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Abstract. In (Ma and Wang, 2014b), a new set of gravitational field equa-
tions are derived based only on 1) the Einstein principle of general relativity,
and 2) the principle of interaction dynamics, due to the the presence of dark
energy and dark matter. With the field equations, we show that gravity can
display both attractive and repulsive behavior, and the dark matter and dark
energy are just a property of gravity caused by the nonlinear interactions of
the gravitational potential gµν and its dual field. The main objectives of this
paper are two-fold. The first is to study the PID-induced cosmological model,
and to show explicitly, as addressed in (Ma and Wang, 2014a), that 1) dark
matter is due to the curvature of space, and 2) dark energy corresponds to
the negative pressure generated by the dual gravitational potential in the field
equations, and maintains the stability of geometry and large scale structure of
the Universe. Second, for the gravitational field outside of a ball of centrally
symmetric matter field, there exist precisely two physical parameters dictating
the two-dimensional stable manifold of asymptotically flat space-time geom-
etry, such that, as the distance to the center of the ball of the matter field
increases, gravity behaves as Newtonian gravity, then additional attraction
due to the curvature of space (dark matter effect), and repulsive (dark energy
effect). This also clearly demonstrates that both dark matter and dark energy
are just a property of gravity. We note that the dark matter property of the
gravity and the approximate gravitational interaction formula are consistent
with the MOND theory proposed by (Milgrom, 1983); see also (Milgrom, 2014)
and the references therein.
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1. Introduction

Gravity is one of the four fundamental interactions/forces of Nature, and is cer-
tainly the first interaction/force that people studied over centuries, dating back to
Aristotle, Galileo, Johannes Kepler, Isaac Newton, and Albert Einstein. It was Al-
bert Einstein who first derived the basic law of gravity — the Einstein gravitational
field equations — by postulating the principle of equivalence and the principle of
general relativity. In mathematical terms, the principle of equivalence says that the
space-time is a 4-dimensional Riemannian manifold {M, gµν} with metric tensor
{gµν} of M being the gravitational potential. The principle of general relativity
requires that the law of gravity be independent of general coordinate transforma-
tions, and dictates the Einstein-Hilbert functional. The Einstein gravitational field
equations are then derived using the least action principle, also called the principle
of Lagrangian dynamics.

Dark matter and dark energy phenomena are two important phenomena, which
requires a more fundamental examination of the law of gravity (Riess and et al.,
1989; Perlmutter and et al., 1999; Zwicky, 1937; Rubin and Ford, 1970). Recently,
we have shown in (Ma and Wang, 2014b) that the presence of dark matter and
dark energy implies that the variation of the Einstein-Hilbert functional must be
taken under energy-momentum conservation constraint, and we call such variation
the principle of interaction dynamics (PID). With PID, we have derived the new
gravitational field equations:

(1.1) Rµν − 1

2
gµνR = −8πG

c4
Tµν −∇µ∇νϕ,

supplemented by the energy-momentum conservation:

(1.2) ∇µ

[
8πG

c4
Tµν +∇µ∇νϕ

]
= 0.

Here φ is a scalar field defined on M , and needs to be solved together with the
Riemannian metric gµν , representing the gravitational potential. Also ∇µ is the
gradient operator on M , Rµν and R are the Ricci and scalar curvatures, and Tµν
is the energy-momentum of the baryonic matter in the universe.

With the new gravitational field equations, we have shown in (Ma and Wang,
2014b) that gravity can display both attractive and repulsive effect, caused by
the duality between the attracting gravitational field {gµν} and the repulsive dual
vector field {Φµ}, together with their nonlinear interactions governed by the field
equations. Consequently, dark energy and dark matter phenomena are simply a
property of gravity.

The main objective of this article is to further explore the nature of dark matter
and dark energy, in connection with

1) the geometric structure of our Universe derived in (Ma and Wang, 2014a),
and

2) the gravitational force formula and large distance asymptotic flatness of
gravity in a central gravitational field.
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We proceed as follows.

First, we have shown in (Ma and Wang, 2014a) a new cosmology theorem that
our Universe is a three dimensional sphere and is static, assuming the Einstein gen-
eral relativity and the cosmological principle that our Universe is homogeneous and
isotropic. By using the new gravitational field equations applied to homogeneous
spherical universe, we explicitly demonstrate that 1) dark matter is caused by the
space curvature, and 2) dark energy represents the negative pressure in the PID
cosmological model:

(1.3) p = − c4

8πGR2
,

caused by the dual gravitational field Φµ = ∇µϕ in the new gravitational field
equations. Here R is the cosmic radius.

Second, consider a central gravitational field generated by a ball Br0 with radius
r0 and mass M . It is known that the metric of the central field at r > r0 can be
written in the form

(1.4) ds2 = −euc2dt2 + evdr2 + r2(dθ2 + sin2 θdϕ2),

and u = u(r), v = v(r). Then the fields equations (1.1) take the form

(1.5)

v′ +
1

r
(ev − 1) = − r

2
u′φ′,

u′ − 1

r
(ev − 1) = r(φ′′ − 1

2
v′φ′),

u′′ +

(
1

2
u′ +

1

r

)
(u′ − v′) = −2

r
φ′.

