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Abstract

Sheffield (2011) introduced a discrete inventory accumulation model which encodes a random planar
map decorated by a collection of loops sampled from the critical Fortuin-Kasteleyn (FK) model and
showed that a certain two-dimensional random walk associated with an infinite-volume version of the
model converges in the scaling limit to a correlated planar Brownian motion. We improve on this
scaling limit result by showing that the times corresponding to complementary connected components of
FK loops (or “flexible orders”) in the discrete model converge to the π/2-cone times of this correlated
Brownian motion. Our result can be used to obtain convergence of many interesting functionals of the
FK loops (e.g. their lengths and areas) toward the corresponding “quantum” functionals of the loops of
a conformal loop ensemble on a Liouville quantum gravity surface.

Contents

1 Introduction 2
1.1 Inventory accumulation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Cone times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Basic notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Probabilistic estimates 8
2.1 Brownian motion lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Lower bounds for various probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Estimate for the number of flexible orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Probability that the reduced word is empty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Regularity conditioned on no burgers 17
3.1 Statement and overview of the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Regularity along a subsequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Conditioning on an initial segment of the word . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Regularity at all sufficiently large times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Convergence conditioned on no burgers 25
4.1 Statement and overview of the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Times with empty burger stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Upper bound on the number of orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Proof of tightness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5 Identifying the limiting law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Convergence of the cone times 31
5.1 Regular variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Proof of Theorem 1.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1



1 Introduction

The critical Fortuin-Kasteleyn (FK) cluster model with parameter q > 0 on a planar map M is a statistical
physics model, first introduced in [FK72], in which one chooses a random subset S of the set of edges of
M . This collection of edges gives rise to a collection L of loops on M which form the interfaces between the
edges in S and the edges not in S. The probability of any given realization of S is proportional to q#L. The
FK model is closely related to the critical q-state Potts model [BKW76] for general integer values of q; to
critical percolation for q = 1; and to the Ising model for q = 2. See e.g. [KN04, Gri06] for more on the FK
model and its relationship to other statistical physics models.

If the pair (M,L) is chosen according to the uniform measure on such pairs, weighted by qK , the loop-
decorated planar map thus obtained is conjectured to converge in the scaling limit to a conformal loop
ensemble (CLEκ) [She09,SW12] with κ ∈ (4, 8) satisfying q = 2 + 2 cos(8π/κ) on top of a Liouville quantum
gravity surface [DS11, She10, DMS14] with parameter γ = 4/

√
κ. We refer the reader to [KN04, She11] and

the references therein for more details regarding this conjecture.
In [She11], Sheffield introduces a simple inventory accumulation model involving a word X in an alphabet

of five symbols representing two types of “burgers” and three types of “orders”; and constructs a bijection
between certain realizations of this model and rooted random planar maps M decorated by a collection L
of loops. There is a family of probability measures on realizations of this model, indexed by a parameter
p ∈ (0, 1/2), with the property that the law of the pair (M,L) when the inventory accumulation model is
sampled according to the probability measure with parameter p is given by the uniform measure on such
pairs weighted by qK/2, where K is the number of loops and q = 4p2/(1 − p)2. In [She11, Theorem 2.5], it
is shown that a random walk which encodes an infinite-volume version of his model converges in the scaling
limit to a pair of Brownian motions with correlation depending on p.

In [DMS14, Sections 9 and 10] (see also [MS13]), it is shown that a CLEκ on a 4/
√
κ-Liouville quantum

gravity surface can be encoded by a pair of correlated Brownian motions via a procedure which is directly
analogous to the bijection in [She11]. The correlation between this pair of Brownian motions is the same as
the correlation between the pair of limiting Brownian motions in [She11, Theorem 2.5] provided

p =

√
2 + 2 cos(8π/κ)

2 +
√

2 + 2 cos(8π/κ)
, (1)

which is consistent with the conjectured relationship between the FK model and CLE described above.
In this paper, we will improve on the scaling limit result of [She11] by showing that the times corre-

sponding to FK loops (or “flexible orders”) in the infinite-volume discrete model converge in the scaling
limit to the π/2-cone times of the Brownian motion (see Section 1.2 below for a precise statement). As we
will explain below, this result answers [DMS14, Question 13.3] (at least in the infinite-volume setting).

Along the way, we will also prove several other results regarding the model of [She11] which are of
independent interest. We prove tail estimates for various quantities associated with this model, including a
polynomial lower bound for the probability that a word of length 2n in the discrete model reduces to the
empty word (Proposition 2.13) which confirms a prediction of Sheffield in [She11, Section 4.2]. Several of the
laws of these quantities are in fact shown to have regularly varying tails (see Section 5.1). We also obtain
the scaling limit of the discrete path conditioned on the event that the reduced word contains no burgers,
or equivalently the event that this path stays in the first quadrant until a certain time when run backward
(Theorem 4.1). Scaling limit results for random walks with independent increments conditioned to stay in
a cone are obtained in several places in the literature (see [Shi91,Gar11,DW11] and the references therein).
Our Theorem 4.1 is an analogue of these results for a certain random walk with non-independent increments.

Although this paper is motivated by the relationships between the inventory accumulation model of [She11],
the FK cluster model on a random planar map, and CLEκ on a Liouville quantum gravity surface, our proofs
use only basic properties of the inventory accumulation model, Brownian motion, and stable processes.

Our results can be viewed as a small step toward proving the convergence of the FK cluster model loops
on an infinite-volume random planar map to CLE on a quantum gravity surface, in the sense that our main
result implies the convergence of many quantities associated with the discrete loops to the corresponding
“quantum” quantities associated with the CLE loops (e.g. the quantum areas and quantum boundary
lengths of the complementary connected components of the macroscopic loops). In order to obtain a full
convergence result, one must additionally embed each FK-weighted random planar map into the Riemann
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sphere and show that the loops themselves converge in an appropriate sense to CLE loops. We expect that
proving this convergence is a substantially more difficult problem than proving the convergence statements
of this paper. Nevertheless, due to the correspondence between the bijection in [She11] and the encoding of
CLE via Brownian motion in [DMS14], our results have direct applications to the study of CLE. For example,
some the results of this paper will be used in the forthcoming paper [GM] to prove conformal invariance of
whole-plane CLEκ for κ ∈ (4, 8).

We end by pointing out some forthcoming related works. Shortly before this paper was posted, we learned
of an independent work [BLR15] which calculates tail exponents for several quantities related to a generic
loop on an FK-weighted random planar map, and which has been posted to the ArXiv at the same time
as this work. In the forthcoming paper [SW15], the third author and D. Wilson study unicycle-decorated
random planar maps via the bijection of [She11] and obtain the joint distribution of the length and area of
the unicycle in the infinite volume limit. The first and third authors are currently preparing a sequel [GS] to
the present paper in which we prove various scaling limit results for the finite-volume version of the model
of [She11] (which is the version of the model for which [She11] describes the bijection with FK-weighted
random planar maps).

Acknowledgments We thank Jason Miller and Scott Sheffield for helpful discussions, and Jason Miller for
comments on an earlier version of this paper. We thank Nathanaël Berestycki, Benôıt Laslier, and Gourab
Ray for sharing and discussing their work [BLR15] with us. We thank the Isaac Newton Institute for
Mathematical Sciences, Cambridge, for support and hospitality during the Random Geometry programme,
where part of this work was completed. The first author was supported by the U.S. Department of Defense
via an NDSEG fellowship. The third author was partially supported by NSF grant DMS-1209044.

1.1 Inventory accumulation model

In this paper, we will consider a discrete model first introduced by Sheffield [She11], which we describe in this
section. The notation introduced in this section will remain fixed throughout the remainder of the paper.

Let Θ be the collection of symbols { H , C , H , C , F }. We can think of these symbols as representing,
respectively, a hamburger, a cheeseburger, and hamburger order, a cheeseburger order, and a flexible order.
We view Θ as the generating set of a semigroup, which consists of the set of all finite words in elements of
Θ, modulo the relations

C C = H H = C F = H F = ∅ (2)

(order fulfilment) and

C H = H C , H C = C H (3)

(commutativity). Given a word W in elements of Θ, we denote by R(W ) the word reduced modulo the
above relations, with all burgers to the right of all orders. In the burger interpretation, R(W ) represents
the burgers which remain after all orders have been fulfilled along with the unfulfilled orders. We also write
|W | for the number of symbols in W (regardless of whether or not W is reduced).

For p ∈ [0, 1] (in this paper we will in fact typically take p ∈ (0, 1/2), for reasons which will become
apparent just below), we define a probability measure on Θ by

P
(

H
)

= P
(

C
)

=
1

4
, P

(
H
)

= P
(

C
)

=
1− p

4
, P

(
F
)

=
p

2
. (4)

Let X = . . . X−1X0X1 . . . be an infinite word with each symbol sampled independently according to the
probabilities (4). For a ≤ b ∈ R, we set

X(a, b) := R
(
Xbac . . . Xbbc

)
. (5)

Remark 1.1. There is an explicit bijection between words W in Θ with |W | = 2n and R(W ) = ∅; and pairs
(M,L), where M is a rooted planar map with n edges and L is a set of loops on M [She11, Section 4.1].
If W is is chosen according to the law of X1 . . . X2n (as above) with p ∈ (0, 1/2), conditioned on the event
that X(1, 2n) = ∅, then the law of (M,L) is that of a collection of FK-loops on top of an FK-weighted
random planar map, as described in the introduction. This latter model is conjectured to converge under an
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appropriate scaling limit to a CLEκ (with κ and p related as in (1)) on top of an independent 4/
√
κ-quantum

sphere [DMS14].
As explained in [She11, Section 4.2], the unconditioned word X corresponds to an infinite-volume limit

of FK-weighted random planar maps decorated by FK loops (a more detailed description of the bijection
in the infinite volume case will appear in the forthcoming work [BLR15]). This infinite-volume model can
be viewed as a discrete analogue of a CLEκ on top of a quantum cone, a certain type of infinite-volume
Liouville quantum gravity surface [DMS14]. In this paper we focus on the infinite-volume case. The finite
volume case will be treated in a subsequent paper [GS].

By [She11, Proposition 2.2], it is a.s. the case that each symbol Xi in the word X has a unique match
which cancels it out in the reduced word (i.e. burgers are matched to orders and orders matched to burgers).
Heuristically, the reduced word X(−∞,∞) is a.s. empty.

Notation 1.2. For i ∈ Z we write φ(i) for the index of the match of Xi.

Notation 1.3. For θ ∈ Θ and a word W consisting of elements of Θ, we write Nθ(W ) for the number of
θ-symbols in W . We also let

C(W ) := N
H

(W ) +N
C

(W )−N
H

(W )−N
C

(W )−N
F

(W )

D(W ) := N
H

(W ) +N
C

(W )−N
C

(W )−N
H

(W )

d(W ) := N
H

(W )−N
H

(W )

d∗(W ) := N
C

(W )−N
C

(W ).

The notations for C and D are taken from [She11]. The reason for the notation d and d∗ is that these
functions give the distances in the tree and dual tree which encode the collection of loops in the bijection
of [She11, Section 4.1].

For i ∈ Z, we define Yi = Xi if Xi ∈ { H , C , H , C }; Yi = H if Xi = F and Xφ(i) = H ; and Yi = C

if Xi = F and Xφ(i) = C . For a ≤ b ∈ R, define Y (a, b) as in (5) with Y in place of X.
For n ≥ 0, define C(n) = C(Y (1, n)) and for n < 0, define C(n) = −C(Y (n + 1, 0)). Define D(n), d(n),

and d∗(n) similarly. Extend each of these functions from Z to R by linear interpolation.

Remark 1.4. Note that we have inserted a minus sign in the definition of C(n), etc., when n < 0. This is
done so that the definitions of C(·), D(·), d(·), and d∗(·) are translation invariant.

Let
D(t) := (d(t), d∗(t)). (6)

For n ∈ N and t ∈ R, let

Un(t) := n−1/2d(nt), V n(t) := n−1/2d∗(nt), Znt := (Unt , V
n
t ). (7)

For p ∈ [0, 1/2), we also let Z = (U, V ) be a two-sided two-dimensional Brownian motion with Z(0) = 0 and
variances and covariances at each time t ∈ R given by

Var(U(t)) =
1− p

2
|t| Var(V (t)) =

1− p
2
|t| Cov(U(t), V (t)) =

p

2
|t|. (8)

It is shown in [She11, Theorem 2.5] that as n→∞, the random paths t 7→ n−1/2(C(nt),D(nt)) converge in
law in the topology of uniform convergence on compacts to a pair of independent Brownian motions, with
respective variances 1 and (1− 2p) ∨ 0. The following result is an immediate consequence.

Theorem 1.5 (Sheffield). For p ∈ (0, 1/2), the random paths Zn defined in (7) converge in law in the
topology of uniform convergence on compacts to the random path Z of (8).

Throughout the remainder of this paper, we fix p ∈ (0, 1/2) and do not make dependence on p explicit.
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Z(vZ(t))

Z(uZ(t))

Z(t)

V

U

Figure 1: An illustration of a left π/2-cone time t for a path Z = (U, V ). The set Z([uZ(t), vZ(t)]) is shown
in red. The set Z([vZ(t), t]) is shown in green. We note that we may have UuZ(t) < Ut (as shown in the
figure) or UuZ(t) ≥ Ut.

1.2 Cone times

The main result of this paper is Theorem 1.9 below, which says that the times for which Xi = F converge
under a suitable scaling limit to the π/2-cone times of Z, defined as follows.

Definition 1.6. A time t is called a (weak) π/2-cone time for a function Z = (U, V ) : R → R2 if there
exists t′ < t such that Us ≥ Ut and Vs ≥ Vt for s ∈ [t′, t]. Equivalently, Z([t′, t]) is contained in the “cone”
Zt + {z ∈ C : arg z ∈ [0, π/2]}. We write vZ(t) for the infimum of the times t′ for which this condition is
satisfied, i.e. vZ(t) is the entrance time of the cone. We say that t is a left (resp. right) π/2-cone time if
Vt = VvZ(t) (resp. Ut = UvZ(t)). Two π/2-cone times for Z are said to be in the same direction if they are
both left or both right π/2-cone times, and in the opposite direction otherwise. For a π/2-cone time t, we
write uZ(t) for the supremum of the times t∗ < t such that

inf
s∈[t∗,t]

Us < Ut and inf
s∈[t∗,t]

Vs < Vt.

That is, uZ(t) is the last time before t that Z crosses the boundary line of the cone which it does not cross
at time vZ(t).

See Figure 1 for an illustration of Definition 1.6. The reader may easily check that if i ∈ Z is such that
Xi = F , then i/n is a (weak) π/2-cone time for Zn with vZn(i/n) = (φ(i)− 1)/n, and the direction of this
π/2-cone time is determined by what type of burger Xφ(i) is (this assertion requires the minus sign discussed
in Remark 1.4). We further note that a Brownian motion Z with variances and covariances as in (8) a.s. has
uncountably many π/2-cone times [Shi85,Eva85]. There is a substantial literature concerning cone times of
Brownian motion; we refer the reader to [LG92, Sections 3 and 4], [MP10, Section 10.4], and the references
therein for more on this topic.
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The following remark explains why π/2-cone times are of interest in the study of CLEκ and why one

should expect these times to be related to the times i ∈ Z for which Xi = F .

Remark 1.7. In the context of a whole-plane conformal loop ensemble (CLEκ) on a Liouville quantum
gravity surface, the quantum lengths Zt = (Lt, Rt) of the left and right boundaries of the space-filling SLEκ
process η′ which traces the CLEκ loops when it is parametrized by quantum mass has the same law as the
Brownian motion (8) (see [DMS14, Theorem 9.1]). In this setting, π/2-cone times for Z 1 correspond to
times at which η′ finishes filling in “bubbles” which it disconnects from ∞, as explained in [DMS14, Figure
1.16]. Each bounded complementary connected component of a CLE loop is such a bubble. The time vZ(t)
corresponds to the time at which η′ disconnects the bubble which it finishes tracing at time t, and the time
uZ(t) corresponds to the time at which η′ begins tracing the boundary of this bubble. The quantum area and
quantum boundary length of this bubble are given, respectively, by t− vZ(t); and Lt−LvZ(t) or Rt−RvZ(t),
depending on the direction of the cone time t.

In the context of an infinite-volume FK-weighted random planar map M , making sense of “bounded
complementary connected components” of FK loops requires a little more thought because these loops do
not have self-intersections. One considers bounded complementary connected components of the union of an
FK loop L and the set of quadrilaterals of the quadrangulationQ(M) associated withM (as in [She11, Section
4.1]) which intersect L. Each such complementary connected component C corresponds under Sheffield’s

bijection to a discrete interval of times {φ(i), . . . , i} with Xi = F ; the discrete exploration path of [She11,
Section 4.1] traces the last edge in C at time i and traces the first edge in C at time φ(i). It is natural to
define the area of the component C to be the number of edges of Q(M) it contains, and the boundary length
of C to be the number of edges of M or its dual graph which are adjacent to the outer boundary of C. Then
the area of C is i−φ(i) and its boundary length is either d∗(i)−d∗(φ(i)) or d(i)−d(φ(i)) (as defined in (6)),

depending on whether Xφ(i) = H or Xφ(i) = C .
Thus “bounded complementary connected components” of FK loops are described by the times i for

which Xi = F in the same manner in which bonded complementary connected components of CLE loops
are described by the π/2-cone times of Z. One can similarly describe other functionals of the CLE loops and

the FK loops, respectively, in terms of the π/2-cone times for Z and the times for which Xi = F , e.g. the
boundary length of the unbounded complementary connected component of each loop, whether or not two
given loops are nested, and whether or not two given loops intersect. For such functionals, one has a similar
correspondence between the discrete and continuum descriptions.

