,q = S0
j (wq) j = 1, 2. (2.10)

The components of ŵj,q can be calculated by

Âj,q = Aqxs0j
, ûj,q =

Aquq

Âj,q

. (2.11)

Similarly, we use Rj(wq) to denote the set of states which can be connected to
the given state wq by a j–rarefaction, i.e.

Rj(wq) =
{

w | u = uq ± 2
m
(c− cq) with A ≤ Aq

}

.

The nonlinear 1– and 2–waves consist of shocks and rarefactions. Therefore the
corresponding wave curves denoted as T1(wL) and T2(wR), respectively, can be de-
scribed entirely as a one parameter family of states given as

T1(wq) = {w|u = uL − f(A;wL), A > 0} , (2.12)

T2(wq) = {w|u = uR + f(A;wR), A > 0} , (2.13)

where

f(A;wq) :=















2
m

(
√

mKq

ρ

(

A
A0

)m

− cq

)

, if A ≤ Aq,

cq√
m+1

[(

(

A
Aq

)m+1

− 1

)

(

1− Aq

A

)

]
1
2

, if A > Aq.

(2.14)

More important, the following lemma holds.
Lemma 2.1. Assume that 0 < m < 1, then the 1–wave curve T1(wL) is strictly

decreasing and convex, while the 2–wave curve T2(wR) is strictly increasing and con-
cave in the (u,A) state plane.

Proof. Note that the behaviors of T1(wL) in (2.12) and T2(wR) in (2.13) are
entirely determined by the nonlinear function f(A;wq). So it is enough to prove
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that the function f(A;wq) is monotone increasing and concave for 0 < m < 1. The
derivative of the function f(A;wq) is

f ′(A;wq) :=























√
mKq

ρ

(
A
A0

)m

A
, if A ≤ Aq,

cq

2Aq

√
m+1

(m+1)
(

A
Aq

)m
−m

(
A
Aq

)m−1
−
(

Aq
A

)2

√((
A
Aq

)m+1
−1

)(

1−
Aq
A

)
, if A > Aq.

(2.15)

Note that when A > Aq we have

f ′(A;wq) =
cq

2Aq

√
m+ 1

m
(

A
Aq

)m−1 (
A
Aq

− 1
)

+
(

A
Aq

)m

−
(

Aq

A

)2

√

(

(

A
Aq

)m+1

− 1

)

(

1− Aq

A

)

. (2.16)

So (2.15) and (2.16) imply that f ′(A;wq) > 0 and lim
A→Aq+

f ′(A;wq) =
cq
Aq

by l’Hôpital’s

rule due to both the numerator and denominator of the fraction go to zero. Concern-
ing the concavity we consider the second derivative of the function f(A;wq), which
is

f
′′

(A;wq) :=















(

m
2 − 1

)

A
m
2 −2

√

mKq

ρ

(

1
A0

)m

, if A ≤ Aq,

cq

4A2
q

√
m+1

g(A)
[((

A
Aq

)m+1
−1

)(

1−
Aq
A

)] 3
2
, if A > Aq,

(2.17)

where

g(A) = 2

[

m(m+ 1)

(

A

Aq

)m−1

−m(m− 1)

(

A

Aq

)m−2

+ 2

(

A

Aq

)−3
][

(

A

Aq

)m+1

−

(

A

Aq

)m

+

(

A

Aq

)−1

− 1

]

−
[

(m+ 1)

(

A

Aq

)m

−m

(

A

Aq

)m−1

−
(

A

Aq

)−2
]2

.(2.18)

On one hand obviously we have f
′′

(A;wq) < 0 when A ≤ Aq; on the other hand we

need to show that f
′′

(A;wq) < 0 also holds when A > Aq. It is enough to confirm
this point by verification that g(A) < 0 when A > Aq. Set x = A

Aq
> 1, then we have

g(x) = x−4
{

2
[

m(m+ 1)xm+2 −m(m− 1)xm+1 + 2
] (

xm+1 − 1
)

(x− 1)

−
[(

mxm+1 + 1
)

(x− 1) + x(xm+1 − 1)
]2
}

.

Using the inequality (a+ b)2 ≥ 4ab for any a, b ∈ R we obtain

g(x) ≤ − 2

x4

[

m(1−m)xm+2 + 2
]

(x− 1)2
(

xm+1 − 1
)

< 0,

when 0 < m < 1 and x > 1. This establishes the lemma.
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2.2. Stationary wave curves. For two states connected by the stationary
wave, we use the subscript in to represent the inflow variables while out to repre-
sent the outflow variables. Then according to Toro and Siviglia [32], the inflow state
and the outflow state satisfy the relations

Aoutuout = Ainuin, (2.19)

1

2
ρu2

out +Kout

[(

Aout

A0

)m

− 1

]

=
1

2
ρu2

in +Kin

[(

Ain

A0

)m

− 1

]

. (2.20)

From (2.19), we have sgn(uout) = sgn(uin). Moreover, if uin = 0 and

Ain ≥ A0

(

1− Kout

Kin

)

, (2.21)

then

uout = 0, Aout = A0

[

Kin

Kout

(

Ain

A0
− 1

)

+ 1

]

.

Otherwise if (2.21) fails, the outflow state does not exist. The details will be discussed
in Section 3.3.3. In the remaining part of this section we always assume that uin 6= 0.
For the given inflow states win as well as the parameters Kin and Kout, our aim is to
calculate the outflow state wout.

For simplicity we can use the notation wout = J(Kout;win,Kin) to represent the
explicit solution wout implicitly given by (2.19) and (2.20), where

{

Kin = KL,
Kout = KR,

when uin > 0,

{

Kin = KR,
Kout = KL,

when uin < 0. (2.22)

Analogously to the shallow water equations [10, 19] and the gas dynamics equa-
tions in a nozzle [11, 20], we also take the discontinuous K as the limiting case of
piecewise monotonic mechanical property variables with slope going to infinity. A ve-
locity function φ(u;win,Kin,Kout) is deduced from inserting (2.19) into (2.20) given
by

φ(u;win,Kin,Kout) :=
1

2
ρu2+Kout

[(

Ainuin

A0u

)m

− 1

]

−1

2
ρu2

in−Kin

[(

Ain

A0

)m

− 1

]

.

(2.23)
The behavior of the velocity function is summarized in the following lemma.

Lemma 2.2. Consider

u∗ = sgn(uin)

[

mKout

ρ

(

Ain|uin|
A0

)m] 1
m+2

,

then the properties of the velocity function are the following:
1. φ(u;win,Kin,Kout) decreases if u < u∗;
2. φ(u;win,Kin,Kout) increases if u > u∗;
3. φ(u;win,Kin,Kout) has the minimum value at u = u∗. Moreover we have

|u∗| = c∗, where c∗ = c(Kout, A
∗) is defined in (2.1) and A∗ = Ainuin

u∗
.

Proof. The derivative of this function is

∂φ

∂u
(u;win,Kin,Kout) = ρu− mKout

u

(

Ainuin

A0u

)m

. (2.24)



10 E. Han, G. Warnecke, E.F. Toro and A. Siviglia

Consequently, we have

∂φ(u;win,Kin,Kout)

∂u







< 0, if u < u∗,
= 0, if u = u∗,
> 0, if u > u∗.