We have derived in (Ma and Wang, 2014b) an approximate gravitational force for-
mula

(1.6)
F = mMG

(
− 1

r2
− k0

r
+ k1r

)
for r > r0,

k0 = 4× 10−18Km−1, k1 = 10−57Km−3,

demonstrating the presence of both dark matter and dark energy.

Third, we discover in this paper that under the following transformation

(1.7)
(r, w) = (es, ev − 1),

x(s)
def
= (x1(s), x2(s), x3(s)) = (esu′(es), w(es), esφ′(es)) ,

the non-autonomous gravitational field equations (1.5) are amazingly becoming an
autonomous system:

(1.8)

x′1 = −x2 + 2x3 −
1

2
x21 −

1

2
x1x3 −

1

2
x1x2 −

1

4
x21x3,

x′2 = −x2 −
1

2
x1x3 − x22 −

1

2
x1x2x3,

x′3 = x1 − x2 + x3 −
1

2
x2x3 −

1

4
x1x

2
3.

Then we rigorously show the following conclusions:
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1) The asymptotically flat space-time geometry is represented by x = 0, which
is a fixed point of the system (1.8). There is a two-dimensional stable mani-
fold Es near x = 0, and consequently there are exactly two free parameters,
to be determined by experiments (or by astronomical measurements), which
give rise to asymptotical flatness at r = ∞.

2) The gravitational force F induced by the centrally symmetric matter is
given by (4.5), and is asymptotically zero as the distance tends to infinity.

3) For the initial date near the Schwarzschild solution (4.7) satisfied by all
physically meaningful central fields, there exists a sufficiently large r1 such
that the gravitational force F is repulsive for r > r1.

These asymptotic properties of gravity, displaying the key features of dark energy,
plays the role to stabilize the large scale homogeneous structure of the Universe.

The paper is organized as follows. Section 2 recalls the dark energy and dark
matter phenomena. Section 3 explores the nature of dark energy using the PID-
induced cosmological model. Section 4 recalls the gravitational force formula de-
duced in (Ma and Wang, 2014b). In Section 5, we study the asymptotic flatness
and rigorously prove the existence of dark energy at large distance outside of a
spherically symmetric matter field. Section 6 addresses the two physical parame-
ters in the gravitational interaction formula, and Section 7 addresses the nature of
dark energy and dark matter.

2. Dark Energy and Dark Matter Phenomena

Dark matter and Rubin rotational curve. In astrophysics, dark matter is an un-
known form of matter, which appears only participating in gravitational interaction,
but does not emit nor absorb electromagnetic radiations.

Dark matter was first postulated in 1932 by Holland astronomer Jan Oort, who
noted that the orbital velocities of stars in the Milky Way don’t match their mea-
sured masses. Namely, the orbital velocity v and the gravity should satisfy the
equilibrium relation

(2.1)
v2

r
=
MrG

r2
,

where Mr is the total mass in the ball Br with radius r. But the observed mass
M0 was less than the theoretic mass Mr in (2.1), and the difference Mr −M0 was
explained as the presence of dark matter. The phenomenon was also discovered
by Fritz Zwicky in 1933 for the missing mass in the orbital velocities of galaxies
in clusters. Subsequently, other observations have manifested the existence of dark
matter in the Universe, including the rotational velocities of galaxies, gravitational
lensing, and the temperature distribution of hot gaseous.

A strong support to the existence of dark matter is the Rubin rotational curves
for galactic rotational velocity. The rotational curve of a galaxy is the rotational
velocity of visible stars or gases in the galaxy on their radial distance from the
center of the galaxy. The Rubin rotational curve amounts to saying that most stars
in spiral galaxies orbit at roughly the same speed. If a galaxy had a mass distri-
bution as the observed distribution of visible astronomical objects, the rotational
velocity would decrease at large distances. Hence, the Rubin curve demonstrates
the existence of additional gravitational effect to the gravity by the visible matter
in the galaxy.
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More precisely, the orbital velocity v(r) of the stars located at radius r from the
center of galaxies is almost a constant:

(2.2) v(r) ∼= a constant for a given galaxy,

as illustrated typically by Figure 2.1 (a), where the vertical axis represents the
velocity (Km/s), and the horizontal axis is the distance from the galaxy center
(extending to the galaxy radius). However, the calculation from (2.1) gives a the-
oretic curve as shown in Figure f6.15(b), showing discrepancies between the mass
determined from the gravitational effect and the mass calculated from the visible
matter. The missing mass suggests the presence of dark matter in the Universe.
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Figure 2.1. (a) Typical galactic rotational curve by Rubin, and
(b) theoretic curve based on the Newtonian gravitational law.

In fact, we have seen in (Ma and Wang, 2014a, 2015) that the dark matter is a
space curved energy, or equivalently a gravitational effect, which is also reflected
in the revised gravitational force formula in which there is an additional attracting
force to the classical Newtonian gravity.

Dark energy. Dark energy was first proposed in 1990’s, which was based on the
hypotheses that the Universe is expanding.

