
ON THE STABILITY OF GEODESICS IN THE BROWNIAN MAP

OMER ANGEL, BRETT KOLESNIK, AND GRÉGORY MIERMONT

Abstract. The Brownian map is a random geodesic metric space arising
as the scaling limit of random planar maps. We strengthen the so-called
confluence of geodesics phenomenon observed at the root of the map,
and with this, reveal several properties of its rich geodesic structure.

Our main result is the continuity of the cut locus at typical points. A
small shift from such a point results in a small, local modification to the
cut locus. Moreover, the cut locus is uniformly stable, in the sense that
any two cut loci coincide outside a nowhere dense set.

We obtain similar stability results for the set of points inside geodesics
to a fixed point. Furthermore, we show that the set of points inside
geodesics of the map is of first Baire category. Hence, most points in the
Brownian map are endpoints.

Finally, we classify the types of geodesic networks which are dense.
For each k ∈ {1, 2, 3, 4, 6, 9}, there is a dense set of pairs of points which
are joined by networks of exactly k geodesics and of a specific topological
form. We find the Hausdorff dimension of the set of pairs joined by each
type of network. All other geodesic networks are nowhere dense.

1. Introduction

A universal scaling limit of random planar maps has recently been identified
by Le Gall [27] (triangulations and 2k-angulations, k > 1) and Miermont [32]
(quadrangulations) as a random geodesic metric space called the Brownian
map (M,d). In this work, we establish properties of the Brownian map which
are a step towards a complete understanding of its geodesic structure.

The works of Cori and Vauquelin [15] and Schaeffer [36] describe a bijection
from well-labelled plane trees to rooted planar maps. The Brownian map is
obtained as a quotient of Aldous’ [3, 4] continuum random tree, or CRT, by
assigning Brownian labels to the CRT and then identifying some of its non-
cut-points, or leaves, according to a continuum analogue of the CVS-bijection
(see Section 2.1). The resulting object is homeomorphic to the sphere S2 (Le
Gall and Paulin [29] and Miermont [30]) and of Hausdorff dimension four
(Le Gall [25]), and is thus in a sense a random, fractal, spherical surface.

Le Gall [26] classifies the geodesics to the root of the Brownian map in
terms of the label process on the CRT (see Section 2.2). Moreover, the
Brownian map is shown to be invariant in distribution under uniform re-
rooting from the volume measure λ on M (see Section 2.1). Hence, geodesics
to typical points exhibit a similar structure as those to the root. It thus
remains to investigate geodesics from special points of the Brownian map.
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1.1. Geodesic nets. A striking consequence of Le Gall’s description of
geodesics to the root is that any two such geodesics are bound to meet and
then coalesce before reaching the root, a phenomenon referred to as the
confluence of geodesics (see Section 2.3). Moreover, geodesics from nearby
points to the root coalesce quickly. As a result, the set of points in the relative
interior of a geodesic to the root is a small subset which is homeomorphic to
an R-tree and of Hausdorff dimension one (see [26]).
Definition. For x ∈ M , the geodesic net of x, denoted G(x), is the set of
points y ∈M that are contained in the relative interior of a geodesic to x.

We remark that it is not clear, nor is it shown in this work, whether G(x)
is an R-tree in general, or a union thereof. That being said, we find that the
Brownian map has a relatively uniform geodesic structure, providing further
evidence that it is, to quote Le Gall [24], ‘very regular in its irregularity.’

The geodesic net of x is stable under perturbations of x.
For sets A,B ⊂M , let A∆B denote their symmetric difference.

Theorem 1. Almost surely, for all x, y ∈M , G(x)∆G(y) is nowhere dense
in M .

Furthermore, for typical points x ∈M , the effect of small perturbations
of x on G(x) is localized.
Theorem 2. Almost surely, the function x 7→ G(x) is continuous almost
everywhere in the following sense.

For λ-almost every x ∈ M , for any neighbourhood N of x, there is a
sub-neighbourhood N ′ ⊂ N so that G(x′)−N is the same for all x′ ∈ N ′.

The uniform infinite planar triangulation, or UIPT, due to Angel and
Schramm [5] is a random lattice which arises as the local limit of random
triangulations of the sphere. The case of quadrangulations, giving rise to the
UIPQ, was later investigated by Krikun [22]. We remark that Theorem 2 is
in a sense a continuum analogue to a result of Krikun [23] (see also Curien,
Ménard, and Miermont [19]), which shows that the ‘Schaeffer’s tree’ of the
UIPQ only changes locally after relocating its root.

Next, we find that the union over of all geodesic nets is relatively small.
For a set A ⊂M , let Ac denote its complement.

Definition. Let F =
⋃
x∈M G(x) denote the set of points in the relative

interior of a geodesic in (M,d). We refer to F as the geodesic framework and
E = F c as the endpoints of the Brownian map.
Theorem 3. Almost surely, the geodesic framework of the Brownian map is
of first Baire category.

Hence E is a residual subset. This property of the Brownian map is
reminiscent of a result of Zamfirescu [38], which states that for most convex
surfaces—that is, for all surfaces in a residual subset of the Baire space of
convex surfaces in Rn endowed with the Hausdorff metric—the endpoints of
a surface form a residual set.
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1.2. Cut loci. The construction of the Brownian map as a quotient of the
CRT gives a natural mapping from the CRT to the map. Cut-points of
the CRT correspond to a dense subset S ⊂M of Hausdorff dimension two
(see [26]). Le Gall’s description of geodesics reveals that S is exactly the
set of points with multiple geodesics to the root (see Section 2.2). More
specifically, for any y ∈M , the number of connected components of S − {y}
is precisely the number of geodesics from y to the root. This is similar to the
case of a complete, analytic Riemannian surface homeomorphic to the sphere
(see Poincaré [35] and Myers [34]), where the cut locus S is homeomorphic
to an R-tree and the number of ‘branches’ emanating from a point in S is
exactly the number of geodesics to the root.

Recall that the cut locus of a point p in a Riemannian manifold—first
examined by Poincaré [35]—is the set of points q 6= p which are endpoints of
maximal (minimizing) geodesics from p. This collection of points is more
subtle than merely the set of points with multiple geodesics to p, and in fact,
is generally the closure thereof (see Klingenberg [21, Section 2.1.14]). In the
Brownian map this equivalence breaks completely. Indeed, almost all points
are the end of a maximal geodesic (see Theorem 3), and every point is joined
by multiple geodesics to a dense set of points (see the note after the proof of
Proposition 22).

