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Abstract. This work focuses on the construction of the solution of the Riemann problem for a
3 × 3 first-order system that governs blood flow in compliant vessels of medium to large size. The
challenge in finding the solution is posed by the admission of discontinuous material properties of
the vessels, a discontinuous tube law to close the system and the admission of supercritical Riemann
initial data. The corresponding Riemann solutions with subcritical initial data have been reported
in [13].

Due to the high nonlinearity of the tube law and the discontinuous variation of vessel mechanical
properties, the classification of the L–M and R–M curves for the supercritical data is based on
two nonlinear functions with respect to the ratio of the initial material properties and the Riemann
initial data. These two nonlinear functions are derived from the existence of two basic composite wave
curves. In particular, the monotonicity of the basic composite wave curve containing a supercritical
stationary wave, a zero speed shock and a subcritical stationary wave, is satisfied under an additional
mathematical assumption. The bifurcation, which appears in certain cases of the L–M and R–M
curves, leads to multiple solutions of the Riemann problem. Our results reveal the transition of
blood flow from the supercritical to the subcritical state in abrupt variations of the geometrical and
mechanical properties of the vessels. In the future, it would be desirable to identify physiological
conditions that would help to define physically relevant solutions of the Riemann problem posed and
solved here.
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1. Introduction. Blood flow in the cardiovascular system is very complex and
is characterized by unsteady flows in deformable, even collapsible, tubes. The one
dimensional formulation, or reduced models, has been extensively applied to simulate
the variation of the blood vessel cross sectional area as well as the averaged blood
velocity and pressure, as functions of time and the axial direction. The cross sectional
averaged blood pressure is related to a tube law used as closure condition, which is
given by a nonlinear pressure–area relation, involving the mechanical properties of
the blood vessels. Milestone contributions on this topic can be found in, for example,
[17], [29], [30], [10], [28], and references therein.

The aim of the present work is to solve the Riemann problem for the one di-
mensional 3 × 3 blood flow model proposed by Toro and Siviglia in [34] for the case
of supercritical initial data. The exact Riemann solution to the resonant hyperbolic
system is a weak solution as studied in [8, 14]. A considerable number of papers have
been devoted to the subject of the Riemann problem for various resonant hyperbolic
systems; see [26, 16, 27, 15, 20, 2, 3, 21, 32, 22, 12, 11] and the references therein.
The specific challenge of the current system originates from the discontinuity of the
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mechanical properties of vessels and the nonlinear tube law assumed. This paper is a
continuation of the work reported in [13] for the case of subcritical data.

Most physiological flows in blood vessels are said to be characterized by subcritical
conditions, see Caro et al. [5]. However, flow transition from subcritical to supercrit-
ical conditions can be generated by the presence of geometrical discontinuities as well
as by mechanical property variations, see Ku [18, 19] and Siviglia Toffolon [31].

According to the framework proposed in [13], the L–M and R–M curves are intro-
duced to handle the resonance of the hyperbolic system considered. These two curves
represent the set of intermediate states associated to the left and right Riemann initial
data. Moreover the classification and monotonicity of the L–M and R–M curves have
been attributed to the two basic composite wave curves.

Due to the nonlinearity of the tube law and the discontinuous mechanical prop-
erties, two nonlinear functions of the ratio of the initial material properties and the
Riemann initial data are derived. The L–M and R–M curves can be classified into
three different cases for the case of supercritical Riemann data. They are denoted as
Case III, IV and V , to keep consistency with the classification of the subcritical data
case introduced in [13]. In addition, the monotonicity of the basic composite wave
curve containing a supercritical stationary wave, a zero speed shock, and a subcritical
stationary wave is satisfied under an extra assumption. It claims that a formula does
not change sign when the variable of mechanical properties of vessels varies in its
region. This formula depends on the velocity, the ratio of cross sectional areas related
to a zero speed shock, as well as the density and the variable of mechanical properties
of vessels. We point out that the cross sectional areas and the velocity are taken as a
function of the variable of mechanical properties of vessels. The assumption has been
demonstrated by examples studied in Sections 3.4 and 3.5.

Concerning the supercritical data, the L–M and R–M curves contain a bifurcation
for Case IV as well as Case III, but under a certain condition. The bifurcation
leads to three possible solutions for a given initial data. For the remaining cases
of L–M and R–M curves, they are continuous, monotone decreasing and increasing,
respectively, in the state plane. Therefore, the Riemann solution is unique in these
cases. We have carefully studied and analyzed the various cases. Several examples
are used to illustrate the corresponding wave configurations. We can clearly observe
the transition of the blood flow from the supercritical to the subcritical state, with
abrupt variations of the vessel properties. To single out the physical relevant solutions
among all possible Riemann solutions, it would be desirable to identify appropriate
physiological conditions, in the future.

This paper is organized as follows. In Section 2 we review the governing system
and its mathematical properties. In Section 3 we study the L–M and R–M curves
for the supercritical data. The behaviour of the two basic composite wave curves are
fully analyzed. The cases of the L–M curves are studied in detail. Conclusions are
drawn in Section 4.

2. Model and mathematical properties. The one dimensional mathematical
model valid for blood flow in compliant vessels derived from the axisymmetric Navier–
Stokes equations by the averaging procedure, see [34, 4, 28], is given by

∂tA+ ∂x(Au) = 0,
∂t(uA) + ∂x(Au

2 + AΨ
ρ
)− Ψ

ρ
∂xA = 0,

∂tK = 0,

(2.1)
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where A(x, t) is the cross sectional area of the blood vessel, u(x, t) is the averaged
velocity of blood flow for the cross sectional area, ρ is the constant blood density. The
following tube law with respect to pressure–area relation is used to close the system
(2.1):

Ψ(A;K) = K(x)

[(

A(x)

A0(x)

)m

− 1

]

,(2.2)

where A0(x) is the equilibrium cross sectional area and m is a constant parameter
satisfying 0 < m < 1. In particular the value m = 1

2 correctly describes the wave
propagation patterns in arterial networks, as was extensively confirmed by [1, 24].
Here the material properties of the blood vessel K(x) is defined by

K(x) =

√
π

(1− ν2)

E(x)h0(x)
√

A0(x)
,(2.3)

where h0(x) is the thickness of the vessel walls, E(x) is the Young’s modulus of
elasticity, and ν is the Poisson ratio. Following Ku [18], the local elastic tube pressure
wave speed of (2.1) is defined as

c(A,K) =

√

mK

ρ

(

A

A0

)m

.(2.4)

It is analogous to the sound speed in gas dynamics, see [12].
The Riemann initial data for the system (2.1) are two constant states separated

by a discontinuity and given as follows

(K,A, u) (x, 0) =

{

(KL, AL, uL) , x < 0,
(KR, AR, uR) , x > 0.

(2.5)

Without loss of generality, in this work we always assume that

KL > KR.(2.6)

The opposite Riemann problem can be treated as a mirror–image problem by setting
the velocity in the inverse direction. Note that the pressure wave speed c(A,K) in
(2.4) depends on K. This leads to a discontinuity of the wave speed in the state
plane. For the sake of clarity, we let cL = c(AL,KL) and cR = (AR,KR) denote,
respectively, the local elastic tube pressure wave speed of the left and right Riemann
initial data. Moreover the speed index of the current system is

SI =
u

c
.(2.7)

It is analogous to the Mach number for gas dynamics and the Froude number in free
surface fluid dynamics, i.e. if |SI | < 1, the blood flow is subcritical; if |SI | > 1 the
blood flow is supercritical; otherwise, the blood flow is critical.

The system (2.1) is weakly or resonant hyperbolic. It has three characteristic
fields with the eigenvalues λ1 = u − c, λ2 = u, and λ3 = u + c. Three different
elementary waves are associated to the corresponding characteristic fields. We use
the terminology j–wave, j = 0, 1, 2, to denote the corresponding waves when the
eigenvalues are distinct from each other. Specifically the 1– and 2–waves are shocks
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or rarefactions. The 0–wave is a stationary wave located at x = 0 due to the jump of
the variable K at x = 0.

One knows that the Riemann solution to a hyperbolic system is self–similar. In
addition the system (2.1) degenerates at the critical states u = ±c, i.e. SI = 1. Due
to it, the 1– or 2–waves might coincide with the stationary wave. That is to say
the waves of different families will be combined together. The resonant waves are
defined to take into account of these combined waves. Generally there are two types
of the wave configurations to the Riemann solutions. One type is without the resonant
waves and the other type is with the resonant waves. The wave configuration with
the resonant waves consist of a resonant wave and a 1– or 2–wave. While the wave
configurations without the resonant waves are classical. They consist of four constant
regions separated by three elementary waves.

We now denote w = (A, u)T and briefly recall the elementary wave curves. The
detailed derivation can be found in [13, 34]. The nonlinear 1– and 2–waves consist
of shocks and rarefactions. The corresponding wave curves denoted as T1(wL) and
T2(wR), respectively, can be described entirely as a one parameter family of states
given by

T1(wq) = {w|u = uL − f(A;wL), A > 0} ,(2.8)

T2(wq) = {w|u = uR + f(A;wR), A > 0} ,(2.9)

where

f(A;wq) :=















2
m

(
√

mKq

ρ

(

A
A0

)m

− cq

)

, if A ≤ Aq,

cq√
m+1

[(

(

A
Aq

)m+1

− 1

)

(

1− Aq

A

)

]
1
2

, if A > Aq.

