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Abstract. We prove that the spectrum of a limit-periodic Schrödinger oper-

ator is homogeneous in the sense of Carleson whenever the potential obeys the

Pastur–Tkachenko condition. This implies that a dense set of limit-periodic
Schrödinger operators have purely absolutely continuous spectrum supported

on a homogeneous Cantor set. When combined with work of Gesztesy–

Yuditskii, this also implies that the spectrum of a Pastur–Tkachenko potential
has infinite gap length whenever the potential fails to be uniformly almost

periodic.

1. Introduction

We study continuum Schrödinger operators, that is, operators on L2(R) of the
form H = HV , where

HV φ = −φ′′ + V φ (1)

and V is a real-valued funtion on R. It is well known that (1) defines a self-
adjoint operator on a dense linear subspace of L2(R) under appropriate restrictions
on V . For operators of the form (1), there are essentially two broad classes of
spectral-theoretic results: direct spectral theory, which deduces characteristics of
the spectrum and spectral measures of HV for a given V or a given class of V ’s, and
inverse spectral theory, which fixes spectral information and attempts to describe
the space of potentials which exhibit such spectral data. In rare instances, one is
able to obtain a result which goes in both directions simultaneously – such results
are called gems of spectral theory in [16]. In this paper, we will consider the class
of Pastur–Tkachenko potentials, which have been heavily studied from the inverse
point of view [12, 13]. To begin, let us recall the definition of the Pastur–Tkachenko
class:

Definition. The Besicovitch norm of a measurable function f : R→ R is defined
by

‖f‖B = lim
T→∞

(
1

2T

∫ T

−T
|f(t)|2 dt

)1/2

.
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We say that a potential V : R → R is (Besicovitch) limit-periodic if there exist
periodic Vn ∈ L2

loc(R) such that

lim
n→∞

‖V − Vn‖B = 0.

We will denote the class of all Besicovitch limit-periodic functions on R by
LP(R). We say that a (Besicovitch) limit-periodic potential V satisfies the Pastur–
Tkachenko condition if its periodic approximants can be chosen such that

lim
n→∞

ebTn+1‖V − Vn‖B = 0 for every b > 0, (2)

where Tn denotes the period of Vn, and Tn divides Tn+1 for all n; compare [12, 13].
We denote by PT(R) the set of all potentials V ∈ LP(R) which obey the Pastur–
Tkachenko condition.

Our main goal in this paper is to prove that the spectrum of every potential in
the class PT(R) is homogeneous in the sense of Carleson. Loosely speaking, this
says that the spectrum has a uniform positive density with respect to Lebesgue
measure around each of its points. The precise formulation follows.

Definition. We say that a set Σ ⊆ R is τ -homogeneous if there exists δ0 > 0 such
that

|Bδ(x) ∩ Σ| ≥ τδ for all x ∈ Σ and 0 < δ ≤ δ0,
where Bδ(x) = (x − δ, x + δ) denotes the δ-neighborhood of x and | · | denotes
Lebesgue measure (compare [3]).

Theorem 1.1. If V ∈ PT(R), then σ(HV ) is τ -homogeneous for every τ ∈ (0, 1).

As a consequence of Theorem 1.1, we easily recover a continuum Schrödinger
analog of a strengthened version of the main result of [7].

Corollary 1.2. For each 0 < τ < 1, denote by Hτ the set of V ∈ LP(R) such that
HV has purely absolutely continuous spectrum and σ(HV ) is a τ -homogeneous Can-
tor set. Then H1− =

⋂
0<τ<1Hτ is dense in LP(R) (with respect to the topology

induced by ‖ · ‖B).

Proof. It is easy to see that PT(R) is dense in LP(R). In [11, Theorem 17.2], the
spectrum is encoded in terms of Marchenko–Ostrovski heights |κr| and it is easy to
see that for a dense set of V ∈ PT(R), all |κr| are strictly positive, and therefore
all gaps are open and the spectrum is a Cantor set. By Theorem 1.1 and [12, 13],
PT(R) ⊆ H1− . Thus, H1− is dense in LP(R), as desired. �

Remark. Theorem 1.1 and Corollary 1.2 improve the results of [7] in two senses.
First, for each fixed τ < 1, [7] constructs a dense set of examples with τ -
homogeneous spectrum, while the previous result constructs a dense set which
works for all τ < 1 simultaneously. Secondly, [7] does not construct explicit exam-
ples of aperiodic limit-periodic potentials with homogeneous spectrum, while the
Pastur–Tkachenko class is very explicit.