The High-z Supernova Search Team in 1998 and the Supernova Cosmology
Project in 1999 published their precisely measured data of the distances of su-
pernovas and the redshifts. The observations indicated that the measured and
theoretical data have a deviation, which was explained, based on the Hubble Law
and the Friedmann model, as the acceleration of the expanding universe. The
accelerating expansion is widely accepted as an evidence of the existence of dark
energy.

However, based on the new cosmology postulated in the last section, the dark en-
ergy is a field energy form of gravitation which balances the gravitational attraction
to maintain the homogeneity and stability of the Universe.

3. PID Cosmological Model and Dark Energy

We have shown in (Ma and Wang, 2014b) that both dark matter and dark energy
are a property of gravity. Dark matter and dark energy are reflected in a) the
large scale space curved structure of the Universe caused by gravity, and b) the
gravitational attracting and repelling aspects of gravity. In this section, we mainly
explore the nature of dark energy in aspect a) using the PID-induced cosmological
model.

PID cosmological model
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The metric of a homogeneous spherical universe is of the form

(3.1) ds2 = −c2dt2 +R2

[
dr2

1− r2
+ r2(dθ2 + sin2 θdϕ2)

]
,

where R = R(t) is the cosmic radius. The PID induced gravitational field equations
are given by

(3.2) Rµν = −8πG

c4
(Tµν − 1

2
gµνT )− (∇µνφ− 1

2
gµνΦ),

where Φ = gαβDαβφ, and φ depends only on t.
The nonzero components of Rµν read as

R00 =
3

c2
1

R
Rtt,

Rkk = − 1

c2R2
gkk(RR

′′
tt + 2R2

t + 2c2) for 1 ≤ k ≤ 3,

and by Tµν = diag(c2ρ, g11p, g22p, g33p), we have

T00 −
1

2
g00T =

c2

2

(
ρ+

3p

c2

)
,

Tkk −
1

2
gkkT =

c2

2
gkk

(
ρ− p

c2

)
for 1 ≤ k ≤ 3,

φ00 −
1

2
g00Φ =

1

2c2

(
φtt −

3Rt

R
φt

)
,

φkk − 1

2
gkkΦ =

1

2c2
gkk

(
φtt +

Rt

R
φt

)
for 1 ≤ k ≤ 3.

Thus, we derive from (3.2) two independent field equations as

R′′ = −4πG

3

(
ρ+

3p

c2

)
R− 1

6
φ′′R +

1

2
R′φ′,(3.3)

R′′

R
+ 2

(
R′

R

)2

+
2c2

R2
= 4πG

(
ρ− p

c2

)
+

1

2
φ′′ +

1

2

R′

R
φ′.(3.4)

We infer from (3.3) and (3.4) that

(3.5) (R′)2 =
8πG

3
R2ρ+

1

3
R2φ′′ − c2.

By the Bianchi identity:

∇µ(∇µνφ+
8πG

c4
Tµν) = 0,

we deduce that

(3.6) φ′′′ +
3R′

R
φ′′ = −8πG

(
ρ′ +

3R′

R
ρ+

3R′

R

p

c2

)
.

It is known that the energy density ρ and the cosmic radius R (also called the
scale factor) satisfy the relation:

(3.7) ρ =
ρ0
R3

, ρ0 the density at R = 1.

Hence, it follows from (3.7) that

ρ′ = −3ρR′/R.
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Thus, (3.6) is rewritten as

(3.8) φ′′′ +
3R′

R
φ′′ = −24πG

c2
R′

R
p.

In addition, making the transformation

(3.9) φ′′ =
ψ

R3
,

then, from (3.3), (3.5) and (3.7)-(3.9) we can deduce that

(3.10) (R′)2φ′ = 0.

Denote ϕ = φ′′, by (3.10), the equations (3.3), (3.5) and (3.8) can be rewritten
in the form

(3.11)

R′′ = −4πG

3

(
ρ+

3p

c2
+

ϕ

8πG

)
R,

(R′)2 =
1

3
(8πGρ+ ϕ)R2 − c2,

ϕ′ +
3R′

R
ϕ = −24πG

c2
R′

R
p.

Only two equations in (3.11) are independent. However, there are three unknown
functions R,ϕ, p in (3.11). Hence, we need to add an additional equation, the
equation of state, as follows:

(3.12) p = f(ρ, ϕ).

Based on (Ma and Wang, 2014a, Theorem 6.2), the model describing the static
Universe is the equation (3.12) together with the stationary equations of (3.11),
which are equivalent to the form

(3.13)

ϕ = −8πG

(
ρ+

3p

c2

)
,

p = − c4

8πGR2
.

The equations (3.12) and (3.13) provide a theoretic basis for the static Universe,
including the dark energy.

Now, we need to determine the explicit expression for the equation (3.12) of
state. It is natural to postulate that the equation of state is linear. Hence, (3.12)
can be written as

(3.14) p =
c2

G
(α1ϕ− α2Gρ),

where α1 and α2 are nondimensional parameter, which will be determined by the
observed data.

The equations (3.13) and (3.14) are the PID cosmological model, where the
cosmological significants of R, p, ϕ, ρ are as follows:

(3.15)

R the cosmic radius (of the 3D spherical universe),

p the negative pressure, generated by the repulsive aspect of gravity,

ϕ represents the dual gravitational potential,

ρ the cosmic density, given by
3M

4πR3
=
Mtotal

π2R3
,
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whereM andMtotal are the observed and total mass respectively; see also (Ma and Wang,
2014a, Remark 6.1).