(2.10)

Note that the states with A ≤ Aq are related to the rarefaction curves, while the
states with A > Aq are related to the shock wave curves.

The 0–wave is a stationary wave. Two states win and wout connected by the
stationary wave satisfy the relations

Aoutuout = Ainuin,(2.11)

1

2
ρu2out +Kout

[(

Aout
A0

)m

− 1

]

=
1

2
ρu2in +Kin

[(

Ain
A0

)m

− 1

]

.(2.12)

For simplicity we can use the notation wout = J(Kout;win,Kin) to represent the
explicit solution wout implicitly given by (2.11) and (2.12), where

{

Kin = KL,
Kout = KR,

when uin > 0, and

{

Kin = KR,
Kout = KL,

when uin < 0.(2.13)

Here we take the discontinuous K as the limiting case of piecewise monotonic me-
chanical property variables with slope going to infinity. The stationary wave is viewed
as a transition layer located at x = 0 with 0 width. The wave curve for the stationary
wave cannot be expressed explicitly like T1(wL) and T2(wR). As we have introduced
in [13], the velocity of the outflow state for the stationary wave curve is determined
by the root of the following velocity function

φ(u;win,Kin,Kout) :=
1

2
ρu2+Kout

[(

Ainuin
A0u

)m

− 1

]

−1

2
ρu2in−Kin

[(

Ain
A0

)m

− 1

]

.

(2.14)
The solution to φ(u;win,Kin,Kout) = 0 can be found in [13, p. 8, Corollary 2.3].
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3. L–M and R–M curves for the supercritical state. The challenge for
solving the Riemann problem is twofold. The first is how to determine the mutual
position of the stationary wave and the remaining elementary waves a priori. The
second is how to uniformly calculate all possible Riemann solutions in case that the
1–wave or 2–wave coincide with the stationary wave. In such kind of case, resonant
waves are introduced. The resolution is to define the L–M and R–M curves. They
are the combination of the stationary wave curve with the 1–wave curve and the 2–
wave curve respectively. The present work will focus on the L–M and R–M curves for
supercritical states. The classification and properties of L–M and R–M curves have
been attributed to two basic composite wave curves, see [13, Sec. 3].

The first basic composite wave curve denoted as P jES(wq), j = 1, 2, is the com-
bination of a j–wave and a stationary wave. The second basic composite wave curve
denoted as P js0s(wq) is resonant due to the coincidence of the stationary wave with
a zero speed shock. This zero speed shock splits the stationary wave into two parts.
One part is a supercritical stationary wave. The other part is a subcritical stationary
wave. Before investigating the two composite wave curves with the supercritical state
wq, we need to consider two critical values

uLcol = uL +
2

m
cL, uRcol = uR − 2

m
cR.(3.1)

They are used to indicate the collapsible state of vessels and satisfy uLcol > 0 if uL > cL,
and uRcol < 0 if uR+ cR < 0. This implies that the L–M and R–M curves in the (u,A)
state plane meet the critical line A = 0 before the stationary wave is attached to
them. Consequently, the Riemann solution that has the wave configuration A1

col, see
[13, Figure 3.13], cannot exist for the supercritical state.

3.1. The supercritical basic wave curve P jES(wq). It is defined as

P jES(wq) = {w|w = J(Kout;w−,Kin),w− ∈ Tj(wq);Sq(A−;wq) ≷ 0, u− ≶ 0} ,(3.2)

where Kin and Kout are in (2.13) and Sj(A−;wq) represents the j–wave speed, for
j = 1, 2, given by

Sj(A−;wq) =

{

u− ± c−, A− ≤ Aq,
σj(A−;wq), A− > Aq.

To satisfy the restriction S1(A−;wL) < 0 and u− > 0, the minimum blood vessel area

A
P 1

ES

min and the maximum blood vessel area A
P 1

ES
max are introduced. Due to uL > cL, we

have

A
P l

ES

min = Â1,L, A
P l

ES
max = Au0

1
.(3.3)

Analogously, for P 2
ES(wR), we have

A
P 2

ES

min = Â2,R, A
P 2

ES
max = Au0

2
.(3.4)

The cross sectional areas Au0
j
, j = 1, 2, are defined in [13, (3.17)]. Moreover the

terminology ŵj,q is used to denote the state that can be connected to wq by a zero
speed j–shock, j = 1, 2. The components of ŵj,q can be calculated from

Âj,q = Aqxs0j , ûj,q =
Aquq

Âj,q
,(3.5)



6 E. Han, G. Warnecke, E.F. Toro and A. Siviglia

where xs0j is the solution to the following equation

xm+2 −
[

1 + (m+ 1)

(

uq
cq

)2
]

x+ (m+ 1)

(

uq
cq

)2

= 0.(3.6)

The details of this part can be found in [13, p. 5-6].
For the existence of P jES(wq) we have attributed it to Ωq(A;wq,Kin,Kout) ≤ 0,

where

Ωq(A;wq,Kin,Kout) := m+2
2

(

ρ
m

)
m

m+2 K
2

m+2

out

(

AU(A;wq)
A0

)
2m

m+2 − ρU(A;wq)
2

2

−Kin

(

A
A0

)m

+Kin −Kout,
(3.7)

and U(A;wq) := uq±f(A;wq). The derivation details can be found in [13, Sec. 3.1.2].

Lemma 3.1. The function Ωq(A;wq,Kin,Kout) is decreasing if A
P l

ES

min < A <

A
P l

ES
max and u2q > c2q.

Proof. It is necessary to prove that Ω′
q(A;wq,Kin,Kout) < 0. We just focus on

Ω′
l(A;wL,KL,KR) < 0. The case Ω′

r(A;wR,KR,KL) < 0 can be treated likewise.
Note that

Ω′
l(A;wL,KL,KR) = ρ

A

(

KR

KL

)
2

m+2

c(A)
4

m+2U(A;wL)
m−2
m+2w(A) + ρ

A
µ(A),(3.8)

where

w(A) := U(A;wL)−Af ′(A;wL)(3.9)

and

µ(A) := AU(A;wL)f
′(A;wL)− c(A)2.(3.10)

Since A > 0, ρ > 0, c(A) > 0, and U(A;wL) > 0, we turn to prove that w(A) < 0
and µ(A) < 0. Due to AL < Â1,L < A < Au0

1
and (2.10), we obtain that

w′(A) = − cL

4AL

√

(m+1)

[(
A

AL

)m+1
−
(

A
AL

)m
+

Aq
A

−1

]

{

4

[

(m+ 1)
(

A
AL

)m

−m
(

A
AL

)m−1

−
(

A
AL

)−2
] [

(

A
AL

)m+1

−
(

A
AL

)m

+ AL

A
− 1

]

+ A
AL
g(A)

}

,

(3.11)
where

g(A) = 2

[

m(m+ 1)

(

A

Aq

)m−1

−m(m− 1)

(

A

Aq

)m−2

+ 2

(

A

Aq

)−3
][

(

A

Aq

)m+1

−

(

A

Aq

)m

+

(

A

Aq

)−1

− 1

]

−
[

(m+ 1)

(

A

Aq

)m

−m

(

A

Aq

)m−1

−
(

A

Aq

)−2
]2

.

After a lengthy calculation, (3.11) can be simplified to

w′(A) = β

[

(m+ 1)(m+ 3)
(

A
AL

)2m+1

− 2(m+ 1)(m+ 2)
(

A
AL

)2m

+m(m+ 2)
(

A
AL

)2m−1

− 2(m+ 1)(m+ 2)
(

A
AL

)m

+ 2(2m2 + 5m+ 3)
(

A
AL

)m−1

−2m(m+ 2)
(

A
AL

)m−2

−
(

A
AL

)−3
]

< 0,

(3.12)
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where β = − cL
4AL

√
m+1

{

(

A
AL

)m+1

−
(

A
AL

)m

+ AL

A
− 1

}− 1
2

. This implies that the

function w(A) is decreasing.

Due to A
P l

ES

min < A < A
P l

ES
max and (3.3), for (3.9) we only need to prove the following

fact

w(Â1,L) = û1,L − Â1,Lf
′(Â1,L;wL) < 0.(3.13)

The left part of the inequality (3.13) equals to

w(Â1,L) =
ALuL

Â1,L

−Â1,L
cL

2AL
√
m+ 1

(m+ 1)
(

Â1,L

AL

)m

−m
(

Â1,L

AL

)m−1

−
(

AL

Â1,L

)2

√

(

(

Â1,L

AL

)m+1

− 1

)

(

1− AL

Â1,L

)

.

(3.14)

We denote x̂ =
Â1,L

AL
> 1. The formula (3.14) can be rewritten as

w(Â1,L) =
uL
x̂

− cLx̂

2
√
m+ 1

(m+ 1)x̂m −mx̂m−1 − x̂−2

√

(x̂m+1 − 1) (1− x̂−1)

=
cL

x̂
√
m+ 1

[

√
m+ 1

uL
cL

− 1

2

(m+ 1)x̂m+2 −mx̂m+1 − 1
√

(x̂m+1 − 1) (1− x̂−1)

]

.(3.15)

Note that Â1,L and AL are connected by a 0–speed shock. The equation (3.6) yields

√
m+ 1

uL
cL

=

√

x̂(x̂m+1 − 1)

x̂− 1
.(3.16)

Inserting (3.16) into (3.15) and under the condition x̂ > 1, we obtain that

w(Â1,L) =
cL

2
√
m+ 1

√

x̂ (x̂m+1 − 1) (1− x̂)

[

−(m+ 1)x̂m+2 + (m+ 2)x̂m+1 − 1
]

< 0.