It follows that the velocity function φ(u;win,Kin,Kout) is decreasing when u < u∗

and increasing when u > u∗. It has the minimum value at u = u∗. By (2.1) and
(2.19) we obtain

c =

√

mKout

ρ

(

A

A0

)m

=

√

mKout

ρ

(

Ainuin

uA0

)m

,

So we get the formula

∂φ

∂u
(u;win,Kin,Kout) =

ρ

u
(u2 − c2). (2.25)

Specifically ∂φ(u∗;win,Kin,Kout)
∂u

= 0, therefore we have |u∗| = c∗.
Corollary 2.3. Lemma 2.2 shows that the equation φ(u;win,Kin,Kout) = 0

may have two, one or no solutions. Further discussions are as follows:
1. If φ(u∗;win,Kin,Kout) < 0, the equation φ(u;win,Kin,Kout) = 0 has two

solutions. We denote the one closer to 0 as ul and the other one as ur, let cl
and cr be the corresponding local elastic tube pressure wave speeds. According
to (2.25), u2

l − c2l < 0 and u2
r − c2r > 0. Comparing with the gas dynamics

equations in a nozzle and the shallow water equations, see [11, 10], the velocity
uout of the outflow state wout is taken to satisfy the following condition

sgn(u2
q − c2q) = sgn(u2

in − c2in), (2.26)

where q = l, or r.
2. If φ(u∗;win,Kin,Kout) = 0, the equation φ(u;win,Kin,Kout) = 0 has exactly

one solution u = u∗.
3. If φ(u∗;win,Kin,Kout) > 0, the equation φ(u;win,Kin,Kout) = 0 has no

solution. This implies that there is no outflow state.
Corollary 2.4. If u2

in = c2in, then the condition (2.26) cannot be satisfied any
more. There exist two solutions to the corresponding stationary wave. One is subcrit-
ical and the other is supercritical. How to choose the solution for the corresponding
stationary wave in such a case will be discussed in Sections 3.1.4 and 3.3.2.

3. L–M and R–M curves. In this work without loss of generality we always
assume that

KL > KR. (3.1)

The opposite case can be treated as a mirror–image problem by setting the velocity
in the inverse direction.

The determination of the mutual positions of the elementary waves is achieved by
combining the stationary wave curve with the 1– or 2–wave curves. We name them
L–M and R–M curves. These two curves can be regarded as an extension of the 1–
wave curve T1(wL) and the 2–wave curve T2(wR), see (2.12) and (2.13), respectively.
The detailed definition of the L–M and R–M curves can be found in Sections 3.3 and
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3.4. They will serve as a building block for the calculation of the Riemann solutions
to (1.1) and (2.3). An analogous construction can be found in [10, 11].

There is precisely one stationary wave in a full wave curve from wL to wR located
either on the L–M curve or the R–M curve. From (2.19), we get that the velocity
does not change sign across the stationary wave. This leads to the following facts:

1. If the velocity of the stationary wave is positive, then the stationary wave is
attached to the L–M curve;

2. If the velocity of the stationary wave is negative, then the stationary wave is
attached to the R–M curve.

Hence the L–M and R–M curves will totally degenerate into the nonlinear wave curves,
i.e. the 1–wave curve T1(wL) and the 2–wave curve T2(wR), when u < 0 and u > 0
respectively.

Furthermore, to involve the collapse of vessels, we define the two critical values
for the left and right initial data given as

uL
col = uL +

2

m
cL, uR

col = uR − 2

m
cR. (3.2)

The condition uL
col < 0 implies that the L–M curve in the (u,A) plane meets the

line A = 0 before the stationary wave is attached to it. In such kind of case the L–M
curve degenerates into

P l(wL) =
{

w|w ∈ T1(wL) with u ≤ uL
col

}

. (3.3)

Analogously if uR
col > 0, the R–M curve degenerates into

P r
1 (wR) =

{

w|w ∈ T2(wR) with u ≥ uR
col

}

. (3.4)

For the given noncollapsible Riemann initial datawL andwR, if u
L
col < 0 and uR

col > 0,
the solution is trivial and has the wave configuration A1

col, see Figure 3.13. In it the
stationary wave disappears due to the collapse of the vessel around x = 0. The
example of the Riemann solution is similar to the one given in [32, Fig. 4 ] but with a
jump of the material property K. The collapsible vessel states are like vacuum states
in gas dynamics and dry bed states in shallow water.

In the following we always assume that uL
col > 0 and uR

col < 0 unless otherwise
stated. In such kind of case the L–M curve always contains the segment

P l
1(wL) = {w|w ∈ T1(wL) with u < 0} ; (3.5)

And the R–M curve has the segment

P r
1 (wR) = {w|w ∈ T2(wR) with u > 0} . (3.6)

The remaining parts of the L–M and R–M curves contain the resonant waves which
are not yet determined.

There are two basic types of resonant waves. One type is due to the coincidence
of the stationary wave with the transcritical rarefactions. And the other type is due
to the coincidence of the stationary wave with a zero speed shock. It turns out that
these two basic resonant waves as well as the remaining resonant waves are entirely
associated to two basic composite wave curves. In the following section we will focus
on these two composite wave curves.
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3.1. Two basic composite wave curves. The first basic composite wave curve
is classical. It consists of one nonlinear wave followed by a stationary wave. We use
P j
ES(wq), j = 1, 2, to denote this basic composite wave associated with the 1– and

2–wave family respectively. The second basic composite wave curve is resonant due to
the coincidence of the stationary wave with a zero speed shock. This zero speed shock
will split the stationary wave into two parts. One part is a supercritical stationary
wave. The other part is a subcritical stationary wave. Analogously we use P j

s0s(wq)
to denote the second basic composite wave curve, where the inflow state wq must be
critical or supercritical.

3.1.1. The basic wave curve P j
ES(wq). For the subcritical state wq, P

j
ES(wq)

is defined as

P j
ES(wq) =

{

w|w = J(Kout;w−,Kin),w− ∈ Tj(wq);S
w
j (A−;wq) ≷ 0, u− ≶ 0

}

,
(3.7)

where Kin and Kout were defined in (2.22), and Sw
j (A−;wq) represents the j–wave

speed, for j = 1, 2, given by

Sw
j (A−;wq) =

{

u− ± c−, A− ≤ Aq,
σj(A−;wq), A− > Aq.

In addition, P 1
ES(wq) requires that Sw

1 (A−;wq) < 0 and u− > 0, while P 2
ES(wq)

requires that Sw
2 (A−;wq) > 0 and u− < 0.

We start with the behavior of P 1
ES(wL). Note that w− ∈ T1(wL) and the curve

T1(wL) decreases in the (u,A) state plane. To satisfy the restriction Sw
1 (A−;wL) < 0

and u− > 0, we define two boundary blood vessel cross sectional areas denoted as

A
P 1

ES

min and A
P 1

ES
max. The minimum blood vessel cross sectional area A

P 1
ES

min corresponds
to Sw

1 (A−;wL) = 0. Since uL ≤ cL, we have

A
P 1

ES

min = Ac
l . (3.8)

Here Ac
l is the blood vessel cross sectional area of the critical state wc

l ∈ T1(wL).
Specifically the components of wc

l = (Ac
l , u

c
l )

T are

Ac
l = A0

(

ρ

mKL

)
1
m
(

m

m+ 2
uL +

2

m+ 2
cL

)
2
m

, (3.9)

uc
l =

m

m+ 2
uL +

2

m+ 2
cL. (3.10)

The maximum blood vessel cross sectional area denoted as A
P 1

ES
max corresponds to the

solution of uL − f(A;wL) = 0. From (2.15), the value A
P 1

ES
max can be expressed as

A
P 1

ES
max =







A0

(

ρ
mKL

)
1
m (m

2 uL + cL
)

2
m , if uL ≤ 0,

Au0
1
, if uL > 0,

(3.11)

where Au0
1
is defined later in (3.17) with j = 1 and wq = wL.

Analogously, for P 2
ES(wq) we introduce the minimum blood vessel cross sectional

area denoted as A
P 2

ES

min with respect to Sw
2 (A−;wR) = 0. Specifically it is given as

A
P 2

ES

min = Ac
r, (3.12)
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where

Ac
r = A0

(

ρ

mKR

)
1
m
(

− m

m+ 2
uR +

2

m+ 2
cR

)
2
m

, (3.13)

uc
r =

m

m+ 2
uR − 2

m+ 2
cR. (3.14)

The maximum blood vessel cross sectional area denoted as A
P 2

ES
max corresponds to the

solution to uR + fR(A;wR) = 0. We have

A
P 2

ES
max =







A0

(

ρ
mKR

)
1
m (−m

2 uR + cR
)

2
m , if uR ≥ 0,

Au0
2
, if uR < 0,

(3.15)

where Au0
2
will be defined later in (3.17) with j = 2 and wq = wR.

We now calculate Au0
1
and Au0

2
. For wq, from (2.5) it satisfies

0 = uq ±
cq√
m+ 1

[(

(

A

Aq

)m+1

− 1

)

(

1− Aq

A

)

]
1
2

.