A more detailed discussion of the relationship between Sheffield’s inventory accumulation model and
loops in the FK model can be found in [BLR15]. More detailed descriptions of several functionals of CLE
loops on a quantum gravity surface and the corresponding functionals of FK loops on a random planar map
will appear in [GM].

In light of Remark 1.7, it is natural to expect that the times for which Xi = F converge in the scaling
limit to the π/2-cone times for Z. This is indeed the case, but one needs to be careful about the precise
sense in which this convergence occurs. Indeed, there are uncountably many π/2-cone times for Z, but only

countably many times for which Xi = F . To get around this issue, we prove convergence of several large
but countable sets of distinguished π/2-cone times which are dense enough to approximate most interesting
functionals of the set of π/2-cone times for Z. One such set is defined as follows.

Definition 1.8. A π/2-cone time for Z is called a maximal π/2-cone time in an (open or closed) interval I ⊂
R if [vZ(t), t] ⊂ I and there is no π/2-cone time t′ for Z such that [vZ(t′), t′] ⊂ I and [vZ(t), t] ⊂ (vZ(t′), t′).
An integer i ∈ Z is called a maximal flexible order time in an interval I ⊂ R if Xi = F , {φ(i), . . . , i} ⊂ I,

and there is no i′ ∈ Z with φ(i′) = F , {φ(i), . . . , i} ⊂ {φ(i′) + 1, . . . , i′ − 1}, and {φ(i′), . . . , i′} ⊂ I.

We are now ready to state our main result.

Theorem 1.9. Let T be the set of π/2-cone times for Z. Let I be the set of i ∈ Z such that Xi = F and
for n ∈ N let Tn = {n−1i : i ∈ I}. There is a coupling of countably many instances (Xn) of the infinite
word X described in Section 1.1 with the Brownian motion Z such that when Zn and Tn are constructed
from Xn, the following holds a.s.

1The definition of a π/2-cone time used in this paper corresponds to a π/2-cone time for the time reversal of Z in the
terminology of [DMS14].
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1. Zn → Z uniformly on compacts.

2. T is precisely the set of limits of convergent sequences (tnj ) ∈ Tnj satisfying lim infj→∞(tnj−vZnj (tnj )) >
0 as (nj) ranges over all strictly increasing sequences of positive integers.

3. For each sequence of times tnj ∈ Tnj as in condition 2, we have limj→∞ vZnj (tnj ) = vZ(t), limj→∞ uZnj (tnj ) =
uZ(t), and the direction of the π/2-cone time tnj is the same as the direction of t for sufficiently large
j.

4. Suppose given a bounded open interval I ⊂ R with rational endpoints and a ∈ I ∩ Q. Let t be the
maximal (Definition 1.8) π/2-cone time for Z in I with a ∈ [vZ(t), t]. For n ∈ N, let in be the maximal
flexible order time (with respect to Xn) i in nI with an ∈ [φ(i), i] (if such an i exists) and in = banc
otherwise; and let tn = n−1in. Then a.s. tn → t.

5. For r > 0 and a ∈ R, let τa,r be the smallest π/2-cone time t for Z such that t ≥ a and t− vZ(t) ≥ r.
For n ∈ N, let ιa,rn be the smallest i ∈ N such that Xn

i = F , i ≥ an, and i − φ(i) ≥ rn − 1; and let
τa,rn = n−1ιa,rn . We have τa,rn → τa,r for each (a, r) ∈ Q× (Q ∩ [0,∞)).

Using Theorem 1.9, one can obtain the convergence in law of most reasonable functionals of the sets
Tn to the corresponding functionals of T . By Remark 1.7, this implies the convergence of many quantities
associated with the complementary connected components of CLEκ loops on a Liouville quantum gravity
surface, e.g. the quantum areas of these components, the quantum lengths of their boundaries, or the
adjacency graph of the set of loops. Hence Theorem 1.9 provides a complete solution to [DMS14, Question
13.3].

The main difficulty in the proof of Theorem 1.9 is showing that there in fact exist “macroscopic F -
excursions” in the discrete model with high probability when n is large. More precisely,

Proposition 1.10. For δ > 0 and n ∈ N, let En(δ) be the event that there is an i ∈ {bδnc, . . . , n} such that

Xi = F and φ(i) ≤ 0. Then
lim
δ→0

lim inf
n→∞

P (En(δ)) = 1.

We will prove Proposition 1.10 in Section 5.1, via an argument which requires most of the results of the
earlier sections of the paper.

Remark 1.11. Proposition 1.10 is not obvious from the results of [She11]. At first glance, it may appear

that one should be able to obtain large F -excursions in the discrete model by applying [She11, Theorem 2.5]
and considering times t which are “close” to being π/2-cone times for Zn. However, this line of reasoning
only yields times t at which Un(t) ≤ Un(s) + ε and V n(t) ≤ V n(s) + ε for each s ∈ [t′, t] for some t′ < t.
One still needs Proposition 1.10 or something similar to clear out the remaining εn1/2 burgers on the stack
at time btnc and produce an actual F -excursion.

1.3 Basic notation

Throughout the remainder of the paper, we will use the following notation.

Notation 1.12. If a and b are two quantities, we write a � b (resp. a � b) if there is a constant C
(independent of the parameters of interest) such that a ≤ Cb (resp. a ≥ Cb). We write a � b if a � b and
a � b.

Notation 1.13. If a and b are two quantities which depend on a parameter x, we write a = ox(b) (resp.
a = Ox(b)) if a/b → 0 (resp. a/b remains bounded) as x → 0 (or as x → ∞, depending on context). We
write a = o∞x (b) if a = ox(bs) for each s ∈ R.

Notation 1.14. For a < b ∈ R, we define the discrete intervals [a, b]Z := [a, b] ∩ Z and (a, b)Z := (a, b) ∩ Z.

Unless otherwise stated, all implicit constants in �,�, and � and Ox(·) and ox(·) errors involved in the
proof of a result are required to satisfy the same dependencies as described in the statement of the lemma.
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1.4 Outline

The remainder of this paper is structured as follows. In Section 2, we prove a variety of probabilistic
estimates. These include some estimates for Brownian motion, lower bounds for the probabilities of several
rare events associated with the word X (including the probability that the reduced word is empty), and
an upper bound for the number of flexible orders remaining on the stack at a given time. In Section 3, we
prove a regularity result for the conditional law of the path Zn given that the word X(−n,−1) contains no
burgers. In Section 4, we use said regularity result to prove convergence of the conditional law of Zn|[−1,0]

given that that X(−n,−1) has no burgers to the law of a correlated Brownian motion conditioned to stay
in the third quadrant. In Section 5, we prove Theorem 1.9.

2 Probabilistic estimates

In this section we will prove a variety of probabilistic estimates. In Section 2.1, we will prove some estimates
for Brownian motion, mostly using results from [Shi85], and make sense of the notion of a Brownian motion
conditioned to stay in the first quadrant. In Section 2.2, we will use our estimates for Brownian motion prove
lower bounds for various rare events associated with the word X. In Section 2.3, we will prove an upper bound
for the number of F -symbols in the reduced word X(1, n), which is a sharper version of [She11, Lemma 3.7].
In Section 2.4, we will prove an explicit power-law lower bound for the probability that the reduced word
X(1, 2n) is empty, thereby confirming a prediction made by Sheffield in [She11]. Several of the estimates
in this section are not optimal, and will be improved upon later in the paper. However, the proofs of said
improvements require the results of this section.

2.1 Brownian motion lemmas

In [Shi85, Theorem 2], the author constructs for each θ ∈ (0, 2π) a probability measure on the space of
continuous functions [0, 1] → R2 which can be viewed as the law of a standard two-dimensional Brownian
motion (started from 0) conditioned to stay in the cone {z ∈ C : 0 ≤ arg z ≤ θ} until time 1. By applying
an appropriate linear transformation to a path with this law, we obtain a law on continuous paths in R2

which we interpret as that of the correlated two-dimensional Brownian motion Z in (8) conditioned to stay
in the first quadrant until time 1. For α = 0, this law is uniquely characterized as follows.

Lemma 2.1. Let Ẑ = (Û , V̂ ) : [0, 1]→ R2 be sampled from the conditional law of Z|[0,1] given that it stays

in the first quadrant. Then Ẑ is a.s. continuous and satisfies the following conditions.

1. For each t ∈ (0, 1], a.s. Û(t) > 0 and V̂ (t) > 0.

2. For each ζ ∈ (0, 1), the conditional law of Ẑ|[ζ,1] given Ẑ|[0,ζ] is that of a Brownian motion with

covariances as in (8), starting from Ẑ(ζ), parametrized by [ζ, 1], and conditioned on the (a.s. positive
probability) event that it stays in the first quadrant.

If Z̃ = (Ũ , Ṽ ) : [0, 1]→ R2 is another random a.s. continuous path satisfying the above two conditions, then

Z̃
d
= Ẑ.

Proof of Lemma 2.1. First we verify that Ẑ satisfies the above two conditions. It is clear from the form of
the density for Ẑt given in [Shi85, Theorem 3] that condition 1 holds. To verify condition 2, fix ζ > 0. We

have that Ẑ is the limit in law in the uniform topology as δ → 0 of the law of Z|[0,1] conditioned on the
event Eδ that U(t) ≥ −δ and V (t) ≥ −δ for each t ∈ [0, 1]. By the Markov property, for each ζ > 0, the
conditional law of Z|[ζ,1] given Z|[0,ζ] and Eδ is that of a Brownian motion with covariances as in (8), starting
from Z(ζ), parametrized by [ζ, 1], and conditioned to stay in the δ-neighborhood of the first quadrant. As
δ → 0, this law converges to the law described in condition 2.

Now suppose that Z̃ = (Ũ , Ṽ ) : [0, 1] → R2 is another random continuous path satisfying the above two

conditions. For ζ > 0, let Z̃ζ : [0, 1] → R2 be the random continuous path such that Z̃ζ(t) = Z̃(t + ζ) for

t ∈ [0, 1− ζ]; and conditioned on Z̃a|[0,1], Z̃
ζ evolves as a Brownian motion with variances and covariances

as in (8) started from Z̃(1) and conditioned to stay in the first quadrant for t ∈ [1 − ζ, 1]. By condition 2
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and [Shi85, Theorem 2], we can find ε ∈ (0, α/2) such that the Prokhorov distance (in the uniform topology)

between the conditional law of Z̃ζ given any realization of Z̃|[0,ζ] for which |Z̃(ζ)| ≤ ε is at most α/2. By

continuity, we can find ζ0 > 0 such that for ζ ∈ (0, ζ0], we have P
(

supt∈[0,ζ] |Z̃(t)| ≥ α/2
)
≤ α/2. Hence for

ζ ∈ (0, ζ0] the Prokhorov distance between the law of Z̃ζ and the law of Ẑ is at most α. Since α is arbitrary

we obtain Z̃ζ → Ẑ in law. By continuity, Z̃ζ converges to Z̃ in law as ζ → 0. Hence Z̃
d
= Ẑ.

Lemma 2.2. Let p ∈ (0, 1/2) and κ ∈ (4, 8) be related as in (1). Let

µ :=
π

2
(
π − arctan

√
1−2p
p

) =
κ

8
, µ′ :=

π

2
(
π + arctan

√
1−2p
p

) =
κ

4(κ− 2)
. (9)

Let Z = (U, V ) be as in (8). For δ > 0 and C > 1, let

Eδ :=

{
inf

t∈[0,1]
U(t) ≥ −δ1/2 and inf

t∈[0,1]
V (t) ≥ −δ1/2

}
E′δ :=

{
U(t) ≥ −δ1/2 or V (t) ≥ −δ1/2 for each t ∈ [0, 1]

}
G(C) :=

{
sup
t∈[0,1]

|Z(t)| ≤ C
}
∩
{
U(1) ≥ C−1 and V (1) ≥ C−1

}
.

For each C > 1 we have
P (Eδ ∩G(C)) � P (Eδ) � δµ (10)

and
P (E′δ ∩G(C)) � P (E′δ) � δµ

′
(11)

with the implicit constants independent of δ.

Proof. Let

A :=

(
1 − p

1−p
0

√
1−2p
1−p

)
, Z̃ = (Ũ , Ṽ ) := AZ. (12)

Then Z̃ is a pair of independent Brownian motions. Note that A maps the first quadrant to the cone

Fp :=

{
w ∈ C : 0 < argw < π − arctan

√
1− 2p

p

}
(13)

and the complement of the third quadrant to the cone

F ′p :=

{
w ∈ C : argw /∈

[
π, 2π − arctan

√
1− 2p

p

]}
. (14)

Let F δp be the δ1/2-neighborhood of Fp and let z := exp
(
i
2

(
π − arctan

√
1−2p
p

))
be the unit vector pointing

into Fp. We have

{Z̃([0, 1]) ⊂ F c1δp } ⊂ Ẽδ ⊂ {Z̃([0, 1]) ⊂ F c2δp }
for positive constants c1 and c2 depending only on A. By scale invariance of Brownian motion, we have

δµP
(
Z̃([0, 1]) ⊂ F δp

)
= δµP

(
Z̃([0, δ−1]) + z ⊂ Fp

)
.

By [Shi85, Equation 4.3] this quantity converges to a finite positive constant as δ → 0. We therefore obtain

P (Eδ) � δµ.

Similarly, we have
P (E′δ) � δµ

′
.

9



This proves the second proportions in (10) and (11). By [Shi85, Theorem 2], the conditional law of Z̃|[0,1]

given {Z̃([0, 1]) ⊂ F δp } converges in the uniform topology as δ → 0 to the law P̂ of a continuous path

Ẑ : [0, 1]→ C satisfying (with G(C) as in the statement of the lemma)

P̂ (G(C)) > 0 ∀C > 1, and lim
C→∞

P̂ (G(C)) = 1.

By combining this observation with our argument above, we obtain the first proportion in (10). We similarly
obtain the first proportion in (11).

2.2 Lower bounds for various probabilities

In this section we will prove lower bounds for the probabilities of various rare events associated with the word
X. This will be accomplished by breaking up a segment of the word X of length n into sub-words of length
approximately δkn for δ small but fixed and k ∈ N such that δkn ≥ 1; then estimating the probabilities of
events for each sub-word using [She11, Theorem 2.5] and Lemma 2.2.

Lemma 2.3. Let µ be as in (9). For n ∈ N and C > 1, let Rn(C) be the event that the following is true.

1. X(1, n) contains no burgers.

2. X(1, n) contains at least C−1n1/2 hamburger orders, at least C−1n1/2 cheeseburger orders, and at most
Cn1/2 total orders.

Also let R∗n(C) be the event that the following is true.

1. X(1, n) contains no orders.

2. X(1, n) contains at least C−1n1/2 burgers of each type and at most Cn1/2 total burgers.

If C is chosen sufficiently large, then
P (Rn(C)) ≥ n−µ+on(1) (15)

and
P (R∗n(C)) ≥ n−µ+on(1). (16)

Remark 2.4. We will prove a sharper version of the estimate (15) later, which also includes an upper bound
(see Proposition 5.1 below).

Remark 2.5. As explained in [BLR15], Lemma 2.3 and the stronger Proposition 5.1 can be viewed as
estimates for the area of the ”envelope of a generic loop” in an FK-weighted random planar map M . The
paper [BLR15] obtains asymptotics (including upper bounds, but not regular variation) for the area and
length of a full generic loop.

Proof of Lemma 2.3. We will prove (15). We find it more convenient to do this with the word X(−n,−1)
in place of the word X(1, n). This suffices by translation invariance. The estimate (16) is proven similarly,
but with the word X read in the forward rather than the reverse direction.

Fix C > 1 and δ < 1/4C2, to be chosen later independently of n. Let

Kn :=

⌈
log n

log δ−1

⌉
(17)

be the smallest integer k such that δkn ≤ 1 and for k ∈ [0,Kn]Z let mk
n := bδknc. Also let Ek be the event

that the following is true.

1. X(−mk−1
n ,−mk

n − 1) has at most 0 ∨ (C−1(δkn)1/2 − 1) burgers of each type.

2. C−1(δk−1n)1/2 ≤ Nθ
(
X(−mk−1

n ,−mk
n − 1)

)
≤ C(δk−1n)1/2 for θ ∈ { H , C }.

10



Observe that on
⋂Kn
k=1Ek, the word X(−n,−1) has empty burger stack and contains at most

2Cn1/2
∞∑
k=1

δ
k−1
2 ≤ 4Cn1/2

total orders. Furthermore, since X(−n,−m1
n) contains at least C−1n1/2 hamburger orders and at least the

same number of cheeseburger orders, so does X(−n,−1). Consequently, if m is chosen sufficiently large then

Kn⋂
k=1

Ek ⊂ R−n (4C), (18)

where R−n (4C) is defined in the same manner as Rn(4C) but with X−n . . . X−1 in place of X1 . . . Xn. The
events Ek for k ∈ [1,Kn]Z are independent, and by translation invariance P(R−n (4C)) = P(Rn(4C)). So, to
obtain (15) (with 4C in place of C) we just need to prove a suitable lower bound for P(Ek).