Here, we remark that in the classical Einstein field equations where φ = 0, the
relation (3.7) still holds true, by which we deduce that p = 0. It implies that the
Friedmann equations has no stationary solution for k 6= 0, and has only stationary
R = 0 for k = 0. Therefore, the PID gravitational theory is essential for establishing
a static cosmological model.

Theory of dark energy

In the static cosmology, dark energy is defined in the following manner. Let Eob

be the observed energy, and R be the cosmic radius. We define the observable mass
and the total mass as follows:

Mob =
Eob

c2
,(3.16)

MT =
Rc2

2G
.(3.17)

If MT > Mob, then the difference

(3.18) ∆E = ET − Eob

is called the dark energy.
The CMB measurement and the WMAP analysis indicate that the difference

∆E in (3.18) is positive,
∆E > 0,

which is considered as another evidence for the presence of dark energy.
From the PID cosmological model (3.13)-(3.15), we see that the dark energy ∆E

in (3.18) is essentially due to the dual gravitational potential ϕ. In fact, we infer
from (3.13) that

(3.19)
ϕ = 0 ⇔ R = 2MobG/c

2 (i.e. ∆E = 0),

ϕ > 0 ⇔ ∆E > 0.

Hence, dark energy is generated by the dual gravitational field. This fact is reflected
in the PID gravitational force formula derived in sections hereafter.

If we can measure precisely, with astronomical observations, the energy (3.16)
and the cosmic radius R (i.e. MT of (3.17)), then we can obtain a relation between
the parameters α1 and α2 in (3.14). In fact, we deduce from (3.13) and (3.14) that

(3.20) ρ+
βp

c2
= 0, β =

1 + 24πα1

α2 + 8πα1

.

As we get

(3.21)
∆M

Mob

=
MT −Mob

Mob

= k (k > 0).

Then by (3.20) and

ρ =
3Mob

4πR3
, p = − c4

8πGR2
,

we obtain from (3.20) that

(3.22) 3α2 = 24kπα1 + k + 1.

By the relation (3.22) from (3.20), we can also derive, in the same fashion as
above, the dark energy formula (3.21).
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4. PID Gravitational Interaction Formula

Consider a central gravitational field generated by a ball Br0 with radius r0 and
mass M . It is known that the metric of the central field at r > r0 can be written
in the form

(4.1) ds2 = −euc2dt2 + evdr2 + r2(dθ2 + sin2 θdϕ2),

and u = u(r), v = v(r).
In the exterior of Br0 , the energy-momentum is zero, i.e.

Tµν = 0, for r > r0.

Hence, the PID gravitational field equation for the metric (4.1) is given by

(4.2) Rµν − 1

2
gµνR = −∇µνφ, r > r0.

where φ = φ(r) is a scalar function of r.
As in (Ma and Wang, 2014b), we have

R00 −
1

2
g00R = −1

r
eu−v

[
v′ +

1

r
(ev − 1)

]
,

R11 −
1

2
g11R = −1

r

[
u′ − 1

r
(ev − 1)

]
,

R22 −
1

2
g22R = −r

2

2
e−v

[
u′′ +

(
1

2
u′ +

1

r

)
(u′ − v′)

]
,

∇00φ = −1

2
eu−vu′φ′,

∇11φ = φ′′ − 1

2
v′φ′,

∇22φ = −re−vφ′.

Thus, the fields equations (4.2) are as follows

(4.3)

v′ +
1

r
(ev − 1) = − r

2
u′φ′,

u′ − 1

r
(ev − 1) = r(φ′′ − 1

2
v′φ′),

u′′ +

(
1

2
u′ +

1

r

)
(u′ − v′) = −2

r
φ′.

Now we are ready to deduce from (4.3) the PID gravitational interaction formula
as follows.

First, we infer from (4.3) that

u′ + v′ =
rφ′′

1 + r
2
φ′
,

u′ − v′ =
1

1− r
2
φ′

[
2

r
(ev − 1) + rφ′′

]
.

Consequently,

(4.4) u′ =
1

1− r
2
φ′

1

r
(ev − 1) +

rφ′′

1− ( r
2
φ′)2

.



10 HERNANDEZ, MA, AND WANG

It is known that the interaction force F is given by

F = −m∇ψ, ψ =
c2

2
(eu − 1).

Then, it follows from (4.4) that

(4.5) F =
mc2

2
eu

[
− 1

1− r
2
φ′

1

r
(ev − 1)− rφ′′

1−
(
r
2
φ′
)2

]
.

The formula (4.5) provides the precise gravitational interaction force exerted on
an object with mass m in a spherically symmetric gravitation field.

In classical physics, the field functions u and v in (4.5) are taken by the Schwarzschild
solution:

(4.6) eu = 1− 2GM

c2r
, ev =

(
1− 2GM

c2r

)−1

,

and φ′ = φ′′ = 0, which leads to the Newton gravitation.
However, due to the presence of dark matter and dark energy, the field functions

u, v, φ in (4.5) should be an approximation of the Schwarzschild solution (4.6).
Hence we have

(4.7) |rφ′| ≪ 1 for r > r0.