We introduce the following notion of cut locus for the Brownian map.

Definition. For x ∈M , the strong cut locus of x, denoted C(x), is the set
of points y ∈ M to which there are at least two geodesics from x that are
disjoint in a neighbourhood of y.

For a discussion on our choice of definition, and a study of another weaker
version of cut locus, see Section 4.2 below.

Since the strong cut locus of the root of the Brownian map corresponds
to the CRT minus its leaves—that is, S = C(ρ), where ρ is the root (see
Section 2.2)—it is a fundamental subset of the map. For this reason, it is of
interest to study the strong cut locus of general points in the Brownian map.

Similarly to the geodesic net, the strong cut locus of x is stable under
perturbations of x.

Corollary 4. Almost surely, the following hold.
(i) For all x, y ∈M , C(x)∆C(y) is nowhere dense in M .
(ii) The function x 7→ C(x) is continuous almost everywhere in the

following sense. For λ-almost every x ∈M , for any neighbourhood
N of x, there is a sub-neighbourhood N ′ ⊂ N so that C(x′)−N is
the same for all x′ ∈ N ′.

This result follows directly by Theorems 1,2. Indeed, if for some x, y ∈M
and open set U ⊂ M we have that G(x) and G(y) coincide in U , then it
follows immediately by the definition of the strong cut locus that also C(x)
and C(y) coincide in U .
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Corollary 4(ii) brings to mind the results of Buchner [13] and Wall [37],
which show that the cut locus of a fixed point in a compact manifold is
continuously stable under perturbations of the metric on an open, dense
subset of its Riemannian metrics (endowed with the Whitney topology).

1.3. Geodesic networks. Next, we investigate the structure of geodesics
between pairs of points in the Brownian map.

Definition. For x, y ∈M , the geodesic network between x and y, denoted
G(x, y), is the set of points in a geodesic segment from x to y.

Geodesic networks with at least one typical endpoint are well-understood.
As discussed in Section 1.2, for any y ∈ M , the number of connected
components in S − {y} gives the number of geodesics from y to the root of
the Brownian map. Hence, by properties of the CRT, almost surely there is
a dense, two-dimensional set of points with exactly two geodesics to the root;
a dense, countable set of points with exactly three geodesics to the root; and
no points connected to the root by more than three geodesics. By invariance
under re-rooting, it follows that the set of pairs that are joined by multiple
geodesics is a zero-volume subset of (M2, λ ⊗ λ) (see also Miermont [31]).
Hence, the vast majority of networks in the Brownian map consist of a single
geodesic segment. Furthermore, by Le Gall’s description of geodesics to the
root and invariance under re-rooting, geodesics from a typical point of the
Brownian map have a specific topological structure (see Section 2.2).

Definition. We say that a geodesic network G(x, y) is regular if any two
distinct geodesic segments from x to y are disjoint inside, and coincide
outside, a punctured ball centred at y of radius less than d(x, y).

For typical points x, all networks G(x, y) are regular. We note that G(x, y)
and G(y, x) are regular if and only if there is a unique geodesic from x to y.

We find that most geodesic networks in the Brownian map are, in the
following sense, a concatenation of two regular networks.

Definition. For (x, y) ∈ M2 and j, k ∈ N, we say that (x, y) induces a
normal (j, k)-network, and write (x, y) ∈ N(j, k), if for some z in all geodesic
segments from x to y, the geodesic networks G(z, x) and G(z, y) are both
regular and contain exactly j and k geodesic segments, respectively.

x yzu

Figure 1. As depicted, (x, y) ∈ N(2, 3).
Note that (u, x) does not induce a normal
(j, k)-network.

Not all networks are normal (j, k)-networks. For instance, if (x, y) ∈ N(j, k)
and j > 1, then there is a point u ∈ G(x, y) so that u is joined to x by two
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geodesics with disjoint relative interiors. See Figure 1. That being said, most
pairs induce normal (j, k)-networks. Moreover, for each (j, k) ∈ {1, 2, 3}2,
there are many normal (j, k)-networks in the map. Hence, in particular, we
establish the existence of atypical networks comprised of more than three
geodesics (and up to nine).

Theorem 5. The following hold almost surely.
(i) For any (j, k) ∈ {1, 2, 3}2, N(j, k) is dense in M2.
(ii) M2 −

⋃
(j,k)∈{1,2,3}2 N(j, k) is nowhere dense in M2.

By Theorem 5, there are essentially only six types of geodesic networks
which are dense in the Brownian map. See Figure 2.

Figure 2. Classification of networks which
are dense in the Brownian map (up to sym-
metries).

Additionally, we obtain the dimension of the sets N(j, k), j, k ≤ 3.
For a set A ⊂M , let dimA denote its Hausdorff dimension.

Theorem 6. Almost surely, we have that dimN(j, k) = 2(6− j − k), for all
j, k ∈ {1, 2, 3}. Moreover, N(3, 3) is countable.

Definition. For each k ∈ N, let P (k) ⊂M2 denote the set of pairs of points
that are connected by exactly k geodesics.

Theorems 5,6 immediately imply the following results.

Corollary 7. Put K = {1, 2, 3, 4, 6, 9}. The following hold almost surely.
(i) For each k ∈ K, P (k) is dense in M2.
(ii) M2 −

⋃
k∈K P (k) is nowhere dense in M2.

Corollary 8. Almost surely, we have that dimP (2) ≥ 6, dimP (3) ≥ 4,
dimP (4) ≥ 4, and dimP (6) ≥ 2.

We expect the lower bounds in Corollary 8 to give the correct dimensions
of the sets P (k), k ∈ K − {1, 9}. As discussed in Section 1.2, P (1) is of
full volume, and hence dimP (1) = 8. We suspect that P (9) is countable.
It would be interesting to determine if the set P (k) is non-empty for some
k /∈ K, and whether there is any k 6∈ K for which it has positive dimension.
We hope to address these issues in future work.
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1.4. Confluence points. Our key tool is a strengthening of the confluence
of geodesics phenomenon of Le Gall [26] (see Section 2.3). Specifically, we
find that for any neighbourhood N of a typical point in the Brownian map,
there is a confluence point x0 between a sub-neighbourhood N ′ ⊂ N and the
complement of N . See Figure 3.
Proposition 9. Almost surely, for λ-almost every x ∈ M , the following
holds. For any neighbourhood N of x, there is a sub-neighbourhood N ′ ⊂ N
and some x0 ∈ N so that all geodesics between any points x′ ∈ N ′ and
y ∈ N c pass through x0.

x0

Figure 3. All geodesics from points in N ′
to points in the complement of N ⊃ N ′ pass
through a confluence point x0.