To this end, fix a deterministic sequence ξ = (ξj) with ξj = oj(
√
j) and for k ∈ [1,Kn]Z let Ẽk be the

event that the following is true.

1. infj∈[mkn+1,mk−1
n ]Z

(d(−j)−d(−mk
n− 1)) ≥ −

(
0 ∨ (C−1(δkn)1/2 − 1− ξmk−1

n
)
)

and similarly with d∗ in

place of d.

2. C−1(δk−1n)1/2 + ξmk−1
n
≤ d(−mk−1

n ) − d(−mk
n − 1) ≤ C(δk−1n)1/2 − ξmk−1

n
and similarly with d∗ in

place of d.

3. N
F

(
X(−mk−1

n ,−mk
n − 1)

)
≤ ξmk−1

n
.

Observe that Ẽk ⊂ Ek. By [She11, Lemma 3.7], we can choose ξ in such a way that it holds with probability
tending to 1 as m → ∞ that X(1,m) has at most ξm flexible orders. By [She11, Theorem 2.5], it follows

that as n→∞, the probability of the event Ẽ1 converges to the probability of the event that Z stays within
the C−1δ1/2-neighborhood of the first quadrant in the time interval [0, 1−δ] and satisfies C−1 ≤ −U(1) ≤ C
and C−1 ≤ −V (1) ≤ C. By Lemma 2.2 this latter event has probability � δµ with the implicit constant
independent of δ. Hence we can find b ∈ (0, 1), independent of δ, and m∗ = m∗(δ, C, ξ) such that whenever

mk
n ≥ m∗, we have P(Ẽk) ≥ bδµ (here we use that Ek and Ẽk are defined in the same manner as E1 and Ẽ1

but with δk−1n in place of n).
Let k∗ be the largest k ∈ [1,Kn]Z for which mk

n ≤ m∗. Then

P

(
k∗⋂
k=1

Ek

)
≥ bk∗δk∗µ ≥ bKnδKnµ ≥ n−µ+oδ(1),

with the oδ(1) independent of n. Since the event
⋂Kn
k=k∗+1Ek involves only the wordX1 . . . Xm∗ , P

(⋂Kn
k=k∗+1Ek

)
is at least a positive constant which does not depend on n. We infer from (18) that

P
(
R−n (4C)

)
� n−µ−ζ+oδ(1),

with the implicit constant depending on δ, but not n. Since δ is arbitrary, this implies (15).

From Lemma 2.3, we obtain the following.

Proposition 2.6. Almost surely, there are infinitely many i ∈ N for which X(1, i) contains no burgers;

infinitely many j ∈ N for which X(−j,−1) contains no orders; and infinitely many F -symbols in X(1,∞).

Proof. For m ∈ N, let Km be the mth smallest i ∈ N for which X(1, i) contains no burgers (or Km = ∞ if
there are fewer than m such i). Observe that Km can equivalently be described as the smallest i ≥ Km−1 +1
for which X(Km−1 + 1, i) contains no burgers. Hence the words XKm−1+1 . . . XKm are iid. It follows that
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{Km}m∈N is a renewal process. Note that i ∈ N is equal to one of the times Km if and only if the word
X(1, i) contains no burgers. By Lemma 2.3, we thus have

∞∑
i=1

P (i = Km for some m ∈ N) ≥
∞∑
i=1

iµ+oi(1) =∞

since µ < 1. By elementary renewal theory, K1 is a.s. finite, whence there are a.s. infinitely many i ∈ N for
which X(1, i) contains no burgers. We similarly deduce from (16) that there are a.s. infinitely many j ∈ N
for which X(−j,−1) contains no orders. To obtain the last statement, we note that for each m ∈ N, we have

P
(
XKm+1 = F

)
= p/2, so there are a.s. infinitely many m ∈ N for which XKm+1 = F . For each such m,

a F symbol is added to the order stack at time Km+1.

Next we consider an analogue of Lemma 2.3 which involves 3π/2-cone times instead of π/2-cone times.

Lemma 2.7. For n ∈ N and C > 4, let R′n(C) be the event that the following is true.

1. X(1, i) contains a burger for each i ∈ [1, n]Z.

2. X(1, n) contains at least C−1n1/2 hamburger orders and at least C−1n1/2 cheeseburger orders.

3. |X(1, n)| ≤ Cn1/2.

Also let (R′n)∗(C) be the event that the following is true.

1. X(−j,−1) contains either a hamburger order or a cheeseburger order for each j ∈ [1, n]Z.

2. X(−n,−1) contains at least C−1n1/2 burgers of each type and at most Cn1/2 total burgers.

3. |X(−n,−1)| ≤ Cn1/2.

For C > 4 we have
P (R′n(C)) ≥ n−µ′+on(1) (19)

and
P ((R′n)∗(C)) ≥ n−µ′+on(1) (20)

with µ′ as in (9).

Proof. We will prove (19). The estimate (20) is proven similarly, but with the word X read in the reverse,
rather than the forward, direction.

Fix C > 4, δ ∈ (0, (8C)−2], and a deterministic sequence ξ = (ξj) with ξj = oj(
√
j) to be chosen later

independently of n. We assume ξj ≤ δj1/2 for each j ∈ N. Let Kn be as in (17) and let mk
n = bδknc for

k ∈ [0,Kn]Z be defined in the discussion thereafter. For k ∈ [1,Kn]Z, let E′k be the event that the following
is true.

1. For each i ∈ [mk
n+1,mk−1

n ]Z, at least one of the following three conditions holds: N
H

(
X(mk

n + 1, i)
)
≤

0 ∨
(
C−1(δkn)1/2 − ξmk−1

n

)
; N

C

(
X(mk

n + 1, i)
)
≤ 0 ∨

(
C−1(δkn)1/2 − ξmk−1

n

)
; or X(mk

n + 1, i) con-

tains a burger.

2. Nθ
(
X(mk

n + 1,mk−1
n )

)
≥ C−1(δk−1n)1/2 for θ ∈ { H , C }.

3. Nθ
(
X(mk

n + 1,mk−1
n )

)
≥ C−1(δk−1n)1/2 − ξmk−1

n
for θ ∈ { H , C }.

4. |X(mk
n + 1,mk−1

n )| ≤ C(δk−1n)1/2.

5. N
F

(
X(mk

n + 1,mk−1
n )

)
≤ ξmk−1

n
.
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We claim that
Kn⋂
k=1

E′k ⊂ R′n(8C). (21)

First we observe that conditions 1, 2, and 5 in the definition of E′k imply that condition 1 in the definition

of R′n(8C) holds on
⋂Kn
k=1E

′
k. From condition 3 and 4 in the definition of E′k, we infer that on

⋂Kn
k=1E

′
k, we

have for θ ∈ { H , C } that

Nθ (X(1, n)) ≥ C−1n1/2 − ξm0
n
− Cn1/2

Kn∑
k=2

δ(k−1)/2

≥ 1

2
C−1n1/2 − 2δ1/2Cn1/2 ≥ 1

8
C−1

where the last inequality is by our choice of δ. Thus condition 2 in the definition of R′n(8C) holds. Finally,
it is clear from condition 4 in the definition of E′k that condition 3 in the definition of R′n(8C) holds on⋂Kn
k=1E

′
k. This completes the proof of (21).

The events E′k for k ∈ [1,Kn]Z are independent, so in light of (21), to obtain (19) (with 8C in place of

C) we just need to prove a suitable lower bound for P(E′k). To this end, for k ∈ [1,Kn]Z let Ẽ′k be the event
that the following is true.

1. For each i ∈ [mk
n+1,mk−1

n ]Z, either d(i)−d(mk
n+1) ≥ 0∧

(
−C−1(δkn)1/2 + ξmk−1

n

)
or d∗(i)−d∗(mk

n+

1) ≥ 0 ∧
(
−C−1(δkn)1/2 + ξmk−1

n

)
.

2. d(mk−1
n )− d(mk

n + 1) and d∗(mk−1
n )− d(mk

n + 1) are each at least C−1(δk−1n)1/2.

3. infi∈[mkn+1,mk−1
n ]Z

(
d(i)− d(mk

n + 1)
)
≤ −C−1(δk−1n)1/2 − ξmk−1

n
and similarly with d∗ in place of d.

4. supi∈[mkn+1,mk−1
n ]Z

|D(i)| ≤ (C/2)(δk−1n)1/2 − ξmk−1
n

.

5. N
F

(
X(mk

n + 1,mk−1
n )

)
≤ ξmk−1

n
.

We claim that Ẽ′k ⊂ E′k. It is clear that conditions 2, and 5 in the definition of Ẽ′k imply the corresponding
conditions in the definition of E′k. Since the running infima of d and d∗ up to time n differ fromN

H
(X(1, n))

and N
C

(X(1, n)), respectively, by at most N
F

(X(1, n)), we find that conditions 3 and 4 imply the

corresponding conditions in the definition of E′k.

Suppose condition 1 in the definition of Ẽ′k holds. If i ∈ [mk
n + 1,mk−1

n ]Z and X(mk
n + 1, i) contains

no burgers, then the condition d(i) − d(mk
n + 1) ≥ 0 ∧

(
−ε(δkn)1/2 + ξmk−1

n

)
together with condition 5 in

the definition of Ẽ′k implies N
H

(
X(mk

n + 1, i)
)
≤ 0 ∨

(
ε(δkn)1/2 − ξmk−1

n

)
. A similar statement holds if

d∗(i)− d∗(mk
n + 1) ≥ 0 ∧

(
−ε(δkn)1/2 + ξmk−1

n

)
. This proves our claim.

It now follows from the results of [She11] together with Lemma 2.2 (c.f. the proof of Lemma 2.3) that if
ξ is chosen appropriately (independently of n) then there is a constant b ∈ (0, 1), independent of n and δ,
and a constant m∗ = m∗(δ, ε, ξ) such that whenever mn

k ≥ m∗, we have P(E′k) ≥ bδµ
′
. We conclude exactly

as in the proof of Lemma 2.3.

2.3 Estimate for the number of flexible orders

The main goal of this section is to prove the following more quantitative version of [She11, Lemma 3.7],
which will turn out to be a relatively straightforward consequence of Lemma 2.7.
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Lemma 2.8. Let µ′ be as in (9). For each n ∈ N and each ν > µ′ we have

P

(
∃i ≥ n with N

F
(X(1, i)) ≥ iν

)
= o∞n (n) (22)

(recall notation 1.13). The same holds if we fix C > 1 condition on the event {X(1, n′) has no burgers} for
some n′ ∈ [n,Cn]Z, with the o∞n (n) depending on C but not n′.

Remark 2.9. Since µ′ ∈ (1/3, 1/2) for each p ∈ (0, 1/2), we have in particular that (22) holds for some
ν < 1/2. In other words, with high probability the number of flexible orders in X(1, i) is of strictly smaller
polynomial order than the length of X(1, i), for each i ≥ n.

Remark 2.10. The exponent µ′ in Lemma 2.8 is not optimal. We will show in Corollary 5.2 below that µ′

can be replaced by 1− µ ≤ µ′. However, the proof of Corollary 5.2 indirectly uses Lemma 2.8.

Lemma 2.11. For i ∈ N, let Ei be the event that X(1, i) contains no burgers. Let 0 = i0 < i1 < · · · < in ∈ N.
Then we have

P

(
n⋂
k=1

Eik

)
=

n∏
k=1

P(Eik−ik−1
). (23)

Furthermore, for each i < j ∈ N we have

2i−jP(Ei) ≤ P(Ej) ≤ P(Ei). (24)

Proof. Let i′ > i. If Ei occurs, then Ej occurs if and only if X(i+1, i′) contains no burgers. By independence
of X1 . . . Xi and Xi+1 . . . Xi′ and translation invariance, we have

P(Ei′ |X1 . . . Xi) = P ( X(i+ 1, i′) contains no burgers) = P ( X(1, i′ − i) contains no burgers) .

Hence, in the setting of (23) we have

P

(
n⋂
k=1

Eik |
n−1⋂
k=1

Eik

)
= P

(
Ein−in−1

)
,

so

P

(
n⋂
k=1

Eik

)
= P

(
Ein−in−1

)
P

(
n−1⋂
k=1

Eik

)
.

We can now obtain (23) by induction on n.
The lower bound in (24) is immediate from (23) (note P(E1) = 1/2). For the upper bound, let J be the

smallest J ∈ N for which X(−J,−1) contains a burger. Then we have

P(Ei) = P ( X(−i,−1) contains no burgers) = P (J > i) ,

which is manifestly decreasing in i.

Lemma 2.12. For n ∈ N, let Bn be the number of i ∈ [1, n]Z for which X(1, n) has empty burger stack. Let
µ′ be as in (9). Then for k ∈ N we have

E
(
Bkn
)
≤ nkµ′+on(1). (25)

Proof. We first consider the case k = 1. Let K0 = 0 and for m ∈ N, let Km be the mth smallest i ∈ N such
that X(1, i) has empty burger stack. Note that the times Km −Km−1 are iid and each has the same law as
K1. Furthermore, we have

Bn = sup{m ∈ N : Km ≤ n}. (26)

Therefore,

P (Bn > m) ≤ P (Km ≤ n) ≤ P
(

max
j∈[1,m]Z

(Kj −Kj−1) ≤ n
)

= P (K1 ≤ n)
m
.
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On the event {K1 > n}, X(1, i) contains a burger for each i ∈ [1, n]Z. By Lemma 2.7 we therefore have

P (K1 ≤ n)
m ≤

(
1− n−µ′+on(1)

)m
.

Hence

E (Bn) ≤
n∑

m=1

(
1− n−µ′+on(1)

)m
= nµ

′+on(1).

Now consider the case k > 1. Define the events Ei as in Lemma 2.11. By Lemma 2.11 we have

E
(
Bkn
)
�

n∑
i=1

∑
i≤j1,...,jk−1≤n

P
(
Ei ∩ Ej1 ∩ · · · ∩ Ejk−1

)
�

n∑
i=1

P(Ei) +

n∑
i=1

k−1∑
m=1

∑
i<j1<···<jm≤n

P (Ei ∩ Ej1 ∩ · · · ∩ Ejm)

=

n∑
i=1

P(Ei) +

n∑
i=1

P(Ei)

k−1∑
m=1

∑
i<j1<···<jm≤n

P (Ej1−i ∩ · · · ∩ Ejm−i)

≤
n∑
i=1

P(Ei) +

n∑
i=1

P(Ei)

k−1∑
m=1

∑
1≤j1<···<jm≤n

P (Ej1 ∩ · · · ∩ Ejm)

≤ E(Bn)

k−1∑
m=0

E (Bmn ) , (27)

with implicit constants depending on k, but not n. We can now obtain (25) by induction on k.

Proof of Lemma 2.8. Let

An :=

{
∃i ≥ n with N

F
(X(1, i)) ≥ iν

}
be the event of (22). By Lemma 2.12, for k ∈ N and i ∈ N we have (in the notation of that lemma)

E

(
N

F
(X(1, i))

k

)
≤ E(Bki ) ≤ ikµ′+oi(1).

By the Chebyshev inequality,

P

(
N

F
(X(1, i)) ≥ iν

)
≤ ik(µ′−ν)+oi(1).

By the union bound,

P (An) ≤
∞∑
i=1

ik(µ′−ν)+oi(1) ≤ n1+k(µ′−ν)+oi(1).

Since k is arbitrary we obtain (22). For the statement about the conditional law, we use Lemma 2.3 to get
that for each n ∈ N,

P (An |X(1, n′) has no burgers) ≤ P (An)

P (X(1, n′) has no burgers)
≤ nk(µ′−ν)+µ+on(1),

with the on(1) depending on n′/n. We then conclude as above.
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2.4 Probability that the reduced word is empty

In this section, we will prove a polynomial lower bound for the probability that the reduced word X(1, 2n) is
empty. We expect, but do not prove, that this lower bound is sharp. The result of this section is not needed
later in the paper, but confirms a prediction made by Sheffield in [She11, Section 4.2]. We will prove several
additional estimates (using different methods) for events related to an empty reduced word in [GS].

Proposition 2.13. Let µ be as in (9). For each n ∈ N,

P (X(1, 2n) = ∅) ≥ n−2µ−1+on(1). (28)

The proof of Proposition 2.13 uses a similar idea to the proofs of Lemmas 2.3 and 2.7. First we need to
estimate an appropriate probability for Brownian motion.

Lemma 2.14. Fix a constant C > 1. Let z ∈ [C−1, C]2. Let Z be a Brownian motion as in (8) (started
from 0). For δ > 0, let F zδ be the event that U(t) ≥ −δ1/2 and V (t) ≥ −δ1/2 for each t ∈ [0, 1]; and
|Z(1) − z| ≤ δ1/2. Then P (F zδ ) � δµ+1, where µ is as in (9) and the implicit constant depends on C, but
not z or δ.

Proof. Let Ẽδ be the event that U(t) ≥ −δ1/2 and V (t) ≥ −δ1/2 for each s ∈ [0, 1/2]; and Z(1/2) ∈ [C−1, C]2.