The motivation for studying spectral homogeneity arises from inverse spectral
problems in the regime of absolutely continuous (a.c.) spectrum. Specifically, it is
well-known that the presence of nontrivial a.c. spectrum in one dimension places
rather strict restrictions on the potential; compare [10, 15]. This led to the popu-
larity of the following conjecture:
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Conjecture (Kotani-Last). If an ergodic Schrödinger operator has nonempty ab-
solutely continuous spectrum, then the potential is almost-periodic.

The conjecture is false – Avila constructed counterexamples in the discrete set-
ting [1]. Damanik, Volberg and Yuditskii constructed counterexamples using dif-
ferent techniques [5, 20].

On the other hand, if Σ is a homogeneous closed subset of R, then the space
of potentials which have spectrum Σ and are reflectionless thereupon is known
to consist of almost-periodic operators by a theorem of Sodin and Yuditskii [17]
(provided Σ has finite total gap length, where a gap of Σ is defined to be a bounded
component of R\Σ); moreover, Gesztesy and Yuditskii have proved that the spectral
measures of reflectionless Schrödinger operators with homogeneous spectrum are
purely absolutely continuous [8]. There are analogous results for the inverse spectral
theory of Jacobi and CMV matrices in [14, 18] and [9], respectively. One should note
that results of this form might or might not hold if the spectrum is not homogeneous;
compare [5, 20, 21]. The inverse spectral results merely require that C\Σ is a Widom
domain with a direct Cauchy theorem. Homogeneity of Σ is a pleasantly explicit
sufficient condition which guarantees that this happens; see [21].

In light of this, one wonders what kinds of restrictions the presence of absolutely
continuous spectrum places on the spectrum itself.

Question. If V is almost-periodic, and HV has nonempty absolutely continuous
spectrum, must σ(HV ) be homogeneous?

Although this is a question about inverse spectral theory, one can attempt to
study it from a direct spectral perspective by seeing whether or not examples known
to have a.c. spectrum also have homogeneous spectrum, which is what we do here
in the limit-periodic class. This has also been pursued for quasi-periodic potentials
in the small coupling regime; see [4].

While the work of Pastur–Tkachenko does not explicitly conclude that potentials
in PT(R) are reflectionless, this follows readily from their work. For instance,
denoting Weyl solutions of HV at z /∈ σ(HV ) by ψ±(·, z), with the normalization
ψ±(0, z) = 1, it follows from the arguments in [11, Section 17] that for almost every
E ∈ σ(HV ), the boundary values ψ±(x,E + i0) exist and obey

ψ−(x,E + i0) = ψ+(x,E + i0) (3)

(since these limits are also limits of Weyl solutions for the periodic approximants,
and those obey the condition (3)). Property (3) implies that HV is reflectionless,
as noted by Breuer–Ryckman–Simon [2].

Potentials which satisfy a Pastur–Tkachenko condition are Besicovitch almost-
periodic, but not necessarily uniformly almost periodic. By combining our theorem
with work of Gesztesy-Yuditskii [8], we harvest the following interesting corollary:

Corollary 1.3. Given V ∈ PT(R), denote

Σ = σ(HV ) = [E0,∞) \
⋃
j

(aj , bj).