Recall that a subset γ ⊂ M is a geodesic segment if (γ, d) is isometric
to an interval. We will often denote a particular geodesic segment between
x, y ∈M as [x, y], and denote its relative interior by (x, y) = [x, y]− {x, y}.
We define [x, y) and (x, y] similarly.
Definition. We say that a sequence of geodesic segments γn converges to a
geodesic segment γ, and write γn → γ, if γn converges to γ with respect to
the Hausdorff topology.

Since (M,d) is almost surely homeomorphic to S2, and hence almost
surely compact, the following lemma is a straightforward consequence of the
Arzelà-Ascoli theorem (see Bridson and Haefliger [12, Corollary 3.11]).
Lemma 10. Almost surely, the set of geodesics in (M,d) is compact.

Our key result, Proposition 9, is related to the fact that many sequences
of geodesic segments in the Brownian map converge in a stronger sense.
Definition. We say that a sequence of geodesic segments [xn, yn] converges
strongly to [x, y], and write [xn, yn] ⇒ [x, y], if for any neighbourhood N of
{x, y}, we have that [xn, yn]∆[x, y] ⊂ N eventually.

We show that all sequences of geodesic segments which converge to a
geodesic segment with at least one typical endpoint converge strongly. (In
fact, we prove slightly more, see Lemma 19 below.)
Proposition 11. Almost surely, for λ-almost every x ∈M , for every y ∈M ,
the following holds. If [xn, yn]→ [x, y], then we have that [xn, yn] ⇒ [x, y].
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Proposition 9 follows by Proposition 11, the confluence of geodesics phe-
nomena, and the fact that (M,d) is almost surely compact.

In closing, we remark that it would be interesting to know if Proposition 11
holds for all x ∈ M . This question is related to the possible existence of
ghost geodesics in the Brownian map which pass through all other geodesics
at at most one point. It would be quite surprising if such geodesics exist,
and we hope to rule them out in future work. We thus expect an analogue
of Proposition 9 to hold for all x ∈ M . If so, then in particular, we would
obtain the following result.

Conjecture. Almost surely, the geodesic framework of the Brownian map
is of Hausdorff dimension one.

In this way, we suspect that although the Brownian map is a complicated,
four-dimensional object, it has a relatively simple geodesic framework which
is of first category and one-dimensional.

2. Preliminaries

In this section, we briefly recount the construction of the Brownian map
and what is known regarding its geodesics.

2.1. The Brownian map. Fix q ∈ {3} ∪ 2(N + 1) and set cq equal to 61/4

if q = 3 or (9/q(q − 2))1/4 if q > 3. Let Mn denote a uniform q-angulation
of the sphere (see Le Gall and Miermont [28]) with n faces, and dn the
graph distance on Mn scaled by cqn

−1/4. The works of Le Gall [27] and
Miermont [32] (for q = 4) show that in the Gromov-Hausdorff topology
on isometry classes of compact metric spaces (see Burago, Burago, and
Ivanov [14]), (Mn, dn) converges in distribution to a random metric space
called the Brownian map (M,d).

The Brownian map has also been identified as the scaling limit of bipartite
planar maps with n edges, simple triangulations and quadrangulations,
quadrandulations with n faces and no pendant vertices, planar maps with n
edges, and bipartite planar maps with Boltzmann weights (see [1, 2, 6, 10,
27]).

The construction of the Brownian map involves a normalized Brownian
excursion e = {et : 0 ≤ t ≤ 1}, a random R-tree (Te, de) indexed by e,
and a Brownian label process Z = {Za : a ∈ Te}. More specifically, define
Te = [0, 1]/{de = 0} as the quotient under the pseudo-distance

de(s, t) = es + et − 2 · min
s∧t≤u≤s∨t

eu, s, t ∈ [0, 1]

and equip it with the quotient distance, again denoted by de. The random
metric space (Te, de) is Aldous’ continuum random tree, or CRT. Let pe :
[0, 1] → Te denote the canonical projection. Conditionally given e, Z is a
centred Gaussian process satisfying E[(Zs−Zt)2] = de(s, t) for all s, t ∈ [0, 1].
The random process Z is the so-called head of the Brownian snake (see [28]).
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Note that Z is constant on each equivalence class p−1
e (a), a ∈ Te. In this

sense, Z is Brownian motion indexed by the CRT.
Analogously to the definition of de, we put

dZ(s, t) = Zs + Zt − 2 ·max
{

inf
u∈[s,t]

Zu, inf
u∈[t,s]

Zu

}
, s, t ∈ [0, 1]

where we set [s, t] = [0, t] ∪ [s, 1] in the case that s > t. Then, to obtain a
pseudo-distance on [0, 1], we define

D∗(s, t) = inf
{

k∑
i=1

dZ(si, ti) : s1 = s, tk = t, de(ti, si+1) = 0
}
, s, t ∈ [0, 1].

Finally, we set M = [0, 1]/{D∗ = 0} and endow it with the quotient
distance induced by D∗, which we denote by d. Let Π : Te → M denote
the canonical projection, and put p = Π ◦ pe. Almost surely, the process Z
attains a unique minimum on [0, 1], say at t∗. We set ρ = p(t∗). The random
metric space (M,d) = (M,d, ρ) is called the Brownian map and we call ρ its
root. Being the Gromov-Hausdorff limit of geodesic spaces, (M,d) is almost
surely a geodesic space (see [14]).

Almost surely, for every pair of distinct points s 6= t ∈ [0, 1], at most
one of de(s, t) = 0 or dZ(s, t) = 0 holds (see [29, Lemma 3.2]). Hence, only
leaves of Te are identified in the construction of the Brownian map; and this
occurs if and only if they have the same label and along either the clockwise
or counter-clockwise, contour-ordered path about Te between them, one
only finds vertices of larger label. Thus, as mentioned at the beginning of
Section 1, in the construction of the Brownian map, (Te, Z) is a continuum
analogue for a well-labelled plane tree, and the quotient by {D∗ = 0} for the
CVS-bijection (which recall identifies well-labelled plane trees with rooted
planar maps).