By Lemma 2.2 and scale invariance, we have P
(
Ẽδ

)
� δµ. The conditional law of Z|[1/2,1] given Z|[0,1/2] is

that of a Brownian motion with covariances as in (8) started from Z(1/2). On the event Ẽδ, the probability
that such a Brownian motion stays in the first quadrant until time 1 and satisfies |Z(1) − z| ≤ δ1/2 is

proportional to δ. Hence P
(
F zδ | Ẽδ

)
� δ. The statement of the lemma follows.

Proof of Proposition 2.13. We find it more convenient to prove (28) with X(−2n,−1) in place of X(1, 2n)
(which we can do by translation invariance). Fix δ > 0 and C > 1, to be chosen later. Let Kn be as in (17)
and let mk

n = bδknc for k ∈ [0,Kn]Z be defined in the discussion thereafter.
Let bH0 (resp. bC0 ) be the number of hamburgers (resp. cheeseburgers) in X(−2n,−n−1). For k ∈ [0,Kn]Z

let bHk (resp. bCk ) be the number of hamburgers (resp. cheeseburgers) in X(−2n,−mk
n − 1).

Let µ′ be as in (9) and fix ν ∈ (µ′, 1/2). Let G0 = R∗n(C/7) be the event of Lemma 2.3, but with
X−2n . . . X−n−1 in place of X1 . . . Xn and C/7 in place of C. For k ∈ [1,Kn]Z, let Gk be the event that the
following is true.

1. Nθ
(
X(−mk−1

n ,−mk
n − 1)

)
≤ 0 ∨ (C−1(δkn)1/2 − (δn)ν(k−1) − 1) for θ ∈ { H , C }.

2. N
F

(
X(−mk−1

n ,−mk
n − 1)

)
≤ (δn)ν(k−1).

3. bHk−1 − 4C−1(δkn)1/2 − (δn)ν(k−1) ≤ Nθ
(
X(mk−1

n + 1,mk
n)
)
≤ bHk−1 − 3C−1(δkn)1/2 − (δn)ν(k−1) for

θ ∈ { H , C }.

By Lemma 2.3, if C is chosen sufficiently large then we have P(G0) ≥ n−µ+on(1). By inspection, if k ∈ [1,Kn]Z
and mk

n is sufficiently large then on Gk, the word X(−2n,−mk
n − 1) contains no orders and

C−1(δkn)1/2 ≤ bHk ≤ 6C−1(δkn)1/2 and C−1(δkn)1/2 ≤ bCk ≤ 6C−1(δkn)1/2. (29)

By [She11, Theorem 2.5], Lemma 2.8, and Lemma 2.14, we can choose m∗ ∈ N, independent of n, in such a
way that there is a deterministic constant c ∈ (0, 1), independent of n and δ, such that whenever k ∈ [1,Kn]Z
with mk

n ≥ m∗, (29) holds on the event Gk and

P
(
Gk |X−2n . . . X−mkn

)
1Gk−1

≥ cδµ+11Gk−1
.

Let k∗ be the largest k ∈ [1,Kn]Z for which mk
n ≥ m∗. Then

P

(
k∗⋂
k=0

Gk

)
≥ cKnδKn(µ+1)n−µ+on(1) ≥ n−2µ−1+on(1)+oδ(1) (30)
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with the oδ(1) independent of n. It follows from (29) that on
⋂k∗
k=0Gk, the word X(−2n,−mk

n− 1) contains
no orders and fewer than mk∗

n burgers. Since m∗ does not depend on n and mk∗
n ≤ δ−1m∗, we have

P

(
X(1, 2n) = ∅ |

k∗⋂
k=0

Gk

)
� 1, (31)

with the implicit constant independent of n. By combining (30) and (31) and using that δ is arbitrary, we
obtain the statement of the proposition.

3 Regularity conditioned on no burgers

3.1 Statement and overview of the proof

The goal of this section is to prove a regularity statement for the conditional law of the word X(1, n) given
the event that it contains no burgers. It will be convenient to read the word backwards, rather than forward,
so we will mostly work with X(−n,−1) instead of X(1, n).

We will use the following notation. Let J be the smallest j ∈ N for which X(−j,−1) contains a burger.
Note that {J > n} is the same as the event that X(−n,−1) contains no burgers. Let µ′ be as in Lemma 2.8
and fix ν ∈ (µ′, 1/2). Let Fn be the event that N

F
(X(−n,−1)) ≤ nν , so that by Lemma 2.8 we have

P(Fn) ≥ 1 − o∞n (n). For ε > 0 and n ∈ N, let En(ε) be the event that J > n and X(1, n) contains at least
εn1/2 hamburger orders and at least εn1/2 cheeseburger orders. Let

an(ε) := P (En(ε) | J > n) . (32)

The main result of this section is the following.

Proposition 3.1. In the above setting,

lim
ε→0

lim inf
n→∞

an(ε) = 1. (33)

It will take quite a bit of work to prove Proposition 3.1. We give a brief overview. We will start by reading
the word X forward. For n ∈ N, let Kn be the last time i ≤ n for which X(1, i) contains no burgers. We will
argue (via an argument based on translation invariance of the word X) that X(1,Kn) has uniformly positive
probability to contain at least εn1/2 hamburger orders and at least εn1/2 cheeseburger orders if ε is chosen
sufficiently small. By taking n large and conditioning on X(1,Kn), this will allow us to extract a (possibly
very sparse) sequence mj →∞ for which lim infj→∞ amj (ε) > 0. This is accomplished in Section 3.2.

In Section 3.3, we will prove a general result which, for s ∈ (0, 1), allows us to compare the conditional law
of Zn(·)−Zn(−s) given {J > n} and a realization of X−bnsc . . . X−1 to the law of Z(·)−Z(−s) conditioned
to stay in a neighborhood of the third quadrant.

In Section 3.4, we will use the result of Section 3.3 to show that if am(ε) is bounded below for some small
ε > 0 and m is very large, then an(ε) is close to 1 for n ≥ m such that m/n is of constant order. The intuitive
reason why this is the case is that if ε is very small and Em(ε) fails to occur, then it is unlikely that J > n;
and if Em(ε) ∩ {J > n} occurs, then (by [She11, Theorem 2.5]) En(ε) is likely to occur for small ε. We will
then complete the proof of Proposition 3.1 using an induction argument and the results of Section 3.2. See
Figure 2 for an illustration of the basic idea of this argument.

3.2 Regularity along a subsequence

In this section we will prove the following result, which is a much weaker version of Proposition 3.1.

Lemma 3.2. In the notation of (32), there is a ε0 > 0 and a q0 ∈ (0, 1) such that for ε ∈ (0, ε0] there exists
a sequence of positive integers mj →∞ (depending on ε) such that for each j ∈ N,

amj (ε) ≥ q0. (34)
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D([−m, 0])

D([−n,−m])

D([−J,−m])

D([−m, 0])

Figure 2: An illustration of the main ideas of the proof of Proposition 3.1. Suppose m < n ∈ N with m
at least a constant times n. Left figure: if Em(ε) occurs, i.e. the path D (defined as in (6)) is at uniformly
positive distance from the boundary of the first quadrant at time m. By Lemma 3.6, if m is very large then
it holds with uniformly positive probability that J > n and En(ε) occurs, i.e. D stays in the first quadrant
until time n and ends up at uniformly positive distance away from the boundary. Right side: if Em(ε) fails
to occur and n is very large, then it is unlikely that J > n. Hence if we start from a suitably large value of m
for which am(ε) is uniformly positive, then Bayes’ rule and an induction argument imply that an(ε) is close
to 1 for n > 2m, say. We prove the existence of arbitrarily large values of m for which am(ε) is uniformly
positive in Section 3.2.

The proof of Lemma 3.2 will require several further lemmas. First we need a result to the effect that
the F -excursions around 0, i.e. the discrete interval [φ(i), i]Z containing 0 with Xi = F , are not extremely
likely to have all of their mass on the right side of 0.

Lemma 3.3. For n ∈ N, let Kn be the largest i ∈ [1, n]Z for which Xi = F and φ(i) ≤ 0 (or Kn = n+ 1 if
no such k exists). For ε ≥ 0, let An(ε) be the event that Kn < n+ 1 and Kn ≤ (1− ε)(Kn − φ(Kn)). There
exists ε0 > 0, n0 ∈ N, and q0 ∈ (0, 1/3) such that for each ε ∈ (0, ε0] and n ≥ n0,

P (An(ε)) ≥ 3q0.

Proof. The idea of the proof is as follow. We look at a carefully chosen collection of disjoint discrete intervals
I = [φ(j), j]Z with Xj = F . We will choose these intervals in such a way that for each such interval I, the
event An(ε) occurs (with i rather than 0 playing the role of the starting point of the word X) whenever i ∈ I
with i ≥ ε(j − φ(j)) + φ(j) (i.e., for “most” points of I). We then use translation invariance to conclude the
statement of the lemma. See Figure 3 for an illustration.

0 mn nKn
in∗

Kn
mn

in∗φ(Kn
mn

)Kn
0

In

Figure 3: An illustration of the proof of Lemma 3.3. On the event Qn defined in the proof, we have
0 ≤ Kn

0 ≤ φ(Kn
in∗

) ≤ in∗ ≤ mn. Intervals belonging to In are shown with square endpoints. Points shown

in red are those for which we know Ani (ε) occurs. If we make ε > 0 small enough, the red points occupy a
uniformly positive fraction of [0, n] with uniformly positive probability. Since P(Ani (ε)) does not depend on
i, this yields a lower bound for P(Ani (ε)).
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For n ∈ N and i ∈ Z, let Kn
i be the largest j ∈ [i, i+n]Z for which Xj = F and φ(j) ≤ i (if such a j exists)

and otherwise let Kn
i = i. For ε ≥ 0, let Ani (ε) be the event that Kn

i 6= i and Kn
i − i ≤ (1− ε)(Kn

i −φ(Kn
i )),

so in particular Ani (0) = {Kn
i 6= i}. Note that An0 (ε) = An(ε), and on the event An(0) we have Kn = Kn

0 .
By translation invariance,

P (Ani (0)) = P (An(ε)) , ∀i ∈ Z, ∀ε ≥ 0. (35)

Let mn := bn/2c. Let Qn be the event that the following is true.

1. For each t ∈ [1, 2] we have (in the notation (7)) either Un(t) ≥ Un(mn/n)+1 or V n(t) ≥ V n(mn/n)+1.

2. For each t ∈ [mn/n, 1], either Un(t) ≥ Un(0) + 1 or V n(t) ≥ V n(0) + 1.

By [She11, Theorem 2.5], there exists q̃0 ∈ (0, 1), independent of n, such that P (Qn) ≥ q̃0 for each n ∈ N
with n ≥ 100 (say). We observe that for each i ∈ Z, n−1Kn

i is a π/2-cone time for Zn (Definition 1.6) with
vZn(n−1Kn

i ) ≤ n−1i. Consequently, condition 1 in the definition of Qn implies Kn
i ≤ n for each i ∈ [1,mn]Z.

Similarly, condition 2 in the definition of Qn implies Kn
0 < mn.

We claim that on Qn, each i ∈ [1,Kn
0 ]Z satisfies Kn

i = Kn
0 . Since Kn

i ≤ n, it follows from the definition

of Kn
0 that either Kn

i = Kn
0 or φ(Kn

i ) > 0. Since two F -excursions are either nested or disjoint, if
φ(Kn

i ) > 0, then [φ(Kn
i ),Kn

i ]Z ⊂ (φ(Kn
0 ),Kn

0 )Z, which contradicts maximality of Kn
i . Therefore we in fact

have Kn
i = Kn

0 .
Let in∗ be the smallest i ∈ [1,mn]Z such that Kn

i ≥ mn. By maximality of Kn
mn , we have φ(Kn

in∗
) ≤ mn ≤

Kn
in∗
≤ Kn

mn , whence [φ(Kn
in∗

),Kn
in∗

]Z ⊂ [φ(Kn
mn),Kn

mn ]Z and

mn − in∗ ≤ mn − φ(Kn
mn). (36)

Furthermore, on the event Qn we have in∗ > Kn
0 .

Let In be the set of maximal F -excursions in [Kn
0 , i

n
∗−1]Z, i.e. the set of discrete intervals I = [φ(j), j]Z ⊂

[Kn
0 , i

n
∗ − 1]Z with Xj = F which are not contained in any larger such discrete interval. For I = [φ(j), j]Z ∈

In, we write len(I) = j − φ(j).
Observe that if i ∈ I for some I = [φ(j), j]Z ∈ In, then Kn

i = j. Indeed, we have Kn
i ≤ mn and

i ∈ [φ(j), j]Z, so the claim follows from maximality of I and Kn
i . Conversely, suppose i ∈ (Kn

0 , i
n
∗ )Z and

Ani (0) occurs. Then Kn
i ∈ (Kn

0 , i
n
∗ )Z. By maximality of Kn

0 , we must have φ(Kn
i ) > 0, so by maximality

of Kn
i we have [φ(Kn

i ),Kn
i ]Z ∈ In. Thus I can alternatively be described as the set of discrete intervals

[φ(Kn
i ),Kn

i ]Z for i ∈ [φ(j), j]Z.
On Qn, we therefore have

mn∑
i=1

1Ani (0) ≤
∑
I∈In

len(I) +Kn
0 +mn − in∗ . (37)

On the other hand, if i ∈ I for some I = [φ(j), j]Z ∈ In and i ≥ ε(φ(j)− j) + j, then since Kn
i = j, we have

that Ani (ε) occurs. Therefore, on Qn we have

mn∑
i=1

1Ani (ε) ≥ (1− ε)
∑
I∈In

len(I) + (1− ε)Kn
0 . (38)

By Proposition 2.6, we have P (Ani (0)) → 1 as n → ∞ (uniformly in i by translation invariance) so for
sufficiently large n we have

E

(
1Qn

mn∑
i=1

1Ani (0)

)
=

mn∑
i=1

P (Ani (0) ∩Qn) ≥ (P(Qn)− on(1))mn ≥
q̃0

2
mn.

By (37),

E

(
1Qn

∑
I∈In

len(I)

)
+ E (1QnK

n
0 ) + E (1Qn(mn − in∗ )) ≥

q̃0

2
mn.
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By (38),

E

(
1Qn

mn∑
i=1

1Ani (ε)

)
≥ (1− ε) q̃0

2
mn − E (1Qn(mn − in∗ ))− εE (1Qnι

n
0 ) . (39)

On the event Anmn(ε)c, we have mn − φ(Kn
mn) ≤ εn, whence (36) implies mn − in∗ ≤ εn. On Qn, we always

have mn − in∗ ≤ mn. Therefore,

E (1Qn(mn − in∗ )) ≤ mnP
(
Anmn(ε) ∩Qn

)
+ εnP

(
Anmn(ε)c ∩Qn

)
≤ mnP

(
Anmn(ε)

)
+ εn.

It is clear that E (1Qnι
n
0 ) ≤ εn, so (39) implies that for sufficiently large n,

E

(
1Qn

mn∑
i=1

1Ani (ε)

)
+mnP

(
Anmn(ε)

)
≥ (1− ε) q̃0

2
mn − 2εn.

By (35),

2mnP (An(ε)) ≥ (1− ε) q̃0

2
mn − 2εn.

Re-arranging this inequality implies the statement of the lemma for appropriate ε0 > 0 and q0 ∈ (0, 1/3).

Lemma 3.4. Let Kn be defined as in the statement of Lemma 3.3. For ε > 0, let Gn(ε) be the event that
X(1,Kn) contains at least ε

√
Kn hamburger orders and at least ε

√
Kn cheeseburger orders. Let q0 be as in

Lemma 3.3. There exists ε0 > 0 and n0 ∈ N (depending only on q0) such that for ε ∈ (0, ε0] and n ≥ n0,

P (Gn(ε)) ≥ 2q0.

Proof. Let ε̃0 > 0 and ñ0 ∈ N be chosen so that the conclusion of Lemma 3.3 holds (with ε̃0 in place of ε0
and ñ0 in place of n0). For n ∈ N let An(ε̃0) be the event of that lemma (with ε = ε̃0). Then for n ≥ ñ0, we
have P (An(ε̃0)) ≥ 3q0.

Fix α ∈ (0, 1). Let FKn be defined as in Section 3.1 with Kn in place of n and X(1,Kn) in place of
X(−Kn,−1). By Lemma 2.8, we can find m ∈ N such that the probability that there is even one k ≥ m such

that X(1, k) contains more than kν F -symbols is at most α/2. By Proposition 2.6, we can find n′0 ≥ ñ0

such that for n ≥ n′0, we have P (Kn ≥ m) ≥ 1− α/2. For n ≥ n′0, we therefore have

P (FKn) ≥ 1− α. (40)

For ε > 0 and k ∈ N, let JHk (ε) (resp. JCk (ε)) be the smallest j ∈ N for which the word X(−j, 0) contains
at least εk1/2 + kν + 1 hamburgers (resp. cheeseburgers). By [She11, Theorem 2.5], the times JHk (ε) and
JCk (ε) are typically of order ε2k. More precisely, we can find ε0 ∈ (0, ε̃0] and k0 ∈ N such that for k ≥ k0 and
ε ∈ (0, ε0],

P
(
JHk (ε) ∨ JCk (ε) ≥ ε̃20k

)
≤ α.