(3.17)
Next we turn to prove (3.10). Note that

µ′(A) = w′(A)f ′(A;wL) +AU(A;wL)f
′′

(A;wL)− mc(A)2

A
.(3.18)

From [13, (2.18), (2.19)], we get f ′(A;wL) > 0 and f
′′

(A;wL) < 0. Since (3.12), we
have µ′(A) < 0. Next we turn to determine the sign of µ(Â1,L). Due to the relations

for the zero speed shock, c(Â1,L)
2 = c2L

(

Â1,L

AL

)m

= c2Lx̂
m is satisfied and we have

Â1,Lû1,L = ALuL. Thus we obtain

µ(Â1,L) =
uLcL

2
√
m+ 1

(m+ 1)x̂m −mx̂m−1 − x̂−2

√

(x̂m+1 − 1) (1− x̂−1)
− c2Lx̂

m

=
c2L

2(m+ 1)

[

√
m+ 1

uL
cL

(m+ 1)x̂m −mx̂m−1 − x̂−2

√

(x̂m+1 − 1) (1− x̂−1)
− 2(m+ 1)x̂m

]

(3.19)

Inserting (3.16) into (3.19) and simplifying the formula, with x̂ > 1 leads to

µ(Â1,L) =
c2L

2(m+ 1)x̂(x̂− 1)

(

−(m+ 1)x̂m+2 + (m+ 2)x̂m+1 − 1
)

< 0.(3.20)
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This completes the proof of the lemma.
Inserting (Â1,L, û1,L) into (3.7) we obtain

Ωl(Â1,L;wL,KL,KR) =
m+ 2

2m
ρ

(

KR

KL

ûm1,Lĉ
2
1,L

)
2

m+2

−1

2
ρû21,L−

ρ

m
ĉ21,L+KL−KR.

(3.21)

Since û1,L = ALuL

Â1,L
and ĉ1,L = cL

(

Â1,L

AL

)
m
2

, the equation (3.21) can be rewritten as

Ωl(Â1,L;wL,KL,KR) = m+2
2m ρ

(

KR

KL
umL c

2
L

)
2

m+2 − 1
2ρu

2
L

(

Â1,L

AL

)−2

− ρ
m
c2L

(

Â1,L

AL

)m

+KL −KR.
(3.22)

Multiplying (3.22) by m
ρc2

L

, we obtain that

m

ρc2L
Ωl(Â1,L;wL,KL,KR) =

m+ 2

2

(

KR

KL

)
2

m+2
(

uL
cL

)
2m

m+2

− m

2

(

uL
cL

)2
(

Â1,L

AL

)−2

−
(

Â1,L

AL

)m

+

(

1− KR

KL

)(

AL
A0

)−m

.(3.23)

We define κ = K
KL

. The relation (3.23) suggests to introduce the following function
with respect to κ

ϕ(κ;wL) = m+2
2

(

uL

cL

)
2m

m+2

κ
2

m+2 −
(

A0

AL

)m

κ− m
2

(

uL

cL

)2 (
Â1,L

AL

)−2

−
(

Â1,L

AL

)m

+
(

AL

A0

)−m
.

(3.24)

The existence of P 1
ES(wL) is summarized in the following lemma.

Lemma 3.2. Assume that uL > cL and A
P l

ES
max ≥ A0

[

1− KR

KL

]
1
m

, we have:

1. If ϕ
(

KR

KL
;wL

)

≤ 0 then the composite wave P 1
ES(wL) always exists;

2. Otherwise if ϕ
(

KR

KL
;wL

)

> 0, the existence region for P 1
ES(wL) is Ãcl,sup <

A− < A
P 1

ES
max, where Ãcl,sup is the solution to Ωl(A;wL,KL,KR) = 0.

In the same manner, we summarize the results for the existence of the basic
composite wave curve P 2

ES(wR) in the following lemma.
Lemma 3.3. Assume that uR + cR < 0, we have:

1. If ϕ
(

KL

KR
;wR

)

≤ 0 then P 2
ES(wR) always exists;

2. Otherwise if ϕ
(

KL

KR
;wR

)

> 0, the existence region for P 2
ES(wR) is Ãcr,sup <

A− < A
P r

2
max, where Ãcr,sup is the solution to Ωr(A;wR,KR,KL) = 0.

Remark 3.4. We denote

ũcq,sup = uq ± f(Ãcq,sup;wq).(3.25)

Due to the fact that Ωq

(

Ãcq,sup;wq,Kin,Kout

)

= 0 the outflow state wc = J(Kout; w̃
c
q,sup,Kin)

is critical.
Remark 3.5. The monotonicity of P jES(wq) has been entirely determined in

[13, p. 15, Lemma 3.8]. Specifically the curve P 1
ES(wL) is continuously decreasing in

(u,Ψ) state plane, while the curve P 2
ES(wR) is continuously increasing in (u,Ψ) state

plane.
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3.2. The basic composite wave curve P js0s(wq). For the supercritical state
wq, we define

P js0s(wq) =
{

w|w = J(Kout;w+,K);w+ = S0
j (w−); w− = J(K;wq,Kin)

}

,(3.26)

where K ∈]Kin,Kout[, Kin and Kout were defined in (2.13) and j = 1, 2. We need to
consider the existence of the states w− = J(K;wq,Kin) and w = J(Kout;w+,K).
The existence of w− = J(K;wq,Kin) is equivalent to the relation

m+ 2

2m
ρ

(

K

Kin

umq c
2
q

)
2

m+2

− 1

2
ρu2q −

ρ

m
c2q +Kin −K ≤ 0.(3.27)

Dividing by
ρc2q
m

and setting κ = K
Kin

, we introduce a function with respect to κ given
by

τ(κ;wq) =
m+ 2

2

(

uq
cq

)
2m

m+2

κ
2

m+2 −
(

A0

Aq

)m

κ− m

2

(

uq
cq

)2

− 1 +

(

A0

Aq

)m

.(3.28)

Lemma 3.6. For any wq with u2q > c2q, we have

ϕ (κ;wq) > τ(κ;wq).(3.29)

Proof. Note that

ϕ (κ;wq)− τ (κ;wq) =
m

2

(

uq
cq

)2


1−
(

Aq

Âj,q

)2


−
(

Âj,q
Aq

)m

+ 1.(3.30)

From (3.6), we have

(

uq
cq

)2

=
1

m+ 1

(

Âj,q

Aq

)m+2

−
(

Âj,q

Aq

)

(

Âj,q

Aq

)

− 1
.(3.31)

Inserting (3.31) into (3.30), we obtain

ϕ (κ;wq)−τ (κ;wq) =
m
(

Âj,q

Aq

)m+2

− (m+ 2)
(

Âj,q

Aq

)m+1

+ (m+ 2)
(

Âj,q

Aq

)

−m

2(m+ 1)
(

Âj,q

Aq

) > 0,

(3.32)

since
Âj,q

Aq
> 1. So ϕ (κ;wq) > τ (κ;wq).

Remark 3.7. Lemma 3.6 tells us that if the state w = J(Kout; ŵj,q,Kin) exists,
then the state w = J(Kout;wq,Kin) also exists. But the opposite relation is not true.

Analogously we can transform the existence of the stationary wavew = J(Kout;w+,K)
into finding a region at which χ(κ;wq) ≤ 0, where

χ(κ;wq) := m+2
2

(

Kout

κKin

)
2

m+2
(

u+

c+

)
2m

m+2

+
(

1− Kout

κKin

)(

A+

A0

)−m

−m
2

(

u+

c+

)2

− 1.
(3.33)
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Moreover the behavior of χ(κ;wq) is summarized in the following lemma.

Lemma 3.8. If
(

uq

cq

)
2m

m+2
(

Aq

A0

)m (
Kin

Kout

)
m

m+2

> 1, then χ′(κ;wq) < 0; Otherwise

if
(

uq

cq

)
2m

m+2
(

Aq

A0

)m (
Kin

Kout

)
m

m+2

< 1, then χ′(κ;wq) > 0.

Proof. From the definition of P js0s(wq), we have

c2+ = c2q

(

K

Kin

)
2

m+2
(

uq
cq

c+
u+

)
2m

m+2

.(3.34)

This implies that

(

u+
c+

)
2m

m+2

= κ−
m

m+2

(

Aq
A+

)m(
uq
cq

)
2m

m+2

Hence we have

χ′(κ;wq) = −
(

Kout

Kin

)
2

m+2
(

u+
c+

)
2m

m+2

κ−
m+4
m+2 +

Kout

Kin

(

A+

A0

)−m

κ−2,

=
1

κ2
Kout

Kin

(

A+

A0

)−m
[

1−
(

uq
cq

)
2m

m+2
(

Aq
A0

)m(
Kin

Kout

)
m

m+2

]

.(3.35)

This is enough for the proof of the lemma.
Before investigating the existence of P js0s(wq), it is necessary to study the behavior

of the functions ϕ (κ;wq) and τ(κ;wq). The partial derivative of the function ϕ(κ;wq)
in terms of κ is

∂ϕ(κ;wq)

∂κ
=

(

uq
cq

)
2m

m+2

κ−
m

m+2 −
(

A0

Aq

)m

.(3.36)

We denote

κ∗ =

(

uq
cq

)2(
Aq
A0

)m+2

.(3.37)

So we have

∂ϕ(κ;wq)

∂κ







> 0, if κ < κ∗,
= 0, if κ = κ∗,
< 0, if κ > κ∗.