Lastly, we note that although the Brownian map is a rooted metric space,
it is not so dependent on its root. The volume measure λ on M is defined
as the push-forward of Lebesgue measure on [0, 1] via p. Le Gall [26] shows
that the Brownian map is invariant under re-rooting in the sense that if U
is uniformly distributed over [0, 1] and independent of (M,d), then (M,d, ρ)
and (M,d,p(U)) are equal in law. Hence, to a considerable extent, the root
of the map is but an artifact of its construction.

2.2. Simple geodesics. Put Z∗ = Zt∗ . As it turns out, d(ρ,p(t)) = Zt−Z∗
for all t ∈ [0, 1] (see [25]). In other words, up to a shift by the minimum
label Z∗, the Brownian label of a point in Te is precisely the distance to ρ
from the corresponding point in the Brownian map.

All geodesics to ρ are simple geodesics, constructed as follows. In a natural
way, each t ∈ [0, 1] corresponds to a corner of Te with label Zt. For t ∈ [0, 1]
and ` ∈ [0, Zt − Z∗], let st(`) denote the point in [0, 1] corresponding to
the first corner with label Zt − ` in the clockwise, contour-ordered path
around Te beginning at the corner corresponding to t. For each such t, the
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function Γt : [0, Zt − Z∗] → M taking ` to p(st(`)) is a geodesic from p(t)
to ρ. Moreover, the main result of [26] shows that all geodesics to ρ are of
this form. Hence, the geodesic net of the root, G(ρ), is precisely the set of
cut-points of the R-tree TZ = [0, 1]/{dZ = 0} projected into M .

Since the cut-points of Te are its vertices with multiple corners, we see that
S is exactly the set of points with multiple geodesics to the root. Furthermore,
the order of a cut-point of Te—that is, the number of its corners—is precisely
the number of geodesics from the corresponding point in the map to the
root.

Points in S correspond to leaves of TZ (see [29, Lemma 3.2]), and thus
geodesics to the root of the map have a particular topological structure. For
any y ∈ M , each pair of distinct geodesics from y to ρ are disjoint inside,
and coincide outside, a punctured ball centred at y of radius less than d(ρ, y).
Hence, as mentioned in Section 1.2, we have that S = C(ρ).

These results mirror the fact that from each corner of a labelled discrete
tree, the CVS-bijection draws geodesics to the root of the resulting map in
such a way that the label of a vertex visited by any such geodesic equals the
distance to the root. See [24, 26] for more details.

2.3. Confluence at the root. As discussed in Section 1.1, a confluence of
geodesics is observed at the root of the Brownian map. Combining this with
invariance under re-rooting, the following result is obtained.

For x ∈M , let B(x, δ) denote the ball of radius δ centred at x.
Lemma 12 (Le Gall [26, Corollary 7.7]). Almost surely, for λ-almost every
x ∈M , the following holds. For every ε > 0 there is an η ∈ (0, ε) so that if
y, y′ ∈ B(x, ε)c, then any pair of geodesics from x to y and y′ coincide inside
of B(x, η).

Moreover, geodesics to the root of the map coalesce quickly.
For t ∈ [0, 1], let γt denote the image of the simple geodesic Γt from p(t)

to the root of the map ρ (see Section 2.2).
Lemma 13 (Miermont [32, Lemma 5]). Almost surely, for all s, t ∈ [0, 1],
γs and γt coincide outside of B(p(s), dZ(s, t)).

We require the following lemma, which follows directly by Lemma 13,
invariance under re-rooting, the continuity of p (see [26]), and Le Gall’s
classification of geodesics to the root.
Lemma 14. Almost surely, for λ-almost every x ∈M , the following holds.
For any y ∈M and neighbourhood of N of y, there is a sub-neighbourhood
N ′ ⊂ N so that if y′ ∈ N ′, then any geodesic from x to y′ coincides with a
geodesic from x to y outside of N .
Proof. Let ρ denote the root of the map. Let y ∈M and a neighbourhood
N of y be given. Select ε > 0 so that B(y, ε) ⊂ N . Let Nε denote the set of
points y′ ∈M with the property that for all t′ ∈ [0, 1] for which p(t′) = y′,
there exists some t ∈ [0, 1] so that p(t) = y and dZ(t, t′) < ε. As discussed
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in Section 2.2, Le Gall [26] shows that all geodesics to ρ are simple geodesics.
Hence, by Lemma 13, any geodesic from ρ to a point y′ ∈ Nε coincides with
some geodesic from ρ to y outside of N . We claim that Nε is a neighbourhood
of y. To see this, note that if p(tn) = yn → y in (M,d), then there is a
subsequence tnk so that tnk → t∗ ∈ [0, 1] as k →∞. Since p is continuous,
p(t∗) = y, and hence dZ(t∗, tnk) < ε for all large k. We conclude that for any
yn → y in (M,d), yn /∈ Bε for at most finitely many n. Hence, the lemma
follows by invariance under re-rooting. �

We remark that the value of η in Lemma 14 depends strongly on x and y.
For instance, for a fixed ε > 0 and sequences xn → x and yn → y in (M,d),
let ηn ∈ (0, ε) be as guaranteed by the lemma (assuming the xn, say, are
typical) for the pair xn, yn. It is quite possible that ηn → 0 as n→∞.

3. Confluence near the root

We show that a confluence of geodesics is observed near the root of the
Brownian map, strengthening the results discussed in Section 2.3. Specifically,
we establish the following result.

Lemma 15. Almost surely, for λ-almost every x ∈M , the following holds.
For any y ∈ M and neighbourhoods Nx of x and Ny of y, there are sub-
neighbourhoods N ′x and N ′y so that if x′ ∈ N ′x and y′ ∈ N ′y, then any geodesic
from x′ to y′ coincides with a geodesic from x to y outside of Nx ∪Ny.

We note that Lemma 15 strengthens Lemma 14 in that it allows for
perturbations of both endpoints of a geodesic.

Once Lemma 15 is established, our key result follows easily by Lemma 12
and the fact that the Brownian map is almost surely compact.