By Proposition 2.6, we can find n0 ≥ n′0 such that for n ≥ n0, we have P (Kn ≤ k0) ≤ α.
On the event Gn(ε)c ∩ FKn , we have −φ(Kn) ≤ JHKn(ε) ∨ JCKn(ε). Since Gn(ε)c ∩ Fn ∩ {Kn ≥ k0} is

independent from . . . X−2X−1, it follows that for n ≥ n′0 we have

P
(
Gn(ε)c ∩ FKn ∩ {−φ(Kn) ≥ ε̃20Kn}

)
≤ P (Kn ≤ k0) + E

(
P
(
Gn(ε)c ∩ FKn ∩ {−φ(Kn) ≥ ε̃20Kn} |X1X2 . . .

)
1(Kn≥k0)

)
≤ α+ E

(
P
(
JHKn(ε) ∨ JCKn(ε) ≥ ε̃20Kn |Kn

)
1(Kn≥k0)

)
≤ 2α.

By definition, on the event An(ε̃0) we have −φ(Kn) ≥ ε̃20Kn, so we have

P
(
−φ(Kn) ≥ ε̃20Kn

)
≥ 3q0.

Therefore,
P (Gn(ε)c ∩ FKn) ≤ 1− 3q0 + 2α.
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By combining this with (40) we obtain

P (Gn(ε)) ≥ 3q0 − 3α.

Since α is arbitrary this implies the statement of the lemma.

Proof of Lemma 3.2. Let q0 be as in Lemma 3.3. For n ∈ N, define the time Kn as in Lemma 3.3. Choose
ε0 > 0 and n0 ∈ N such that the conclusion of Lemma 3.4 holds, and fix ε ∈ (0, ε0]. By Proposition 2.6, if
we are given j ∈ N, we can choose n ≥ n0 such that P (j + 1 ≤ Kn ≤ n) ≥ 1− q0/2. Henceforth fix such an
n. Then with Gn(ε) as in the statement of Lemma 3.4, we have

P (Gn(ε) ∩ {j + 1 ≤ Kn ≤ n}) ≥
3

2
q0.

We therefore have
3

2
q0 ≤

n∑
k=j+1

P (Gn(ε) |Kn = k)P (Kn = k) .

Hence we can find some mj ∈ [j, n− 1]Z for which

P (Gn(ε) |Kn = mj + 1) ≥ 3

2
q0.

We can write {Kn = mj + 1} as the intersection of the event that X(1,mj) contains no burgers; and the

event that Xmj+1 = F and N
F

(X(mj + 2, n)) = 0. The latter event is independent of X1 . . . Xmj , so the

conditional law of X1 . . . Xmj given {Kn = mj + 1} is the same as its conditional law given that X(1,mj)
contains no burgers. The event Gn(ε) ∩ {Kn = mj + 1} is the same as the event that Kn = mj + 1 and
X(1,mj) contains at least ε(mj + 1)1/2 hamburger orders and at least ε(mj + 1)1/2 cheeseburger orders. By
Lemma 2.8 and translation invariance, (34) holds for this choice of mj (with a slightly smaller choice of ε)
provided j is chosen sufficiently large. Since mj ≥ j and j ∈ N was arbitrary, we conclude.

3.3 Conditioning on an initial segment of the word

Notation 3.5. For t1 < t2 ∈ R, we write

Zn[t1,t2] :=
(
Zn − Zn

(
n−1bnt2 − 1c

))
|[t1,n−1bnt2−1c] and Z[t1,t2] := (Z − Z(t2))|[t1,t2]. (41)

We extend the definition of Zn[t1,t2] to [t1, t2] be defining it to be identically zero for t ∈
[
n−1bnt2 − 1c, t2

]
.

The reason why we use n−1bnt2 − 1c instead of just t2 in the definition of Zn[t1,t2] is that this choice
implies that Zn[t1,t2] is independent of Xbt2ncXbt2nc+1 . . . .

In this section we will prove a lemma which allows us to estimate the conditional law of Zn[−1,−s] for

s ∈ (0, 1) given {J > n} and a realization of X−bnsc . . . X−1.

Lemma 3.6. Fix λ ∈ (0, 1/2). For n ∈ N and s ∈ [λ, 1− λ] define

hsn := (sn)−1/2N
H

(X(−bsnc,−1)) and csn := (sn)−1/2N
C

(X(−bsnc,−1)) . (42)

For ε1, ε2 > 0, let

G̃s(ε1, ε2) :=

{
inf

t∈[−1,−s]
(Ut − U−s) ≥ −s1/2ε1

}
∩
{

inf
t∈[−1,−s]

(Vt − V−s) ≥ −s1/2ε2

}
. (43)

Suppose given ε > 0 and α > 0. There is an n∗ ∈ N and a ζ > 0 (depending only on λ, ε, and α) such
that the following holds. Suppose n ≥ n∗; s ∈ [λ, 1−λ]; ε1, ε2 ≥ ε; and x is a realization of X−bsnc . . . X−1 for
which X(−bsnc,−1) contains no burgers, |hsn − ε1| ≤ ζ, |csn − ε2| ≤ ζ, and Fbsnc (as defined in Section 3.1)
occurs. Then the Prokhorov distance (in the uniform metric) between the conditional law of Zn[−1,−s] given

{J > n} ∩ {X−mn . . . X−1 = x} and the conditional law of Z[−1,−s] given G̃s(ε1, ε2) is at most α. Moreover,
we can arrange that the same holds if we instead condition on {J > n} ∩ {X−mn . . . X−1 = x} ∩ Fn.
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Proof. Let ν be as in Section 3.1. For ε1, ε2 > 0, let Gsn(ε1, ε2) be the event that N
H

(X(−n,−bsnc − 1)) ≤

ε1(sn)1/2 andN
C

(X(−n,−bsnc − 1)) ≤ ε2(sn)1/2. LetG
s

n(ε1, ε2) be the event thatN
H

(X(−n,−bsnc − 1)) ≤

ε1(sn)1/2 + (sn)ν and N
C

(X(−n,−bsnc − 1)) ≤ ε2(sn)1/2 + (sn)ν .

For any realization x of X−bsnc . . . X−1 for which Fbsnc occurs, we have

{X−bsnc . . . X−1 = x} ∩Gsn(hsn, c
s
n) ⊂ {X−bsnc . . . X−1 = x} ∩ {J > n}

⊂ {X−bsnc . . . X−1 = x} ∩Gsn(hsn, c
s
n). (44)

By (44) and independence of X−bsnc . . . X−1 from Zn[−1,−s], we obtain that for any open subset U of the

space of continuous functions [−1,−s]→ R2 in the uniform topology,

P
(
Zn[−1,−s] ∈ U , Gsn(hsn, c

s
n) | (hsn, csn)

)
P
(
G
s

n(hsn, c
s
n) | (hsn, csn)

) ≤ P
(
Zn[−1,−s] ∈ U |J > n, X−bsnc . . . X−1 = x

)

≤
P
(
Zn[−1,−s] ∈ U , G

s

n(hsn, c
s
n) | (hsn, csn)

)
P (Gsn(hsn, c

s
n) | (hsn, csn))

. (45)

Let
r := inf

ε1,ε2≥ε
s∈[λ,1−λ]

P
(
G̃s(ε1, ε2)

)
.

Then r is a positive constant depending only on ε and λ. We can find ζ ∈ (0, α) depending only on r and α
such that for ε1, ε2 ≥ ε and s ∈ [λ, 1− λ],∣∣∣P(G̃s (ε1 + ζ, ε2 + ζ)

)
− P

(
G̃s (ε1 − ζ, ε2 − ζ)

)∣∣∣ ≤ rα. (46)

By [She11, Theorem 2.5], we can find an n∗ ∈ N depending only on r and α such that for n ≥ n∗, the
Prokhorov distance between the unconditional law of Zn|[−1,0] and the law of Z|[−1,0] is at most a constant
(depending only on ε) times rα. The same holds with the laws of Zn|[−1,0] and Z|[−1,0] replaced by the laws
of Zn[−1,−s] and Z[−1,−s] for each choice of s ∈ [λ, 1 − λ]. By Lemma 2.8, by possibly further increasing n∗,
we can arrange that the same holds with the law of Zn|[−1,−s] replaced by the conditional law of Zn[−1,−s]
given Fn for each choice of s ∈ [λ, 1 − λ]. By combining this with our choice of ζ in (46), we obtain that
whenever n ≥ n∗ and εn1 , ε

n
2 > 0 with |εn1 − ε1| and |εn2 − ε2| each smaller than ζ,∣∣∣P(Gsn(εn1 , ε

n
2 )
)
− P

(
G̃s(ε1, ε2)

)∣∣∣ � rα,
with the implicit constant depending only on ε, and similarly with Gsn(εn1 , ε

n
2 ) in place of G

s

n(εn1 , ε
n
2 ). Since

α is arbitrary the statement of the lemma now follows from (45).

3.4 Regularity at all sufficiently large times

In this section we will deduce Proposition 3.1 from Lemma 3.2 and an induction argument.

Lemma 3.7. Let q ∈ (0, 1) and λ ∈ (0, 1). There is a δ0 > 0 (depending only on q and λ) such that for
each δ ∈ (0, δ0] and each ε > 0, there exists n∗ = n∗(λ, δ, ε) ∈ N such that for n ≥ n∗ and m ∈ N with
λ ≤ m/n ≤ 1 − λ, the following holds. Let x = x−m . . . x−1 be any realization of X−m . . . X−1 for which
Em(ε) ∩ Fm occurs. Then

P (En(δ) |X−m . . . X−1 = x, J > n) ≥ 1− q.

Remark 3.8. The main point of Lemma 3.7 is that δ0 does not depend on ε (indeed, the lemma is a trivial
consequence of [She11, Theorem 2.5] without this requirement).
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Proof of Lemma 3.7. For s ∈ [0, 1] and δ > 0, let

Gs(δ) := {U1 − Us ≥ δ and V1 − Vs ≥ δ} .

For ε1, ε2 > 0 define the event G̃s(ε1, ε2) as in (43). By Lemma 3.6, for each choice of δ > 0 we can find
n∗ ∈ N (depending on ε, δ, q, and λ) such that the following holds. Suppose n ≥ n∗; s ∈ [λ, 1− λ]; and x is
a realization of X−bsnc . . . X−1 for which Fbsnc occurs, hsn ≥ ε, and csn ≥ ε, with hsn and csn as in (42). Then

P
(
En(δ) |X−bsnc . . . X−1 = x, J > n

)
≥ P

(
Gs(2δ) | G̃s(s1/2hsn, s

1/2csn)
)
− q

2
.

Hence it suffices to prove that for sufficiently small δ > 0, we have

inf
ε1,ε2>0
s∈[λ,1−λ]

P
(
Gs(δ) | G̃s(ε1, ε2)

)
≥ 1− q

2
. (47)

By [Shi85, Theorem 2] (c.f. the proof of Lemma (2.2)) the conditional laws P
(
· | G̃s(ε1, ε2)

)
converge weakly

as (ε1, ε2) → 0 to a non-degenerate limiting distribution. Hence we can find δ̃0 > 0 and ε̃0 > 0 depending

only on q and λ such that whenever δ ∈ (0, δ̃0] and ε1, ε2 ∈ (0, ε0], we have

inf
s∈[λ,1−λ]

P
(
Gs(δ) | G̃s(ε1, ε2)

)
≥ 1− q. (48)

Moreover, by taking the opening angle of the cone in [Shi85, Theorem 2] to be π and applying a linear

transformation, we find that the conditional laws P
(
· | G̃s(ε1, ε2)

)
also converge weakly to a (different) non-

degenerate limiting distribution if we send one of ε1 or ε2 to 0 and leave the other fixed. Hence we can find
δ0 ∈ (0, δ̃0] depending only on q, λ, and ε0 such that (48) holds whenever δ ∈ (0, δ0] and one of ε1 or ε2 is
at least ε0. Hence if δ ∈ (0, δ0], (48) holds for every choice of ε1, ε2 > 0. This completes the proof of the
lemma.

Lemma 3.9. Fix λ ∈ (0, 1/2), q0 ∈ (0, 1), and ε > 0. Suppose we are given m0 ∈ N such that am0
(ε) ≥ q0.

Then for m ∈ N with λ ≤ m0/m ≤ 1− λ, n ∈ N with λ ≤ m/n ≤ 1− λ, and ζ > 0 we have

P (J > n |Em(ζ))

P (J > n |Em(ζ)c, J > m)
� 1

ζ + om0
(1)

, (49)

where the implicit constant depends only on q0, λ, and ε; and the om0
(1) depends only on λ, ε, and ζ.

Proof. Let δ0 be chosen so that the conclusion of Lemma 3.7 holds with given λ and q = 1/2. Let n∗ =
n∗(λ, δ0, ε) be as in that lemma. For m0 ≥ n∗ and m as in the statement of the lemma,

P (Em(δ0) |Em0(ε), J > m) ≥ 1

2
.

Hence if m0 ≥ n∗, then

P (Em(δ0) |Em(ζ)) ≥ P (Em(δ0) | J > m)

≥ P (Em(δ0) |Em0
(ε), J > m)P (Em0

(ε) | J > m)

≥ 1

2
P (Em0(ε) | J > m) . (50)

By Bayes’ rule,

P (Em0
(ε) | J > m) =

P (J > m |Em0
(ε))P (Em0

(ε) | J > m0)

P (J > m | J > m0)

≥ P (J > m |Em0(ε)) am0(ε)

P (J > m |Em0
(ε)) am0

(ε) + P (J > m, Em0
(ε)c | J > m0)

. (51)
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By [She11, Theorem 2.5] and our hypothesis on am0(ε), this quantity is bounded below by a constant
depending only on q0, λ, and ε (not on ζ). By (50), we arrive at

P (Em(δ0) |Em(ζ)) � 1.

By combining this with [She11, Theorem 2.5] we obtain

P (J > n |Em(ζ)) ≥ P (J > n |Em(δ0))P (Em(δ0) |Em(ζ)) � 1. (52)

Next we consider the denominator in (49). By Lemma 2.8, we have

P (J > n |Em(ζ)c, J > m) =
P (J > n, Em(ζ)c | J > m)

P (Em(ζ)c | J > m)

≤ P (J > n, Fm, Em(ζ)c | J > m) + o∞m0
(m0)

P (Em(ζ)c ∩ Fm | J > m)
. (53)

We have

P (Em(ζ)c ∩ Fm | J > m) ≥ P (Em(ζ)c ∩ Fm |Em0
(ε))P (Em0

(ε) | J > m)

≥ P (Em(ζ)c ∩ Fm |Em0
(ε))

P (Em0(ε))

P (J > m)
.

By [She11, Theorem 2.5], P (Em(ζ)c |Em0
(ε)) is at least a positive constant depending on ε and λ but not

on ζ or m0. By Lemma 2.3,
P(Em0

(ε))
P(J>m) is bounded below by a constant (depending only on ε and λ) times a

power of m0. Hence (53) implies

P (J > n |Em(ζ)c, J > m) ≤ P (J > n |Em(ζ)c, Fm, J > m) + o∞m0
(m0).

Observe that if Em(ζ)c∩Fm occurs and J > n, then X(−n,−m−1) contains either at most ζm1/2 +On(nν)
hamburgers or at most ζm1/2 +On(nν) cheeseburgers. By [She11, Theorem 2.5], we therefore have

P (J > n |Em(ζ)c, J > m) � ζ + om0(1). (54)

We conclude by combining (52) and (54).

Lemma 3.10. Let q, q0 ∈ (0, 1) and λ ∈ (0, 1/2). There is a ε0 > 0 (depending only on q, q0, and λ) such
that for each ε ∈ (0, ε0] we can find m∗ = m∗(q, q0, λ, ε) ∈ N with the following property. Suppose m < n ∈ N
with m ≥ m∗ and

λ ≤ m/n ≤ 1− λ. (55)

Suppose further that am(ε) ≥ q0. Then an(ε) ≥ 1− q.
Proof. Fix q ∈ (0, 1). Let m̃ := m+n

2 . By Lemma 3.7 we can find ε0 > 0 (depending only on q and λ) such
that for ε ∈ (0, ε0] and ζ ∈ (0, ε], there exists m̃∗ = m̃∗(ζ, ε, q, λ) ∈ N such that if m ≥ m̃∗ and (55) holds,
then

P (En(ε) |Em̃(ζ), J > n) ≥ 1− q and P (Em̃(ζ) |Em(ε), J > m̃) ≥ 1− q. (56)

Henceforth fix ε ∈ (0, ε0].
Fix α ∈ (0, 1) to be chosen later (depending on q, q0, λ, and ε). By Lemma 3.9, we can find ζ ∈ (0, ε]

(depending on λ, α, q0, and ε) and m∗ ≥ m̃∗ (depending on λ, α, q0, ε, and ζ) for which the following holds.
If m ≥ m∗, (55) holds, and am(ε) ≥ q0, then

P (J > n |Em̃(ζ)c, J > m̃) ≤ αP (J > n |Em̃(ζ)) . (57)

Hence if m ≥ m∗, (55) holds, and am(ε) ≥ q0 then

an(ε) =
P(En(ε))

P(J > n)
≥ P (En(ε) |Em̃(ζ)) am̃(ζ)

P (J > n |Em̃(ζ)) am̃(ζ) + P (J > n |Em̃(ζ)c, J > m̃) (1− am̃(ζ))

≥ P (En(ε) |Em̃(ζ))

P (J > n |Em̃(ζ))
× am̃(ζ)

am̃(ζ) + α(1− am̃(ζ))
. (58)
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By (56),

P (En(ε) |Em̃(ζ))

P (J > n |Em̃(ζ))
= P (En(ε) |Em̃(ζ), J > n) ≥ 1− q.