(3.38)

Hence we obtain the following lemma.
Lemma 3.9. The function ϕ(κ;wq) is increasing when κ < κ∗ and decreasing

when κ > κ∗. It reaches the maximum values at κ = κ∗. More precisely the maximum
value is given as

ϕκ
∗

max =
m

2

(

uq
cq

)2




(

Aq
A0

)2

−
(

Aq

Âj,q

)2


−
(

Âj,q
Aq

)m

+

(

A0

Aq

)m

.(3.39)

In the domain κ ∈]0,+∞[, the function ϕ(κ;wq) increases from ϕ(0;wq) to the
maximum value ϕκ

∗

max, then it decreases from ϕκ
∗

max to −∞. Moreover we have

ϕ(0;wq) = −m
2

(

uq
cq

)2
(

Aq

Âj,q

)2

−
(

Âj,q
Aq

)m

+

(

A0

Aq

)m

.(3.40)
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We set

A∗
sup = Aq





m

2

(

uq
cq

)2
(

Aq

Âj,q

)2

+

(

Âj,q
Aq

)m




1
m

.(3.41)

So if A0 > A∗
sup, we have ϕ(0;wq) > 0. There exists a unique solution denoted as

κϕs for the equation ϕ(κ;wq) = 0. Otherwise if A0 < A∗
sup, there are two solutions to

ϕ(κ;wq) = 0. We use κϕl to denote the one closer to 0, while κϕr is used to denote the
remaining one.

Remark 3.10. Assume that uL > cL and A
P l

2
max ≥ A0

[

1− KR

KL

]
1
m

, then the

inequality holds ϕ
(

KR

KL
;wL

)

≤ 0 if one of the following four conditions is satisfied:

ϕ∗
max ≤ 0;(3.42)

A0 > A∗
sup and κϕs ≤ KR

KL

< 1;(3.43)

A0 ≤ A∗
sup and 1 < κϕl < κϕr ;(3.44)

A0 ≤ A∗
sup and κϕl < κϕr ≤ KR

KL

< 1.(3.45)

Analogously we can prove the following lemma.

Lemma 3.11. The function τ(κ;wq) is increasing when κ <
(

uq

cq

)2 (
Aq

A0

)m+2

and decreasing when κ >
(

uq

cq

)2 (
Aq

A0

)m+2

. It reaches the maximum value at κ =
(

uq

cq

)2 (
Aq

A0

)m+2

given by

τ∗max =
m

2

(

uq
cq

)2(
Aq
A0

)2

− m

2

(

uq
cq

)2

− 1 +

(

A0

Aq

)m

.(3.46)

In addition note that

τ(0;wq) = −m
2

(

uq
cq

)2

− 1 +

(

A0

Aq

)m

.(3.47)

We define

A∗
s0s = Aq

[

m

2

(

uq
cq

)2

+ 1

]
1
m

.(3.48)

So if A∗
s0s ≥ A0, the inequality τ(0;wq) ≤ 0 holds, and vice versa.

Remark 3.12. The inequality τ(KR

KL
;wq) ≤ 0 holds if one of the following four

conditions is satisfied:

τ∗max ≤ 0;(3.49)

A0 > A∗
s0s and κτs ≤ KR

KL

< 1;(3.50)

A0 ≤ A∗
s0s and 1 < κτl < κτr ;(3.51)

A0 ≤ A∗
s0s and κτl < κτr ≤ KR

KL

< 1,(3.52)
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where κτs , κ
τ
l and κτr are solutions to τ(κ;wq) = 0.

Lemma 3.13. Assume that u2q > c2q, then the composite wave curve P js0s(wq)
exists when K varies from Kl to Kr, which are defined by

]Kl, Kr[=















]Kin, Kout[, if ϕ
(

Kout

Kin
;wq

)

≤ 0,

]κχ,qs0sKin, Kout[, if ϕ
(

Kout

Kin
;wq

)

> 0 & τ
(

Kout

Kin
;wq

)

≤ 0,

∅, otherwise,

(3.53)

where κχ,qs0s is the solution to χ(κ;wq) = 0.
Proof. It is enough to find the existence region for P 1

s0s(wL). The other one for
P 2
s0s(wR) can be dealt with in the same manner. According to previous analysis, we

only need to identify the existence of w− = J(K;wL,KL) and w = J(KR;w+,K).
They are equivalent to finding the region on which τ(κ;wL) ≤ 0 and χ(κ;wL) ≤ 0
respectively.

If ϕ
(

KR

KL
;wL

)

≤ 0, according to Remark 3.10, one of the four conditions (3.42),

(3.43), (3.44), or (3.45) is satisfied. If (3.42) is true, i.e. ϕ (κ;wL) < 0 for any
κ > 0. Thus from Lemma 3.6, we have τ (κ;wL) < ϕ (κ;wL). So it directly follows
that τ (κ;wL) < 0 for KR

KL
< κ < 1. Likewise we can obtain that ϕ (κ;wL) < 0 if

one of the remaining conditions (3.43), (3.44) or (3.45) is satisfied. Now we turn to

χ(κ;wL) ≤ 0 when ϕ
(

KR

KL
;wL

)

≤ 0. Note that

χ

(

KR

KL

)

= τ

(

KR

KL

;wL

)

and χ(1;wL) = ϕ

(

KR

KL

;wL

)

.(3.54)

According to Lemma 3.8, if F
2m

m+2

L

(

AL

A0

)m (
KL

KR

)
m

m+2

> 1, we have χ′(κ) < 0. Hence

it holds that

χ(κ;wL) < χ

(

KR

KL

)

= τ

(

KR

KL

;wL

)

< ϕ

(

KR

KL

;wL

)

≤ 0.

Otherwise if F
2m

m+2

L

(

AL

A0

)m (
KL

KR

)
m

m+2

< 1, we have χ′(κ;wL) > 0. Thus χ(κ;wL) <

χ(1;wL) = ϕ
(

KR

KL
;wL

)

≤ 0.

If ϕ
(

Kout

Kin
;wq

)

> 0 and τ
(

Kout

Kin
;wq

)

≤ 0, with (3.54), we have χ
(

KR

KL

)

=

τ
(

KR

KL
;wL

)

≤ 0 and χ(1;wL) = ϕ
(

KR

KL
;wL

)

> 0. This implies that χ′(κ;wL) > 0

and F
2m

m+2

L

(

AL

A0

)m (
KL

KR

)
m

m+2

< 1. So χ
(

KR

KL
;wL

)

< χ(κ;wL) < χ(1;wL). Thus by

the intermediate value theorem, there exists a unique solution to χ(κ;wL) = 0 for

κ ∈]KR

KL
, 1[ denoted by κχ,ls0s.

In the end if τ
(

Kout

Kin
;wq

)

≤ 0, from above we have χ(1;wL) > 0 and χ
(

KR

KL
;wL

)

>

0. This leads to the fact that χ(κ;wL) > 0 for any κ ∈]KR

KL
, 1[. Thus the stationary

wave w = J(KR;w+,K) does not exist. This is enough for the proof of the lemma.
Remark 3.14. The equation χ(κχ,qs0s;wq) = 0 implies that the state wc

∗ =
J(Kout;w+, κ

χ,q
s0sKin) is a critical state, where w− = J(κls0sKin;wq,Kin) and w+ =

S0
1(w−). The subscript ∗ is used to distinguish this critical state from the one defined

in Remark 3.4.
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We consider the monotonic behavior of P js0s(wq) in terms of the transmural pres-
sure ψ and the velocity u with respect to K. With the help of (2.2), the following
relations are satisfied:

(

ψq
Kin

+ 1

)
1
m

uq =

(

ψ−

K
+ 1

)
1
m

u−,(3.55)

ρu2q
2

+ ψq =
ρu2−
2

+ ψ−,(3.56)

(

ψ−

K
+ 1

)
1
m

u− =

(

ψ+

K
+ 1

)
1
m

u+,(3.57)

u− +
m(ψ− +K)

(m+ 1)ρu−
= u+ +

m(ψ+ +K)

(m+ 1)ρu+
,(3.58)

(

ψ

Kout

+ 1

)
1
m

u =

(

ψ+

K
+ 1

)
1
m

u+,(3.59)

ρu2

2
+ ψ =

ρu2+
2

+ ψ+,(3.60)

where ψq = ψ(Aq;Kin), ψ− = ψ(A−;K), ψ+ = ψ(A+;K), ψ = ψ(A;Kout). From
(3.55) and (3.56), we obtain

du−
dK

= − u−ψ−

Kρ(u2− − c2−)
,(3.61)

and

dψ−

dK
= −ρu−

du−
dK

=
u2−ψ−

K(u2− − c2−)
.