Under the condition (4.7), formula (4.5) can be approximatively expressed as

(4.8) F =
mc2

2
eu

[
−1

r
(ev − 1)− rφ′′

]
.

5. Asymptotic Repulsion of Gravity

In this section, we shall consider the asymptotic properties of gravity, and rig-
orously prove that the interaction force given by (4.8) is repulsive at very large
distance.

To this end, we need to make the following transformation to convert the field
equations (4.3) into a first order autonomous system:

(5.1)

r = es,

w = ev − 1,

x1(s) = esu′(es),

x2(s) = w(es),

x3(s) = esφ′(es).

Then the equations (4.3) can be rewritten as

(5.2)

x′1 = −x2 + 2x3 −
1

2
x21 −

1

2
x1x3 −

1

2
x1x2 −

1

4
x21x3,

x′2 = −x2 −
1

2
x1x3 − x22 −

1

2
x1x2x3,

x′3 = x1 − x2 + x3 −
1

2
x2x3 −

1

4
x1x

2
3.

The system (5.2) is supplemented with an initial condition

(5.3) (x1, x2, x3)(s0) = (α1, α2, α3) with r0 = es0 .

We now study the problem (5.2)-(5.3) in a few steps as follows.
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Step 1. Asymptotic flatness. For a globular matter distribution, its gravitational
field should be asymptotically flat, i.e.

g00 → −1, g11 → 1 if r → ∞.

It implies that x = 0 is the uniquely physical equilibrium point of (5.2) and the
following holds true:

(5.4) x(s) → 0 if s→ ∞ (i.e. r → ∞).

Step 2. Physical initial values. The physically meaningful initial values α =
(α1, α2, α3) in (5.3) have to satisfy the following two conditions:

(a) The solutions x(s, α) of (5.2)-(5.3) are asymptotically flat in the sense of
(5.4). Namely, the initial values α are in the stable manifold Es of x = 0,
defined by

(5.5) Es = {α ∈ R
3| x(s, α) → 0 for s→ ∞};

(b) The solutions x(s, α) are near the Schwarzschild solution:

(5.6) |x1 − esu′0|, |x2 + 1− ev0 |, |x3| ≪ 1,

where u0, v0 are as in (4.7).

In fact, by (4.7) and (5.1) we can see that all Schwarzschild solutions lie on the
line

(5.7) L = {(x1, x2, 0)| x1 = x2, x1, x2 > 0}.

In particular, the line L is on the stable manifold Es of (5.5).

Step 3. Stable manifold Es. The equations (5.2) can be written as

ẋ = Ax +O(|x|2),

where

(5.8) A =




0 −1 2
0 −1 0
1 −1 1


 .

The dimension of the stable manifold Es is the number of negative eigenvalues of
the matrix A. It is easy to see that the eigenvalues of A are given by

λ1 = −1, λ2 = −1, λ3 = 2.

Hence, the dimension of Es is two:

dim Es = 2.

Consequently, the initial value α of an asymptotically flat solution has only two
independent components due to α ∈ Es, which is of two dimensional. Namely, we
arrive at the following conclusion.

Physical Conclusion 5.1. In the gravitation formula (4.5) there are two free
parameters to be determined by experiments (or by astronomical measurements).
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In fact, the two free parameters will be determined by the Rubin rotational curve
and the repulsive property of gravity at large distance.

Step 4. Local expression of Es. In order to derive the asymptotic property of the
gravitational force F of (4.5), we need to derive the local expression of the stable
manifold Es near x = 0. Since the tangent space of Es at x = 0 is spanned by
the two eigenvectors (1, 1, 0)t and (1,−1,−1)t corresponding to the two negative
eigenvalues λ1 = λ2 = −1, the coordinate vector (0, 0, 1) of x3 is not contained in
Es. This implies that the stable manifold can be expressed near x = 0 in the form

(5.9) x3 = h(x1, x2).

Inserting the Taylor expansion for (5.9) into (5.2), and comparing the coefficients,
we derive the following local expression of (5.9) of the stable manifold function:

(5.10) h(x1, x2) = −1

2
x1 +

1

2
x2 +

1

16
x21 −

1

16
x22 +O(|x|3).

Inserting (5.9)-(5.10) into the first two equations of (5.2), we deduce that

(5.11)
x′1 = −x1 −

1

8
x21 −

1

8
x22 −

3

4
x1x2 +O(|x|3),

x′2 = −x2 +
1

4
x21 − x22 −

1

4
x1x2 +O(|x|3).

The system (5.11) is the system (5.2) restricted on the stable manifold Es. Hence,
its asymptotic behavior represents that of the interaction force F in (4.5).

Step 5. Phase diagram of system (5.11). In order to obtain the phase diagram
of (5.11) near x = 0, we consider the ratio: x′2/x

′
1 = dx2/dx1. Omitting the terms

O(|x|3), we infer from (5.11) that

(5.12)
dx2
dx1

=
x2 + x22 +

1
4
x2x1 − 1

4
x21

x1 +
1
8
x22 +

3
4
x2x1 +

1
8
x21
.