Furthermore,

am̃(ζ) ≥ P (Em̃(ζ) |Em(ε), J > m̃)P (Em(ε) | J > m̃) ≥ (1− q)P (Em(ε) | J > m̃) . (59)

By Bayes’ rule,

P (Em(ε) | J > m̃) =
P (J > m̃ |Em(ε))P (Em(ε) | J > m)

P (J > m̃ | J > m)

≥ P (J > m̃ |Em(ε)) am(ε)

P (J > m̃ |Em(ε)) am(ε) + P (J > m̃, Em(ε)c | J > m)
. (60)

By [She11, Theorem 2.5] and our assumption on am(ε), this quantity is at least a positive constant c
depending on q0, λ and ε (but not on ζ). Therefore, (59) implies am̃(ζ) ≥ (1− q)c, so (58) implies

an(ε) ≥ (1− q)2c

(1− q)c+ α
.

If we choose α sufficiently small relative to c (and hence ζ sufficiently small and m sufficiently large), we can
make this quantity as close to 1− q as we like.

Proof of Proposition 3.1. Let q0 be as in the conclusion of Lemma 3.2. Also fix q ∈ (0, 1−q0] and λ ∈ (0, 1/2).
Let ε0 > 0 and m∗ = m∗(q, q0, λ, ε0) ∈ N be chosen so that the conclusion of Lemma 3.10 holds with this
choice of q0. By Lemma 3.2 we can find m ≥ m∗ such that am(ε0) ≥ q0. It therefore follows from Lemma 3.10
that an(ε0) ≥ 1 − q for each n ∈ N with (1 − λ)−1m ≤ n ≤ λ−1m. By induction, for each k ∈ N and each
n ∈ N with (1−λ)−km ≤ n ≤ λ−km, we have an(ε0) ≥ 1− q ≥ q0. For sufficiently large k ∈ N, the intervals
[(1− λ)−km,λ−km] and [(1− λ)−k−1m,λ−k−1m] overlap, so it follows that for sufficiently large n ∈ N, we
have [n,∞) ⊂ ⋃k∈N[(1− λ)−km,λ−km]. Hence an(ε0) ≥ 1− q for each such n. Thus (33) holds.

4 Convergence conditioned on no burgers

4.1 Statement and overview of the proof

In this section we will prove the following theorem.

Theorem 4.1. As n → ∞, the conditional law of Zn|[−1,0] given the event that X(−n,−1) contains no

burgers converges to the law of Z, where Z(·) = Ẑ(−·) and Ẑ has the law of Z|[0,1] conditioned to stay in the
first quadrant (as defined just above Lemma 2.1).

Throughout, we continue to use the notation of Section 3.1, so in particular J is the smallest j ∈ N for
which X(−j,−1) contains a burger.

The basic outline of the proof of Theorem 4.1 is as follows. First, in Section 4.2, we will prove a result to
the effect that when N ∈ N is large, it holds with uniformly positive probability that there is an i ∈ [n,Nn]Z
such that X(1, i) contains no burgers. Using this and an argument similar to the proof of Lemma 3.2, in
Section 4.3 we will prove several results to the effect that X(−n,−1) is unlikely to have too many orders
when we condition on {J > n} (complementing Proposition 3.1, which says that it is unlikely to have too few
orders under this conditioning). In Section 4.4, we will use these results to prove tightness of the conditional
laws of Zn|[−1,0] given {J > n}. In Section 4.5, we will complete the proof of Theorem 4.1 using Lemma 2.1.
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4.2 Times with empty burger stack

In this section, we will prove the following straightforward consequence of Lemma 3.1, which is a weaker
version of Proposition 1.10 (but which is indirectly needed for the proof of Proposition 1.10).

Lemma 4.2. Fix N ∈ N and for n ∈ N, let En = En(N) be the event that there is an i ∈ [n,Nn]Z such that
X(1, i) has empty burger stack. There is a constant b > 0 and an N∗ ∈ N (independent of n) such that for
N ≥ N∗ and n ∈ N,

P (En) ≥ b, ∀n ∈ N. (61)

First we need the following lemma.

Lemma 4.3. Let J be as in Section 3.1 and let µ be as in (9). For each N ∈ N, we have

P (J > Nn | J > n) � N−µ + on(1),

with the implicit constant independent of n and N .

Proof. By Proposition 3.1, we can find ε > 0, independent of n, such that (in the notation of that lemma) we
have an(ε) ≥ 1

2 +on(1). By [She11, Theorem 2.5] and Lemma 2.2 we have P (J > Nn |En(ε)) � N−µ+on(1),
with the implicit constant depending on ε but not on n. Therefore,

P (J > Nn | J > n) ≥ P (J > Nn |En(ε)) an(ε) � N−µ + on(1).

Proof of Lemma 4.2. For j1 ≤ j2 ∈ N, let B(j1, j2) be the number of i ∈ [j1 + 1, j2]Z such that X(1, i) has
empty burger stack. Set Bn := B(n,Nn). Also define the events Ei as in Lemma 2.11. By Lemma 2.11 we
have

E
(
B2
n

)
=

Nn∑
i=n

P(Ei) + 2

Nn∑
i=n

Nn∑
j=i+1

P (Ei ∩ Ej)

= E(Bn) + 2

Nn∑
i=n

Nn∑
j=i+1

P (Ei)P (Ej−i)

= E(Bn) + 2

Nn∑
i=n

P (Ei)

N(n−1)−i∑
j=1

P (Ej)

= E(Bn) + 2

Nn∑
i=n

P (Ei)E (B(1, N(n− 1)− i))

≤ E(Bn) + 2E(Bn)E (B(1, N(n− 1))) . (62)

By Lemma 4.3, we can find a constant c > 0, independent from N and n, such that for sufficiently large
i ∈ N we have (with J as in that lemma) that

P (ENi) = P(J > Ni) ≥ cN−µP(J > i) = cN−µP(Ei).

Therefore,

E (B(1, N(n− 1))) =

N(n−1)∑
i=1

P(Ei) ≤ c−1Nµ

N(n−1)∑
i=1

P(ENi) +On(1).

By (24) this quantity is at most c−1Nµ−1E
(
B(1, N2(n− 1))

)
+On(1). On the other hand,

E
(
B(1, N2(n− 1))

)
= E (B(1, N(n− 1))) +

N∑
k=2

E (B ((k − 1)N(n− 1) + 1, kN(n− 1))) . (63)
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By (24) each term in the big sum in (63) is at most E(Bn). Hence(
cN1−µ)E (B(1, N(n− 1))) ≤ E (B(1, N(n− 1))) + (N − 1)E(Bn) +On(1).

Upon re-arranging we get that for N sufficiently large,

E (B(1, N(n− 1))) ≤ N − 1

cN1−µ − 1
E(Bn) +On(1) � NµE(Bn) +On(1).

By combining this with (62), we obtain

E
(
B2
n

)
� E(Bn) +NµE(Bn)2.

Hence the Payley-Zygmund inequality implies

P (En) = P (Bn > 0) � N−µ.

It is clear that P (En) is increasing in N , so we obtain the statement of the lemma.

4.3 Upper bound on the number of orders

Proposition 3.1 tells us that it is unlikely that there are fewer than On(n1/2) hamburger orders or cheese-
burgers orders in X(−n,−1) when we condition on {J > n}. In this section, we will prove some results to
the effect that it is unlikely that there are more than On(n1/2) orders in X(−n,−1) under this conditioning.
These results are needed to prove tightness of the conditional law of Zn|[−1,0] given {J > n}.

We first need an elementary lemma which allows us to compare the lengths of the reduced words which
we get when we read a given word forward to the lengths when we read the same word backward.

Lemma 4.4. For n ∈ N and j ∈ [2, n]Z, we have

|X(j, n)| ≤ |X(1, n)|+ |X(1, j − 1)|.

Proof. For j ∈ [1, n]Z, let Aj denote the set of k ∈ [j, n]Z with φ(k) ∈ [1, j − 1]Z and let Bj denote the set
of k ∈ [j, n]Z with φ(j) ≤ 0 or φ(j) ≥ n + 1. Since every symbol in X a.s. has a match, it follows that
|X(j, n)| = |Aj | + |Bj |. On the other hand, for k ∈ Aj we have that Xφ(k) appears in X(1, j − 1) and for
k ∈ Bj we have that Xk appears in X(1, n). The statement of the lemma follows.

Lemma 4.5. For C > 1 and m ∈ N, let

Ĝm(C) :=

{
sup

j∈[1,m]Z

|X(−j,−1)| ≤ Cn1/2

}
.

There is an N∗ ∈ N such that for each N ≥ N∗, there is a constant c∗(N) > 0 (depending only on N) such
that the following is true. For each q ∈ (0, 1), there exists k∗ = k∗(q,N) such that for k ≥ k∗, we can find
m ∈ [Nk−1 + 1, Nk]Z satisfying

P
(
Ĝm

(
c∗(N) log q−1

)
| J > m

)
≥ 1− q. (64)

Proof. The proof is similar to that of Lemma 3.2. For k ∈ N, define the time KNk as in Lemma 3.3 with
n = Nk. Let Ak be the event that KNk ∈ [Nk−1 + 1, Nk]Z. For C > 1, let Ĝ′k(C) be the event that

sup
i∈[1,K

Nk
]Z

|X(1, i)| ≤ CK1/2

Nk
.

By Lemma 4.2, there is an N∗ ∈ N, a k∗ ∈ N, and a constant c0 > 0 such that for N ≥ N∗ and k ≥ k∗
we have P (Ak) ≥ c0N

−µ. By the proof of [She11, Lemma 3.13], there are constants c1 > 0 and c2 > 0
(depending only on p) such that for each C > 1,

P

(
sup

i∈[1,...,Nk]Z

|X(1, i)| ≥ CNk/2

)
≤ c1e−c2C .
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Hence
P
(
Ĝ′k(C)c ∩Ak

)
≤ c1e−c2N

−1/2C .

The right side of this inequality is ≤ qc0N−µ ≤ qP(Ak) provided we take

C ≥ 2c∗(N) log q−1,

for an appropriate choice of c∗(N) > 0 depending only on N . With this value of c∗(N) we therefore have

P
(
Ĝ′k
(
2c∗(N) log q−1

))
≥ (1− q)P(Ak).

That is,

Nk∑
n=Nk−1+1

P
(
Ĝ′k
(
2c∗(N) log q−1

)
|KNk = n

)
P (KNk = n) ≥ (1− q)

Nk∑
n=Nk−1+1

P (KNk = n) .

Hence we can find some m ∈ [Nk−1, Nk − 1]Z for which

P

(
sup

i∈[1,m]Z

|X(1, i)| ≤ 2c∗(N) log q−1m1/2 |KNk = m+ 1

)
≥ 1− q.

By taking a supremum over all j in the inequality of Lemma 4.4, we also have

P

(
sup

j∈[1,m]Z

|X(j,m)| ≤ c∗(N) log q−1m1/2 |KNk = m+ 1

)
≥ 1− q.

By the argument at the end of Lemma 3.2, for this choice of m we have

P
(
Ĝm

(
c∗(N) log q−1

)
| J > m

)
≥ 1− q.

Lemma 4.6. Let q ∈ (0, 1) and ζ > 0. There exists λ0, λ1 ∈ (0, 1) and n∗ ∈ N (depending on ζ and q) such
that for each n ≥ n∗, we can find a deterministic mn = mn(ζ, q) ∈ [λ0n, λ1n]Z such that the following is
true. Let Gmn(ζ) be the event that J > mn and |X(−j,−1)| ≤ ζn1/2 for each j ∈ [1,mn]Z. Then we have

P (Gmn(ζ) | J > n) ≥ 1− q. (65)

Proof. Fix α ∈ (0, 1/4) to be chosen later (depending on ζ and q). Let N∗ ∈ N be chosen sufficiently large
that the conclusion of Lemma 4.5 holds. Fix N ≥ N∗ and let c∗(N) be as in that lemma. Given ζ > 0,
let kn be the largest k ∈ N for which c∗(N) logα−1Nk/2 ≤ ζn1/2. If n is chosen sufficiently large, then by
Lemma 4.5 we can find mn ∈ [Nkn−1, Nkn ]Z such that (64) holds with α in place of q. In the notation
of (64) we have

Ĝmn
(
c∗(N) logα−1

)
∩ {J > mn} ⊂ Gmn (ζ) .

Let
ρ(α) :=

(
c∗(N) logα−1

)−1
.

Then we have λ0(α)n ≤ mn ≤ λ1(α)n for λ0(α) = N−2ρ(α)2ζ2 and λ1(α) = ρ(α)2ζ2.
We have P (Gmn(ζ) | J > mn) ≥ 1 − α. We need to show that if α is chosen sufficiently small and n is

chosen sufficiently large (depending on ζ and q), then we can transfer this to a lower bound when we further
condition on {J > n}.

By Proposition 3.1, we can find ε > 0 (independent of α, N , and ζ) and ñ∗ ∈ N (depending on ε, α, N ,
and ζ) such that (in the notation of that proposition) we have amn(ε) ≥ 1/2 for each n ≥ ñ∗. For this choice
of ε, we have for n ≥ ñ∗ that

P (J > n |Gmn(ζ)) ≥ P (J > n |Emn(ε) ∩Gmn(ζ))P (Emn(ε) ∩Gmn(ζ) | J > mn)

≥ 1

4
P (J > n |Emn(ε) ∩Gmn(ζ)) .
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By [She11, Theorem 2.5] and Lemma 2.2, there is an n∗ ≥ ñ∗ (depending on ε and λ0) and a constant c0 > 0
(independent of all of the other parameters) such that for n ≥ n∗,

P (J > n |Emn(ε) ∩Gmn(ζ)) ≥ c0εµ
(
N−1ρ(α)ζ

)µ
.

Hence for n ≥ n∗,
P (J > n |Gmn(ζ)) ≥ ρ̂(α) :=

c0ε
µ

4

(
N−1ρ(α)ζ

)2µ
.

By Bayes’ rule,

P (Gmn(ζ) | J > n) ≥ P (J > n |Gmn(ζ))P (Gmn(ζ) | J > mn)

P (J > n |Gmn(ζ))P (Gmn(ζ) | J > mn) + P (Gmn(ζ)c | J > mn)

≥ (1− α)ρ̂(α)

(1− α)ρ̂(α) + α
=

(1− α)

(1− α) + αρ̂(α)−1
.

As α → 0, we have αρ̂(α)−1 → 0, so if α is chosen sufficiently small (depending on ζ and q), and hence n∗
is chosen sufficiently large (depending on ζ, q, and α) this quantity is at least 1− q.

4.4 Proof of tightness

In this section we will prove tightness of the conditional laws of Zn|[−1,0] given {J > n}. We first need the
following basic consequence of the results of Section 3.

Lemma 4.7. Suppose we are in the setting of Section 3.1. Let λ ∈ (0, 1/2) and q ∈ (0, 1). There exists
ε > 0 and n∗ ∈ N, depending only on q and λ, such that for each n ≥ n∗ and m ∈ N with λ ≤ m/n ≤ 1− λ,

P (Em(ε) | J > n) ≥ 1− q.

Proof. Fix α ∈ (0, 1) to be determined later, depending only on q. By Proposition 3.1, we can find ε0 > 0 and
m∗ ∈ N such that (in the notation of Section 3.1) it holds for each m ≥ m∗ and ε ∈ (0, ε0] that am(ε) ≥ 1−α.
By Proposition 3.9, we can find ε ∈ (0, ε0] and n∗ ∈ N with n∗ ≥ λ−2m∗ such that for n ≥ n∗ and m as in
the statement of the lemma, we have

P (J > n |Em(ε)c, J > m) ≤ αP (J > n |Em(ε)) .

By Bayes’ rule,

P (Em(ε) | J > n) =
P (J > n |Em(ε)) am(ε)

P (J > n |Em(ε)) am(ε) + P (J > n |Em(ε)c, J > m) (1− am(ε))

≥ 1− α
1− α+ α2

.

By choosing α sufficiently small, in a manner which depends only on q, we can make this last quantity
greater than or equal to 1− q.

Lemma 4.8. The conditional laws of Zn|[−1,0] given {J > n} for n ∈ N are a tight family of probability
measures on the set of continuous functions on [−1, 0] in the topology of uniform convergence.

Proof. For δ, ζ > 0 and n ∈ N, let G̃n(ζ, δ) be the event that the following is true. Whenever t1, t2 ∈ [−1, 0]
with |t1−t2| ≤ δ, we have |Zn(t1)−Zn(t2)| ≤ ζ. For a continuous non-decreasing function ρ : (0,∞)→ (0,∞)
with limζ→0 ρ(ζ) = 0, let

Gn(ρ) :=
⋂
ζ>0

G̃n(ζ, ρ(ζ)).