The relations (3.55) and (3.57) yield
(

ψq
Kin

+ 1

)

umq =

(

ψ−

K
+ 1

)

um− .(3.62)

Inserting (3.62) into (3.58), we get that

u− +
m(ψ− +K)

(m+ 1)ρu−
= u+ +

mK

(m+ 1)ρ

(

ψq
Kin

+ 1

)

umq

um+1
+

.(3.63)

Taking the derivative of (3.63) in terms of K, after short calculation we have

1

m+ 1

(

1− c2−
u2−

)

du−
dK

+
m

(m+ 1)

1

ρu−
=

(

1− c2+
u2+

)

du+
dK

+
c2+

(m+ 1)Ku+
.(3.64)

Using (3.61) into (3.64), we obtain

du+
dK

=

u2+

(

(m+1)−
(

A
−

A0

)m

ρu−

− c2+
Ku+

)

(m+ 1)(u2+ − c2+)
.(3.65)

From (3.55), (3.57) and (3.59), we obtain that
(

ψq
Kin

+ 1

)

umq =

(

ψ+

K
+ 1

)

um+ .
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This leads to the following relationship with respect to the derivative to K

dψ+

dK
= −m(ψ+ +K)

u+

du+
dK

+
ψ+

K
.(3.66)

Moreover we have
(

ψq
Kin

+ 1

)

umq =

(

ψ

Kout

+ 1

)

um.

Thus it follows that

dψ

dK
= −m(ψ +KR)

u

du

dK
.(3.67)

Involving (3.66), (3.67), with (3.60) we have

ρ

u
(u2 − c2)

du

dK
= ρu+

du+
dK

+
dψ+

dK
,

=
ρ

u+
(u2+ − c2+)

du+
dK

+
ψ+

K
,

=
u+
u−

[

1− 1

m+ 1

(

A−

A0

)m]

− ρc2+
(m+ 1)K

+
ψ+

K
,

=
u+
u−

[

1− 1

m+ 1

(

A−

A0

)m]

+
1

m+ 1

(

A+

A0

)m

− 1,

=
A−

A+
− 1 +

1

m+ 1

(

A−

A0

)m(
A−

A+

)2
(

(

A+

A−

)m+2

− A+

A−

)

.(3.68)

Note that

(

A+

A−

)m+2

−
[

1 + (m+ 1)

(

u−
c−

)2
]

(

A+

A−

)

+ (m+ 1)

(

u−
c−

)2

= 0.

Hence we obtain that
(

A+

A−

)m+2

− A+

A−
= (m+ 1)

(

u−
c−

)2(
A+

A−
− 1

)

.(3.69)

Inserting (3.69) into (3.68), we have

ρ

u
(u2 − c2)

du

dK
=
A−

A+

(

1− A−

A+

)

(

(

A−

A0

)m(
u−
c−

)2

− A+

A−

)

,

=
A−

A+

(

1− A−

A+

)(

ρu2−
mK

− A+

A−

)

.(3.70)

Note that 0 < A−

A+
< 1. So the sign of ρ

u
(u2 − c2) du

dK
depends on

ρu2
−

mK
− A+

A−

. In this

work for the sake of simplicity we only consider the monotonic curve P js0s(wq).

Assumption 3.15. For any K ∈]Kin, Kout[, we assume the state of P js0s(wq)
satisfies

ρu2−
mK

− A+

A−
> 0(3.71)
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or

ρu2−
mK

− A+

A−
< 0.(3.72)

According to our results in Sections 3.4 and 3.5, this assumption is always satisfied.
However if

there exists K ∈]Kin, Kout[ such that
ρu2−
mK

− A+

A−
= 0,(3.73)

the curve P js0s(wq) does not have the monotonicity property. We cannot exclude this
point at the moment. It is left as future work. In addition, due to u2 − c2 < 0, from
(3.70) we obtain

1

u

du

dK
< 0 if

ρu2−
mK

− A+

A−
> 0,(3.74)

and

1

u

du

dK
> 0 if

ρu2−
mK

− A+

A−
> 0.(3.75)

3.3. The classification of L–M and R–M curves for KL > KR. According
to Lemmas 3.2, 3.3, and 3.13, for the supercritical Riemann initial data, we can classify
the L–M and R–M curves into three different cases respectively. They are given in
Tables 3.1 and 3.2. Each case of the L–M curves will be studied in the following
sections. The R–M curve can be treated likewise.

Table 3.1

Cases of L–M curves with the supercritical initial data

Case IIIl A
P l

2
max ≥ A0

[

1− KR

KL

]
1
m

; uL > cL; ϕ
(

KR

KL
;wL

)

≤ 0

Case V Il A
P l

2
max ≥ A0

[

1− KR

KL

]
1
m

; uL > cL; ϕ
(

KR

KL
;wL

)

> 0; τ
(

KR

KL
;wL

)

≤ 0

Case Vl A
P l

2
max ≥ A0

[

1− KR

KL

]
1
m

; uL > cL; τ
(

KR

KL
;wL

)

> 0

Table 3.2

Cases of R–M curves with the supercritical initial data

Case IIIr uR + cR < 0; ϕ
(

KL

KR
;wR

)

≤ 0

Case IVr uR + cR < 0; ϕ
(

KL

KR
;wR

)

> 0; τ
(

KL

KR
;wR

)

≤ 0

Case Vr uR + cR < 0; τ
(

KL

KR
;wR

)

> 0

3.3.1. Cases of L–M curves. In this section we construct in detail the L–
M curves for all possible cases with supercritical initial state. The construction is
validated by a series of examples. Unless otherwise stated, the computational region
for Riemann problem is ]0, 1[. The equilibrium cross sectional area is A0 = 2.1124 ×
10−4 m2. The discontinuity is located at x = 0.5.
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S0
1(w

−
)

2–wave

x

t

wL wR

wM
w

−

w+

KL

KR
K

0–wave

︸ ︷︷ ︸

x=0

Fig. 3.1. Wave configuration E

1–wave

2–wave

x

t

wL

wR

wM

w̄L

0–wave

Fig. 3.2. Wave configuration F

1–wave

2–rarefaction

x

t

wL

wR

(0, 0)

w̄L

0–wave

Fig. 3.3. Wave configuration Fcol

S0
1(U

−
)

2–wave

1–rarefaction

x

t

wL wR

(0, 0)

w
−

w+

w
c

KL

KR
K

0–wave

︸ ︷︷ ︸

x=0

Fig. 3.4. Wave configuration Gcol

3.4. Case IIIl: A
P l

2
max ≥ A0

[

1− KR

KL

]
1
m

; uL > cL; ϕ
(

KR

KL
;wL

)

≤ 0. In this

case the possible wave configurations with positive intermediate velocity are the wave
configurations A, E, F , and Fcol see Figures [13, Fig. 3.1], 3.1, 3.2, and 3.3. The wave
configuration A has been well studied with examples in [13]. Hence in the present
work we just focus on the remaining possible wave configurations E, F and Fcol. The
wave configuration E consists of, from left to right, a resonant wave constituted of
three waves: a supersonic stationary wave w− = J(K;wL,KL), a 0–speed 1–shock
wave w+ = S0

1(w−) and a subcritical stationary wave w = J(KR;w+,K), where
K ∈]KR, KL[. These three waves coalesce on the line x = 0. The wave configuration
F is classical, which consists of a negative speed 1–shock, followed by a stationary
wave located at x = 0, and a positive speed 2–wave. The wave configuration Fcol is
associated to the wave configuration F but with a collapsible tube state.

Consequently the corresponding L–M curve CL(wL) consists of the four following
parts given by

P l1(wL) = {w|w ∈ T1(wL), u < 0} ,
P l2(wL) =

{

w|w = J(KR;w−,KL),w− ∈ T1(wL), 0 < u < ¯̂u1,L
}

,
P l3(wL) = {w|w = J(KR;w+,K); w+ = S0

1(w−); w− = J(K;wL,KL), KR ≤ K ≤ KL} ,
P l4(wL) =

{

w|w ∈ T1(w̄L), u > ˆ̄u1,L
}

,
(3.76)
To involve the collapsible tube problem, we define a critical velocity given as

uLMcol = ūL +
2

m
c̄L.(3.77)

So if uLMcol < uRcol, where u
R
col is defined in (3.1), then the Riemann solution has the

wave configuration Fcol. The intermediate state of the wave configuration Fcol, see Fig.



Riemann solutions to a simplified blood flow model 17

S0
1(U

−
)

2–wave

x

t

wL wR

wM

w
−

w+

w
c

KL

KR
K

1–rarefaction0–wave

︸ ︷︷ ︸

x=0

Fig. 3.5. Wave configuration G

1–wave

2–wave

x

t

wL
wR

(A
p12
max, 0) (A

pr2
max, 0)

0–wave

Fig. 3.6. Wave configuration H

3.3, is a collapsible state, i.e. with A = 0. Otherwise the Riemann solution does not
contain the collapsible tube state. More specifically, if the intermediate state wM ∈
P l2(wL), the exact Riemann solution has the wave configuration A. If the intermediate
state wM ∈ P l3(wL), the exact Riemann solution has the wave configuration E. In
addition if the intermediate state wM ∈ P l4(wL), the exact Riemann solution has the
wave configuration F.