Let k be the slope of an orbit reaching to x = 0:

k =
x2
x1

as (x2, x1) → 0.

Then (5.12) can be expressed as

k =
k + k2x1 +

1
4
kx1 − 1

4
x1

1 + 1
8
k2x1 +

3
4
kx1 +

1
8
x1
,

which leads to the equation

k3 − 2k2 − k + 2 = 0.

This equation has three solutions:

k = ±1, k = 2,

giving rise to three line orbits:

x2 = x1, x2 = 2x1, x2 = −x1,
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which divide the neighborhood of x = 0 into six invariant regions. It is clear that
all physically meaningful orbits can only be in the following three regions:

(5.13)

Ω1 =

{
−x2 < x1 <

1

2
x2, x2 > 0

}
,

Ω2 =

{
1

2
x2 ≤ x1 ≤ x2, x2 > 0

}
,

Ω3 = {x2 < x1, x2 > 0} .
On the positive x2-axis (i.e. x1 = 0, x2 > 0), which lies in Ω1, the equations

(5.11) take the form

x′1 = −1

8
x22 +O(|x|3),

x′2 = −x2 − x22 +O(|x|3).
It is easy to show that the orbits in Ω1 with x1 > 0 will eventually cross the x2−axis.
Thus, using the three invariant sets in (5.13), we obtain the phase diagram of (5.11)
on x2 > 0 as shown in Figure 5.1. In this diagram, we see that, the orbits in Ω2

and Ω3 will not cross the x2-axis, but these in Ω1 with x1 > 0 will do.

x1

Ω3

x2 = x1

Ω2

x2 = 2x1

x2

Ω1

x2 = −x1

Figure 5.1. Only the orbits on Ω1 with x1 > 0 will eventually
cross the x2-axis, leading to the sign change of x1, and to a repelling
gravitational force corresponding to dark energy.

Step 6. Asymptotic repulsion theorem of gravity. We now derive an asymptotic
repulsion theorem of gravity, based on the phase diagram in Figure 5.1. In fact, by
(4.4) and (4.5), the gravitational force F reads as

(5.14) F = −mc
2

2
euu′.

It is known that

F < 0 represents attraction,

F > 0 represents repelling.

Hence, by x1 = ru′(r) and (5.14), the phase diagram shows that an orbit in Ω1,
starting with x1 > 0, will cross the x2-axis, and the sign of x1 changes from positive
to negative, leading consequently to a repulsive gravitational force F . Namely, we
have obtained the following theorem.
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Theorem 5.2 (Asymptotic Repulsion of Gravitation). For a central gravitational
field, the following assertions hold true:

1) The gravitational force F is given by (4.5), and is asymptotic zero:

(5.15) F → 0 if r → ∞.

2) If the initial value α in (5.3) is near the Schwarzschild solution (4.7) with
0 < α1 < α2/2, then there exists a sufficiently large r1 such that the gravi-
tational force F is repulsive for r > r1:

(5.16) F > 0 for r > r1.

We remark that Theorem 5.2 is valid provided the initial value α is small because
the diagram given by Figure 5.1 is in a neighborhood of x = 0. However, all
physically meaningful central fields satisfy the condition (note that any a black
hole is enclosed by a huge quantity of matter with radius r > 0 ≫ 2MG/c2). In
fact, the Schwarzschild initial values are as

(5.17) x1(r0) = x2(r0) =
δ

1− δ
, δ =

2MG

c2r0
.

For example see (4.5), where the δ-factors are of the order δ ≤ 10−1, sufficient for
the requirements of Theorem 5.2.

The most important cases are for galaxies and clusters of galaxies. For these two
types of astronomical objects, we have

galaxy : M = 1011M⊙, r0 = 3× 105ly,

cluster of galaxies : M = 1014M⊙, r0 = 3× 106ly.

Thus the δ-factors are

(5.18) galaxies δ = 10−7, cluster of galaxies δ = 10−5.

In fact, the dark energy phenomenon is mainly evident between galaxies and be-
tween clusters of galaxies. Hence, (5.18) shows that Theorem 5.2 is valid for both
central gravitational fields of galaxies and clusters of galaxies. The asymptotic re-
pulsion of gravity plays the role to stabilize the large scale homogeneous structure
of the Universe.

6. Simplified Gravitational Interaction Formula

We have shown that all four fundamental interactions are layered. Namely, each
interaction has distinct attracting and repelling behaviors in different scales and
levels. The dark matter and dark energy represent the layered property of gravity.

In this section, we simplify the gravitational formula (4.8) to clearly exhibit the
layered phenomena of gravity.

In (4.8) the field functions u and v can be approximatively replaced by the
Schwarzschild solution (4.6). Since 2MG/c2r is very small for r > r0 as indicted in
(4.5) and (5.18), the formula (4.8) can be expressed as

(6.1) F = mMG

[
− 1

r2
− r

δr0
φ′′

]
, r > r0.

By the field equation (4.2), we have

(6.2) R = Φ for r > r0,
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where R is the scalar curvature, and

Φ = gµνDµνφ = e−v

[
−φ′′ + 1

2
(u′ − v′)φ′ +

2

r
ϕ′

]
.