If V is not uniformly almost periodic (and in particular, if V is not continuous),
then the spectrum has infinite gap length, i.e.∑

j

(bj − aj) =∞.
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Proof. By way of contraposition, assume Σ has finite gap length. Since V is reflec-
tionless by the foregoing remarks and Σ is homogeneous by Theorem 1.1, then [8,
Theorem 2.5] implies that V is uniformly almost periodic. �

The organization of the paper is as follows. In Section 2, we recall some relevant
aspects of Floquet Theory for Hill’s equation. In particular, we prove an estimate
on the discriminant which gives us a useful lower bound on the length of a band of
the spectrum of a periodic potential. Next, in Section 3, we discuss the stability
of periodic spectra under L2 perturbations. These stability estimates replace the
L∞ estimates that are exploited in [7], and they comprise the key ingredient in
proving effective step-by-step estimates on the measure of the spectra of periodic
approximants. In Section 4, we describe the sense in which the periodic spectra
converge to the spectrum associated with V ∈ PT(R), which enables us to push the
step-by-step estimates through to the limit. Section 5 combines these ingredients
and proves Theorem 1.1. Finally, we discuss the extension of Theorem 1.1 to Jacobi
and CMV matrices in Section 6.

Acknowledgements

J. F. thanks Quentin Funk for helpful conversations.

2. Floquet-Bloch Theory for Periodic Potentials

Suppose V ∈ L2
loc(R) is T -periodic. Given z ∈ C, let yD and yN denote the

Dirichlet and Neumann solutions of the Schrödinger equation

−y′′ + V y = zy. (4)

Specifically, yD and yN solve (4) subject to the initial conditions

yD(0) = y′N (0) = 0, y′D(0) = yN (0) = 1.

The monodromy matrix is defined by

Mz =

(
yN (T ) yD(T )
y′N (T ) y′D(T )

)
and the discriminant is given by ∆(z) = tr(Mz). One has

σ(HV ) = {E ∈ R : |∆(z)| ≤ 2} =

∞⋃
j=1

[αj , βj ],

where α1 < β1 ≤ α2 < · · · denote the solutions of ∆ = ±2. We call the intervals
[αj , βj ] the bands of the spectrum, while the intervals (βj , αj+1) are called gaps.
Whenever βj = αj+1, we say that the jth gap is closed. Otherwise, βj < αj+1 and
the jth gap is said to be open. The discriminant is strictly monotone on each band.

We prove an estimate on the discriminant, and the corresponding estimate on
band lengths. These estimates are likely well-known, but we could not find a precise
reference.

Lemma 2.1. Let V ∈ L2
loc(R) be a T -periodic potential with corresponding dis-

criminant ∆, and let E0 = min(0, inf σ(HV )). Then

|∆′(E)| ≤ CT 3

T + |E|1/2
exp

(
CT

(
‖V ‖1/2B + |E0|1/2

))
(5)
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for all E ∈ σ(HV ), for some universal constant C > 0 which does not depend on
E, T , or V .

Proof. In this proof, C will stand for different universal constants. Its value will
increase only finitely many times over the course of the argument.

We begin by proving this for T = π. Denote Q = ‖V ‖B. It follows from [11,
Corollary 17.8] that

|∆(µ2)| ≤ C exp
(
CQ1/2 + π|Imµ|

)
. (6)

From the Cauchy differentiation formula on a circle of radius 1, for f(µ) = ∆(µ2),

|f ′(µ)| ≤
∫ 2π

0

|f(µ+ eiθ)| dθ
2π

so we conclude that

|2µ∆′(µ2)| ≤ C exp
(
CQ1/2 + π|Imµ|+ π

)
. (7)

We can also conclude from (6) that

|∆(z)| ≤ C exp
(
CQ1/2 + 2π

)
, |z| ≤ 2,

and then by the Cauchy differentiation formula for ∆(z), similarly as above, that

|∆′(z)| ≤ C exp
(
CQ1/2 + 2π

)
, |z| ≤ 1. (8)

Using (7) for |z| > 1 and (8) for |z| ≤ 1, we conclude that for all z ∈ C,

|∆′(z)| ≤ C

1 + |z|1/2
exp

(
CQ1/2 + π|Im

√
z|
)
.