Proof of Proposition 9. Let x denote the root of the map. Let a neighbour-
hood N of x be given. By Lemma 12, there is a point x0 ∈ N which is
contained in all geodesic segments between x and points y ∈ N c. Hence, by
Lemma 15, for each y ∈ N c there is an ηy > 0 so that x0 is contained in all
geodesic segments between points x′ ∈ B(x, ηy) and y′ ∈ B(y, ηy). Since M
is compact, there is a finite set Y ⊂ N c for which

⋃
y∈Y B(y, ηy) ⊃ N c. Put

N ′ = B(x,miny∈Y ηy). If y0 ∈ N c, then y0 ∈ B(y, ηy) for some y ∈ Y , and
thus all geodesics from points x′ ∈ N ′ ⊂ B(x, ηy) to y0 pass through x0. See
Figure 4. Hence, by invariance under re-rooting, we obtain the result. �

Hence, we turn to the proof of Lemma 15.
To establish Lemma 15 we must rule out the existence of a geodesic segment

[x, y] from the root of the map x, and a sequence of geodesic segments [xn, yn]
converging to [x, y] in such a way that [xn, yn] and [x, y] are disjoint inside a
fixed neighbourhood of x for all n.

For the remainder of this section we fix a realization of the Brownian map
exhibiting the almost sure properties of the random metric space (M,d).
Slightly abusing notation, let us refer to this realization as (M,d).
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x0x y

x′ y0

Figure 4. Given a neighbourhood N of x,
we select a sub-neighbourhood N ′ so that x0
is contained in all geodesic segments between
any points x′ ∈ N ′ and y0 ∈ Nc.

We shall refer to a dense subset of typical points T ⊂ M for which
Lemma 14 holds. Such a set exists almost surely. Next, we fix a point y ∈M
and a geodesic segment γ = [x, y] oriented from the root of the map x to y.

In what follows, we will at times shift our attention to the homeomorphic
image of a neighbourhood of γ in which our arguments are more transparent.
Whenever doing so, we will appeal only to topological properties of the map.

Fix a homeomorphism τ from M to Ĉ. Complete the image of γ under
τ to a Jordan curve J ⊂ Ĉ and fix a homeomorphism φ taking J to the
extended real-axis {w ∈ C : Imw = 0} ∪ {∞} in such a way that φ ◦ τ
sends γ to the unit interval I = {w ∈ C : Imw = 0,Rew ∈ [0, 1]} oriented
from 0 to 1. By the Jordan-Schönflies theorem, φ ◦ τ can be extended to
a homeomorphism from M to Ĉ (see Mohar and Thomassen [33, Chapter
2.2]). We fix such a homeomorphism, and denote it by ψ.

Definition. Let dE denote the Euclidean distance on C. For A ⊂ M and
δ > 0, let

(i) [A]δ = {z ∈M : d(z,A) ≤ δ};
(ii) [A]ψ,δ denote the largest set

{w ∈ C : dE(w,ψ(A)) ≤ ξ} ⊂ ψ([A]δ).

For a set A ⊂ C, let IntA denote its interior.

Definition. Let H+ = {w ∈ C : Imw ≥ 0} (resp. H− = {w ∈ C : Imw ≤
0}) denote the closed upper (resp. lower) half-plane of C. We refer to
L = ψ−1(IntH+) (resp. R = ψ−1(IntH−)) as the left (resp. right) side of γ.

Definition. We define the left (resp. right) δ-side of ψ(γ) as [γ]`ψ,δ = [γ]ψ,δ∩
H+ (resp. [γ]rψ,δ = [γ]ψ,δ ∩H−). See Figure 5.

Lemma 16. For any δ > 0, we have that
(i) [γ]ψ,δ is a closed, simply-connected neighbourhood of ψ(γ);
(ii) Int [γ]`ψ,δ and Int [γ]rψ,δ are non-empty, simply-connected, and disjoint;
(iii) ψ(γ) ⊂ [γ]`ψ,δ ∩ [γ]rψ,δ;
(iv) ψ−1(Int [γ]`ψ,δ) ⊂ [γ]δ ∩ L and ψ−1(Int [γ]rψ,δ) ⊂ [γ]δ ∩R.
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[γ]`ψ,δ

0 1[γ]rψ,δ

Figure 5. We select a closed, simply-
connected sub-neighbourhood [γ]ψ,δ of
ψ([γ]δ), and put [γ]`ψ,δ = [γ]ψ,δ ∩ H+ and
[γ]rψ,δ = [γ]ψ,δ ∩H−.

Proof. For part (i), observe that [γ]ψ,δ 6= ∅, as otherwise, by the compactness
of γ we would find z ∈ γ with d(z, γ) = δ. (In other words, although
typical open balls in the Brownian map have infinitely many ‘holes’ (see [24,
Proposition 3.7]), one does not find ‘holes’ in [γ]δ arbitrarily close to γ.) Note
that [γ]ψ,δ is in fact a convex neighbourhood of ψ(γ) (although ψ−1([γ]ψ,δ)
may not be a convex neighbourhood of γ). Hence, part (ii) follows by part (i)
and the fact that [γ]`ψ,δ ⊂ H+ and [γ]rψ,δ ⊂ H−. We obtain part (iii) by part
(i) and observing that ψ(γ) ⊂ H+ ∩H−. Part (iv) is a direct consequence of
the fact that [γ]`ψ,δ ⊂ H+, [γ]rψ,δ ⊂ H−, and ψ−1([γ]ψ,δ) ⊂ [γ]δ. �

Lemma 17. Let u, v ∈ γ. For all δ > 0, there are typical points u` ∈
[u]δ∩L∩T and v` ∈ [v]δ∩L∩T so that [u`, v`]−γ is contained in [{u, v}]δ∩L.
An analogous statement holds replacing L with R.

Proof. Let δ > 0 and u, v ∈ γ be given. We discuss the argument for L,
since the two cases are symmetrical. Moreover, we assume that u 6= v and
{u, v}∩{x, y} = ∅; as in these cases, the following argument is easily adapted
by replacing u (resp. v) with a point in γ sufficiently close to u (resp. v).
Thus, we may assume that d(x, u) < d(x, v) and δ < d({u, v}, {x, y}).