This equals to

(

A

Aq

)m+2

−
(

A

Aq

)m+1

−
[

1 + (m+ 1)

(

uq

cq

)2
]

(

A

Aq

)

+ 1 = 0. (3.16)

Let x = A
Aq

in (3.16), we abstract a nonlinear function

H(x) := xm+2 − xm+1 −
[

1 + (m+ 1)

(

uq

cq

)2
]

x+ 1.

Our aim is to find the solution to H(x) = 0 with the restriction that x > 1. Direct
calculation yields

H ′(x) = (m+ 2)xm+1 − (m+ 1)xm −
(

1 + (m+ 1)

(

uq

cq

)2
)

,

and

H ′′(x) = (m+ 1)xm−1 [(m+ 2)x−m] .

Note that H ′′(x) > 0 when x > 1 and H ′(1) = −(m+1)
(

uq

cq

)2

< 0. So H ′(x) strictly

increases from a negative value to +∞ when x > 1. There exists a unique solution to

H ′(x) = 0 when x > 1. We use x0 to denote it. MoreoverH(1) = −(m+1)
(

uq

cq

)2

< 0.

Therefore the function H(x) first decreases from a negative value H(1) to H(x0) when
x varies from 1 to x0, then it increases from H(x0) to +∞ when x varies from x0

to +∞. So when x > 1 the equation H(x) = 0 has a unique solution in the region
x > x0. We denote it as xu0

j
, which can be calculated by an iteration method. Then

the corresponding blood vessel cross sectional area is

Au0
j
= Aqxu0

j
. (3.17)

According to Remark 2.3 the stationary state w = J(Kout;w−,Kin) may not
exist. We study the existence and monotonicity of P j

ES(wq) in the subsequent section.
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3.1.2. Existence of P j
ES(wq) with u2

q < c2q. With the aid of Lemma 2.2, the
existence of w = J(Kout;w−,Kin) is equivalent to the minimum value of the corre-
sponding velocity function being not positive. Specifically it is given by

m+ 2

2m
ρ

(

Kout

Kin

um
− c2−

)
2

m+2

− 1

2
ρu2

− − ρ

m
c2− +Kin −Kout ≤ 0. (3.18)

We introduce the function

U(A;wq) := uq ± f(A;wq),

where f(A;wq) is defined in (2.15). Due to w− ∈ Tj(wq), the inequality (3.18)
suggests to introduce a function given by

Ωq(A;wq,Kin,Kout) := m+2
2

(

ρ
m

)
m

m+2 K
2

m+2

out

(

AU(A;wq)
A0

)
2m

m+2 − ρU(A;wq)
2

2

−Kin

(

A
A0

)m

+Kin −Kout,

(3.19)
where q = l, r, and Kin and Kout were defined in (2.22), i.e. we have two functions
Ωl(A;wL,KL,KR) and Ωr(A;wR,KR,KL).

Lemma 3.1. The function Ωq(A;wq,Kin,Kout) is decreasing if A
P

j
ES

min < A <

A
P

j
ES

max and u2
q < c2q.

Proof. It is enough to prove that Ωl(A;wL,KL,KR) is decreasing. The case for
Ωr(A;wR,KR,KL) can be dealt with in the same manner. By virtue of the chain
role, the derivative of Ωl(A;wL,KL,KR) is

Ω′
l(A;wL,KL,KR) =

ρ

A

(

KR

KL

)
2

m+2

c(A)
4

m+2U(A;wL)
m−2
m+2 [U(A;wL)−Af ′(A;wL)]

+
ρ

A

[

AU(A;wL)f
′(A;wL)− c(A)2

]

, (3.20)

where c(A) := c(A,KL) for the sake of clarity. Due to (3.8) we have A
P 1

ES

min = Ac
l . On

one hand if A < AL the fact holds that f ′(A;wL) =
c(A)
A

. Hence we have

Ω′
l(A;wL,KL,KR) =

ρc(A)

A

[

(

KR

KL

)
2

m+2
(

U(A;wL)

c(A)

)
m−2
m+2

+ 1

]

[U(A;wL)− c(A)] .

(3.21)
From U(A;wL) − c(A) < U(Ac

l ;wL) − c(Ac
l ) = 0 when A > Ac

l , it directly follows
that Ω′

l(A;wL,KL,KR) < 0 when Ac
l < A < AL. On the other hand, if A > AL

Ω′
l(A;wL,KL,KR) is complicated owing to the function f ′(A;wL) defined in (2.15).

From (3.20) it is enough to prove the following two facts when AL < A < A
P 1

ES
max

w(A) := U(A;wL)−Af ′(A;wL) < 0, (3.22)

and

µ(A) := AU(A;wL)f
′(A;wL)− c(A)2 < 0. (3.23)
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First we investigate w(A). Note that

w′(A) = −2f ′(A;wL)−Af
′′

(A;wL),

= − cL

4AL

√

(m+1)

[(
A

AL

)m+1
−
(

A
AL

)m
+

Aq
A

−1

]

{

4

[

(m+ 1)
(

A
AL

)m

−m
(

A
AL

)m−1

−
(

A
AL

)−2
] [

(

A
AL

)m+1

−
(

A
AL

)m

+ AL

A
− 1

]

+ A
AL

g(A)

}

,

where g(A) is given in (2.18). After the simplification we get

w′(A) = β

[

(m+ 1)(m+ 3)
(

A
AL

)2m+1

− 2(m+ 1)(m+ 2)
(

A
AL

)2m

+m(m+ 2)
(

A
AL

)2m−1

− 2(m+ 1)(m+ 2)
(

A
AL

)m

+ 2(2m2 + 5m+ 3)
(

A
AL

)m−1

−2m(m+ 2)
(

A
AL

)m−2

−
(

A
AL

)−3
]

< 0,

where β = − cL
4AL

√
m+1

{

(

A
AL

)m+1

−
(

A
AL

)m

+ AL

A
− 1

}− 1
2

. So when A > AL and

uL < cL, with f ′(AL;wL) =
cL
AL

, we obtain

w(A) < w(AL) = uL −ALf
′(AL;wL) < 0. (3.24)

The inequality (3.24) implies that U(A;wL)−Af ′(A;wL) < 0. Due to f ′(A;wL) > 0
and f

′′

(A;wL) < 0, we have

µ′(A) = [U(A;wL)−Af ′(A;wL)] f
′(A;wL) +AU(A;wL)f

′′

(A;wL)− mc(A)2

A
< 0.

It follows that

µ(A) < µ(AL) = cL(uL − cL) < 0.

Thus we obtain that Ω′
l(A;wL,KL,KR) < 0 if uL < cL. This completes the proof of

the lemma.
For the existence of P 1

ES(wL), we have the following lemma.
Lemma 3.2. Assume that KL > KR, the segment P 1

ES(wL) in (3.7) cannot exist
if

A
P 1

ES
max < A0

[

1− KR

KL

]
1
m

. (3.25)

Proof. By Lemma 3.1, the existence of the segment P 1
ES(wq) with A

P 1
ES

min < A <

A
P 1

ES
max is equivalent to Ωl(A;wq,KL,KR) ≤ 0. The minimum value of Ωl(A;wL,KL,KR)

is

Ωl(A
P 1

ES
max;wL,KL,KR) = KL

[

1−
(

A
P 1

ES
max

A0

)m]

−KR.

Note that if (3.25) is satisfied, we have Ωl(A
P 1

ES
max;wL,KL,KR) > 0. Therefore by

Lemma 3.1, Ωl(A;wL,KL,KR) > 0 always holds when A
P 1

ES

min < A < A
P 1

ES
max.
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Corollary 3.3. For KL > KR, the Riemann solution includes the state of tube

collapse if A
P 1

ES
max < A0

[

1− KR

KL

]
1
m

.

Lemma 3.4. Assume that uL ≤ cL and that the following condition is satisfied

A
P 1

ES
max ≥ A0

[

1− KR

KL

]
1
m

. (3.26)

We have:

1. If uc
l > usc

l , the segment P 1
ES(wL) defined in (3.7) always exists, where usc

l

defined in (3.28).
2. Otherwise, the existence region for the the segment P 1

ES(wL) defined in (3.7)

is Ãc < A− < A
P 1

ES
max, where Ãc is the solution to Ωl(A;wL,KL,KR) = 0.