If E ∈ σ(HV ), then |Im
√
E| ≤ |E0|1/2, so we conclude that the statement of the

lemma holds for T = π.
For a potential V of arbitrary period T , introduce the rescaled π-periodic po-

tential Vπ(x) = (T/π)2V (Tx/π). Its discriminant ∆π(E) obeys ∆π((T/π)2E) =
∆(E), so the conclusion of the lemma for V follows by applying the previous argu-
ment to Vπ and noting that ‖Vπ‖B = (T/π)2‖V ‖B and that ν0 scales in the same
way. �

Corollary 2.2. Let C denote the universal constant from Lemma 2.1, and suppose
V ∈ L2

loc(R) is T -periodic with ‖V ‖B ≤ Q. Then the length of any band [αj , βj ] of
σ(HV ) is bounded from below by

|βj − αj | ≥ 4C−1e−CT (Q1/2+|E0|1/2)(T + λ
1/2
0 )T−3,

with E0 defined as in Lemma 2.1 and

λ0 = min
E∈[αj ,βj ]

|E|.

Proof. This is a consequence of Lemma 2.1 and the Mean Value Theorem, since
|∆(βj)−∆(αj)| = 4. �
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3. Stability of band edges

An important component of our proof of Theorem 1.1 will be control of the
stability of bands of periodic Schrödinger operators under an L2 perturbation.
Band edges of a T -periodic Schrödinger operator are precisely eigenvalues of the
Schrödinger operator with periodic boundary conditions on [0, 2T ]. In this sec-
tion, we prove a stability statement for those eigenvalues under an L2 perturbation
(note that, for L∞ perturbations, this is trivial). Pastur–Figotin [11] contains an
estimate of this form for the bottom of the spectrum, but we require an estimate
for all eigenvalues. While estimates of this form are classical, we are not aware of
this estimate appearing in the literature, so we provide a proof. Note that, for our
application, it will be crucial that the estimate below features only the square root,
and not a higher power, of the energy.

For V ∈ L2[0, T ], denote by Hper
V the Schrödinger operator −∆ + V on L2[0, T ]

with periodic boundary conditions. Denote by En,V the n-th eigenvalue (including
multiplicity) of Hper

V ; in particular, E1,V is the ground state energy of Hper
V . Finally,

let Rλ,V denote the resolvent of Hper
V at λ ∈ C \ σ(Hper

V ).

Theorem 3.1. Fix Q > 0. If V1, V2 ∈ L2[0, T ] and ‖Vj‖B ≤ Q for j = 1, 2, then

E1,Vj
≥ −C1(Q+ T 2Q2)

and

|En,V1
− En,V2

| ≤ C1(1 + T 2Q)(1 + T |En,V2
|1/2)‖V1 − V2‖B (9)

for some constant C1 independent of T , Q, V1, V2.

The proof of the theorem will start with a comparison with the free operator, so
our first lemma concerns the integral kernel of the resolvent of Hper

0 .

Lemma 3.2. For λ /∈ σ(Hper
0 ),

(Rλ,0f)(x) =

∫ T

0

G(λ;x, t)f(t) dt, (10)

where

G(λ;x, t) = − 1

2
√
λ

cos
(√

λ(T2 − |x− t|)
)

sin
(√

λT2

) . (11)

In particular, there is a constant C ∈ (0,∞) (depending only on T ) such that for
all λ < 0 and all x, t ∈ [0, T ],

|G(λ;x, t)| ≤ CT−1/2(|λ|−1/2 + |λ|−1),

so Rλ,0 is a bounded operator from L2[0, T ] to L∞[0, T ],

‖Rλ,0‖2,∞ ≤ C(|λ|−1/2 + |λ|−1). (12)

Proof. For λ 6= 0, let

sλ(x) = λ−1/2 sin(λ1/2x), cλ(x) = cos(λ1/2x)

The general solution of −y′′ − λy = f is

y(x) = Asλ(x) +Bcλ(x)−
∫ x

0

f(t)sλ(x− t) dt. (13)
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Applying periodic boundary conditions, solving the resulting system for A,B and
inserting it back into y(x) and simplifying, we obtain (10) and (11). The estimates
are then elementary. �

Proof of Theorem 3.1. We will prove the estimates for T = 1. After that, it is an
immediate calculation to rescale the estimates to an arbitrary period T , as in the
proof of Lemma 2.1.