Let v′ be the point in [v, y] ⊂ γ at distance δ from v. Since G(x, y) is
regular, note that [x, v′] ⊂ γ is the unique geodesic segment from x to v′.
Hence, by considering a sequence of points in L ∩ T converging to v, we
see by Lemmas 10, 14, and 16 that there is a point v` ∈ L ∩ T such that
ψ([x, v`] − [x, v]) ⊂ [v]ψ,δ. Moreover, by the uniqueness of [x, v′] and since
v` ∈ L and v′ /∈ Int [v]ψ,δ, we see that in fact ψ([x, v`] − γ) ⊂ [v]ψ,δ ∩ H+.
Therefore, by Lemma 16, we find that [x, v`]− γ ⊂ [v]δ ∩ L.

By a similar argument, in which v` assumes the role of x, we find a point
u` ∈ L ∩ T so that [v`, u`] − [v`, x] ⊂ [u]δ ∩ L, and hence [u`, v`] − γ ⊂
[{u, v}]δ ∩ L, as required. See Figure 6. �

Lemma 18. Suppose that [x′, y′] ⊂ γ and [xn, yn] → [x′, y′] as n → ∞.
Then, for any ε > 0, [xn, yn]∆[x′, y′] ⊂ [{x′, y′}]ε for all large n.

Proof. Let ε > 0, γ′ = [x′, y′], and γn = [xn, yn] as in the lemma be given.
We may assume that ε < 2−1d(x′, y′). Let u (resp. v) denote the point in γ′ at
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ψ(u) ψ(v)0 1

ψ(u`) ψ(v`)

Figure 6. The image of [u`, v`]− γ under
ψ is contained in [{u, v}]ψ,δ ∩H+.

distance ε/2 from x′ (resp. y′). By Lemma 17, there are points u`, v` ∈ L∩T
and ur, vr ∈ R ∩ T such that [u`, v`]− γ (resp. [ur, vr]− γ) is contained in
[{u, v}]ε/4 ∩ L (resp. [{u, v}]ε/4 ∩R). Put

δ1 = d(γ, {u`, ur, v`, vr})

and
δ2 = d({x′, y′}, [u`, v`] ∪ [ur, vr]).

Let δ = 2−1(δ1 ∧ δ2). Let H` (resp. Hr) denote the connected component
of [γ]ψ,δ − ψ([u`, v`]) (resp. [γ]ψ,δ − ψ([ur, vr])) that is contained in IntH+
(resp. IntH−). Since γn → γ′, we have that ψ(γn) ⊂ [γ′]ψ,δ, ψ(xn) ∈ [x′]ψ,δ,
and ψ(yn) ∈ [y′]ψ,δ for all large n. Thus, by the uniqueness of [u`, v`] and
[ur, vr] and the choice of δ, observe that for all large n, γn∩ψ−1(H`∪Hr) = ∅,
and hence γn∆γ′ ⊂ [{x′, y′}]ε. See Figure 7. �

H`

ψ(u`)

0 1

ψ(xn)

Hr

ψ(v`)

ψ(ur) ψ(vr)

ψ(yn)

Figure 7. The image of [u`, v`] and [ur, vr]
under ψ, and the sets [γ]ψ,δ, H` and Hr. For
all large n, ψ(γn) and H` ∪Hr are disjoint.

Since γ = [x, y] is a general geodesic segment from the root of the map, we
obtain the following result immediately by Lemma 18 and invariance under
re-rooting.

Lemma 19. For λ-almost every x ∈M the following holds almost surely. If
[xn, yn] and [x′, y′] ⊂ [x, y] are geodesic segments for which [xn, yn]→ [x′, y′],
then we have that [xn, yn] ⇒ [x′, y′].

Thus, in a sense, there are no ‘parallel’ geodesic segments converging to a
sub-segment of a geodesic segment with at least one typical endpoint.

With Lemma 19 at hand, Lemma 15 follows easily by Lemma 10.
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Proof of Lemma 15. Let x denote the root of the Brownian map. Let y ∈M
and neighbourhoods Nx of x and Ny of y be given. Suppose that [xn, yn]
is a sequence of geodesic segments with xn → x and yn → y in (M,d).
If [xnk , ynk ] is a convergent subsequence of [xn, yn], then by Lemma 10,
[xnk , ynk ] converges to some [x, y], and hence by Lemma 19, we have that
[xnk , ynk ]∆[x, y] ⊂ Nx ∪Ny eventually. We conclude that for any sequence
[xn, yn] as above, [xn, yn]−G(x, y) 6⊂ Nx ∪Ny for at most finitely many n.
Hence, the result follows by invariance under re-rooting. �

4. Proof of main results

In this section, we use Proposition 9 to establish the properties of the
Brownian map discussed in Section 1.

As in the previous section, we shall refer to a subset of typical points
T ⊂M , but with the following additional properties:

(i) λ(T c) = 0;
(ii) Proposition 9 holds for all x ∈ T ;
(iii) for all x ∈ T and y ∈M , G(x, y) is regular;
(iv) for each x ∈ T , there is a dense, two-dimensional set of points with

exactly two geodesics to x; a dense, countable set of points with
exactly three geodesics to x; and no points with more than three
geodesics to x;

(v) for each x, y ∈ T , there is a unique geodesic from x to y.
The existence of a set T satisfying (i)–(iv) follows by Le Gall’s description

of geodesics to the root and invariance under re-rooting. Property (v) then
follows by (iii), since as noted in Section 1.3, G(x, y) and G(y, x) are both
regular if and only if there is a unique geodesic from x to y.

We remark in passing that since (M,d) is separable, and thus strongly
Lindelöf (that is, all open subspaces of (M,d) are Lindelöf), it follows easily by
Theorem 2 and Corollary 4 that dim

⋃
x∈T G(x) = 1 and dim

⋃
x∈T C(x) = 2.

It would be interesting to know if the same is true if the union is taken over
all x ∈M .

4.1. Geodesic nets. Theorems 1,2 follow directly by Proposition 9.

Proof of Theorem 1. Let x, y ∈ M . We show that for any u ∈ T − {x, y},
there is a neighbourhood of u where geodesics to x and y agree. Since T
is dense in M , this implies the theorem. Given such a u, Proposition 9
provides an η > 0 and u0 6∈ B(u, η) so that all geodesics from u′ ∈ B(u, η)
to x or y pass through u0. We claim that U = B(u, η/2) is the required
neighbourhood. Indeed, any geodesic from any u′ ∈ U to x or y cannot
re-enter U after visiting u0. This is since d(u′, u0) ≥ η/2 and d(u0, U) ≥ η/2,
and so returning to U via u0 is longer than the diameter of U . �

Proof of Theorem 2. Let x ∈ T and a neighbourhood N of x be given. Select
ε > 0 so that B(x, ε) is strictly contained in N . Let N ′ ⊂ B(x, ε) and
x0 ∈ B(x, ε) be as in Proposition 9. For any y0 ∈ N c and x′ ∈ N ′, observe
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that y0 ∈ G(x′) if and only if there is some y ∈ B(x, ε)c and geodesic segment
[x0, y] so that y0 ∈ [x0, y). Hence, all G(x′), x ∈ N ′, coincide on N c. �

Next, we show that the geodesic framework of the Brownian map, F , is of
first Baire category.