In view of (6.2), we obtain that

φ′′ = −evR +
2

r
φ′ +

1

2
(u′ − v′)φ′

Again by the Schwarzschild approximation, we have

(6.3) φ′′ =

(
2

r
+
δr0
r2

)
φ′ −R.

Integrating (6.3) and omitting e±δr0/r, we derive that

φ′ = −r2
[
ε+

∫
r−2Rdr

]
,

where ε is a constant. Thus (6.1) can be rewritten as

(6.4) F = mMG

[
− 1

r2
+

r

δr0
R+

(
1 +

2r

δr0

)(
εr + r

∫
R

r2
dr

)]
.

The solutions of (5.2) can be Taylor expanded. Hence by (5.1) we see that

u′(r) =
1

r2

∞∑

k=0

ak(r − r0)
k.

By (5.14), the gravitational force F takes the following form

F =
1

r2

∞∑

k=0

bkr
k, b0 = −mMG.

In view of (6.4), it implies that R can be expanded as

R =
ε0
r

− ε1 +O(r),

and by Physical Conclusion 5.1, ε0 and ε1 are two to-be-determined free parameters.
Inserting R into (6.4) we obtain that

(6.5) F = mMG

[
− 1

r2
− k0

r
+ ϕ(r)

]
for r > r0.

where k0 = 1
2
ε0, and

ϕ(r) = ε1 + k1r +O(r), k1 = ε+
ε1
δr0

.

The nature of dark matter and dark energy suggests that

k0 > 0, k1 > 0.

Based on Theorem 5.2, ϕ(r) → 0 as r → ∞, and (6.5) can be further simplified as
in the form for r0 < r < r1,

(6.6) F = mMG

[
− 1

r2
− k0

r
+ k1r

]
,

where k0 and k1 will be determined by the Rubin rotational curve and the astro-
nomical data for clusters of galaxies in the next section, where we obtain that

(6.7) k0 = 4× 10−18km−2, k1 = 10−57km−3.
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The formula (6.6) is valid only in the interval

r0 < r < r1,

and r1 is the distance at which F changes its sign:

F (r1) = 0.

Both observational evidence on dark energy and Theorem 5.2 show that the distance
r1 exists. The formula (6.6) with (6.7) clearly displays the layered property of
gravity: attracting at short distance and repelling at large distance.

7. Nature of Dark Matter and Dark Energy

As mentioned in Section 3, both dark matter and dark energy are a property of
gravitational effect, reflected in two aspects, which will be addressed in detail in
this section:

a) spatially geometrical structure, and
b) gravitational attracting and repelling as in (6.6).

Space curved energy and negative pressure

Gravitational potential causes space curvature and the spherical structure of the
Universe, and displays two types of energies: a) dark matter contributed by the
curvature of space, and b) dark energy generated by the dual gravitational potential
in (3.15). We address each type of energy as follows.

1) Dark matter: the space curved energy. In (Ma and Wang, 2014a, Section 6.3),
we have introduced the space curved energy Mtotal for the 3D spherical Universe
as follows:

Mtotal =
3π

2
M, M is the observed mass in the hemisphere.

Now, we consider a galaxy with an observed mass MΩ. In (Ma and Wang, 2014a,
Section 6.3), we have shown that the space curved energy Mtotal;Ω is

(7.1) Mtotal;Ω =
VΩ
|Ω|MΩ,

where Ω is the domain occupied by the galaxy, VΩ and |Ω| are the volumes of curved
and flat Ω. VΩ contain two parts:

(7.2) VΩ = cosmic spherical V 1
Ω + local bump V 2

Ω .

It is known that

V 1
Ω =

3π

4
|Ω|.

For V 2
Ω , we propose that

V 2
Ω = π2r30 , r0 the galaxy radius.

In fact, the formula is precise for the galaxy nucleus.
By |Ω| = 4

3
πr30 , we infer from (7.1) and (7.2) that

(7.3) Mtotal;Ω =
3π

2
MΩ,

which gives rise to the relation between the masses of dark matter and observable
matter.
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2) Dark energy: the dual gravitational potential. The static universe is described
by the stationary solution of (3.11)-(3.12), which is given by (3.13)-(3.14). In
the solution a negative pressure presents, which prevents galaxies and clusters of
galaxies from gravitational contraction to form a void universe, and maintains the
homogeneous distribution of the Universe. The negative pressure contains two
parts:

(7.4) p = −1

3
ρc2 − c2

24πG
ϕ (see (3.13)),

where the first term is contributed by the observable energy, and the second term
is the dark energy generated by the dual gravitational potential ϕ; see also (3.19).

By the Blackhole Theorem, (Ma and Wang, 2014a, Theorem 4.1), black holes
are incompressible in their interiors. Hence, in (7.4) the negative pressure

(7.5) p = −1

3
ρc2,

is essentially the incompressible pressure of the black hole generated by the normal
energy.

By the cosmology theorem, (Ma and Wang, 2014a, Theorem 6.2), the Universe
is a 3D sphere with a blackhole radius. However, the CMB and the WMAP
measurements manifest that the cosmic radius R is greater than the blackhole
radius of normal energy. By (3.19), the deficient energy is compensated by the dual
gravitational potential, i.e. by the second term of (7.4).