Let A = 16C, where C is the constant from (12), and suppose

λ ≤ −(AQ+A2Q2).

From (12) we see that V Rλ,0 is a bounded operator on L2[0, T ],

‖V Rλ,0‖2,2 ≤ ‖V ‖B‖Rλ,0‖2,∞ ≤ QC(|λ|−1/2 + |λ|−1) ≤ 2C

A
=

1

8
,

so the Neumann series
∞∑
n=0

Rλ,0(−V Rλ,0)n

is convergent and equal to the inverse of Hper
V − λ. This implies that

σ(HV ) ⊂ (−(AQ+A2Q2),∞).

Moreover, since ∥∥∥∥∥
∞∑
n=0

(−V Rλ,0)n

∥∥∥∥∥
2,2

≤ 1

1− 1/8
=

8

7
,

composing this with Rλ,0 and using ‖Rλ,0‖2,2 = |λ|−1 and (12) proves the estimates

‖Rλ,V ‖2,2 ≤
8

7
|λ|−1 (14)

‖Rλ,V ‖2,∞ ≤
8

7
C(|λ|−1/2 + |λ|−1) (15)

The resolvent identity, together with (14), (15), gives

‖Rλ,V1 −Rλ,V2‖2,2 ≤ ‖Rλ,V1‖2,2‖V1 − V2‖B‖Rλ,V2‖2,∞

≤ 64

49
C‖V1 − V2‖B(|λ|−3/2 + |λ|−2).

By the spectral mapping, σ(Rλ,Vj
) = {(En,Vj

− λ)−1 | n ∈ N} ∪ {0} so by the
variational principle,∣∣∣∣ 1

En,V1
− λ
− 1

En,V2
− λ

∣∣∣∣ ≤ ‖Rλ,V1
−Rλ,V2

‖2,2 ≤
64

49
C‖V1 − V2‖B(|λ|−3/2 + |λ|−2).

(16)
To turn this into an estimate for |En,V1 − En,V2 |, we set

λ = −max
{

2|En,V2 |, AQ+A2Q2
}
.

Then

|En,V2
− λ|64

49
C‖V1 − V2‖B(|λ|−3/2 + |λ|−2) ≤ 3

2
|λ|64

49
C(2Q)|λ|−1 2

AQ
<

1

2
,

so (16) is easily seen to imply

|En,V1
− En,V2

| ≤ 2|En,V2
− λ|2 64

49
C‖V1 − V2‖2(|λ|−3/2 + |λ|−2)
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≤ 2
9

4
|λ|2 64

49
C(|λ|−3/2 + |λ|−2)‖V1 − V2‖B

≤ 9C(|λ|1/2 + 1)‖V1 − V2‖B

which completes the proof by our choice of λ. �

4. Convergence of Periodic Spectra

The results of Section 3 control the stability of bands of periodic spectra under
L2 perturbations. This will enable us to prove effective estimates on the measure
of the spectrum in passing from V` to V`+1. The next key ingredient one needs to
control is the relationship between the spectra of the periodic approximants and
the spectrum of the limiting potential. This will enable us to push our step-by-step
estimates through to the limit. If Vn → V uniformly, then this is easy, since an
unbounded version of Lemma 4.1 implies that σ(HVn

) → σ(HV ) in the Hausdorff
metric. However, in our setting, we only have Vn → V in a uniform local L2

sense, so the convergence statement on the spectra is weaker. Nevertheless, we still
have norm convergence of resolvents, which enables us to establish a “pseudo local
Hausdorff” convergence result for the spectra which is strong enough to get lower
bounds on the limiting spectrum.

First, let us recall the definition of the Hausdorff metric on compact subsets of
R.

Definition. Given two compact sets F,K ⊆ R, the Hausdorff distance between
them is defined by

dH(F,K) = inf{r > 0 : F ⊆ Br(K) and K ⊆ Br(F )}. (17)

In (17), Br(X) denotes the open r-neighborhood of the set X ⊆ R.

The following relationship between spectra of bounded, self-adjoint operators
and the Hausdorff metric is well-known.