Proof. The maximum value of Ωl(A;wL,KL,KR) takes at A = A
P 1

ES

min . If uL ≤ cL,

from (3.8), we get A
P 1

ES

min = Ac
l , which is defined in (3.9). Using U(Ac

l ;wL) = c(Ac
l ,KL)

in (3.19) we obtain that

Ωl(A
c
l ;wL,KL,KR) =

ρ(m+ 2)

2m

[

(

KR

KL

)
2

m+2

− 1

]

(uc
l )

2
+KL −KR. (3.27)

We define

usc
l :=

√

√

√

√

√

2m
ρ(m+2) (KR −KL)
(

KR

KL

)
2

m+2 − 1

. (3.28)

Due to uc
l > 0 and KL > KR, the inequality Ωl(A

c
l ;wL,KL,KR) ≤ 0 suggests that

uc
l ≥ usc

l . This is enough for the first statement of the lemma. If uc
l < usc

l , we

have Ωl(A
P 1

ES

min ;wL,KL,KR) > 0 and Ωl(A
P 1

ES
max;wL,KL,KR) < 0. From Lemma 3.1,

there exists a unique solution to Ωl(A;wL,KL,KR) = 0 for A ∈ [A
P 1

ES

min , A
P 1

ES
max]. This

completes the proof of the lemma.

Corollary 3.5. When uc
l = usc

l , we have Ωl(A
c
l ;wL,KL,KR) = 0. From Re-

mark 2.3, the outflow state of the corresponding stationary wave J(KR;w
l
c,KL) is

a critical state. That is to say both the inflow and the outflow states are critical
states. To distinguish the critical outflow state from the critical inflow state wc

l , we
use wc

∗ = J(KR;w
c
l ,KL) to denote it. The components of wc

l are defined in (3.9) and
(3.10). The difference of wc

∗ and wc
l comes from the difference of KL and KR.

In the same manner, we can obtain the condition for the existence of P 2
ES(wR)

with the subcritical states wR, i.e. uR + cR ≥ 0. The results are summarized in the
following corollary.

Corollary 3.6. Note that U(A
P 2

ES
max;wR) = 0. So if KL > KR we have

Ωr(A
P 2

ES
max;wR,KR,KL) = −KR

(

A
P 2

ES
max

A0

)m

+KR −KL < 0.

This implies that the tube cannot collapse in a Riemann solution with negative inter-
mediate velocity under the restriction KL > KR.
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Lemma 3.7. Assume that uR + cR ≥ 0, we define

usc
r = −

√

√

√

√

√

2m
ρ(m+2) (KL −KR)
(

KL

KR

)
2

m+2 − 1

,

then the following facts hold:
1. If uc

r ≥ usc
r , the segment P 2

ES(wR) always exists.

2. Otherwise the segment P 2
ES(wR) exists if Ãc

r < A− < A
P 2

ES
max, where Ãc

r is the
solution to Ωr(A;wR,KR,KL) = 0.

3.1.3. Monotonicity of the segment of P j
ES(wq). We summarize the result

in the following lemma.
Lemma 3.8. The curve P 1

ES(wL) is continuously decreasing in (u,Ψ) state plane;
while the curve P 2

ES(wR) is continuously increasing in (u,Ψ) state plane.

Proof. By (1.2) we know that Ψ = KR

[(

A
A0

)m

− 1
]

and Ψ = KL

[(

A
A0

)m

− 1
]

for the component of P 1
ES(wL) and P 2

ES(wR) respectively. So it is enough to prove
that u du

dA
< 0. Note that A and u in (3.7) entirely depend on the variable A−. We

turn to prove u du
dA−

< 0 and dΨ
dA−

> 0. From (2.23) we have

φ(u;w−,Kin,Kout) = 0,

where Kin and Kout were defined in (2.22). The implicit function theorem implies
that

u
du

dA−
= −

u ∂φ
∂A−

∂φ
∂u

. (3.29)

From (2.25) we have ∂φ
∂u

= ρ
u
(u2 − c2), i.e. (3.29) becomes

u
du

dA−
= −

u2 ∂φ
∂A−

ρ(u2 − c2)
. (3.30)

Moreover we obtain

∂φ

∂A−
= mKout(A0u)

m(A−u−)
m−1w(A−) +

ρ

A−
µ(A−).

From (3.22) and (3.23) we have w(A−) < 0 and µ(A−) < 0. It directly follows that
∂φ

∂A−

< 0. Therefore we obtain that u du
dA−

< 0 due to (3.30) and u2 < c2. Analogously

we can prove that dA
dA−

> 0. It follows that u du
dA

< 0. This is sufficient for the proof

of the lemma.

3.1.4. The basic composite wave curve P j
s0s(wq). It turns out that the basic

composite wave curve P j
s0s(wq) can be only related to the critical inflow state for the

subcritical Riemann initial data, i.e. u2
q = c2q. We use wc

q to denote the critical states
for the sake of clarity. The corresponding composite wave curve is given by

P j
s0s(w

c
q) = {w|w = J(Kout;w+,K); w+ = S0

j (w−); w− = J(K;wc
q,Kin) } ,

(3.31)
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where K ∈]Kin,Kout[, Kin and Kout were defined in (2.22) and q = l, r. We address
that the stationary wave w− = J(K;wc

q,Kin) is an exception of Corollary 2.3. Note

that the condition (2.26) is violated because of the fact that sgn
(

(uc
q)

2 − (ccq)
2
)

= 0.
Following [11, 10], the stationary wave w− = J(K;wc

q,Kin) takes the supercritical

outflow state. The existence of P j
s0s(w

c
q) are summarized in the following lemma.

Lemma 3.9. We have two different cases in terms of j = 1 and 2.
1. Assume that uL < cL and uc

l ≤ usc
l , the curve P 1

s0s(w
c
l ) exists if K in (3.31)

can vary from Kl to Kr, which are defined by

]Kl,Kr[=







]KR, KL[, if Ac
l ≥ A0,

]KR, κτ
l KL[, if Ac

l < A0 and A0 ≤ Al,c
s0s,

{KL}, if Ac
l < A0 and A0 > Al,c

s0s.

(3.32)

Here

Al,c
s0s = Ac

l

[

m+ 2

2

]
1
m

and κτ
l < 1 is the solution to τ(κ;wc

l ) = 0, which is defined in

τ(κ;wc
l ) =

m+ 2

2
κ

2
m+2 −

(

A0

Ac
l

)m

κ− m+ 2

2
+

(

A0

Ac
l

)m

. (3.33)

2. Assume that uR + cR ≥ 0 and uc
r ≤ usc

r , then the curve P 2
s0s(w

c
r) exists if K

in (3.31) can vary from Kl to Kr, which are defined as

]Kl, Kr[=







]κτ
rKR, KL[, if Ac

r > A0 and KL

KR
> κτ

r ,

{KR}, if Ac
r > A0 and KL

KR
> κτ

r ,

]KR, KL[, Otherwise,

(3.34)

where κτ
r > 1 is the solution to τ(κ;wc

r) = 0.
Proof. It is enough to prove the first statement. We need to identify the existence

of w− = J(K;wc
l ,KL) and w = J(KR;w+,K). Concerning the existence of w− =

J(K;wc
l ,KL), it is equivalent to

m+ 2

2m
ρ

(

K

KL

(uc
l )

m
(ccl )

2

)
2

m+2

− 1

2
ρ (uc

l )
2 − ρ

m
(ccl )

2
+KL −K ≤ 0.

Dividing
ρ(ccl )

2

m
and setting κ = K

KL
, a function with respect to κ is introduced given

by (3.33).

After short computation, we obtain that τ(κ;wc
l ) is increasing when κ <

(

Ac
l

A0

)m+2

and decreasing when κ >
(

Ac
l

A0

)m+2

. It reaches the maximum value at κ =
(

Ac
l

A0

)m+2

expressed as

τ∗max =
m

2

(

Ac
l

A0

)2

+

(

Ac
l

A0

)−m

− m+ 2

2
≥ 0.