Attraction and repulsion of gravity

Based on Theorem 5.2, gravity possesses additional attraction and repelling to
the Newtonian gravity, as shown in the revised gravitational formula:

(7.6) F = mMG

(
− 1

r2
− k0

r
+ k1r

)
.

By using this formula we can explain the dark matter and dark energy phenomena.
In particular, based on the Rubin rotational curve and astronomical data, we can
determine an approximation of the parameters k0 and k1 in (7.6).

1) Dark matter: the additional attracting. Let Mr be the total mass in the ball
with radius r of galaxy, and V be the constant galactic rotational velocity. By the
force equilibrium, we infer from (7.6) that

(7.7)
V 2

r
=MrG

(
1

r2
+
k0
r

− k1r

)
,

which implies that

(7.8) Mr =
V 2

G

r

1 + k0r − k1r3
.

The mass distribution (7.8) is derived based on both the Rubin rotational curve
and the revised formula (7.6). In the following we show that the mass distribution
Mr fits the observed data.

We know that the theoretic rotational curve given by Figure 2.1 (b) is derived
by using the observed mass Mob and the Newton formula

F = −mMobG

r2
.
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Hence, to show that Mr = Mob, we only need to calculate the rotational curve vr
by the Newton formula from the mass Mr, and to verify that vr is consistent with
the theoretic curve. To this end, we have

v2r
r

=
MrG

r2
,

which, by (7.8), leads to

vr =
V√

1− k0r − k1r2
.

As k1 ≪ k0 ≪ 1, vr can be approximatively written as

(7.9) vr = V (1− 1

2
k0r +

1

4
k20r

2).

It is clear that the rotational curve described by (7.9) is consistent with the theoretic
rotational curve as illustrated by Figure 2.1 (b). Therefore, it implies that

(7.10) Mr =Mob.

The facts of (7.7) and (7.10) are strong evidence to show that the revised formula
(7.6) is in agreement with the astronomical observations.

We now determine the constant k0 in (7.6). According to astronomical data, the
average mass Mr1 and radius r1 of galaxies are about

(7.11)
Mr1 = 1011M⊙

∼= 2× 1041Kg,

r1 = 104 ∼ 105pc ∼= 1018Km.

The observations show that the constant velocity V in the Rubin rotational curve
is about V = 300km/s. Then we have

V 2

G
= 1024kg/km

Based on physical considerations,

(7.12) k0 ≫ k1r1 (r1 as in (7.11)).

Then, we deduce from (7.8) that

(7.13) k0 =
V 2

G

1

Mr1

− 1

r1
= 4× 10−18K−1

m .

We can explain the dark matter by the revised formula (7.6). As the matter
distribution Mr is in the form

Mr =
V 2

G

r

1 + k0r
,

then the Rubin law holds true. In addition, the revised gravitation produces an

excessive mass M̃ as

M̃ =MT −Mr1 =
V 2

G
r1 −

V 2

G

r1
1 + k0r1

,

where M1 = V 2r1/G is the Newton theoretic value of the total mass. Hence we
have

M̃

MT

=
k0r1

1 + k0r1
=

4

5
or

M̃

Mr1

= 5.
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Namely, the additional mass M̃ is four time the visible matter Mr1 = MT − M̃ .
Thus, it gives an explanation for the dark matter.

We remark that the ratio M̃/Mob = 5 is essentially the same as in (7.3). It shows
that the dark matter is a gravitational effect, reflected in both the space curvature
and the additional gravitational attraction.

2) Dark energy: asymptotic repulsion of gravity. If gravity is always attracting
as given by the Newton formula, then the cosmic homogeneity is unstable. In fact,
It is known that the average mass M and distance for the clusters of galaxies are
as

(7.14)
M = 1014M⊙

∼= 1044Kg

r ∼= 108pc ∼= 1020 ∼ 1021Km.

Then the Newton gravitation between two clusters of galaxies is

(7.15) F = −M
2G

r2
∼= 1029N = 1028Kg.

However, astronomical observations indicate that no gravitational interaction
between clusters of galaxies. The Universe is isotropic, therefore no rotation to
balance the huge force of (7.15) in the clusters.

Thus, the new cosmology theorem, (Ma and Wang, 2014a, Theorem 6.2), sug-
gests that gravity should be asymptotically repulsive. Theorem 5.2 offers a solid
theoretic foundation for the property, based on which we derive the simplified grav-
itational force formula (7.6).

Now we consider the constant k1 in (7.6). Due to the astronomical fact that no
gravitational force between clusters of galaxies, we have

F (r̄) = 0, r̄ = the average distance between galactic clusters.

By (7.14), we take

(7.16) r̄ =

√
2

5
× 1020km.

Then we deduce from (7.6) that

k1r̄ −
k0
r̄

− 1

r̄2
= 0,

which, by (7.13) and (7.16), leads to

(7.17) k1 = 10−57km−3.

In summary, we conclude that the dark matter and dark energy are essentially
gravitational effect generated by the gravitational potential field gµν , its dual field
Φµ and their nonlinear interactions. They can be regarded as the gravitational field
energy caused by gµν and Φµ.
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