Lemma 4.1. If A and B are bounded self-adjoint operators, then

dH(σ(A), σ(B)) ≤ ‖A−B‖.

Lemma 4.2. Given V ∈ PT(R) with periodic approximants (Vj)
∞
=1, let H =

−∆ + V and Hj = −∆ + Vj, and put Σ = σ(H) and Σj = σ(Hj). If (Ij)
∞
j=1 is

a family of compact subsets of R which converges to the compact set I ⊆ R in the
Hausdorff metric, then, for every ε > 0, there exists N ∈ Z+ such that

Ij ∩ Σj ⊆ Bε(I ∩ Σ)

whenever j ≥ N . In particular,

|I ∩ Σ| ≥ lim sup
j→∞

|Ij ∩ Σj |, (18)

where | · | denotes Lebesgue measure on R.

Proof. This follows from the spectral mapping theorem and norm-resolvent conver-
gence. To begin, notice that the bottoms of the spectra converge; that is,

E1 := lim
j→∞

E1,j
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exists, where E1,j = E1,Vj = inf Σj for each j ≥ 1. This is a consequence of the
Pastur–Tkachenko condition (2) and the stability condition (9) from Theorem 3.1
with n = 1. In particular,

λ0 := inf
j≥1

E1,j − 1

is finite. Since dist(λ0, σ(Hj)) ≥ 1 for every j, we may apply [11, Lemma 17.17] to
see that Hj converges to H in the norm-resolvent sense, i.e.,

R = lim
j→∞

Rj ,

where R = (H − λ0)−1 and Rj = (Hj − λ0)−1. Consequently, Lemma 4.1 implies
that

σ(R) = lim
j→∞

σ(Rj),

where the limit is taken in with respect to the Hausdorff metric on compact subsets
of R. By the spectral mapping theorem for unbounded operators, we have

Σ′j := σ(Rj) = g(Σj) for every j ≥ 1, and Σ′ := σ(R) = g(Σ),

with g(z) = (z − λ0)−1; see [19, Theorem 3.18]. Notice that g is invertible with
inverse h(z) = z−1 +λ0. Without loss of generality, we may assume Ij ⊆ [λ0 +1,∞)
for each j. It is easy to see that I ′j := g(Ij) is a compact subset of (0, 1] for each j.
Given δ > 0 Hausdorff convergence of Σ′j implies

I ′j ∩ Σ′j ⊆ Bδ(I ′ ∩ Σ′)

for all sufficiently large j. Of course, h is Lipschitz on I ′, so this implies (for some
I-dependent constant κ > 0):

Ij ∩ Σj ⊆ Bκδ(I ∩ Σ)

for all sufficiently large j. The semicontinuity statement (18) follows by sending
δ → 0.

�

5. Proof of Theorem 1.1

We can now combine the results of the previous three sections to prove the main
theorem. The general strategy is as follows:

• Use Corollary 2.2 to obtain a lower bound on the lengths of bands of the
spectra of the periodic approximants.
• Use Theorem 3.1 to obtain an upper bound on the lengths of gaps of the

spectra of the periodic approximants.
• These two items give us effective upper bounds on quantities of the form
|I ∩ Σ` \ Σ`+1| with I a compact interval.
• Use Lemma 4.2 to push the estimates through to the limit.

Proof of Theorem 1.1. Suppose V ∈ PT(R), and let 0 < τ < 1 be given. If V is
periodic, the conclusion of the theorem is trivial, so assume that V is aperiodic.
Let (Vn)∞n=1 be a sequence of periodic potentials, such that Vn is Tn-periodic, Tn
divides Tn+1 for each n, and ‖V − Vn‖B is o

(
e−bTn+1

)
for every b > 0. Notice that

this property (i.e. equation (2)) is preserved if one removes finitely many terms
of the sequence (Vn)∞n=1 and consecutively renumbers the resulting sequence. In
particular, it is no loss of generality to assume Tn ≥ 1 for every n. For each
n ∈ Z+, denote Σn = σ(HVn