The continuity of the L–M wave curve in this case is obvious. From the analysis

in Section 3.2, the monotonicity of the L–M curve is determined by the sign of
ρu2

−

mK
−

A+

A−

. According to Assumption 3.15, it is enough to test the sign when K = KR.

Specifically it equals to (ρū2L)/(mKR) − ( ˆ̄AL)/(ĀL). From (3.74) we have du
dK

< 0 if

(ρū2L)/(mKR) − ( ˆ̄AL)/(ĀL) > 0; and du
dK

> 0 if (ρū2L)/(mKR) − ( ˆ̄AL)/(ĀL) < 0. In

addition we have dψ
dK

= − 1
KRu

du
dK

. Thus dψ
dK

> 0 if (ρū2L)/(mKR) − ( ˆ̄AL)/(ĀL) > 0,

while dψ
dK

< 0 if (ρū2L)/(mKR) − ( ˆ̄AL)/(ĀL) < 0. Hence u is decreasing while ψ is

increasing when K varies from KR to KL if (ρū2L)/(mKR)− ( ˆ̄AL)/(ĀL) > 0 and vice
versa.

So on one hand if (ρū2L)/(mKR)−( ˆ̄AL)/(ĀL) < 0, we have ¯̂uL > ˆ̄uL and
¯̂
ψL <

ˆ̄ψL.
The L–M curve is folding in the (u, ψ) plane. A bifurcation appears, see Figure 3.10.
This leads to nonunique solutions. For the given initial data, there exists three possible

Riemann solutions. On the other hand if (ρū2L)/(mKR) − ( ˆ̄AL)/(ĀL) > 0, we have
¯̂uL < ˆ̄uL and

¯̂
ψL > ˆ̄ψL. the L–M curve on (u, ψ) space is continuously decreasing.

The solution uniquely exist. The examples and details of the unique and nonunique
Riemann solutions will be discussed in the following parts.

3.4.1. The unique solution: (ρū2L)/(mKR) − ( ˆ̄AL)/(ĀL) > 0. Three exam-
ples have the wave configurations E, F , and Fcol are used to illustrate our con-
struction respectively. The first example is for the exact solution having the wave
configuration E. The initial data and intermediate states are listed in the Table

3.3. Note that ϕ
(

KR

KL
;wL

)

= −0.368912 and τ
(

KR

KL
;wL

)

= −0.547927. In addition

(ρū2L)/(mKR)− ( ˆ̄AL)/(ĀL) = 4.814028. The corresponding L–M curve and the exact
Riemann solutions are shown in Figure 3.7.

The second example is for a Riemann solution having the wave configuration F .
The initial data and states of the exact Riemann solution are listed in Table 3.4.
Under this Riemann initial data we have ϕ

(

KR

KL
;wL

)

= −0.15846, τ
(

KR

KL
;wL

)

=

−0.166692, and (ρū2L)/(mKR) − ( ˆ̄AL)/(ĀL) = 1.928593. The corresponding L–M
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Table 3.3

Initial data and intermediate states for an example of Case IIIl with the wave configuration E

K (Pa) A (m2) u (m/s) SI

wL 40000.065331 4.2248× 10−4 10.380259 2.0
w− 29017.111011 4.03365× 10−4 10.872157 2.488099
w+ 29017.111011 1.607526× 10−3 2.728076 0.441869
wM 28000.045732 1.700599× 10−3 2.578769 0.419263
wR 28000.045732 1.098391× 10−3 0 0
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Fig. 3.7. Top: The L–M curve
4⋃

k=1

P l

k
(wL) to Table 3.3. Bottom: The corresponding vessel

area and velocity at t = 0.02 s.

curve and the exact Riemann solution are shown in Figure 3.8. Clearly we can observe
the stationary wave located at x = 0, the positive speed 1–shock, and the 2–rarefaction
wave.

Table 3.4

Initial data and intermediate states for an example of Case IIIl with the wave configuration F

K (Pa) A (m2) u (m/s) SI

wL 0.2 4.2248× 10−4 0.015087 1.3
w̄L 0.14 3.67905× 10−4 0.017325 1.847065
wM 0.14 2.78884× 10−4 0.019836 2.266369
wR 0.14 3.0984× 10−5 0 0
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(wL) to Table 3.4. Bottom: Exact vessel area and

velocity at t = 8.0 s.

The third example is for the Riemann solution having the wave configuration
Fcol, see Figure 3.3. The initial data and exact Riemann solution are listed in Table
3.5. The equilibrium cross sectional area in this example is A0 = 1.0× 10−4 m2. The
corresponding blood vessel cross sectional area and the velocity are shown in Figure
3.9. We can clearly observe the collapse of the blood vessel in it.

Table 3.5

Initial data and intermediate states for an example of Case IIIl with the wave configuration Fcol

K (Pa) A (m2) u (m/s) SI

wL 0.290682 2.0× 10−4 0.02098691 1.5
w̄L 0.203478 1.8140985× 10−4 0.0231376 2.025367
wLM
col 0.203478 0 0.06883312 –

wR
col 0.203478 0 0.938418 –

wR 0.203478 5.98391× 10−4 1.0 64.953862

3.4.2. The nonunique solutions: (ρū2L)/(mKR)− ( ˆ̄AL)/(ĀL) < 0. We define

two critical variables u1 = uR + fR(
¯̂
A1,L;wR) and u2 = uR + fR(

ˆ̄A1,L;wR). It can
be proved that if u1 < ¯̂u1,L and u2 > ˆ̄u1,L, then there exist three possible solutions
with wave configurations A, E and F respectively.

We use an example given in Table 3.6 to illustrate nonunique solutions. The
equilibrium cross sectional area is A0 = 1.0 × 10−4 m2. The Riemann initial data
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Fig. 3.9. Exact vessel area and velocity at t = 0.3 s.

satisfy ϕ
(

KR

KL
;wL

)

= −0.405688, τ
(

KR

KL
;wL

)

= −1.19155, and (ρū2L)/(mKR) −
( ˆ̄AL)/(ĀL) = −5.156529. The corresponding L–M wave curve is shown on the top
of Figure 3.10. The bifurcation can be obviously observed. In addition the states
of three possible solutions are shown in Tables 3.7, 3.8, and 3.9. The corresponding
solutions are shown in Figure 3.10. Here we use different colors to distinguish the
three possible solutions.

Table 3.6

Initial data of an example for Case IIIl with three solutions

K (Pa) A (m2) u (m/s) SI

wL 58136.483963 1.0× 10−6 6.655409 4
wR 56392.389444 5.038× 10−6 0 0

Table 3.7

Initial data and intermediate states of an example for Case IIIl with the wave configuration A

of Table 3.6

K (Pa) A (m2) u (m/s) SI

wL 58136.483963 1.0× 10−6 6.655409 4
w− 58136.483963 8.137909× 10−6 0.65858 0.23435
wM 56392.389444 6.83733× 10−6 0.783853 0.291339
wR 56392.389444 5.038× 10−6 0 0

Table 3.8

Initial data and intermediate states of an example for Case IIIl with the wave configuration E

of Table 3.6

K (Pa) A (m2) u (m/s) SI

wL 58136.483963 1.0× 10−6 6.655409 4
w− 57168.798724 1.020605× 10−6 6.52104 3.932172
w+ 57168.798724 7.80827× 10−6 0.852354 0.309038
wM 56392.389444 7.199564× 10−6 0.924418 0.344383
wR 56392.389444 5.038× 10−6 0 0
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Table 3.9

Initial data and intermediate states of an example for Case IIIl with the wave configuration F

of Table 3.6

K (Pa) A (m2) u (m/s) SI

wL 58136.483963 1.0× 10−6 6.655409 4
w̄L 56392.389444 1.038112× 10−6 6.41107 3.875867
wM 56392.389444 7.493153× 10−6 1.035161 0.381805
wR 56392.389444 5.038× 10−6 0 0

0 0.5 1 1.5
−4.35

−4.3

−4.25

−4.2

−4.15

−4.1

−4.05
x 10

4

P
l
2(wL)

P
l
3(wL)

¯̂
wL

ˆ̄wL

P
l
4(wL)

u

Ψ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.8
1.6
2.4
3.2

4
4.8
5.6
6.4
7.2

8
x 10

−6

x (m)

ve
ss

el
 a

re
a 

(m
2 )

 

 

A
E
F

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.7
1.4
2.1
2.8
3.5
4.2
4.9
5.6
6.3

7

x (m)

ve
lo

ci
ty

 (
m

/s
)

 

 

A
E
F

Fig. 3.10. Top: The L–M curve
4⋃

k=1

P l

k
(wL). Bottom: Exact vessel areas and velocities at

t = 0.15 s.