By the Arzéla-Ascoli theorem (note that equicontinuity implies uniform boundedness in this case since each
Zn vanishes at the origin), we must show that for each given q ∈ (0, 1), we can find ρ as above, independent
of n, such that

P (Gn(ρ) | J > n) ≥ 1− q, ∀n ∈ N. (66)
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First suppose that we are given ζ > 0 and α ∈ (0, 1). By Lemma 4.6, we can find n1 ∈ N and λ0, λ1 ∈ (0, 1)
(depending on ζ and α) such that for each n ≥ n1 there exists mn ∈ [λ0n, λ1n]Z such that (in the notation
of Lemma 4.6), we have that (65) holds with 1− α/2 in place of 1− q.

By Lemma 4.7, we can find ε > 0 and n2 ≥ n1 (depending on ζ and α) such that for n ≥ n2, we have
P (Emn(ε) | J > n) ≥ 1 − α/2. By Lemma 3.6 that we can find n3 ≥ n2 and δ0 = δ0(α, ζ) > 0 such that if
n ≥ n3, then with conditional probability at least 1 − α given Emn(ε) ∩ Gmn(ζ) ∩ {J > n}, it holds that
whenever t1, t2 ∈ [−1,−mn/n] with |t1 − t2| ≤ δ0, we have |Zn(t1)− Zn(t2)| ≤ ζ. Call this last event A. If

A occurs and Gmn(ζ) occurs then G̃n(ζ, δ0) occurs. Therefore, if n ≥ n3, then

P
(
G̃n(2ζ, δ0) | J > n

)
≥ P (A ∩Gmn(ζ) | J > n)

≥ P (A |Emn(ε) ∩Gmn(ζ), J > n)P (Emn(ε) ∩Gmn(ζ) | J > n)

≥ (1− α)2.

Clearly, there exists a deterministic δ ∈ (0, δ0] and C > C1 depending only on n3 such that G̃n(2ζ, δ0) ∩{
supt∈[−1,0] |Zn(t)| ≤ C

}
occurs a.s. for each n ∈ [1, n3]Z. Therefore,

P
(
G̃n(2ζ, δ) | J > n

)
≥ (1− α)2, ∀n ∈ N. (67)

Now fix q ∈ (0, 1). For j ∈ N, choose δj > 0 for which (67) holds with δ = δj , ζ = 2−j−1, and α chosen
so that (1− α)2 = 1− q2−j−1. Let

ρ(ζ) := C1[1,∞)(ζ) +

∞∑
j=1

δj1[2−j ,2−j+1)(ζ).

Then (66) holds for this choice of ρ.

4.5 Identifying the limiting law

To identify the law of a subsequential limit of the laws of Zn|[−1,0] given {J > n}, we need the following fact
from elementary probability theory.

Lemma 4.9. Let (Xn, Yn) be a sequence of pairs of random variables taking values in a product of separable
metric spaces ΩX×ΩY and let (X,Y ) be another such pair of random variables. Suppose (Xn, Yn)→ (X,Y )
in law. Suppose further that there is a family of probability measures µy on ΩX , indexed by ΩY , and a
family of Yn-measurable events En with limn→∞ P(En) = 1 such that for each bounded continuous function
f : ΩX → R, we have

E (f(Xn) |Yn) 1En → EµY (f) in law.

Then µY is the regular conditional law of X given Y .

Proof. Let g : ΩY → R be a bounded continuous function. Then

E (f(X)g(Y )) = lim
n→∞

E (f(Xn)g(Yn))

= lim
n→∞

E (f(Xn)g(Yn)1En)

= lim
n→∞

E (E (f(Xn) |Yn) 1Eng(Yn))

= E (EµY (f)g(Y )) .

By the functional monotone class theorem, we have E (F (X,Y )) = E (EµY (F (·, Y ))) for every bounded
Borel-measurable function F on ΩX × ΩY . This implies the statement of the lemma.

Proof of Theorem 4.1. By Lemma 4.8 and the Prokhorov theorem, from any sequence of integers tending to
∞, we can extract a subsequence along which the conditional laws of Zn given J > n converge to the law of

30



some random continuous function Z̃ = (Ũ , Ṽ ) : [−1, 0]→ R2 as n→∞, restricted to this subsequence. We

must show that Z̃
d
= Z, with Z as defined in the statement of the theorem.

By Lemma 4.7, we a.s. have Ũ(s) > 0 and Ṽ (s) > 0 for each s ∈ (0, 1). By Lemma 2.1, it therefore

suffices to show that for each ζ ∈ (0, 1), the conditional law of Z̃|[−1,−ζ] given Z̃|[−ζ,0] is that of a Brownian

motion with covariances as in (8), starting from Z̃(−ζ), parametrized by [−1,−ζ], and conditioned to stay
in the first quadrant.

To lighten notation we henceforth consider only values of n in our subsequence and implicitly assume
that all statements involving n are for n restricted to this subsequence.

Fix ζ ∈ (0, 1) and let bζnc. Also let D̂ζ be the path defined in the same manner as the path D of (6)

of Section 1.1 but with the following modification: if j ∈ [−ζn,−1]Z, Xj = F , and −φ(−j) > ζn, then

D̂ζ(−j)−D̂ζ(−j+1) is equal to zero rather than (1, 0) or (0, 1). Extend D̂ζ to [−ζn, 0] by linear interpolation.

For t ∈ [−ζ, 0], let Ẑnζ (t) := n−1/2D̂ζ(nt). It follows from Lemma 2.8 that supt∈[−ζ,0] |Ẑnζ (t) − Zn(t)| → 0

in law, even if we condition on {J > n}, whence Ẑnζ → Z̃|[−ζ,0] in law. We note that Ẑnζ determines and
is determined by X−bζnc . . . X−1, so is independent from . . . X−bζnc−2X−bζnc−1 and hence also from Zn[−ζ,0]

(notation 3.5).
Let (Xn) be a sequence of random words distributed according to the conditional law of X−n . . . X−1

given {J > n}. Let (Zn) be the corresponding paths, so that each Zn has the conditional law of Zn given

{J > n}. Let Ẑ
n

ζ be the corresponding random paths Ẑnζ . By the Skorokhod theorem, we can couple (Xn)

with Z̃ (with n restricted to our subsequence) in such a way that a.s. Ẑ
n

ζ → Z̃|[−ζ,0] uniformly.

For ε1, ε2 > 0, define G̃ζ(ε1, ε2) as in (43) with s = ζ. By Lemma 3.6, for each fixed ε > 0, the

Prokhorov distance between the conditional law of Zn[−1,−ζ] given J > n and any realization of Ẑnζ for which

Ebζnc(ε)∩Fbζnc occurs; and the conditional law of Z[−1,−ζ] given the event G̃ζ
(
Ũ(−ζ), Ṽ (−ζ)

)
of Lemma 3.6

converges to zero as n→∞. By combining this with Lemma 4.7, we obtain that for any bounded continuous
function f from the space of continuous functions on [−ζ,−1] (in the uniform topology) to R, we have

E
(
f
(
Zn[−1,−ζ]

)
| J > n, Ẑnζ

)
1Fbζnc → E

(
f
(
Z[−1,−ζ]

)
| G̃ζ

(
Ũ(−ζ), Ṽ (−ζ)

))
(68)

in law. We now conclude by applying Lemma 4.9 with Xn = Zn[−1,−ζ], Yn = Ẑ
n

ζ , X = Z̃|[−1,−ζ], and

Y = Z̃|[−ζ,0].

5 Convergence of the cone times

5.1 Regular variation

We say that the law of a random variable A is regularly varying with exponent α if for each c > 1,

lim
a→∞

P (A > ca)

P (A > a)
= c−α.

In this section we will prove that the laws of several quantities associated with the word X are regularly
varying. In doing so, we will obtain Proposition 1.10.

Proposition 5.1. Let J be the smallest j ∈ N for which X(−j,−1) contains a burger. The law of J is

regularly varying with exponent µ, as defined in (9). If J̃ denotes the smallest j ∈ N for which X(−j,−1)

contains no F -symbols, then J̃ is also regularly varying with exponent µ.

We note that Proposition 5.1 can be viewed as an analogue for the random path D = (d, d∗) studied in this
paper of the tail asymptotics for the exit time from a cone of a random walk with independent increments
obtained in [DW11, Theorem 1]. However, unlike the estimate which is implicit in Proposition 5.1, the
estimate of [DW11] does not involve a slowly varying correction.
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Proof of Proposition 5.1. Fix c > 1. For z ∈ (0,∞)2, write Φc(z) for the probability that a two-dimensional
Brownian motion with covariances (8) started from z stays in the first quadrant until time c− 1. Note that
Φc is a bounded continuous function of z.

Let Z̃ = (Ũ , Ṽ ) have the law of Z|[−1,0] conditioned to stay in the first quadrant. For n ∈ N, let Ẑn be

defined in the same manner as the path Ẑnζ used in the proof of Theorem 4.1, but with 1 in place of ζ, so

that Ẑn determines and is determined by X−n . . . X−1 and is independent from . . . X−n−2X−n−1 and hence
also from Zn[−c,−1].

By the same argument used to obtain (68) in the proof of Theorem 4.1, we have that

P
(
J > cn | J > n, Ẑn

)
1Fn → Φc(Z̃(1)) (69)

in law, where here (as usual) Fn is the event that X(−n,−1) contains at most nν flexible orders for some
ν ∈ (µ′, 1/2).

Since the conditional law of Ẑn given J > n converges to the law of Z̃ and limn→∞ P(Fn) = 1, we can
take expectations to get

P (J > cn | J > n) =
P (J > cn)

P (J > n)
→ f(c),

where f(c) := E
(

Φc(Z̃(1))
)

.

We have f(1) = 1, f(c) ∈ (0, 1) for each c > 1, and

f(c)f(c′) = lim
n→∞

P (J > cn)

P (J > n)
× P (J > cc′n)

P (J > cn)
= f(cc′).

We infer that f(c) = c−α for some α > 0.

To identify α, we need only consider the asymptotics of E
(

Φc(Z̃(1))
)

as c → ∞. To this end, we

apply [Shi85, Equation 4.3] (c.f. the proof of Lemma 2.2) to get that for fixed z ∈ (0,∞)2, we have

lim
c→∞

cµΦc(z) = Ψ(z)

for some positive continuous function Ψ on (0,∞)2 which is bounded in every neighborhood of the origin.

By the formula [Shi85, Equation 3.2] for the density of the law of Z̃(1), it follows that P
(
|Z̃(1)| > A

)
decays

quadratic-exponentially in A. By Brownian scaling and [Shi85, Equation 4.2],

sup
z∈BA(0)∩(0,∞)2

|Φc(z)| � c−µA2µ

with the implicit constant depending only on p. Hence

E
(
|cµΦc(Z̃(1))|1{|cµΦc(Z̃(1))|≥A}

)
→ 0

as A → ∞, uniformly in c. By the Vitalli convergence theorem, cµf(c) = E
(
cµΦc(Z̃(1))

)
converges to a

finite constant as c→∞, whence we must have α = µ.
For the last statement, we note that with probability 1− p/2 we have J̃ = 1, and with probability p/2,

J̃ is equal to the smallest j ∈ N for which X(−j,−2) contains a burger. It follows that for n ≥ 2 we have

P
(
J̃ > n

)
= p

2P (J > n− 1). Hence

lim
n→∞

P (J > cn)

P (J > n)
= lim
n→∞

P
(
J̃ > cn

)
P
(
J̃ > n

) .
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From Proposition 5.1, we can deduce that there a.s. exist macroscopic F -excursions, which is the key
input in our proof of Theorem 1.9 in the next section.

Proof of Proposition 1.10. For m ∈ N, let J̃m be the mth smallest j ∈ N for which X(−j,−1) contains no

F symbols. Then the words X−J̃m . . . X−J̃m−1−1 are iid. By Corollary 5.1, J̃1 is regularly varying with

exponent −µ ∈ (−1, 0). For n ∈ N let Mn be the largest m ∈ N for which J̃m ≤ n. By the Dynkin-
Lamperti theorem [Dyn55, Lam62], n−1 (n− JMn

) converges in law to a generalized arcsine distribution
with parameter µ. Since this distribution does not have a point mass at the origin we obtain the statement
of the proposition.

Although it will not be needed for the proof of Theorem 1.9, for the sake of completeness we end by
recording some consequences of Proposition 5.1.

Corollary 5.2. The statement of Lemma 2.8 holds, exactly as stated, with 1− µ in place of µ′.

Proof. Define the events Ei as in Lemma 2.11. Then P(Ei) = P(J > i) = i−µ+oi(1), where the last inequality
is by Proposition 5.1. Hence, with Bn as in Lemma 2.12, we have

E(Bn) =

n∑
i=1

P(Ei) = n1−µ+on(1).

The last part of the proof of Lemma 2.12 now implies that that (25) holds with 1 − µ in place of µ′. We
conclude exactly as in the proof of Lemma 2.8.

Corollary 5.3. Let KF be the smallest i ∈ N for which X(1, i) contains a flexible order. The law of KF is
regularly varying with exponent 1− µ.

Proof. For m ∈ N, let KF
m be the smallest i ∈ N for which X(1, i) contains at least m flexible orders. The

words XKF
m−1+1 . . . XKF

m
are iid. For n ∈ N, let M∗n be the largest m ∈ N for which KF

m ≤ n. Equivalently,

KF
M∗n

is the greatest integer i ∈ [1, n]Z such that Xi = F and φ(i) ≤ 0. By translation invariance, we have

KF
M∗n

d
= n− J̃Mn , with the latter defined in the proof of Lemma 1.10. Hence the law of n−1KF

M∗n
converges to

that of a generalized arcsine distribution with parameter µ. Therefore n−1
(
n−KF

M∗n

)
converges in law to

a generalized arcsine distribution with parameter 1− µ. By the converse to the Dynkin-Lamperti theorem,
KF
M∗n

is regularly varying with exponent 1− µ.

Remark 5.4. In the terminology of [BLR15], Corollary 5.3 states that the law of the area of the part traced
after time 0 of the “envelope” of the smallest loop surrounding the root vertex in the infinite-volume model is
regularly varying with exponent 1−µ. In [BLR15, Section 1.2], the authors conjecture that the tail exponent
for the law of the area of this loop itself is 1 − µ. We expect that this conjecture (plus a regular variation
statement for the tail) can be deduced from Proposition 5.1 and Corollary 5.3 via arguments which are very
similar to some of those given in Sections 3 and 4 of the present paper, but we do not carry this out here.

5.2 Proof of Theorem 1.9

In this section, we will complete the proof of Theorem 1.9.
To complement Definition 1.6, one has a notion of a strict π/2-cone time, which is defined in the same

manner as a weak π/2-cone time but with weak inequalities replaced by strict inequalities. More precisely,

Definition 5.5. A time t is called a strict π/2-cone time for a function Z = (U, V ) : R→ R2 if there exists
t′ < t such that Us > Ut and Vs > Vt for s ∈ (t′, t). Equivalently, Z((t′, t)) is contained in the open “cone”
Zt + {z ∈ C : arg z ∈ [0, π]}. We write ṽZ(t) for the infimum of the times t′ for which this condition is
satisfied.

Remark 5.6. If t is a strict π/2-cone time for Z, then t is also a weak π/2-cone time for Z and we have
ṽZ(t) ≤ vZ(t). The reverse inequality need not hold. For example, Z might enter the close cone at time
ṽZ(t), hit the boundary of the closed cone at time vZ(t) ∈ (ṽZ(t), t), then stay in the open cone until time t.
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To prove Theorem 1.9 we first need a general deterministic statement about the convergence of π/2-cone
times.

Lemma 5.7. Let Z = (U, V ) : R→ R2 be a continuous path with the following properties.

1. Each weak π/2-cone t time for Z is a strict π/2-cone time for Z and satisfies ṽZ(t) = vZ(t).

2. Z has no weak π/2-cone times t with ZvZ(t) = Zt.

3. lim inft→−∞ U(t) = lim inft→−∞ V (t) = −∞.

Let Zn = (Un, V n) be a sequence of continuous paths R → R2 such that Zn → Z uniformly on compacts.
Suppose that for each n ∈ N, tn is a weak π/2-cone time for Zn. Suppose further that almost surely
lim infn→∞(tn−vZn(tn)) > 0. If tn → t for some t ∈ R, then t is a strict π/2-cone time for Z. Furthermore,
limn→∞ vZn(tn) = vZ(t), limn→∞ uZn(tn) = uZ(t), and the direction of the π/2-cone time tn for Zn is the
same as the direction of the π/2-cone time t for Z for sufficiently large n.

Proof. We can choose a compact interval [a0, b] ⊂ R such that tn ∈ [a0, b] for each n ∈ N. By our assumption 3
on Z, we can find a1 < a0 such that infs∈[a1,a0] U(s) < infs∈[a0,b] U(s) and infs∈[a1,a0] V (s) < infs∈[a0,b] V (s).
For sufficiently large n, the same is true with (Un, V n) in place of (U, V ). Therefore, we can find a ∈ (−∞, a1]
such that tn, vZn(tn), and uZn(tn) belong to [a, b] for each n ∈ N.

By uniform convergence, we can find δ > 0 such that U(s) ≥ U(t) and V (s) ≥ V (t) for each s ∈ [t− δ, t],
so t is a weak π/2-cone time for Z. By assumption 1, t is in fact a strict π/2-cone time for Z.