A geodesic star is a formation of geodesics which share a common endpoint
and are otherwise pairwise disjoint (see [32]).

Definition. For ε > 0, let G(ε) denote the set of points x ∈M such that for
some y, y′ ∈ B(x, ε)c and geodesic segments [x, y] and [x, y′], we have that
(x, y] ∩ (x, y′] = ∅. We call a point in G(ε) the centre of a geodesic ε-star.

Proposition 20. Almost surely, for any ε > 0, G(ε) is nowhere dense in M .

Proof. Let ε > 0 and x ∈ T be given. Put N = B(x, ε/2). Let N ′ ⊂ N and
x0 ∈ N be as in Proposition 9. Since N ⊂ B(x′, ε) for all x′ ∈ N ′, note
that x0 is contained in all geodesic segments of length ε from points x′ ∈ N ′.
Hence, G(ε) ∩N ′ = ∅. The result thus follows by the density of T . �

Proof of Theorem 3. Since a point lying in the relative interior of a geodesic
is contained in G(ε) for some ε > 0, we have that F ⊂

⋃
ε>0 G(ε). Hence,

Proposition 20 implies Theorem 3. �

4.2. Cut loci. As discussed in Section 1.2, Le Gall’s study of geodesics to
the root shows that the set S ⊂M corresponding to cut-points of the CRT
is precisely the set of points with multiple geodesics to the root. Hence, Le
Gall [26] states that S ‘exactly corresponds to the cut locus of [the Brownian
map] relative to the root.’ In light of this, we make the following definition.

Definition. For x ∈M , the weak cut locus of x, denoted S(x), is the set of
points y ∈M with multiple geodesics to x.

As it turns out however, S(x) does not capture the essence of a cut locus
of a general point x ∈M most effectively. The reason for this is the presence
of a dense set of atypical points D ⊂ M with the property that geodesics
from x ∈ D pass through some points in S(x); and thus, a point in S(x) is
not necessarily an endpoint relative to x. For this reason, we also define a
strong cut locus for the Brownian map, see Section 1.2.

By Le Gall’s description of geodesics to the root, it follows immediately
that typically the two notions of cut locus coincide.

Proposition 21. Almost surely, for λ-almost every x ∈M , S(x) = C(x).

We remark that the strong cut locus, as opposed to the weak cut locus, is
not symmetric in x and y; that is, y ∈ C(x) does not imply that x ∈ C(y).
See Figure 8.

Although more in tune with the singular geometry of the Brownian map,
the strong cut locus is not analogous to the cut locus of a smooth manifold
in many respects. For instance, C(x) is much smaller than the closure of
all points with multiple geodesics to x, since the set of such points is dense
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x y

Figure 8. As depicted, y ∈ C(x), however
x /∈ C(y), since all geodesics from y to x
coincide near x.

M . Also, it is not necessarily the case that all points in C(x) are endpoints
relative to x. Despite such differences, we propose that the set C(x) is a
more interesting notion of cut locus in our setting than, say, the set of all
endpoints relative to x, which is a four-dimensional set of full volume.

We compare the weak and strong cut loci of the Brownian map. As noted
in Section 1.2, analogues of Theorems 1,2 hold for the strong cut locus, see
Corollary 4. On the other hand, due to a dense set of atypical points, the
weak cut locus oscillates in volume and dimension near typical points.

Proposition 22. Almost surely, for λ-almost every x ∈M , for any neigh-
bourhood N of x, there is a sub-neighbourhood N ′ ⊂ N and a dense subset
D ⊂ N ′ with dimD = 2 so that S(x′) ⊃ N c, for all x′ ∈ D.

Proof. Let x ∈ T and a neighbourhood N of x be given. Let N ′ ⊂ N and
x0 ∈ N be as in Proposition 9. Fix some u ∈ N c∩T , and put D = N ′∩C(u)
so that D is dense in N ′ and satisfies dimD = 2. Since u, x ∈ T , note that
there is a unique geodesic from u to x0. Hence, by the choice of D, we see
that there are multiple geodesics from each point x′ ∈ D to x0. We conclude
that N c ⊂ S(x′), for all x′ ∈ D. �

Since the weak cut locus is symmetric—that is, y ∈ S(x) if and only if
x ∈ S(y)—we note that it follows immediately by Proposition 22 that almost
surely, for all x ∈M , S(x) is dense in M and dimS(x) ≥ 2.

4.3. Geodesic networks. Our next result classifies the types of geodesic
networks which are dense in the Brownian map.

Proof of Theorem 5. Let u 6= v ∈ T be given. Put ε = 3−1d(u, v). By
Lemma 15, there is an η > 0 so that if U = B(u, η) and V = B(v, η), then
for any u′ ∈ U and v′ ∈ V , any geodesic segment [u′, v′] coincides with [u, v]
outside of [{u, v}]ε. Let z denote the point in [u, v] equidistant from u and v.

By the choice of η and since u ∈ T , we have that for all v′ ∈ V , the
geodesic network G(z, v′) is regular and consists of at most three geodesics.
We split V = V1 ∪ V2 ∪ V3, where Vk consists of those v′ ∈ V for which
(z, v′) ∈ N(1, k). Similarly, we decompose U = U1 ∪U2 ∪U3 according to the
type of G(z, u′), u′ ∈ U . Note that since u, v ∈ T , all Uj , Vk are dense in U, V .
By the choice of η, observe that Uj × Vk ⊂ N(j, k), for all j, k ∈ {1, 2, 3}.
Hence, parts (i),(ii) follow by the density of T . �

To calculate the Hausdorff dimensions of the sets of points joined by
normal (j, k)-networks, we require the following result, which is implicit in
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Le Gall’s [25] proof that dimM = 4. For the record, we include a proof via
the uniform volume estimates of balls in the Brownian map.