Therefore τ∗max = 0 if and only if Ac
l = A0, i.e. we have τ(κ;wc

l ) ≤ 0 for any κ.
Specifically, for any K satisfies KR < K < KL, we have KR

KL
< K

KL
= κ < 1. Hence

the region KR

KL
< κ < 1 is the one which we are interesting to.
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On one hand if Ac
l > A0, there are two solutions κτ

l and κτ
r to τ(κ;wc

l ) = 0. Note

that τ(1;wc
l ) = 0. So they satisfy 1 = κτ

l <
(

Ac
l

A0

)m+2

< κτ
r . Due to the behavior of

the function τ(κ;wc
l ), we obtain that τ (κ;wc

l ) < 0 when KR

KL
< κ < 1.

On the other hand if Ac
l < A0, we have

(

Ac
l

A0

)m+2

< 1. Note that

τ(0;wc
l ) = −m+ 2

2
+

(

A0

Ac
l

)m

.

If A0 ≤ Al,c
s0s, we get τ(0;wc

l ) ≤ 0. In such kind of case there are also two solutions

κτ
l and κτ

r to τ(κ;wc
l ) = 0. They satisfy κτ

l <
(

Ac
l

A0

)m+2

< κτ
r = 1. So τ(κ;wc

l ) < 0

if and only if κ < κτ
l . Otherwise if A0 > Al,c

s0s, we have τ(0;wc
l ) > 0. There are only

one solution to τ(κ;wc
l ) = 0 at κ = 1. Hence if κ < 1, we always have τ(κ;wc

l ) > 0.

In short, under the condition Ac
l < A0 and A0 > Al,c

s0s, the state w− = J(K;wc
l ,KL)

exists if and only if K = KL.
Now we turn to the existence of w = J(KR;w+,K). This is equivalent to

m+ 2

2m
ρ

(

KR

K
um
+ c2+

)
2

m+2

− 1

2
ρu2

+ − ρ

m
c2+ +K −KR ≤ 0. (3.35)

Analogously, a function χ(κ;wq) is deduced from (3.35) given by

χ(κ;wc
l ) :=

m+ 2

2

(

KR

κKL

)
2

m+2
(

u+

c+

)
2m

m+2

+

(

1− KR

κKL

)(

A+

A0

)−m

−m

2

(

u+

c+

)2

−1,

(3.36)
where κ = K

KL
. Our aim is to find the region at which χ(κ;wc

l ) ≤ 0. Note that

χ′(κ;wq) =
1

κ2

KR

KL

(

A+

A0

)−m
[

1−
(

κKL

KR

)
m

m+2
(

A+

A0

)m(
u+

c+

)
2m

m+2

]

. (3.37)

From definition of (3.31), we obtain that

c2+ = (ccl )
2

(

K

KL

)
2

m+2
(

c+
u+

)
2m

m+2

. (3.38)

By (3.38), (3.37) can be simplified to

χ′(κ;wq) =
1

κ2

KR

KL

(

A+

A0

)−m
[

1−
(

Ac
l

A0

)m(
KL

KR

)
m

m+2

]

. (3.39)

Due to (3.28) we get

(uc
l )

2
= (ccl )

2
>

2m
ρ(m+2) (KR −KL)
(

KR

KL

)
2

m+2 − 1

. (3.40)

The definition of ccl = c(Ac
l ,KL) in (2.1) implies that

(

Ac
l

A0

)m

=
ρ (ccl )

2

mKL

. (3.41)
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It follows that
(

Ac
l

A0

)m(
KL

KR

)
m

m+2

=
ρ (ccl )

2

mKL

(

KL

KR

)
m

m+2

. (3.42)

Taking (3.42) into (3.40) we obtain that

(

Ac
l

A0

)m(
KL

KR

)
m

m+2

>

2
m+2

(

KR

KL
− 1
)

(

KR

KL

)
2

m+2 − 1

(

KR

KL

)
−m
m+2

. (3.43)

Next we identify the inequality

2
m+2

(

KR

KL
− 1
)

(

KR

KL

)
2

m+2 − 1

(

KR

KL

)
−m
m+2

> 1. (3.44)

Set x = KR

KL
. So x < 1 and (3.44) suggests to study the following function

D(x) := − m

m+ 2
x

2
m+2 − 2

m+ 2
x

−m
m+2 + 1 < 0.

Note that

D′(x) = − 2m

(m+ 2)2
x− m

m+2 (x− 1) > 0 when x < 1.

So D(x) < D(1) = 0 when x < 1. Thus from (3.44), (3.43), and (3.39), we conclude
that χ′(κ;wc

l ) < 0. Consequently it follows that

χ(κ;wc
l ) < χ

(

KR

KL

;wc
l

)

=
m+ 2

2m

(

u+

c+

)
2m

m+2

− 1

2

(

u+

c+

)2

− 1

m
< 0.

Thus the state w = J(KR;w+,K) always exists. This finishes the proof of the lemma.

Lemma 3.10. We have

J(KR;w
c
l ,KL) = J(KR; w̄

κc , κcKL), (3.45)

where w̄κc = J(κcKL;w
c
l ,KL) and

κc =

{

1, Ac
l ≥ A0,

κτ
l , Ac

l < A0 and A0 ≤ Al,c
s0s.

Proof. From Lemma 3.9 we know that κc ≤ 1. On one hand if κc = 1, then
w̄κc = wc

l , so (3.45) is trivial. On the other hand if κc = κτ
l < 1, we have w̄κc is a

critical state which satisfies

c̄κc = ūκc = κ
1

m+2
c uc

l . (3.46)

Also from the definition of κc, we have τ(κc;w
c
l ) = 0, i.e.

m+ 2

2
κ

2
m+2
c =

m+ 2

2
+ (κc − 1)

mKL

ρ (uc
l )

2 . (3.47)
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Considering the velocity function related to the stationary statew = J(KR; w̄
κc , κcKL),

we have

φ(u; w̄κc , κcKL,KR) = 1
2ρu

2 +KR

[

ρ
mκcKL

(ūκc )m+2

um − 1
]

− 1
2ρ (ū

κc)
2

−κcKL

[

ρ
mκcKL

(ūκc)
2 − 1

]

.
(3.48)

Taking (3.46) into (3.48), we obtain that

φ(u; w̄κc , κcKL,KR) =
1

2
ρu2+KR

[

ρ

mKL

(uc
l )

m+2

um
− 1

]

−m+ 2

2m
ρ (uc

l )
2
κ

2
m+2
c +κcKL

Using (3.47), we have

φ(u; w̄κc ,KL,KR) =
1

2
ρu2+

KR

KL

ρ

m

(uc
l )

m+2

um
− ρ(m+ 2)

2m
(uc

l )
2
+KL−KR. (3.49)

This implies that the velocity function (3.49) of J(KR; w̄
κc ,KL) is the same for w̄c =

J(KR;w
c
l ,KL). Hence (3.45) is true.

Remark 3.11. For any subcritical state w ∈ P j
s0s(w

c
q), the components of w =

(A, u)T can be viewed as functions of K. Note that the transmural pressure Ψ =
Ψ(A,KR) defined in (1.2) depends on A. By a length computation we obtain the
relations

dΨ

dK
= −m(Ψ +KR)

u

du

dK
, (3.50)

ρ

u
(u2 − c2)

du

dK
=

A−

A+

(

1− A−

A+

)(

ρu2
−

mK
− A+

A−

)

. (3.51)

With the help of u2 − c2 < 0 and A− > A+ for j = 1, while A− < A+ for j = 2, we

relate the monotonicity of P j
s0s(w

c
q) to the sign of

ρu2
−

mK
− A+

A−

. Specifically we have

1

u

du

dK
< 0 if

ρu2
−

mK
− A+

A−
> 0, (3.52)

while

1

u

du

dK
> 0 if

ρu2
−

mK
− A+

A−
> 0. (3.53)

The detailed derivation of this remark will be found in [12, p.13-14 ]. The conditions
in this remark are satisfied under the conjecture given in [12, Assumption 3.15].