Suppose without loss of generality that t is a left π/2-cone time for Z, i.e. V (vZ(t)) = V (t). Let
v be any subsequential limit of the times vZn(tn). Then with n restricted to our subsequence we have
limn→∞ Un(vZn(tn)) = U(v) and limn→∞ V n(vZn(tn)) = V (v). Furthermore, U(s) ≥ U(t) and V (s) ≥ V (t)
for each s ∈ [v, t]. Therefore v ≥ vZ(t). We clearly have v < t, so since t is not a right π/2-cone time for Z
(assumption 2) we have U(v) > U(t). Hence Un(vZn(tn)) > U(t) for sufficiently large n in our subsequence.
Since Un(tn) → U(t), we have Un(vZn(tn)) > Un(tn) for sufficiently large n in our subsequence. Hence
V n(vZn(tn)) = V n(tn) for sufficiently large n in our subsequence. Since this holds for every choice of
subsequence we infer V n(vZn(tn)) = V n(tn) for sufficiently large n. Moreover, for every choice of subsequence
we have V (v) = limn→∞ V n(tn) = V (t), whence v = vZ(t) and vZn(tn)→ vZ(t).

Finally, let u be any subsequential limit of the times uZn(tn). Then along our subsequence we have U(u) =
limn→∞ Un(uZn(tn)) = limn→∞ Un(tn) = U(t). Furthermore, U(s) ≥ U(t) for each s ∈ [u, t]. Therefore
u = uZ(t). Since this holds for every such subsequential limit we obtain limn→∞ uZn(tn) = uZ(t).

The following is the main ingredient in the proof of Theorem 1.9. See Figure 4 for an illustration of the
proof.

Lemma 5.8. Fix a ∈ R and r > 0. Define the times τa,r, ιa,rn , and τa,rn as in the statement of Theorem 1.9.
Suppose we have (using [She11, Theorem 2.5]) coupled countably many instances of the infinite word X with
the Brownian motion Z in such a way that Zn → Z uniformly on compacts a.s., with Zn constructed from
the nth instance of the word X. There exists a sequence of random positive integers (ι̂a,rn ), each measurable
with respect to the nth instance of the discrete model, such that the following is true. With τ̂a,rn = n−1ι̂a,rn ,
we have τ̂a,rn → τa,r a.s. as n→∞; and with probability tending to 1 as n→∞ we have ι̂a,rn = ιa,rn .

Proof. By translation invariance we can assume without loss of generality that a = 0. To lighten notation,
in what follows we fix r and omit both a and r from the notation. Let ε > 0 be arbitrary.

We observe the following.

1. By Proposition 1.10, we can find ζ1 ∈ (0, ε) (depending only on ε) and an Ñ ∈ N such that for each

n ≥ Ñ , it holds with probability at least 1 − ε/2 that there is an i ∈ [ζ1n, εn]Z such that Xi = F
and φ(i) ≤ 0. Note that for such an i, X(1, i) has no burgers. By [She11, Theorem 2.5], after possibly

increasing Ñ we can find δ1 > 0 (depending only on ζ1) such that for n ≥ Ñ , it holds with probability
at least 1− ε that X(1, ζ1n) contains at least δ1n

1/2 hamburger orders and at least δ1n
1/2 cheeseburger

orders. Hence with probability at least 1 − ε, there is an i ∈ [ζ1n, εn]Z such that Xi = F , φ(i) ≤ 0,
and X(1, i) contains at least δ1n

1/2 hamburger orders and at least δ1n
1/2 cheeseburger orders.
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Z(vZ(τ))

Zn(τ̃n)
Zn(τ ′n)

Z(τ)

Zn(vZ(τ
′
n))

Z

Zn

Figure 4: An illustration of the proof of Lemma 5.8. By uniform convergence, we can find an “approximate”
π/2 cone time τ̃n for Zn which is close to τ , and which is defined in such a way that τ̃n is a stopping time for
the filtration generated by the word X. By the Markov property and Proposition 1.10, it holds with high
probability that when we grow a little bit more of the path Zn (shown in green), then we arrive at a true
π/2-cone time τ ′n for Zn shortly after time τ̃n which corresponds to a flexible order. This π/2-cone time τ ′n
is close to the time τn = n−1ιn which we are trying to show converges to τ .

2. Since τ is a.s. finite, there is some b > 0 such that P(τ < b) ≥ 1− ε.

3. For t ∈ [0, b] let

V̂ (t) := V (t)− inf
s∈[t−r,t]

V (s), Û(t) := U(t)− inf
s∈[t−r,t]

U(s), Ẑ(t) = (Û(t), V̂ (t)). (70)

Note that zeros of Ẑ are precisely the π/2-cone times of Z in [0, b] with t− vZ(t) ≥ r. For δ2 > 0, the

sets Ẑpre(Bδ2(0)) are compact, and their intersection is Ẑpre(0). Therefore there a.s. exists a random

δ2 > 0 such that Ẑpre(Bδ2(0)) ⊂ Bζ1(Ẑpre(0)), i.e. whenever |Ẑ(t)| ≤ δ2, we have Ẑ(s) = 0 for some
s ∈ [0, b] with |s − t| ≤ ζ. We can find a deterministic δ2 > 0 such that this condition holds with
probability at least 1− ε.

4. Set δ = 1
4 (δ1∧δ2). By equicontinuity we can find a deterministic ζ2 ∈ (0, ζ1] such that with probability

at least 1 − ε, we have |Zn(t) − Zn(s)| ≤ δ/2 and |Z(t) − Z(s)| ≤ δ/2 whenever t, s ∈ [−r, b] and
|t− s| ≤ ζ2.

5. By uniform convergence, we can find an N ∈ N such that N ≥ ζ−1
2 ∨ Ñ and with probability at least

1− ε, we have for each n ≥ N that supt∈[0,1] |Z(t)− Zn(t)| ≤ δ/4.

Let E be the event that the events described in observations 2 through 5 above hold simultaneously.
Then P(E) ≥ 1− 4ε.
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For n ∈ N let ι̃n be the smallest integer i > 0 such that V n(n−1i) ≤ V n(s) + δ and Un(n−1i) ≤ Un(s) + δ
for each s ∈ [n−1i− r, n−1i] and let τ̃n = n−1ι̃n. We note that the defining condition for ι̃n is satisfied with
i = ιn, so we necessarily have ιn ≥ ι̃n.

We claim that if n ≥ N , then on E we have

τ − ζ1 ≤ τ̃n ≤ τ. (71)

It is clear from our choice of ζ2 in observation 4 and our choice of N in observation 5 that the condition in
the definition of ι̃n is satisfied provided i is chosen such that n−1i ∈ [τ − ζ2, τ ] (such an i must exist since
N ≥ ζ−1

2 ). Therefore τ̃n ≤ τ . By our choice of δ in observation 4 and our choice of N in observation 5 we
have on E (in the notation of (70))

V̂ (τ̃n) ≤ V n(τ̃n)− inf
s∈[τ̃n−r,τ̃n]

V n(s) + 2δ ≤ δ2,

and similarly with Û in place of V̂ . By observation 3 there exists s ∈ [0, b] such that |s − τ̃n| ≤ ζ1 and

Ẑ(s) = 0. This s is a π/2-cone time for Z with s− vZ(s) ≥ r. By definition, s ≥ τ , so τ̃n ≥ s− ζ1 ≥ τ − ζ1.
This proves (71).

Observe that each time ι̃n is a stopping time for the filtration generated by the word X. By translation
invariance and observation 1, it holds with probability at least 1− ε that there exists i ∈ [̃ιn + ζ1n, ι̃n + εn]Z
such that Xi = F , φ(i) ≤ ι̃n, and X(ι̃n + 1, i) contains at least δ1n

1/2 hamburger orders and at least δ1n
1/2

cheeseburger orders. Let ι′n denote the smallest such i (if such an i exists) and otherwise let ι′n = ι̃n. For
n ∈ N let Gn be the event that ι′n > ι̃n. Then for n ≥ N we have P(Gn ∩ E) ≥ 1− 5ε.

Let τ ′n = n−1ι′n. By (71), on the event Gn∩E we have τ ′n ≥ τ̃n+ζ1 ≥ τ and 0 ≤ τ ′n−τ ≤ |τ̃n−τ |+ε ≤ 2ε.
By combining this with (71) we obtain that if E occurs (even if Gn does not occur) then

|τ ′n − τ | ≤ 2ε. (72)

Since V n(τ̃n) ≤ V n(s) + δ and Un(τ̃n) ≤ Un(s) + δ for each s ∈ [τ̃n − r, τ̃n] on the event E ∩Gn, the word
X(ι̃n− rn, ι̃n) contains at most δn1/2 ≤ δ1n1/2 burgers of each type. On Gn, the word X(ι̃n+1, ι′n) contains
at least δ1n

1/2 hamburger orders and at least δ1n
1/2 cheeseburger orders, so on Gn ∩E we necessarily have

φ(ι′n) ≤ ι̃n − rn ≤ ι′n − rn. It follows that on Gn ∩ E, we have

ι̃n ≤ ιn ≤ ι′n. (73)

We will now let ε tend to zero in an appropriate manner and construct the sequence (ι̂n) in the statement
of the lemma. For j ∈ N let Nj ∈ N be the integer in condition 5 corresponding to ε = 2−j . For each
n ∈ [Nj , Nj+1 − 1]Z let Ej be the event E above with ε = 2−j and let ι̃n, τ̃n, ι′n, τ ′n, and Gn be as defined
above with ε = 2−j . Also let ι̂n := ιn if Gn occurs, and otherwise ι̂n := ι′n. Define τ̂n as in the statement of
the lemma.

Since P(Gn) → 1 as n → ∞, we have P(ι̂n = ιn) → 1 as n → ∞. By the Borel-Cantelli lemma, a.s. Ej
occurs for all but finitely many j. By (72), on Ej we have |τ ′n − τ | ≤ 2−j+1 for each n ∈ [Nj , Nj+1 − 1]Z.
Hence a.s. τ ′n → τ . Furthermore, if n ∈ [Nj , Nj+1 − 1]Z then on Gn ∩ Ej we have by (71), (72), and (73)
that |τ̂n − τ | ≤ 2−j+1, so a.s. τ̂n → τ .

Proof of Theorem 1.9. By [She11, Theorem 2.5] and the Skorokhod theorem we can couple countably many
instances of X with Z in such a way that a.s. Zn → Z uniformly on compacts. Define the times ιa,rn and
τa,rn as in condition 5 and the times ι̂a,rn , and τ̂a,rn as in Lemma 5.8. Then as n → ∞, τ̂a,rn → τa,r a.s. for
each (a, r) ∈ Q× (Q ∩ [0,∞)) and P(τ̂a,rn = τa,rn )→ 1. Hence τa,rn → τa,r in probability. It follows that the
finite-dimensional marginals of the law of

{Zn} ∪ {τa,rn : (a, r) ∈ Q× (Q ∩ (0,∞))}

converge to those of
{Z} ∪ {τa,r : (a, r) ∈ Q× (Q ∩ (0,∞))}
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as n→∞. By the Skorokhod theorem, we can re-couple in such a way that Zn → Z uniformly on compacts
and τa,rn → τa,r a.s. as n → ∞ for each a, r ∈ Q × (Q ∩ (0,∞)). Henceforth fix such a coupling. By
construction, conditions 1 and 5 in the theorem statement are satisfied. We will verify conditions 2, 3, and 4.

Since each element of Tn is a weak π/2-cone time for Zn, it follows from Lemma 5.7 that each sequence
(tnj ) as in condition 2 converges to an element of T and satisfies condition 3.

Next we verify that every element of T is in fact the limit of a sequence (tnj ) as in condition 2. Suppose
we are given a π/2-cone time t for Z. Choose r ∈ Q∩ (0,∞) with r slightly less than t−vZ(t) and a sequence
(ak) ∈ Q increasing to t. It is almost surely the case that for each t ∈ T and each choice of r and (ak) as
above we have τak,r → t as k → ∞. For each j ∈ N, we can choose kj ∈ N such that |τakj ,r − t| ≤ 2−j .

Since τ
akj ,r
n → τakj ,r as n → ∞, we can find nj ∈ N such that |τkj ,rnj − τkj ,r| ≤ 2−j . Set tnj = τ

kj ,r
nj .

Then tnj ∈ Tnj , tnj − vZnj (tnj ) ≥ n−1(ι
kj ,r
nj − φ(ι

kj ,r
nj )) ≥ r for each j ∈ N, and tnj → t. We conclude that

condition 2 holds.
It remains to verify item 4. Fix a bounded open interval I ⊂ R with rational endpoints and a ∈ I ∩ Q

and ε > 0. We can a.s. find a rational r > 0 (random and depending on δ) such that t ∈ [τa,r, τa,r + ε] and
vZ(t) ∈ [vZ(τa,r) − ε, vZ(τa,r)]. By condition 5, we have a.s. have τa,rn → τa,r as n → ∞. By condition 3,
we a.s. have vZn(τa,rn ) → vZ(τa,r) as n → ∞. Hence it is a.s. the case that for sufficiently large n ∈ N,
[vZn(τa,rn ), τa,rn ] ⊂ I. Hence for sufficiently large n ∈ N, we have tn ≥ τa,rn ≥ t − ε. Since ε is arbitrary, a.s.
lim infn→∞ tn ≥ t. Similarly lim supn→∞ vZn(tn) ≤ vZ(t).

To show that limn→∞ tn = t, we note that from any sequence of integers tending to ∞, we can extract
a subsequence nj → ∞ and a t′ ∈ I ∩ [t,∞) such that tnj → t′. Our result above implies that [vZ(t), t] ⊂
[vZ(t′), t′]. Since lim infj→∞(tnj − vZnj (tnj )) ≥ t− vZ(t), condition 2 implies that t′ is a π/2-cone time for

Z with [vZ(t′), t′] ⊂ I. Since I has rational endpoints it is a.s. the case that neither of these endpoints is
a π/2-cone time for Z or vZ of a π/2-cone time for Z, simultaneously for all choices of I. Hence in fact
[vZ(t′), t′] ⊂ I for every such choice of subsequence. By maximality t′ = t.
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Flour XX—1990, volume 1527 of Lecture Notes in Math., pages 111–235. Springer, Berlin, 1992.
MR1229519 (94g:60156)

[MP10] P. Mörters and Y. Peres. Brownian motion. Cambridge Series in Statistical and Probabilistic
Mathematics. Cambridge University Press, Cambridge, 2010. With an appendix by Oded Schramm
and Wendelin Werner. MR2604525 (2011i:60152)

[MS13] J. Miller and S. Sheffield. Imaginary geometry IV: interior rays, whole-plane reversibility, and space-
filling trees. ArXiv e-prints, February 2013, 1302.4738.

[She09] S. Sheffield. Exploration trees and conformal loop ensembles. Duke Math. J., 147(1):79–129, 2009,
math/0609167. MR2494457 (2010g:60184)

[She10] S. Sheffield. Conformal weldings of random surfaces: SLE and the quantum gravity zipper. ArXiv
e-prints, December 2010, 1012.4797.

[She11] S. Sheffield. Quantum gravity and inventory accumulation. ArXiv e-prints, August 2011, 1108.2241.

[Shi85] M. Shimura. Excursions in a cone for two-dimensional Brownian motion. J. Math. Kyoto Univ.,
25(3):433–443, 1985. MR807490 (87a:60095)

[Shi91] M. Shimura. A limit theorem for two-dimensional random walk conditioned to stay in a cone.
Yokohama Math. J., 39(1):21–36, 1991. MR1137264 (93b:60153)

[SW12] S. Sheffield and W. Werner. Conformal loop ensembles: the Markovian characterization and the
loop-soup construction. Ann. of Math. (2), 176(3):1827–1917, 2012, arXiv:1006.2374. MR2979861

[SW15] X. Sun and D. Wilson. Sandpiles and unicyles on random planar maps. In preparation, 2015.

38

http://www.ams.org/mathscinet-getitem?mr=2243761
http://arxiv.org/abs/math-ph/0312056
http://www.ams.org/mathscinet-getitem?mr=0137176
http://www.ams.org/mathscinet-getitem?mr=1229519
http://www.ams.org/mathscinet-getitem?mr=2604525
http://arxiv.org/abs/1302.4738
http://arxiv.org/abs/math/0609167
http://www.ams.org/mathscinet-getitem?mr=2494457
http://arxiv.org/abs/1012.4797
http://arxiv.org/abs/1108.2241
http://www.ams.org/mathscinet-getitem?mr=807490
http://www.ams.org/mathscinet-getitem?mr=1137264
http://arxiv.org/abs/arXiv:1006.2374
http://www.ams.org/mathscinet-getitem?mr=2979861

	Introduction
	Inventory accumulation model
	Cone times
	Basic notation
	Outline

	Probabilistic estimates
	Brownian motion lemmas
	Lower bounds for various probabilities
	Estimate for the number of flexible orders
	Probability that the reduced word is empty

	Regularity conditioned on no burgers
	Statement and overview of the proof
	Regularity along a subsequence
	Conditioning on an initial segment of the word
	Regularity at all sufficiently large times

	Convergence conditioned on no burgers
	Statement and overview of the proof
	Times with empty burger stack
	Upper bound on the number of orders
	Proof of tightness
	Identifying the limiting law

	Convergence of the cone times
	Regular variation
	Proof of Theorem 1.9