), and put Σ = σ(HV ). Repeating the argument from
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the beginning of the proof of Lemma 4.2, we see that supn|inf Σn| is finite. Since
spectral homogeneity is preserved by adding a constant to the potential, this means
that we may assume without loss of generality that Σn ⊆ [1,∞) for every n. Now,
define

Q = sup
n≥1
‖Vn‖B

K = max
(
C,C1, Q,CQ

1/2, 8
)
,

where C is the universal constant from Lemma 2.1 and C1 is the universal constant
from Theorem 3.1. Notice that K depends only on Q. Using the Pastur–Tkachenko
condition (2), it is easy to see that

∞∑
n=1

T 6
n+1e

KTn+1‖Vn − Vn+1‖B < +∞,

Thus, by removing finitely many terms of the sequence (Vn)∞n=1 and consecutively
renumbering once more, we may assume that

∞∑
n=1

T 6
n+1e

KTn+1‖Vn − Vn+1‖B <
1− τ
3K4

. (19)

Put

δ0 = min

(
K−1T−3

1 e−KT1 ,
1− τ

3

)
.

Following the general strategy of [7], we will prove the following estimate:

|Bδ(x) ∩ ΣN | ≥ δτ for all x ∈ ΣN and every 0 < δ ≤ δ0 (20)

for all N ∈ Z+. To that end, fix N ∈ Z+, x ∈ ΣN , and 0 < δ ≤ δ0. For notational
simplicity, put s = s(x) := 1 +

√
x. If δ ≤ sK−1T−3

N e−KTN , (20) is an obvious
consequence of Corollary 2.2. Specifically, δ is less than the length of the band of
ΣN which contains x, so

|Bδ(x) ∩ ΣN | ≥ δ
in this case. Notice that we have used the assumption inf ΣN ≥ 0 to get rid of E0

from the statement of Corollary 2.2. Otherwise, δ > sK−1T−3
N e−KTN , and there is

a unique integer n with 1 ≤ n ≤ N − 1 such that

sK−1T−3
n+1e

−KTn+1 < δ ≤ sK−1T−3
n e−KTn . (21)

This integer n is relevant, as it determines the periodic approximant corresponding
to the length scale δ near and above x. More precisely, by Corollary 2.2, any band
of Σn which is contained in [x− 1,∞) has length at least δ. By Theorem 3.1, there
exists x0 ∈ Σn with

|x− x0| ≤ sK3
N−1∑
`=n

T 3
`+1‖V` − V`+1‖B < 1. (22)

This bound follows by a straightforward backward induction on n, starting from
n = N . The inductive step uses Theorem 3.1 and the estimate 1 + |x0|1/2 ≤ 2s,
which follows from the inductive assumption. Using (21), we deduce

|x− x0| ≤ sK3
N−1∑
`=n

T 3
`+1‖V` − V`+1‖B
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< δeKTn+1T 3
n+1K

4
N−1∑
`=n

T 3
`+1‖V` − V`+1‖B

< δK4
N−1∑
`=n

eKT`+1T 6
`+1‖V` − V`+1‖B

< δ
1− τ

3
. (23)

Thus, there exists an interval I0 with x0 ∈ I0 ⊆ Bδ(x) ∩ Σn such that

|I0| = δ − 1− τ
3

δ =
2 + τ

3
δ.

By standard measure theory, we have

|Bδ(x) ∩ ΣN | ≥ |I0 ∩ Σn| −
N−1∑
`=n

|I0 ∩ (Σ` \ Σ`+1)|

By Corollary 2.2, the interval I0 completely contains at most δKs−1T 3
`+1e

KT`+1

bands of Σ`+1 for each ` ≥ n. Consequently,

|I0 ∩ (Σ` \ Σ`+1)| ≤ K3T 3
`+1s

(
δKs−1T 3

`+1e
KT`+1 + 1

)
· ‖V` − V`+1‖B

≤ 2δK4T 6
`+1e

KT`+1 · ‖V` − V`+1‖B
for each ` ≥ n, by Theorem 3.1 and (21). Summing this over ` and estimating the
result with (19), we obtain

N−1∑
`=n

|I0 ∩ (Σ` \ Σ`+1)| ≤
N−1∑
`=n

2δK4T 6
`+1e

KT`+1 · ‖V` − V`+1‖B

< 2δ
1− τ

3
.