3.2. The classification of L–M and R–M curves for KL > KR. Accord-
ing to Lemmas 3.4, 3.7, and 3.9, for the subcritical initial Riemann data under the
assumption KL > KR, we can classify the L–M and R–M curves into three and two
different cases respectively. They are given in Table 3.1. We point out that Case V Il
of the L–M curve is named to keep the consistency of notation of cases defined for the
R–M curves. Note that the local speed index variable SI

L,R = |uL,R

cL,R
| ≤ 1 in Cases Il,r,

IIl,r. But the local speed index variable SI
L of the initial state wL is not determined

in Case V Il. It could be subcritical or supercritical. In the following sections each
case of the L–M curve will be studied. The R–M curve can be treated likewise.
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Table 3.1

Cases of L–M and R–M curves

Cases Cases

Il: A
P 1

ES
max ≥ A0

[

1− KR

KL

]
1
m

; uL ≤ cL; u
c
l ≤ usc

l Ir: uR + cR ≥ 0; uc
r < −usc

r

IIl: A
P 1

ES
max ≥ A0

[

1− KR

KL

]
1
m

; uL ≤ cL; u
c
l > usc

l IIr: uR + cR ≥ 0; uc
r ≥ −usc

r

V Il: A
P 1

ES
max < A0

[

1− KR

KL

]
1
m

1–wave 2–wave

x

t

wL
wR

wM

w
−

0–wave

Fig. 3.1. Wave configuration A

1–wave

1–wave 2–wave

x

t

wL
wR

wM

wcw̃c

0–wave

Fig. 3.2. Wave configuration B

3.3. Cases of L–M curves. In this section we construct the L–M curve for
all possible cases with a subcritical initial state. The construction is validated by a
series of examples. Unless otherwise stated, the computational region for the Riemann
problem is ]0, 1[. The equilibrium cross sectional area is A0 = 2.1124 × 10−4. The
discontinuity is located at x = 0.5.

3.3.1. Case Il: A
P 1

ES
max ≥ A0

[

1− KR

KL

]
1
m

, uL ≤ cL and uc
l ≤ usc

l . In this case

the possible wave configurations with positive intermediate velocity are the wave con-
figurations A and B, see Figures 3.1 and 3.2. The wave configuration A is classical.
It consists of, from left to right, a 1–wave, a stationary wave located at x = 0, and a
2–wave. The wave configuration B consists of, from left to right, a resonant wave due
to the fact that the stationary wave coincides with the 1–wave, and a 2–wave. The 1–
wave, in such a case, is definitely a transcritical rarefaction wave because the 1–shock
has a negative speed due to the Lax entropy condition (2.6). Therefore, the resonant
wave here is constituted of two parts, the first part is a 1–wave along T1(wL) from
the state wL to the state w̃c; the second part is the 1–wave along T1(wc). These two
parts are separated by a stationary wave wc = J(KR; w̃

c,KL), where w̃c ∈ T1(wL)
and wc is a critical state. Specifically, the state w̃c = (Ãc, ũc) is subcritical, and Ãc

is the solution to Ωl(A;wL,KL,KR) = 0 while ũc = uL − fL(Ãc;wL). We use an
iteration method to calculate it.

Consequently the L–M curve CL(wL) consists of three parts

P l
1(wL) = {w|w ∈ T1(wL) with u ≤ 0} ,

P l
2(wL) = {w|w = J(KR;w−,KL) and w− ∈ T1(wL) with 0 < u < uc} ,

P l
3(wL) = {w|w ∈ T1(w

c) with u > uc} .

Note that P l
1(wL) and P 1

3 (wL) are parts of T1(wL) and T1(w
c) respectively; While

P l
2(wL) = P 1

ES(wL). Therefore, according to Lemmas 2.1 and 3.8, the L–M curve
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S0
1(w

−
)

2–wave

x

t

wL wR

wM

w
c
l

w
−

w+

KL

KR
K

0–wave

︸ ︷︷ ︸

x=0

Fig. 3.3. Wave configuration C

1–wave

2–wave

x

t

wL wR

wM

w
c
l

w̄
c
∗

0–wave

Fig. 3.4. Wave configuration D

1–wave

1–Rare

2–Rare

x

t

wL
wR

(0, 0)

wcw̃c

0–wave

Fig. 3.5. Wave configuration Bcol

1–Rare

2–Rare

x

t

wL wR

(0, 0)

w
c
l

w̄
c
∗

0–wave

Fig. 3.6. Wave configuration Dcol

3
⋃

j=1

P l
j(wL) in this case is strictly decreasing in the (u,Ψ) state plane. We define a

critical velocity which is related to the collapse state on the L–M curve in this case,
i.e.

uLM
col =

m+ 2

m
uc. (3.54)

Note that if uLM
col > uR

col, then there exists one unique intersection point between
the L–M and R–M curves. This intersection point is one of the intermediate states
of the Riemann solution. We use wM determine it. This implies that in such kind
of the case, the Riemann solution uniquely exists. Moreover if wM ∈ P l

2(wL), the
exact Riemann solution has the wave configuration A. While if the intermediate state
wM ∈ P l

3(wL), the exact Riemann solution has the wave configuration B.
Two examples are used to illustrate our construction. To preserve the continuity,

all the states on the L–M curve are projected into the (u,Ψ) state plane. The first
example in Table 3.2 is related to the wave configuration A. It was first proposed by
Toro and Siviglia in [32]. The corresponding L–M curve, the exact Riemann solution

Table 3.2

An example with the wave configuration A in Case IIl by Toro and Siviglia [32]

K (Pa) A (m2) u (m/s) SI

wL 2000003.266554 3.0× 10−4 −2.6575× 10−5 −7.88826× 10−7

w− 2000003.26654 2.01185× 10−4 12.81037 0.420195
wM 40000.06533 6.34034× 10−4 4.0648486 0.107114
wR 40000.06533 3× 10−4 6.123× 10−6 1.28516× 10−6
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of the blood vessel as well as velocity are shown in Figure 3.7.
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Fig. 3.7. Top: L–M curve
3⋃

k=1

Pk(wL) for Table 3.2. Bottom: the corresponding exact vessel

area and velocity at t = 0.012 s.

The second example is related to the wave configuration B. The Riemann initial
data and the states of the exact Riemann solution are shown in Table 3.3. The L–M
curve and the exact solution are shown in Figure 3.8.

Table 3.3

An example with the wave configuration B in Case Il

K (Pa) A (m2) u (m/s) SI

wL 2000003.266554 3.0× 10−4 −2.6575× 10−5 −7.88826× 10−7

w̃c 2000003.26654 2.0034× 10−4 12.938557 0.424847
wc 40000.06533 4.82994× 10−4 5.36675 1
wM 40000.06533 4.13503× 10−4 6.18445 1.197995
wR 40000.06533 1.17× 10−4 1.5× 10−7 3.984× 10−8

On the other hand if uLM
col ≤ uR

col, then the L–M and R–M curves intersect the
line Ψ = −KR, i.e. A = 0 before they meet each other. Hence the corresponding
Riemann solution contains a collapsible vessel state with the wave configuration Bcol,
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Fig. 3.8. Top:L–M curve
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Pk(wL) for Table 3.3. Bottom: the corresponding exact vessel

area and velocity at t = 0.012 s.

see Figure 3.5. Table 3.4 gives an example with the initial and intermediate states.
Figure 3.9 presents the corresponding blood vessel cross sectional area and velocity.