For a set A ⊂M , let DimA (resp. DimA) denote its lower (resp. upper)
Minkowski dimension. If the lower and upper Minkowski dimensions coincide,
we denote the common value by DimA.

Proposition 23. Almost surely, DimM = 4.

Proof. For ε > 0, let N(ε) denote the number of balls of radius ε required
to cover M . Let η > 0 be given. By [32, Lemma 15], there is a constant
c ∈ (0,∞) and ε0 > 0 so that for all ε ∈ (0, ε0) and x ∈ M , we have
that λ(B(x, ε)) ≥ cε4+η. Hence, there is a constant cη ∈ (0,∞) so that
for all ε ∈ (0, ε0), N(ε) ≤ cηε

−(4+η), and so we find that DimM ≤ 4 + η.
Similarly, using [32, Lemma 14] (a consequence of [26, Corollary 6.2]), we
see that DimM ≥ 4− η. (Although, of course, since dimM = 4, it follows
immediately that DimM ≥ 4.) Taking η → 0, we obtain the result. �

Howroyd [20] shows that for any subsets A,B of a metric space, dim(A×B)
is at most the sum of the Hausdorff dimension of A and the packing dimension
of B. The packing dimension of a set is at most its Minkowski dimension.
Hence, by Proposition 23, for any subset A ⊂M , dim(A×M) = dimA+ 4.

Proof of Theorem 6. Let u 6= v ∈ T and Uj , Vk, j, k ∈ {1, 2, 3}, be as in the
proof of Theorem 5. Since u, v ∈ T , dim(U1) = dim(V1) = 4, dim(U2) =
dim(V2) = 2, and the U3, V3 are countable. Since Uj × Vk ⊂ N(j, k), for all
j, k ∈ {1, 2, 3}, we obtain the lower bounds dimN(j, k) ≥ 2(6− j − k). Since
dimM2 = 8, it follows immediately that dimN(1, 1) = 8.

Towards the required upper bounds, fix a countable, dense subset T0 ⊂ T .
For each x ∈ T0, we split M − {x} = S1(x) ∪ S2(x) ∪ S3(x), where Sj(x)
consists of those y ∈ M for which (x, y) ∈ N(1, j). For j ∈ {1, 2, 3}, let
Sj =

⋃
x∈T0 Sj(x), and then for j, k ∈ {1, 2, 3}, put Sj,k = Sj × Sk.

We claim that dimSj,k = 2(6−j−k) for all j, k ∈ {1, 2, 3}, and that S3,3 is
countable. Indeed, note that for each x ∈ T0, dimS1(x) = 4, dimS2(x) = 2,
and S3(x) is countable. Since T0 is countable, we also have that dimS1 = 4,
dimS2 = 2, and S3 is countable. Hence dimS1,1 = 8, dimS2,2 = 4, and S3,3
is countable. Since S3 is countable, we have that dimSj,k = 2(6− j − k) if
at least one of j = 3 or k = 3. Finally, to see that dimS1,2 = dimS2,1 = 6,
we use the observation after the proof of Proposition 23, taking A = S2.

Next, we claim that N(j, k) ⊂ Sj,k for all (j, k) ∈ {1, 2, 3}2−{(1, 1)}, from
which the required upper bounds follow. To see this, let (x, y) ∈ N(j, k),
with (j, k) as above. Let [x0, y0] ⊂ [x, y] be the sub-segment of all geodesic
segments between x and y which is maximal with respect to inclusion. We
note that if j = 1 (resp. k = 1) then x0 = x (resp. y0 = y). Let U be a
connected component of G(x, y)c whose closure is disjoint from the relative
interior of [x0, y0]. Fix z ∈ U ∩ T . By interchanging labels if necessary, we
may assume that d(z, x0) < d(z, y0). Then, by the choice of [x0, y0] and
since z ∈ T , there is a unique geodesic segment [z, y0], and we have that
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[x0, y0] ⊂ [z, y0]. Therefore, since z ∈ T , we see by Lemma 19 that for
some z0 ∈ T0 sufficiently close to the midpoint of x0 and y0, it holds that
(z0, x) ∈ N(1, j) and (z0, y) ∈ N(1, k). Hence, (x, y) ∈ Sj,k. See Figure 9.

Altogether, we conclude that dimN(j, k) = 2(6 − j − k) for all j, k ∈
{1, 2, 3}, and also that N(3, 3) is countable. �

x yz x0 y0

z0

Figure 9. As depicted, (x, y) ∈ N(2, 3).
We select a typical point z ∈ U and note
that [z, y0] ⊃ [x0, y0]. For some z0 ∈ T0
sufficiently close to [x0, y0], we have that
(z0, x) ∈ N(1, 2) and (z0, y) ∈ N(1, 3).

Proof of Corollaries 7,8. Noting that N(j, k) ⊂ P (jk), for all j, k ∈ N, we
observe that Theorems 5,6 immediately yield Corollaries 7,8. �

5. Related models

An infinite volume version of the Brownian map, the Brownian plane
(P,D), has been introduced by Curien and Le Gall [18]. The random metric
space (P,D) is homeomorphic to the plane R2 and arises as the local Gromov-
Hausdorff scaling limit of the UIPQ. The Brownian plane has a additional
scale invariance property, which makes it more amenable to analysis, see the
recent works of Curien and Le Gall [16, 17]. As discussed in [24], almost
surely, there are isometric neighbourhoods of the roots of (M,d) and (P,D).
Using this fact and scale invariance, properties of the Brownian plane can be
deduced from those of the Brownian map.

In a series of works, Bettinelli [8, 9, 7] investigates Brownian surfaces of
positive genus. In [8], only subsequential Gromov-Hausdorff convergence of
uniform random bipartite quadrangulations of the g-torus Tg is established
(also, general orientable surfaces with a boundary are analyzed in [7]), and it is
an ongoing work of Bettinelli and Miermont [11] to lift this constraint. Some
properties hold independently of which subsequence is extracted. For instance,
the scaling limit of bipartite quadrangulations of Tg is homeomorphic to
Tg (see [9]) and of Hausdorff dimension four (see [8]). Also, a confluence of
geodesics is observed at typical points of the surface (see [7]). Our results
imply further properties of the geodesic structure of such surfaces, although
in this setting there are more technicalities to be addressed.
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