Putting all of this together, we have

|Bδ(x) ∩ ΣN | ≥ |I0 ∩ Σn| −
N−1∑
`=n

|I0 ∩ (Σ` \ Σ`+1)|

>
2 + τ

3
δ − 2− 2τ

3
δ

= τδ.

This proves (20) for arbitrary N ∈ Z+. Using Lemma 4.2, we obtain

|Bδ(x) ∩ Σ| ≥ τδ for all x ∈ Σ, and 0 < δ ≤ δ0,

to wit, Σ is homogeneous. �

6. The Discrete Setting

In this section, we will describe how to extend Theorem 1.1 to Jacobi and CMV
matrices. In this case, the discrete setting is markedly easier than the continuum
setting, so we will only sketch the proof. Recall that a Jacobi matrix is an operator
of the form J = Ja,b on `2(Z), defined by

(Jϕ)n = an−1ϕn−1 + anϕn+1 + bnϕn, ϕ ∈ `2(Z), n ∈ Z,
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where a and b are bounded, real-valued sequences. A CMV matrix is a unitary
operator on `2(Z) which has a matrix representation of the form

E =



. . .
. . .

. . .

α0ρ−1 −α0α−1 α1ρ0 ρ1ρ0
ρ0ρ−1 −ρ0α−1 −α1α0 −ρ1α0

α2ρ1 −α2α1 α3ρ2 ρ3ρ2
ρ2ρ1 −ρ2α1 −α3α2 −ρ3α2

α4ρ3 −α4α3 α5ρ4 ρ5ρ4
ρ4ρ3 −ρ4α3 −α5α4 −ρ5α4

. . .
. . .

. . .


,

where αn ∈ D for all n ∈ Z, and ρn = (1− |αn|2)1/2.
Let us say that a Jacobi matrix J = Ja,b is of Pastur–Tkachenko type if there

exists γ > 0 such that an ≥ γ for all n and there are pn-periodic Jacobi matrices
J (n) such that

lim
n→∞

eCpn+1‖J (n) − J‖∞ = 0

for all C > 0. Such matrices were studied in [6]. Similarly, a CMV matrix E is of
Pastur–Tkachenko type if there are periodic CMV matrices E(n) such that

lim
n→∞

eCpn+1‖E(n) − E‖∞ = 0

for all C > 0.

Theorem 6.1. If J is a Jacobi matrix of Pastur–Tkachenko type, then σ(J) is
τ -homogeneous for every τ ∈ (0, 1). Similarly, if E is a CMV matrix of PT type,
then σ(E) is a τ -homogeneous subset of ∂D for all τ ∈ (0, 1).

Proof. Simply follow the proof of Theorem 1.1. In particular, there are three main
ingredients which are used in the proof:

(1) The discriminant estimate from Lemma 2.1
(2) The band edge stability estimate from Theorem 3.1.
(3) The spectral convergence result from Lemma 4.2.

The analog of (1) in this setting is elementary. In this case, the monodromy
matrix is a product of p one-step transfer matrices. Taking the derivative using the
product rule, and estimating the resulting terms gives an analogous estimate for
the derivative of the Jacobi/CMV discriminants on their spectra.

Since the periodic approximants converge uniformly to the limiting operator,
the stability estimates from (2) can be replaced by the `∞ theory, which is much
simpler. More precisely, in the Jacobi case, ‖J (n) − J (n+1)‖ = δ implies that the
each band edge of J (n+1) is within δ of a band edge of J (n), where the latter is
thought of as a degenerate pn+1-periodic operator. In the language of [7], every
band edge of J (n+1) is within δ of a (pn+1/pn)-break point of J (n).

Finally, since the operators converge uniformly in this case, we can replace (3) by
honest Hausdorff convergence of the approximating spectra, which allows us to push
the step-by-step estimates through to the limiting spectrum via a semicontinuity
argument as before.

�
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