Table 3.4

An example with the wave configuration Bcol in Case Il

K (Pa) A (m2) u (m/s) SI

wL 2000003.266554 3.0× 10−4 −2.675× 10−5 −7.88826× 10−7

w̃c 2000003.26654 1.89× 10−4 14.7104757 0.029343
wc 2000.003267 1.693× 10−3 1.641941 1
wLM

col 2000.003267 0 8.209704 not defined
wR

col 2000.003267 0 11.632418 not defined
wR 2000.003267 1.17e− 4 15 17.81694

3.3.2. Case IIl: A
P 1

ES
max ≥ A0

[

1− KR

KL

]
1
m

, uL ≤ cL, and uc
l > usc

l . In this case

the possible wave configurations with positive intermediate velocity are the wave con-
figurations A, C, and D, see Figures 3.1, 3.3 and 3.4. The wave configuration A is
the same as the one in Case Il. The wave configuration C consists of, from left to
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Fig. 3.9. Top:L–M curve
3⋃
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Pk(wL) for Table 3.3, where ΨL

col
= ΨR

col
= −KR. Bottom: the

corresponding exact vessel area and velocity at t = 0.012 s.

right, a resonant wave due to the coincidence of stationary wave with the transcritical
rarefaction, and a 2–wave. The resonant wave in the wave configuration C is consti-
tuted of a rarefaction wave along T1(wL) fanning from the state wL to the critical
state wc

l = (Ac
l , u

c
l )

T which are defined in (3.9) and (3.10), followed by a succession of
three waves: a supercritical stationary wave w− = J(K;wc

l ,KL), a 0–speed 1–shock
wave w+ = S0

1(w−) and a subcritical stationary wave w = J(KR;w+,K), where
K ∈]Kl, Kr[ defined in (3.32). All of the three waves coalesce on the line x = 0.
The wave configuration D consists of, from left to right, a resonant wave and a 2–
wave. The resonant wave in the wave configuration D has two parts, the first part
is a rarefaction wave along T1(wL) from the state wL to the critical state wc

l ; the
second part is a 1–wave along T1(w̄

c
∗), where w̄c

∗ represents a supercritical state of
J(KR;w

c
l ,KL).

Consequently the L–M curve CL(wL) consists of four following parts:

P l

1(wL) = {w|w ∈ T1(wL) with u < 0} ,

P l

2(wL) = {w|w = J(KR;w−,KL) and w− ∈ T1(wL) with 0 < u < ūc} ,

P l

3(wL) = {w|w = J(KR;w+,K); w+ = S0
1(w−); w− = J(K;wc

l ,KL), Kl ≤ K ≤ Kr} ,

P l

4(wL) =
{

w|w ∈ T1(w̄
c

∗) with u > ˆ̄uc
}

,
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where ˆ̄wc = S0
1(w̄

c
∗). As we have mentioned in Remark 2.4, the stationary wave

J(KR;w
c
l ,KL) has two solutions. One is subcritical and the other is supercritical.

We use w̄c = J(KR;w
c
l ,KL) and w̄c

∗ = J(KR;w
c
l ,KL) to denote the subcritical

one and the supercritical one respectively. Hence the segment P l
2(wL) ends at the

subcritical state w̄c. According to Lemma 3.10 the left boundary of P l
3(wL) is also

w̄c. So we establish the continuity of L–M curve in this case.
Note that P l

3(wL) = P 1
s0s(w

c
l ). Due to (3.51) we have to consider the sign of

ρu2
−

mK
− A+

A−

when K varies from Kl to Kr. We take K = Kr as an example. From the

definition (3.32), there are three different cases.

The first case is for Ac
l ≥ A0 and Kr = KL. Therefore

ρu2
−

mK
− A+

A−

at K = KL is

ρ (uc
l )

2

mKL

− 1 =

(

Ac
l

A0

)m

− 1 ≥ 0. (3.55)

The second case is for Ac
l < A0 and Kr = κτ

l KL, where κτ
l < 1 is the solution to

τ(κ;wc
l ) = 0 in (3.33). The details of κτ

l can be found in Lemma 3.9. We use w̄c
κτ
l

to denote the state J(κτ
l KL;w

c
l ,KL). With (3.46) the relation

ρu2
−

mK
− A+

A−

at κτ
l KL

becomes

ρ
(

ūc
κτ
l

)2

mκτ
l KL

− 1 =
ρ (κτ

l )
2

m+2 (ūc
l )

2

mκτ
l KL

− 1 = (κτ
l )

− m
m+2

(

Ac
l

A0

)m

− 1. (3.56)

From (3.47), we obtain that

(κτ
l )

− m
m+2

(

Ac
l

A0

)m

=
2

m+2 (κ
τ
l − 1)

(κτ
l )

m
m+2

[

(κτ
l )

2
m+2 − 1

] . (3.57)

Inserting (3.57) into (3.56), we get

ρ
(

ūc
κτ
l

)2

mκτ
l KL

− 1 =
− m

m+2κ
τ
l + (κτ

l )
m

m+2 − 2
m+2

(κτ
l )

m
m+2

[

(κτ
l )

2
m+2 − 1

] > 0 due to κτ
l < 1. (3.58)

Consequently for the first and second cases, with (3.52) we have du
dK

< 0 since u > 0.

Note that dΨ
dK

= − 1
KRu

du
dK

> 0. Thus dΨ
du

=
dΨ
dK
du
dK

< 0. Hence the segment P l
3(wL) is

continuously decreasing on the (u,Ψ) state plane.
The third case is for Kl = Kr = KL, i.e. the segment P 1

s0s(w
c
l ) degenerates into a

point which is also the boundary of the segment P2(wL). Thus the segment of P l
3(wL)

in this case is trivial.

On the whole, analogously to Case Il, the L–M curve
4
⋃

j=1

P l
j(wL) in this case is

strictly decreasing in the (u,Ψ) plane. We use

uLM
col = ūc

∗ +
2

m
c̄c∗ (3.59)

to denote the critical velocity which is related to collapsible vessels on the L–M curve.
Note that if uLM

col > uR
col, there exists one unique intersection point of the L–M and
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R–M curves. This intersection point is one of intermediate state of the corresponding
Riemann solution. It implies that the exact Riemann solution uniquely exists. More-
over if the intermediate state wM ∈ P l

2(wL), the exact Riemann solution has the wave
configuration A. While if the intermediate state wM ∈ P l

3(wL), the exact Riemann
solution has the wave configuration C. And if the intermediate state wM ∈ P l

4(wL),
the exact Riemann solution has the wave configuration D.

Two examples are used here to show the corresponding exact Riemann solutions
with the wave configurations C and D respectively. The Riemann initial data and
states of the exact solution to the first example with the wave configuration C are
listed in Table 3.5. The corresponding L–M curve and the exact Riemann solutions
are shown in Figure 3.10. We cannot observe the resonant wave due to the fact that
two stationary waves and zero speed 1–shock coalesce on the line x = 0. The Riemann
initial data and the states of the exact solution to the second example with the wave
configuration D are listed in Table 3.6. The corresponding L–M curve and the exact
Riemann solution are shown in Figure 3.11.

Table 3.5

An example with the wave configuration C for Case IIl

K (Pa) A (m2) u (m/s) SI

wL 2000003.26654 6.0× 10−4 2.6575× 10−5 6.63321× 10−7

wl
c 2000003.26654 2.4576× 10−4 32.050849 1

w− 59436.680223 2.16361× 10−4 36.405913 6.802265
w+ 59436.680223 3.539357× 10−4 2.225495 0.206763
wM 40000.06533 0.006727565 1.170828 0.112928
wR 40000.06533 0.006 0 0

Table 3.6

The Riemann initial data and intermediate states of the wave configuration D for Case IIl

K (Pa) A (m2) u (m/s) SI

wL 2000003.26654 6.0× 10−4 2.6575× 10−5 6.63321× 10−7

wc
l 2000003.26654 2.4576× 10−4 32.05085 1

w̄c
∗ 40000.06533 2.16324× 10−4 36.412129 8.293602

wM 40000.06533 0.003946778 5.84423 0.64408
wR 40000.06533 0.002 0 0

On the other hand if uLM
col < uR

col, analogously to Case Il, the L–M and R–M
curves have no intersection point. The corresponding Riemann solution contains a
collapsible vessel state with the wave configuration Dcol, see Figure 3.6. Table 3.7
gives the Riemann initial data and the intermediates states of an example. The
corresponding vessel area and the velocity are shown in Figure 3.12. We can clearly
observe the tube collapsible states in the right part of the solutions.

3.3.3. Case V Il: A
P 1

ES
max < A0

[

1− KR

KL

]
1
m

. This is a very special case which

contains the backflow and the blood vessel collapse problem. Mathematically it is
due to the fact that the basic wave curve P 1

ES(wL) fails to exist. The details can
be found in Section 3.1.2. The necessary conditions for this case are uR

col > 0 and
uL
col > 0. The corresponding Riemann solution has the wave configuration A2

col, see
Figure 3.14. It contains a 1–wave, a 2–rarefaction, but no stationary waves, since it
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Fig. 3.10. Top: L–M curve
4⋃

k=1

Pk(wL) for Table 3.5. Bottom: the corresponding exact vessel

area and velocity at t = 0.01 s.