3.5. Case IVl: A
P l

2
max ≥ A0

[

1− KR

KL

]
1
m

, uL > cL, ϕ
(

KR

KL
;wL

)

> 0, and

τ
(

KR

KL
;wL

)

≤ 0. In this case the possible wave configurations with positive interme-

diate velocity are the wave configurationsA, B, Bcol, see Figures in [13, Fig. 3.1, 3.2, 3.5];
and E, F , G, Fcol, as well as Gcol in Figures 3.1, 3.2, 3.5, 3.3, and 3.4. The new wave
configurations G and Gcol consist of a resonant wave, which is constituted of a super-
critical stationary wave, a zero speed 1–shock, a subcritical stationary wave, and a
supercritical 1–rarefaction wave starting from a critical state wc

∗, which is defined in
Remark 3.14.
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Consequently the L–M curve consists of six segments given by

P l1(wL) = {w|w ∈ T1(wL), u < 0} ,
P l2(wL) = {w|w = J(KR;w−,KL),w− ∈ T1(wL), 0 < u < uc} ,
P l3(wL) =

{

w|w = J(KR;w+,K);w+ = S0
1(w−);w− = J(K;wL,KL),KR ≤ K ≤ κχ,ls0sKL

}

,

P l4(wL) =
{

w|w ∈ T1(w̄L, u > ˆ̄u1,L
}

,
P l5(wL) = {w|w ∈ T1(wc), u > uc} ,
P l6(wL) = {w|w ∈ T1(w

c
∗), u > uc∗} ,

(3.78)

where wc = (Ac, uc)T , κχ,ls0s, w
c
∗ = (Ac∗, u

c
∗)
T were defined in Remark 3.4, Lemma 3.13,

and Remark 3.14 respectively. Compared with Case IIIl, the state ¯̂wL, see Figure
3.10, fails to exist. This is the reason for the appearance of two new branches P l5(wL)
and P l6(wL), see Figure 3.11. The L–M curve in this case consists of three branches
given by P l1(wL) ∪ P l2(wL) ∪ P l5(wL), P

l
3(wL) ∪ P l6(wL) and P

l
4(wL).

To involve the collapsible tube states, we define three critical collapsible states:
uLMcol,1 = m+2

m
uc, uLMcol,2 = m+2

m
uc∗, and uLMcol,3 = ūL + 2

m
c̄L. Moreover to precisely

determine the wave configuration as in Case IVl, we introduce three critical states:

u1 = uR+fR(A
c;wR), u2 = uR+fR(

ˆ̄A1,L;wR), and u3 = uR+fR(A
c
∗;wR). Obviously

if ˆ̄u1,L > u2, there is a unique solution having the wave configuration A. Otherwise
there are three possible solutions with different wave configurations located on the
corresponding branches of L–M curves, see Figure 3.11.

For the first branch P l1(wL) ∪ P l2(wL) ∪ P l5(wL), if u
LM
col,1 < uRcol the Riemann

solution contains the collapsible tube state and has the wave configuration Bcol; Oth-
erwise if u1 < uc, the intermediate state is located on P l2(wL). The Riemann solution
has the wave configuration A; In the end if u1 > uc and uLMcol,1 > uRcol, the intermediate

state is located on P l5(wL). The Riemann solution has the wave configuration B.
For the second branch, if uLMcol,2 < uRcol the Riemann solution contains the col-

lapsible tube state and has the wave configuration Gcol; otherwise if u3 < uc∗, the
intermediate state is located on P l3(wL). The Riemann solution has the wave con-
figuration E; On the contrary if u3 > uc∗ and uLMcol,2 > uRcol, the intermediate state is

located on P l6(wL). The Riemann solution has the wave configuration G.
For the third branch, if uLMcol,3 < uRcol the Riemann solution contains the collapsible

tube state and has the wave configuration Fcol. Otherwise the intermediate state is
located on P l4(wL). The Riemann solution has the wave configuration F .

Hence there are many possible combinations of the wave configurations, e.g. A,
E, F ; B, E, F ; A, G, F ; B, G, F ; Bcol, G, F ; and Bcol, Gcol, F etc. Here we use
four examples to show the nonunique solutions in this case.

3.5.1. Example 1 of Case IVl. The first example is for nonunique Riemann
solutions having the wave configurations B, G, and F . The Riemann initial data and
states of exact Riemann solution are shown in Tables 3.10, 3.11, and 3.12 respectively.
The L–M curve and three possible solutions are shown in Figure 3.11. The equilibrium
cross sectional area for this example is A0 = 1.0× 10−4 m2. Here we choose the same
color for the exact solution as the ones on the corresponding segment of the L–M
curve.

3.5.2. Example 2 of Case IVl. The second example is for nonunique Riemann
solutions having the wave configurations A, G, and F . In this example the equilibrium
cross sectional area is A0 = 1.0 × 10−4 m2. The Riemann initial data and states of
the exact Riemann solution are shown in Tables 3.13, 3.14 and 3.15 respectively. The
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Table 3.10

Initial data and intermediate states of the nonunique Riemann solutions for an example in

Case IVl with the wave configuration B

K (Pa) A (m2) u (m/s) SI

wL 0.919219 1.0× 10−6 0.023530423 3.556559
w̃sup
c 0.919219 7.530402× 10−6 0.001222575 0.11155

wc 0.781336 1.390041× 10−6 0.006623172 1
wM 0.781336 3.07432× 10−7 0.014947893 3.291043
wR 0.781336 1.243004× 10−6 0.022542384 3.500036

Table 3.11

Initial data and intermediate states of the nonunique Riemann solutions for an example in

Case IVl with the wave configuration G

K (Pa) A (m2) u (m/s) SI

wL 0.919219 1.0× 10−6 0.023530423 3.556559
w− 0.827056 1.206830× 10−6 0.019497717 2.964247
w+ 0.827056 6.187583× 10−6 0.003802845 0.384212
w∗
c 0.781336 2.944804× 10−6 0.007990488 1

wM 0.781336 6.12679× 10−6 0.018366182 3.403310
wR 0.781336 1.243004× 10−6 0.022542384 3.500036

Table 3.12

Initial data and intermediate states of the nonunique Riemann solutions for an example in

Case IVl with the wave configuration F

K (Pa) A (m2) u (m/s) SI

wL 0.919219 1.0× 10−6 0.023530423 3.556559
w̄L 0.781336 1.378420× 10−6 0.017070577 2.582817
wM 0.781336 8.40823× 10−7 0.020143824 3.448709
wR 0.781336 1.243004× 10−6 0.022542384 3.500036

L–M curve and three possible solutions are shown in Figure 3.12. We also choose the
colors to match the ones on the L–M curve. Note that in Figure 3.11, the right cross
sectional area AR takes a larger value compared with the first example.

Table 3.13

Initial data and intermediate states of the nonunique Riemann solutions for an example in

Case IVl with the wave configuration A

K (Pa) A (m2) u (m/s) SI

wL 0.919219 1.0× 10−6 0.023530423 3.556559
w− 0.919219 7.533525× 10−6 0.001214575 0.110809
wM 0.781336 1.493519× 10−6 0.006126494 0.837644
wR 0.781336 1.0× 10−5 0.0225423840 2.078216

3.5.3. Example 3 of Case IVl. The third example is for the solutions having
the wave configurations A, E, and F . In this example the equilibrium cross sectional
area is A0 = 0.01m2. The Riemann initial data and states of exact Riemann solution
are shown in Tables 3.16, 3.17, and 3.18 respectively. The L–M curve and three
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Fig. 3.11. Top: The L–M curve
6⋃

k=1

P l

k
(wL) of Tables 3.10, 3.11 and 3.12. Bottom: The

corresponding exact vessel area and velocity at t = 10.0 s.

Table 3.14

Initial data and intermediate states of the nonunique Riemann solutions for an example in

Case IVl with the wave configuration G

K (Pa) A (m2) u (m/s) SI

wL 0.919219 1.0× 10−6 0.023530423 3.556559
w− 0.827056 1.206830× 10−6 0.019497717 2.964247
w+ 0.827056 6.187583× 10−6 0.003802845 0.384212
w∗
c 0.781336 2.944804× 10−6 0.007990488 1

wM 0.781336 2.409688× 10−6 0.009553434 1.257072
wR 0.781336 1.0× 10−5 0.022542384 2.078216

Table 3.15

Initial data and intermediate states of the nonunique Riemann solutions for an example in

Case IVl with the wave configuration F

K (Pa) A (m2) u (m/s) SI

wL 0.919219 1.0× 10−6 0.023530423 3.556559
w̄L 0.781336 1.378420× 10−6 0.017070577 2.582817
wM 0.781336 2.983457× 10−7 0.011220750 1.399693
wR 0.781336 1.0× 10−5 0.022542384 2.078216
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Fig. 3.12. Top: The L–M curve
6⋃

k=1

P l

k
(wL) of Tables 3.13, 3.14 and 3.15. Bottom: The

corresponding exact vessel area and velocity at t = 10.0 s.

possible solutions are shown in Figure 3.13.

Table 3.16

Initial data and intermediate states of the nonunique Riemann solutions for an example in

Case IVl with the wave configuration A

K (Pa) A (m2) u (m/s) SI

wL 5813.648396 1.0× 10−4 1.315390626 2.5
w− 5813.648396 4.11231591× 10−4 0.302890497 0.404249
wM 5581.102460 2.15004128× 10−4 0.579329067 0.909283
wR 5581.102460 8.0383910× 10−5 0 0

Table 3.17

Initial data and intermediate states of the nonunique Riemann solutions for an example in

Case IVl with the wave configuration E

K (Pa) A (m2) u (m/s) SI

wL 5813.648396 1.0× 10−4 1.315390626 2.5
w− 5770.653747 1.02649664× 10−4 1.281436853 2.428594
w+ 5770.653747 3.94978467× 10−4 0.333028440 0.450646
wM 5581.102460 2.20254785× 10−6 0.597213190 0.950928
wR 5581.102460 8.0383910× 10−5 0 0
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Table 3.18

Initial data and intermediate states of the nonunique Riemann solutions for an example in

Case IVl with the wave configuration F

K (Pa) A (m2) u (m/s) SI

wL 5813.648396 1.0× 10−4 1.315390626 2.5
w̄L 5581.102460 1.18171008× 10−4 1.113124656 2.070931
wM 5581.102460 2.43225666× 10−4 0.673363464 1.045916
wR 5581.102460 8.0383910× 10−5 0 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−5000

−4900

−4800

−4700

−4600

−4500

−4400

u

Ψ

P
l
2(wL)

P
l
4(wL)P

l
3(wL)

P
l
6(wL)

P
l
5(wL)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

x 10
−4

x (m)

ve
ss

el
 a

re
a 

(m
2 )

 

 

A
E
F

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.15
0.3

0.45
0.6

0.75
0.9

1.05
1.2

1.35
1.5

x (m)

ve
lo

ci
ty

 (
m

/s
)

 

 

A
E
F

Fig. 3.13. Top: The L–M curve
6⋃

k=1

P l

k
(wL) of Tables 3.16, 3.17 and 3.18. Bottom: The

corresponding exact vessel area and velocity at t = 0.2 s.

3.5.4. Example 4 of Case IVl. The last example is for the solutions having
the wave configurations Bcol, Gcol, and F . The Riemann initial data and states of
exact Riemann solution are shown in Tables 3.19, 3.20 and 3.21 respectively. The
L–M curve and three possible solutions are shown in Figure 3.11. The equilibrium
cross sectional area in this example is A0 = 1.0× 10−4 m2.

3.6. Case Vl: A
P l

2
max ≥ A0

[

1− KR

KL

]
1
m

, uL > cL, and ϕ
(

KR

KL
;wL

)

> 0. With

the help of ϕ
(

KR

KL
;wL

)

> 0, two branches P l3(wL)∪P l6(wL) and P
l
4(wL) of the L–M

curve in Case IVl entirely disappear. Hence the Riemann solution in this case can
only have the wave configurations A and B, see [13, Fig. 3.1, 3.2]. Consequently the
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Table 3.19

Initial data and intermediate states of the nonunique Riemann solutions for an example in

Case IVl with the wave configuration Bcol

K (Pa) A (m2) u (m/s) SI

wL 0.290682 1.0× 10−5 0.01323213 2.0
w̃sup
c 0.290682 3.1389752× 10−5 0.003708 0.127727

wc 0.24708 1.6769675× 10−5 6.941293× 10−3 1
wLM
col,1 0.24708 0 0.039696 −−

wR
col 0.24708 0 0.035755 −−

wR 0.24708 1.243004× 10−6 0.050242 13.872122

Table 3.20

Initial data and intermediate states of the nonunique Riemann solutions for Case IVl with the

wave configuration Gcol

K (Pa) A (m2) u (m/s) SI

wL 0.290682 1.0× 10−5 0.01323213 2.0
w− 0.263707 1.176424× 10−5 0.011247756 1.713854
w+ 0.263707 2.7075627× 10−5 0.0048871 0.604582
w∗
c 0.24708 1.8580458× 10−5 0.00712153 1

wLM
col,2 0.24708 0 0.035608 –

wR
col 0.24708 0 0.035755 –

wR 0.24708 1.243004× 10−6 0.050242 13.872122

Table 3.21

Initial data and intermediate states of the nonunique Riemann solutions for Case IVl with the

wave configuration F

K (Pa) A (m2) u (m/s) SI

wL 0.290682 1.0× 10−5 0.01323213 2.0
w̄L 0.24708 1.3749732× 10−5 0.009623554 1.456977
wM 0.24708 1.231459× 10−14 0.035899623 993.517825
wR 0.24708 1.243004× 10−6 0.050242 13.872122

L–M curve are defined by

P l1(wL) = {w|w ∈ T1(wL), u < 0} ,
P l2(wL) = {w|w = J(KR;w−,KL),w− ∈ T1(wL), 0 < u < uc} .
P l3(wL) = {w|w ∈ T1(w

c), u > uc} ,
(3.79)

Note that the L–M curve in this case is continuously decreasing. Therefore the
Riemann solution in this case uniquely exists. We use one example given in Table
3.22 to demonstrate the Riemann solution for the wave configuration B. The result
is shown in Figure 3.15, where A0 = 0.01 m2.

3.7. Cases of R–M curves. According to Table 3.2, the R–M curves contain
three different cases. The cases of the R–M curves can be treated likewise as the ones
of the L–M curves. The corresponding wave configurations with negative intermediate
velocity can be denoted by ET , FT , GT , FTcol, and GTcol to denote the appropriate
symmetric cases of the ones with the positive intermediate velocity. The segments of
R–M curve will also be denoted as P rj (wR), j = 1, · · · , 6. The segment P r1 (wR) defined
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Fig. 3.14. The corresponding exact vessel area and velocity at t = 5.0 s.

Table 3.22

Initial data and intermediate states of an example for Case Vl with the wave configuration B.

K (Pa) A (m2) u (m/s) SI

wL 5813.648396 1.0× 10−4 1.315391 2.5
w̃sup
c 5813.648396 4.847543× 10−4 0.125030 0.160148

wc 5232.283557 1.167995× 10−4 0.518915 1
wM 5232.283557 6.44362× 10−5 0.805707 1.8016
wR 5232.283557 1.03839× 10−5 0 0

in [13, p. 10,(3.6)] is common for all cases. The segment P r2 (wR) = P 2
ES(wR) has

been well studied in Lemma 3.3 and Remark 3.5. The segment P r3 (wR) = P 2
s0s(wR)

for Cases IIIr and IVr has been established in Lemma 3.53. Moreover, we outline
the additional segments in the following.

In Case IIIr, the R–M curve consists of four segments. The remaining seg-
ment is P r4 (wR) = T2(w̄R). The nonunique solutions having the wave configu-
rations AT , ET , and FT might occur for some given initial data if they satisfy

(ρū2R)/(mKL) − ( ˆĀ2,R)/(ĀR) < 0. Otherwise the solution is unique with one of the
wave configurations AT , ET , FT , or FTcol. The solution with the wave configuration
FTcol contains collapsible states and is identified by uRMcol > uLcol, where

uRMcol = ūR − 2

m
c̄R.(3.80)

In Case IVr, the R–M curve consists of six segments. The remaining segments
are P r4 (wR) = T2(w̄R), P

r
5 (wR) = T2(w

c), and P r6 (wR) = T2(w
c
∗), where the critical

state wc = J(KL; w̃
c
l,sup,KR), w̃

c
l,sup and wc were defined in Remark 3.4; The critical

state wc
∗ was derived in (3.14). Analogously to Case IVl, these six segments of the R–

M curve form three different branches: P r1 (wR)∪P r2 (wR)∪P r5 (wR), P
r
3 (wR)∪P r6 (wR)

and P r4 (wR). This leads to multiple solutions for the given initial data. The possible
wave configurations with negative intermediate velocity are the wave configurations
AT , BT , ET , FT , GT , BTcol, F

T
col, and GTcol. The wave configurations AT , BT , and

BTcol are associated to the first branch. The wave configuration ET , GT , and GTcol
are on the second branch. While the wave configuration FT and FTcol are on the
third branch. Since each branch can be proved to be continuously monotonic, the
Riemann solutions are the combination of the wave configurations on three branches
if nonunique Riemann solutions exist.

In Case Vr, the R–M curve consists of two segments. The segment P r3 (wR) =
T2(w

c). As in Case IVr, the critical state wc = J(KL; w̃
c
l,sup,KR). The states w̃c

l,sup
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Fig. 3.15. Top: The L–M curve
3⋃

k=1

P l

k
(wL) for Table 3.22. Bottom: Exact vessel area and

velocity at t = 0.5 s.

and wc are defined in Remark 3.4; The critical state wc
∗ was derived in (3.14). The

R–M curve in this case is is continuously decreasing, i.e. the Riemann solution in this
case uniquely exists.

For the given Riemann initial data, we define the L–M and R–M curves with the
supercritical data according to the previous sections. The L–M and R–M curves with
the subcritical data has been defined in [13, Sec. 3.3, 3.4]. Based on them, the exact
Riemann solutions can be uniformly solved by the algorithm in [13, Sec. 3.5].

4. Conclusions. In this paper, uniform framework, we have completely solved
the Riemann problem for a 3× 3 resonant system of equations governing the flow in
a collapsible tube with discontinuous material properties. Here we have focused on
the case of supercritical Riemann initial data, while in the companion paper [13] we
focused on the subcritical case. The non-unique Riemann solutions appear for certain
supercritical initial data due to the bifurcation of the L–M and R–M curves. Several
examples are given for positive intermediate velocity. The Riemann solutions obtained
reveal the mathematical structure of the model and they can also be directly used
to assess the performance of numerical methods intended for solving more realistic
problems.
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