Table 3.7

The Riemann initial data and intermediate states of the wave configuration Dcol for Case IIl

K (Pa) A (m2) u (m/s) SI

wL 200.000327 0.08 1.089116 0.8
wc

l 200.000327 0.067948 1.306939 1
w̄c

∗ 2.000003 0.03117 2.849041 26.488297
wLM

col 2.000003 0 3.279274 not defined
wR

col 2.000003 0 8.283464 not defined
wR 2.000003 0.002 8.5 157.018116

fails to exist. The 1–wave in the wave configuration A2
col corresponds to the backflow

of blood from the left initial state. The state wM is the intermediate state of the
Riemann solution with the following data

(K,A, u) =

{

(KL, AL, uL), x < 0,
(KL, AL,−uL), x > 0.

(3.60)
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Fig. 3.11. Top:L–M curve
4⋃

k=1

Pk(wL) for Table 3.6. Bottom: the corresponding exact vessel

area and velocity at t = 0.01 s.

Table 3.8

The Riemann initial data and intermediate states of the wave configuration A2
col

for Case V I

K (Pa) A (m2) u (m/s) SI

wL 2000003.266554 0.0003 −13.0 −0.385879
wM 2000003.266554 0.0002 0 0
wR 40000.065331 0.0003 25.0 5.247265

We use an example in Table 3.8 to illustrate the solution with the wave configu-
ration A2

col. The corresponding blood vessel cross sectional area and the velocity are
shown in Figure 3.15.

3.4. Cases of R–M curves. The R–M curve has two different cases for the
subcritical initial Riemann data, see Table 3.1. The Riemann solutions related to
the R–M curve have negative intermediate velocity. The corresponding wave config-
urations can be treated as appropriate symmetric cases of the ones with the positive
velocity. For the sake of simplicity, we use the letters AT , BT , BT

col, C
T , DT and

DT
col to denote them. Note that the Case Ir of the R–M curve is similar to the Case
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Fig. 3.12. The exact vessel area and velocity at t = 0.05 s for Table 3.7.

1–Rare 2–Rare

x

t

wL
wR

(0, 0)(0, 0)

Fig. 3.13. Wave configuration A1
col

1–wave 2–Rare

x

t

wL
wR

wM (0, 0)

Fig. 3.14. Wave configuration A2
col

Il, while the Case IIr of the R–M curve is similar to the Case IIl. All Cases of
the R–M curves can be treated likewise the ones of the L–M curves, for example, we
can use P r

j (wR), j = 1, 2, 3, 4 to denote the segments of R–M curve. Specifically the
segment P r

1 (wR) is common to all cases and defined in (3.6). Furthermore we have
the segment P r

2 (wR) = P 2
ES(wR). The existence and monotonicity of P r

2 (wR) have
been determined by Lemma 3.7 and 3.8. For the remaining of the segments, their
definition depend on the cases. We just emphasize the following points.

In Case Ir, the R–M curve consists of three segments. The segment P r
3 (wR) =

T2(w
c), where wc = J(KL; w̃

c,KR), and w̃c ∈ T2(wR). The blood vessel cross
sectional area Ãc is the solution to Ωr(A;wR,KR,KL) = 0 while ũc = uR+f(Ãc;wR).
We use an iteration method to calculate it. Moreover, the critical velocity for the
collapsible states is defined as

uRM
col =

m+ 2

m
uc. (3.61)

So if uRM
col > uL

col, there is no intersection point between the L–M and R–M curves.
The Riemann solution has the wave configuration BT

col. Otherwise there is one unique
solution located on the R–M curve. It might have the wave configuration AT or BT .

In Case IIr, the R–M curve consists of four segments. The segment P r
3 (wR) =

P 2
s0s(w

c
r) which has been extensively studied in Section 3.1.4. And we have the seg-

ment P r
4 (wR) = T2(w̄

c
∗), where w̄c

∗ is a supercritical outflow state of the stationary
wave J(KL;w

c
r,KR). In addition the critical velocity for the collapsible vessel states

in Case IIr is defined as

uRM
col = ūc

∗ −
2

m
c̄c∗. (3.62)
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Fig. 3.15. The exact vessel area and velocity at t = 0.005 s for Table 3.8.

If uRM
col > uL

col, the Riemann solution has the wave configuration DT
col. Otherwise it

might have the wave configuration AT , CT or DT .
According to Lemmas 2.1 and 3.8, as well as the condition (3.51), the R–M curve

in Cases Ir and IIr are continuous and increasing. So the Riemann solution is unique
for the subcritical initial data wR. We can conclude that the Riemann solutions
related to the R–M curve can be treated likewise the ones related to the L–M curve.
It is not necessary to give them in detail.

3.5. An algorithm for the exact Riemann solutions. In this section we
present a procedure for solving the Riemann problem (1.1) and (2.3) exactly. To find
all possible exact Riemann solutions we need to introduce additional cases that con-
tain the collapsible vessel states. The common point of the Riemann solutions with
collapsible states in Section 3 is that these collapsible states arise due to the motion
of the blood flow. Of course there also exists the interesting possibility that the left
or right initial states are collapsed, i.e. (AL, uL) = (0, 0) or (AR, uR) = (0, 0). We use
(AR, uR) = (0, 0) to illustrate the solutions in such kind of the situation. First the
corresponding L–M curve will still be defined as in Section 3.2. Then the Riemann
solution might have the wave configurations A2

col, Bcol and Dcol. It completely de-
pends on the left initial data. But we have to address the fact that the 2–rarefaction
wave is entirely canceled in them.

From the previous discussion, in the context of the general cases we know that
one of intermediate states of the exact Riemann solutions is the intersection point
of the corresponding L–M and R–M curves. Here we have to keep in mind that the
L–M curve degenerates into the 1–wave curve when the velocity is negative; while the
R–M curve degenerates into the 2–wave curve when the velocity is positive. As we
have already mentioned in the beginning of this section, the location of the stationary
wave depends on the sign of the intermediate velocity. To determine it, we define two
critical variables given as

Ψl = Ψ(A
P 1

ES
max,KL), Ψr = Ψ(A

P 2
ES

max,KR), (3.63)

where A
P 1

ES
max and A

P 2
ES

max are defined in (3.11) and (3.15) respectively. It can be easy
proved that if Ψl > Ψr the corresponding Riemann solution has a positive interme-
diate velocity. The stationary wave is located on the L–M curve. On the contrary
if Ψl > Ψr the corresponding Riemann solution has a negative intermediate velocity.
The stationary wave is located on the R–M curve. One special case is when Ψl = Ψr.
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In such kind of case the stationary wave is trivial with zero velocity. The corre-
sponding Riemann solution has the wave configuration A, but with zero intermediate
velocity.

Once the location of the stationary wave is determined, the L–M and R–M curves
can be classified according to the given initial data. The details for the subcritical
initial data can be found in Table 3.1. Here we address that the subcritical condition
is only required for one of the states wL and wR. From Cases Il and IIl, we know
that the intersection point of the L–M and R–M curves corresponds to solving an
algebraic system. It has a unique solution which can be solved by iteration methods,
e.g. the Newton–Raphson method. The algorithm for the Riemann problem to (1.1)
and (2.3) is similar to the ones in [10, 11].

4. Conclusions. In this work we have constructed, in a unified framework, the
complete exact solution of the Riemann problem for a 3 × 3 first-order system put
forward as a simplified model for blood flow in medium to large arteries, with dis-
continuous material properties. The focus of the present work is on the subcritical
Riemann initial data and backflows of collapsible tubes. On one hand, for the Rie-
mann solution without collapsible vessel states, several examples are given for positive
intermediate velocity. On the other hand, for solutions with collapsible vessel states,
the examples are presented only for cases emerging due to the motion of the flow.
The remaining possible solutions with the left or right initial collapsible tube states
can be treated in the same manner.
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